
Metis: File System Model Checking via Versatile Input and State Exploration (FAST ’24) 1Feb 27, 2024

22nd USENIX Conference on File and Storage Technologies
(FAST 2024)

Yifei Liu1, Manish Adkar1, Gerard Holzmann2, Geoff Kuenning3,
Pei Liu1, Scott A. Smolka1, Wei Su1, and Erez Zadok1

1 Stony Brook University; 2 Nimble Research; 3 Harvey Mudd College

Metis: File System Model Checking via
Versatile Input and State Exploration

Metis: File System Model Checking via Versatile Input and State Exploration (FAST ’24) 2Feb 27, 2024

Outline
● Background and Motivation

● Metis Design

● RefFS Design

● Evaluation

● Conclusions

Metis: File System Model Checking via Versatile Input and State Exploration (FAST ’24) 3Feb 27, 2024

Background: File System Testing
● File system bugs: widespread and serious
● Various testing techniques invented

Regression Testing Model Checking Fuzzing Automatic Test
Generation

Linux Test Project
xfstests
fsx exerciser

FiSC (OSDI ’04)
eXplode (OSDI ’06)
MCVFS (VMCAI ’09)

Syzkaller
Janus (S&P ’19)
Hydra (SOSP ’19)

B3 (OSDI ’18)
Dogfood (ICSE ’20)
Chipmunk (EuroSys ’23)

Ensuring updates
preserve existing

functionality

Verifying file system
correctness against an

abstract model

Finding bugs or
crashes through

semi-random inputs

Automatically creating
test workloads to check

file systems

Metis: File System Model Checking via Versatile Input and State Exploration (FAST ’24) 4Feb 27, 2024

Background: File System Test Inputs
● Large test input space for file systems

◆ Linux: over 400 system calls, only a handful for file systems
◆ Input space: various arguments, arbitrary values, combinations

● Input coverage for file system testing[1]

◆ Completeness: covers enough different inputs
◆ Versatility: designs test cases to achieve desired input coverage

[1] Liu, Yifei, et al. “Input and Output Coverage Needed in File System Testing”, ACM HotStorage, 2023.

● Maximizing value from the input space
◆ Diverse selection of test inputs
◆ Tailoring of test input distribution based on strategy

Metis: File System Model Checking via Versatile Input and State Exploration (FAST ’24) 5Feb 27, 2024

Motivation: File System States
● Inputs should be assessed with file system states

◆ E.g., writing to existing vs. brand-new file

● Ideal case: test diverse inputs across various states
◆ Cover corner cases
◆ Don’t waste resources by revisiting states

How to track states to
avoid testing duplicates?

How to define file
system states?

Metis: File System Model Checking via Versatile Input and State Exploration (FAST ’24) 6Feb 27, 2024

Outline
● Background and Motivation

● Metis Design

● RefFS Design

● Evaluation

● Conclusions

Metis: File System Model Checking via Versatile Input and State Exploration (FAST ’24) 7Feb 27, 2024

Our Work: Metis
Metis: Combines model checking & differential testing

1. Achieve both input and state coverage

2. No need to create an abstract model

3. No need to modify or instrument OS kernel

4. Simplify bug reproduction

5. Scale up testing with resources

Metis: File System Model Checking via Versatile Input and State Exploration (FAST ’24) 8Feb 27, 2024

Metis Architecture

Actual
Bug

False
Positive

③ Differential
State Checker

④ Event
Logger

① Input Driver

Non-
Deterministic

Operation
Selection

Weight-
Based

Arguments

⑤ Optimized
Replayer

Concrete
State

Concrete
State

Abstract
State

Abstract
State

② State Explorer

File System
Under Test

Reference
File System

MD5
Hash

Mem
Copy

Metis: File System Model Checking via Versatile Input and State Exploration (FAST ’24) 9Feb 27, 2024

Metis Design: Input Driver
● Metis file-system operations: meta-operations and

single syscalls

● Syscall Arguments: input space partitioning
◆ Divided arguments into four categories

▪ Identifiers: e.g., file descriptors
▪ Bitmaps: e.g., open flags
▪ Numeric arguments: e.g., write size
▪ Categorical arguments: e.g., lseek whence

◆ Partitioned the input space using type-specific methods

Metis: File System Model Checking via Versatile Input and State Exploration (FAST ’24) 10Feb 27, 2024

open
flags

O_WRONLY

O_RDWR

O_CREAT

O_EXCL

O_NOCTTY

…

50%

15%

30%

35%

20%

…

Example
Weights

0o0001

0o0002

0o0100

0o0200

0o0400

…

BitsIndividual
Flag

write
size

0

1

2

3

4

N

5%

5%

15%

10%

15%

…

Example
Weights

1

2

4

8

16

2N

MinExponent
of log 2

1

3

7

15

31

2N+1-1

Max

Metis Design: Input Driver (cont.)
● Set probabilities (as weights) for each partition

Sum: 100%Each flag: 0% - 100%

Metis: File System Model Checking via Versatile Input and State Exploration (FAST ’24) 11Feb 27, 2024

