
Model-Checking Support for File System Development (ACM HotStorage ’21) 1July 28, 2021

13th ACM Workshop on Hot Topics in Storage and File
Systems (HotStorage ’21)

Wei Su1, Yifei Liu1, Gomathi Ganesan1, Gerard Holzmann2, Scott
Smolka1, Erez Zadok1 , and Geoff Kuenning3

1 Stony Brook University; 2 Nimble Research; 3 Harvey Mudd College

Model-Checking Support for
File System Development

Model-Checking Support for File System Development (ACM HotStorage ’21) 2July 28, 2021

Background and Motivation
● File system development

◆ Time-consuming: many years of effort
◆ Complex: standards compliance, concurrency, etc.
◆ Error-prone: bugs and defects

File
System

Age
(years)

of bugs
in 2020

Btrfs 14 110

Ext4 15 17

XFS 18 30

● File system bugs
◆ Constantly emerging
◆ Serious consequences

▪ Data loss
▪ System crashes
▪ Data corruption

Model-Checking Support for File System Development (ACM HotStorage ’21) 3July 28, 2021

Existing Work on File System Bugs
Regression Test
Suites

Fuzzing Machine-Verifiable File
Systems

Model Checking

Linux Test Project
xfstests

kAFL (Security ’17)
Janus (S&P ’19)
Hydra (SOSP ’19)*

FSCQ (SOSP ’15)
Yggdrasil (OSDI ’16)
DFSCQ (SOSP ’17)
SFSCQ (OSDI ’18)
AtomFS (SOSP ’19)

CMC (OSDI ’02)
FiSC (OSDI ’04)
eXplode (OSDI ’06)
JUXTA (SOSP ’15)
Ferrite (ASPLOS ’16)
B3 (OSDI ’18)

Cannot sufficiently
cover corner cases
and new features

Only detect certain
types of bugs or need
developers to write
their own checkers

Cannot apply to existing file
systems directly

Only find certain types
of bugs or need effort to
build an abstract file
system model

*Kim et al. “Finding semantic bugs in file systems with an extensible fuzzing framework.” Proceedings of 27th ACM Symposium on
Operating Systems Principles. 2019.

MCFS (Our work)

Model-Checking Support for File System Development (ACM HotStorage ’21) 4July 28, 2021

MCFS Design Goals
1. Thorough coverage

◆ Explore (bounded) state spaces of file systems thoroughly

2. Eliminate the need for an abstract model
◆ Check file systems without building a model

3. Absence of observer effects
◆ Avoid changing the behavior of the investigated file system

4. Universality
◆ Support a wide range of file systems

5. High performance
◆ Perform state exploration efficiently

Model-Checking Support for File System Development (ACM HotStorage ’21) 5July 28, 2021

MCFS Architecture
1. Randomized test engines

◆ Issue syscall sequences to each file
system

2. Optimized state-space exploration
◆ Rely on Spin to perform state-space

exploration
3. Integrity checks

◆ Verify all file systems have identical
states

4. Abstraction functions
◆ Convert concrete states into abstract

states

Model-Checking Support for File System Development (ACM HotStorage ’21) 6July 28, 2021

Challenges
● State Explosion

● False Positives

● Cache Incoherency

Model-Checking Support for File System Development (ACM HotStorage ’21) 7July 28, 2021

Challenge 1: State Explosion
Challenges

● Spin compares states byte-to-byte
● Any small change in the file system

image will be considered a new state
➜ E.g., Updates to timestamps in ext4’s

super block

● State exploration will never complete

Solutions
● Define “abstraction functions” to

calculate abstract states
● Only consider directory structure,

file content, and important
metadata

● Ignore noisy attributes, such as
timestamps and locations of data
blocks

Model-Checking Support for File System Development (ACM HotStorage ’21) 8July 28, 2021

Challenge 2: False Positives
● False Positives

● Size reporting of directories

● Solutions
● Ignore sizes of non-regular files when

calculating abstract states

● Ordering of directory entries

● Special files and folders

● Different file data capacity exposed

● Sort all paths after recursively walking
the file systems

● Use an “exclusion list”: ignore these
special files and folders when walking
the file systems

● Write dummy data to equalize
available space of all file systems

Challenges Solutions

Model-Checking Support for File System Development (ACM HotStorage ’21) 9July 28, 2021

Challenge 3: Cache Incoherency
● Challenges

● Spin needs to checkpoint and restore
the states of file systems when
exploring in BFS or DFS order

● However, Spin cannot track the
in-memory states of the file systems
➜ Kernel FS: Spin is a user-space

program
➜ FUSE FS: Independent processes,

independent address spaces

● Leads to: incomplete state restoration
when backtracking → corrupted file
system state

● Solutions
● Remount / unmount the file

systems before / after running each
syscall
➜ Slow
➜ Hide bugs related to in-memory

states
➜ Compatible with all on-disk file

systems

● Checkpoint & restore API
➜ Efficient and preserves

in-memory states
➜ Needs to implement them

Challenges Solutions

Model-Checking Support for File System Development (ACM HotStorage ’21) 10July 28, 2021

● ioctl_CHECKPOINT:
◆ Save current concrete file

system state as a snapshot
● ioctl_RESTORE:

