
Metis: File System Model Checking via Versatile
Input and State Exploration

Yifei Liu1, Manish Adkar1, Gerard Holzmann2, Geoff Kuenning3, Pei Liu1,
Scott A. Smolka1, Wei Su1, and Erez Zadok1

1Stony Brook University; 2Nimble Research; 3Harvey Mudd College

Background & Motivation
❖ File system bugs have serious consequences
❖ Existing testing methods for file systems

● Regression testing; Model checking; Fuzzing; Automatic
test generation; Static analysis

● Limited input and state space coverage
● Other restrictions:

■ Creation of an abstract model or a checker
■ Kernel instrumentation or modification
■ Scalability & bug reproduction

1 File System Inputs & States
❖ Executing various inputs under different states
❖ File System Test Inputs

● File system syscalls: huge argument space
● Input space partitioning

■ Identifiers, bitmaps, numeric, categorical, etc.
❖ File System States

● File system’s content, status, and context
● State definition: tradeoff between integrity and efficiency
● Avoid testing duplicate states

 RefFS: Reference File System

Bug Finding & Future Work
❖ Found and fixed 11 RefFS bugs using Ext4 as reference
❖ Bug Finding for Existing File Systems

● Used RefFS as the reference for Metis
● Checked nine other file systems; identified bugs in seven

■ BetrFS, F2FS, JFFS2, JFS, NILFS2, NOVA, PMFS
● Found 15 bugs: six confirmed and 13 previously unknown
● Behavioral discrepancies, kernel crashes, deadlocks, etc.

❖ Future Work
● Crash-consistency & concurrency bugs
● Fault injection & controlled file-system corruptions

fsl.cs.stonybrook.edu/~yifei yifeliu@cs.stonybrook.edu

Metis Design and Implementation
❖ Combination of model checking and

differential testing
● Generation of versatile inputs
● State exploration on both file systems
● Comparing abstract states for bugs
● Logging operations and discrepancies
● Simplified bug replay

 Eval: RefFS & Metis Performance

2

3

4

6 7

RefFS: 3–28✕ perf improvement vs. existing file systems

Paper appears in USENIX FAST 2024

Metis Input Driver

 RefFS

libFUSE

/dev/fuse

fuse (in kernel)

IOCTLs to save &
restore RefFS state File system operations

File Operations

Data &
Metadata

open

Snapshot Service

Snapshot Pool

User

Kernel

ioctl_PICKLE

ioctl_LOAD

ioctl_SAVE

ioctl_RESTORE
write

close

……

Metis State Explorer

Abstract
State

FS Image

Concrete
State

5. Optimized
Replayer

4. Event
Logger

Weight-
Based

Arguments

flags
mode
size

offset
 …

FS Image

MD5 Hash
Memory Copy

Abstraction Functions

Memory
Map

1. Input Driver

2. State Explorer
3. Differential
State Checker

Actual
Bug

Operation
and Its

Arguments

Non-
Deterministic

Operation
Selection

create_file
write_file

unlink
chmod

…

Concrete
State

Abstract
State False

Positive

Reference File
System

File System
under Test

❖ Artifacts Available, Artifacts Functional, Results Reproduced
❖ Metis and RefFS are open-sourced at:
https://github.com/sbu-fsl/Metis and https://github.com/sbu-fsl/RefFS

 Evaluation: Test Input Coverage5

❖ Completeness & Versatility (40 mins)

Swarm: scales state exploration nearly linearly across nodes

https://github.com/sbu-fsl/Metis
https://github.com/sbu-fsl/RefFS