Metis Design: State Explorer
● State-space exploration: Depth-First Search (DFS)

◆ FS states are the nodes, FS operations are the edges

● FS state definition and tracking
◆ Concrete state

▪ All file system state information
▪ For state backtracking and bug reproduction

◆ Abstract state
▪ MD5 hash of file content, directory tree, important metadata

● Exclude noisy attributes, e.g., atime timestamps

▪ For identifying and comparing system states
▪ Discrepancies are potential bugs

Metis: File System Model Checking via Versatile Input and State Exploration (FAST ’24) 12Feb 27, 2024

Metis in Action: State Exploration
Concrete State (stack) Abstract State (hash table)Metis DFS Tree

0 Clean

Concrete State 0 Abstract State 0

1 File: F-1
Concrete State 1 Abstract State 1

2 File: F-1
Dir: D-1

Abstract State 23 Files: F-1, F-2

Abstract State 3

Concrete State 3

4 Files: F-1, F-2
Dir: D-1

Concrete State 4

Abstract State 4

If an operation makes file systems reach a previously visited state,
Metis reverts the state to the parent state

creat(F-1)

mkdir(D-1)

creat(F-2)

mkdir(D-1)

rmdir(D-1)

Metis: File System Model Checking via Versatile Input and State Exploration (FAST ’24) 13Feb 27, 2024

Discrepancy
found at State 4

Metis in Action: State Exploration
Concrete State (stack) Abstract State (hash table)Metis DFS Tree

0 Clean

Concrete State 0 Abstract State 0

1 File: F-1
Concrete State 1 Abstract State 1

2 File: F-1
Dir: D-1

Abstract State 23 Files: F-1, F-2

Abstract State 3

Concrete State 3

4 Files: F-1, F-2
Dir: D-1

Concrete State 4

Abstract State 4

Metis replayer can reproduce a potential bug from any point of the exploration path
by using concrete states and logs

creat(F-1)

mkdir(D-1)

creat(F-2)

mkdir(D-1)

Metis: File System Model Checking via Versatile Input and State Exploration (FAST ’24) 14Feb 27, 2024

Tracking Full File System States
● Save and restore states on backtrack or search limit

◆ As a user process, cannot track in-memory file system states
Solutions Kernel FS User-space FS

VM Snapshotting ❌ Too slow

Process Snapshotting ❌ Not applicable ❌ Incompatible with character device

Remount / unmount the
file systems before / after

each operation

❌ Slow
❌ Hide bugs related to in-memory states
✅ Compatible with all on-disk file systems

State Save/Restore
(SS/R) API

✅ Efficient and preserves in-memory states

❌ Challenging to implement
on kernel FS ✅ Feasible and less challenging

Metis: File System Model Checking via Versatile Input and State Exploration (FAST ’24) 15Feb 27, 2024

Parallel State Exploration
● State space is bounded yet huge

◆ Exploring with single process is time-consuming

● Metis uses Swarm verification:[2] “divide and
conquer” the state space
◆ Parallel Verification Tasks (VTs): check segments of state space
◆ VTs scale across CPU cores and machines
◆ Diversification: techniques that help ensure VTs explore different

parts of the space
▪ By different combinations of state-exploration parameters

[2] Holzmann, Gerard J., et al. “Swarm verification techniques”, IEEE Transactions on Software Engineering, 2010.

Metis: File System Model Checking via Versatile Input and State Exploration (FAST ’24) 16Feb 27, 2024

Outline
● Background and Motivation

● Metis Design

● RefFS Design

● Evaluation

● Conclusions

Metis: File System Model Checking via Versatile Input and State Exploration (FAST ’24) 17Feb 27, 2024

RefFS: The Reference File System
● Reference file system must exhibit correct behavior

● Tried Ext4 as initial reference file system
◆ Lacks state save/restore (SS/R) operations
◆ Difficult to debug and verify due to its complexity

● RefFS: new file system designed to function as
reference file system
◆ Small, user-space, easy to debug
◆ Optimized for SS/R via four snapshot ioctl APIs
◆ Thoroughly checked and improved RefFS by using Metis

Metis: File System Model Checking via Versatile Input and State Exploration (FAST ’24) 18Feb 27, 2024

RefFS Architecture and its Snapshot API
Metis Input Driver

RefFS

libFUSE

/dev/fuse

fuse (in kernel)

IOCTLs to save &
restore RefFS state File system operations

File Operations

Data &
Metadata

open

write

close

……

Snapshot Service

ioctl_SAVE

ioctl_RESTORE

Snapshot Pool

User

Kernel

ioctl_PICKLE

ioctl_LOAD

Metis State Explorer

RefFS:
FUSE-based,
in-memory,
supports most
POSIX file system
operations

Metis: File System Model Checking via Versatile Input and State Exploration (FAST ’24) 19Feb 27, 2024

RefFS Architecture and its Snapshot API
Metis Input Driver

RefFS

libFUSE

/dev/fuse

fuse (in kernel)

