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Background & Motivation
❖ File system bugs have serious consequences
❖ Existing testing methods for file systems

● Regression testing; Model checking; Fuzzing; Automatic 
test generation; Static analysis

● Limited input and state space coverage
● Other restrictions:

■ Creation of an abstract model or a checker
■ Kernel instrumentation or modification 
■ Scalability & bug reproduction

1    File System Inputs & States
❖ Executing various inputs under different states
❖ File System Test Inputs

● File system syscalls: huge argument space
● Input space partitioning 

■ Identifiers, bitmaps, numeric, categorical, etc.
❖ File System States

● File system’s content, status, and context
● State definition: tradeoff between integrity and efficiency
● Avoid testing duplicate states

    RefFS: Reference File System

Bug Finding & Future Work
❖ Found and fixed 11 RefFS bugs using Ext4 as reference
❖ Bug Finding for Existing File Systems

● Used RefFS as the reference for Metis
● Checked nine other file systems; identified bugs in seven

■ BetrFS, F2FS, JFFS2, JFS, NILFS2, NOVA, PMFS
● Found 15 bugs: six confirmed and 13 previously unknown
● Behavioral discrepancies, kernel crashes, deadlocks, etc.

❖ Future Work
● Crash-consistency & concurrency bugs
● Fault injection & controlled file-system corruptions

fsl.cs.stonybrook.edu/~yifei yifeliu@cs.stonybrook.edu

Metis Design and Implementation
❖ Combination of model checking and 

differential testing
● Generation of versatile inputs
● State exploration on both file systems
● Comparing abstract states for bugs
● Logging operations and discrepancies
● Simplified bug replay

     Eval: RefFS & Metis Performance
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RefFS: 3–28✕ perf improvement vs. existing file systems

Paper appears in USENIX FAST 2024
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❖ Artifacts Available, Artifacts Functional, Results Reproduced
❖ Metis and RefFS are open-sourced at:
https://github.com/sbu-fsl/Metis and https://github.com/sbu-fsl/RefFS

    Evaluation: Test Input Coverage5

❖ Completeness & Versatility (40 mins)

Swarm: scales state exploration nearly linearly across nodes

https://github.com/sbu-fsl/Metis
https://github.com/sbu-fsl/RefFS