◆ Restore file system state from a
snapshot

● Snapshot Pool
◆ Key-value store of snapshots
◆ 64-bit key and corresponding

file system snapshot
● Two versions of VeriFS

◆ VeriFS2 uses more
sophisticated data structures

VeriFS and Checkpoint/Restore API

File System Syscall Engine
SPIN Model Checker

VeriFS

libFUSE

/dev/fuse

fuse (in kernel)

IOCTLs to checkpoint
& restore VeriFS state file system ops

File Operations

Data &
Metadata

open

write

close
……

Snapshot Service
ioctl_CHECKPOINT

ioctl_RESTORE

Snapshot
Pool

User

Kernel

Model-Checking Support for File System Development (ACM HotStorage ’21) 11July 28, 2021

Evaluation: State Exploration Speed

20⨉ faster

10⨉ faster

6⨉ faster

Model-Checking Support for File System Development (ACM HotStorage ’21) 12July 28, 2021

MCFS’s Ability to Detect Bugs
● VeriFS1 vs. Ext4

◆ VeriFS1 had different file content from Ext4
▪ VeriFS1’s truncate() failed to zero the new space if it expanded the file

● VeriFS1 vs. VeriFS2
◆ VeriFS2 had different file content from VeriFS1

▪ Failed to zero the file buffer if write created a hole

Model-Checking Support for File System Development (ACM HotStorage ’21) 13July 28, 2021

Conclusions and Future Work
● MCFS: model-checking framework for file system development

◆ Thoroughly explore file system states
◆ Developed VeriFS1 and VeriFS2 and their checkpoint/restore ioctls
◆ Can find real bugs and assist file system development

● Future work
◆ Add the checkpoint/restore API to Linux VFS, thereby eliminating need for

unmount/remount workaround
◆ Run more than two file systems at a time; apply n-version programming
◆ Use Spin’s swarm verification to explore larger state spaces in parallel

Model-Checking Support for File System Development (ACM HotStorage ’21) 14July 28, 2021

Wei Su1, Yifei Liu1, Gomathi Ganesan1, Gerard Holzmann2, Scott
Smolka1, Erez Zadok1 , and Geoff Kuenning3

1Stony Brook University; 2Nimble Research; 3Harvey Mudd College

Thank You
Q&A

Model-Checking Support for
File System Development

Model-Checking Support for File System Development (ACM HotStorage ’21) 15July 28, 2021

Challenge 3: Cache Incoherency
● Spin applies depth-first search to explore state space

◆ When Spin reaches leave nodes, it needs to backtrack to the parent.
Backtracking requires restoring the file system states to an earlier version.

◆ By default, Spin uses memcpy() to checkpoint and restore the states it tracks.
● File system states

◆ Persistent states (the block devices)
▪ We can have Spin track them by mmap() the devices

◆ In-memory states:
▪ Kernel FS: Spin, as a user process, cannot access the kernel memory

space
▪ FUSE FS: Spin and the file systems reside in independent address spaces

● Cache Incoherency
◆ Reason: Only persistent states are restored, in-memory states are left unchanged
◆ Symptom: Directory entries with corrupted or zeroed inodes

Model-Checking Support for File System Development (ACM HotStorage ’21) 16July 28, 2021

Cache Incoherency Work-around Attempts
● Forcibly flush / load in-memory states of file systems

◆ Unmounting flushes all in-memory states (caches) into the underlying storage
◆ Remounting loads what’s in the disks back into memory
◆ We unmounted and remounted the file system between executing each syscall
◆ Ensured that caches are coherent

● Deficiencies of unmount & remount
◆ Considerably slowed state space exploration
◆ Prevented MCFS from identifying file-system bugs caused by incorrect

in-memory states

Model-Checking Support for File System Development (ACM HotStorage ’21) 17July 28, 2021

Tracking Full File System States
● Process snapshotting

◆ User-space file systems (FUSE) run as independent processes
◆ CRIU: refused to checkpoint processes that opened any character or block

device
◆ Only applicable to user-space file systems, whereas most mature file systems are

in kernel
● Virtual-machine (VM) snapshotting

◆ Tracks full file system states by snapshotting and resuming the whole VM
◆ But is slow and heavyweight (even for LightVM)

● VeriFS with ioctls
◆ A file system checkpoints and restores its own full states
◆ VeriFS provides checkpoint and restore APIs via ioctls

Model-Checking Support for File System Development (ACM HotStorage ’21) 18July 28, 2021

Evaluation: Experiment Setup
● Experiment Machine

◆ 16 Cores, 64GB RAM
◆ 128GB of swap space on a SSD

● File Systems
◆ Ext2 (256KB RAM block device)
◆ Ext4 (256KB RAM block device / HDD / SSD)
◆ JFFS2 (256KB RAM-based MTD device)
◆ XFS (16MB RAM block device)
◆ VeriFS 1 & 2 (In-memory file systems)

Model-Checking Support for File System Development (ACM HotStorage ’21) 19July 28, 2021

Evaluation: Performance

Rates over time of the experiment with VeriFS

Spin Hash Table Resizing

Moving average

Declining due to swap in/out

Hit rate increased