IOCTLs to save &
restore RefFS state File system operations

File Operations

Data &
Metadata

open

write

close

……

Snapshot Service

ioctl_SAVE

ioctl_RESTORE

Snapshot Pool

User

Kernel

ioctl_PICKLE

ioctl_LOAD

Metis State Explorer

Snapshot Pool:
Key-value store of
snapshots

64-bit key (DFS
tree location) and
corresponding file
system snapshot

Metis: File System Model Checking via Versatile Input and State Exploration (FAST ’24) 20Feb 27, 2024

RefFS Architecture and its Snapshot API
Metis Input Driver

RefFS

libFUSE

/dev/fuse

fuse (in kernel)

IOCTLs to save &
restore RefFS state File system operations

File Operations

Data &
Metadata

open

write

close

……

Snapshot Service

ioctl_SAVE

ioctl_RESTORE

Snapshot Pool

User

Kernel

ioctl_PICKLE

ioctl_LOAD

Metis State Explorer

ioctl_SAVE:
Saves current
concrete file
system state as a
snapshot

ioctl_RESTORE:
Restores file
system state from a
snapshot

Metis: File System Model Checking via Versatile Input and State Exploration (FAST ’24) 21Feb 27, 2024

Outline
● Background and Motivation

● Metis Design

● RefFS Design

● Evaluation

● Conclusions

Metis: File System Model Checking via Versatile Input and State Exploration (FAST ’24) 22Feb 27, 2024

Evaluation: Experimental Setup
● Hardware Platform

◆ Ubuntu 22.04, dual 6-core Intel Xeon X5650 CPUs, 128GB RAM,
128GB NVMe SSD for swap space

◆ Swarm verification execution: 3 identical machines

[3] Jiao, Yizheng, et al. “BetrFS: A Compleat File System for Commodity SSDs”, EuroSys, 2022.

● File Systems
◆ Ext4 (reference to check RefFS), RefFS (reference to check others)
◆ BetrFS,[3] BtrFS, F2FS, JFFS2, JFS, NILFS2, NOVA, PMFS, XFS

● Complementary Tools
◆ IOCov [Liu 2023]: Computes input coverage for file system testing

▪ Comparison: CrashMonkey, xfstests, Syzkaller, Metis
◆ RAM disks: Serve as devices for on-disk file systems

Metis: File System Model Checking via Versatile Input and State Exploration (FAST ’24) 23Feb 27, 2024

…

Input Coverage: write() sizes [40 mins]
● Metis-Uniform: uniform test probabilities to each write size partition
● XD: exponentially decaying; IXD: inverse exponentially decaying

Metis: File System Model Checking via Versatile Input and State Exploration (FAST ’24) 24Feb 27, 2024

Input Coverage: write() sizes [4 hours]
● 4-hour Metis run: with a longer run, the expected distributions are

more accurate

Metis: File System Model Checking via Versatile Input and State Exploration (FAST ’24) 25Feb 27, 2024

RefFS Performance and Reliability

RefFS explores states 3–28× faster than other mature file systems

Using Ext4 as the reference, we used Metis to find and fix 11 bugs in RefFS

Compared RefFS and Ext4 for 1 month across 18 VTs with > 3B ops, w/o any discrepancy

Metis: File System Model Checking via Versatile Input and State Exploration (FAST ’24) 26Feb 27, 2024

Evaluation: Bug Finding
● Checked nine existing file systems; identified bugs in seven
● Discovered and confirmed various types of file system bugs

File System Total Bugs Deterministic Reported & Confirmed New Bugs
BetrFS 3 3 3 2
F2FS 1 0 0 1

JFFS2 3 2 2 2
JFS 2 1 0 2

NILFS2 3 3 0 3
NOVA 2 1 1 2
PMFS 1 0 0 1
Total 15 10 6 13

Metis: File System Model Checking via Versatile Input and State Exploration (FAST ’24) 27Feb 27, 2024

Outline
● Background and Motivation

● Metis Design

● RefFS Design

● Evaluation

● Conclusions

Metis: File System Model Checking via Versatile Input and State Exploration (FAST ’24) 28Feb 27, 2024

Conclusions
● File system testing must consider both input and state space

● New model-checking framework, Metis, achieves thorough and
versatile coverage of both input and state

● RefFS, an efficient FUSE-based in-memory file system, serves
as the reference for Metis

● Evaluation demonstrates the performance and effectiveness of
Metis and RefFS

● Found 15 bugs across seven file systems; six were confirmed,
and 13 were previously unknown

Metis: File System Model Checking via Versatile Input and State Exploration (FAST ’24) 29Feb 27, 2024

Thank You!

Q&A
yifeliu@cs.stonybrook.edu

Metis: File System Model Checking via
Versatile Input and State Exploration

Metis and RefFS are open-sourced at
https://github.com/sbu-fsl/Metis
https://github.com/sbu-fsl/RefFS

https://github.com/sbu-fsl/Metis
https://github.com/sbu-fsl/RefFS

