ARTIFACT
EVALUATED
zusenix

ARTIFACT
EVALUATED
yusenix

ARTIFACT
EVALUATED
susenix

AVAILABLE

REPRODUCED

Metis: File System Model Checking via Versatile Input and State Exploration

Yifei Liu, Manish Adkar, Gerard Holzmann*, Geoff Kuenning™, Pei Liu,
Scott A. Smolka, Wei Su, and Erez Zadok
Stony Brook University, *Nimble Research, ~Harvey Mudd College

Abstract

We present Metis, a model-checking framework designed for
versatile, thorough, yet configurable file system testing in the
form of input and state exploration. It uses a nondeterministic
loop and a weighting scheme to decide which system calls and
their arguments to execute. Metis features a new abstract state
representation for file-system states in support of efficient and
effective state exploration. While exploring states, it compares
the behavior of a file system under test against a reference file
system and reports any discrepancies; it also provides support to
investigate and reproduce any that are found. We also developed
RefFS, a small, fast file system that serves as a reference, with
special features designed to accelerate model checking and en-
hance bug reproducibility. Experimental results show that Metis
can flexibly generate test inputs; also the rate at which it explores
file-system states scales nearly linearly across multiple nodes.
RefFS explores states 3-28 x faster than other, more mature file
systems. Metis aided the development of RefFS, reporting 11
bugs that we subsequently fixed. Metis further identified 12 bugs
from five other file systems, five of which were confirmed and
with one fixed and integrated into Linux.

1 Introduction

File system testing is an essential technique for finding bugs [43]
and enhancing overall system reliability [27], as file-system
bugs can have severe consequences [53,92]. Effective testing
of file systems is challenging, however, due to their inherent
complexity [4], including many corner cases [87], myriad
functionalities [8], and consistency requirements (e.g., crash con-
sistency [64,72]). Developers have created various testing tech-
nologies [59,71,86] for file systems, but new bugs (both in-kernel
and non-kernel) continue to emerge on a regular basis [42,43,85].

To expose a file-system bug, a testing tool must execute a
particular system call using specific inputs on a given file-system
state [52,53, 87]. For example, identifying a well-known Ext4
bug [48] requires a write operation on a file initialized with a
530-byte data segment. In this case, the write operation is an
input, and the file with a specific size constitutes (part of) the
file-system state. Recent work [9, 52] also underscored the
importance of adequately covering both file-system inputs and
states during testing. While existing testing technologies seek
to cover a broad range of file systems’ functionality, they often
do not, however, integrate coverage of both file-system inputs
and states [12,43,59, 85]. For example, handwritten regression
tools like xfstests [71] can achieve good test coverage of specific

file-system features [4, 58], but do not comprehensively cover
syscall inputs; similarly, fuzzing techniques (e.g., Syzkaller [25])
are designed to maximize code—not input—coverage [40].

Both the input and state spaces of file systems are too vast
to be completely explored and tested [10, 21], so it is better to
leverage finite resources by focusing on the most pertinent inputs
and states [52,86,88]. For example, metadata-altering operations,
such as 1ink and rename, and states with a complex directory
structure are more frequently utilized in POSIX-compliance
testing [67]. Existing testing technologies also lack the versatility
to test specific inputs and states [25,59,71]. Thus, new testing
tools and techniques are needed [52, 53] to avoid under-testing
(which could miss potential bugs) or over-testing (which wastes
resources that may be better deployed elsewhere).

This paper presents Metis, a novel model-checking framework
that enables thorough and versatile input and state space
exploration of file systems. Metis runs two file systems
concurrently: a file system under test and a reference file system
to compare against [26]. Metis issues file-system operations
(i.e., system calls with arguments) as inputs to both file systems
while simultaneously monitoring and exploring the state space
via graph search (e.g., depth-first search [31]).

To compare the relevant aspects of file-system states, we
first abstract them and then compare the abstractions. The
abstract states include file data, directory structure, and essential
metadata; abstract states constitute the state space to be explored.
Metis first nondeterministically selects an operation and then fills
in syscall arguments through a user-specified weighting scheme.
Next, it executes the same operation in both file systems and
then compares both systems’ abstract states. Any discrepancy
is flagged as a potential bug. Metis evaluates the post-operation
states to decide if a state has been previously explored; if
so, it backtracks to a parent state and selects a new state to
explore [31]. Metis continuously tests new file-system states until
no additional unexplored states remain, logging all operations
and visited states for subsequent analysis. Metis’s replayer can
reproduce potential bugs with minimum time and effort.

Metis effectively addresses the common challenges of
model checking [16, 31] file systems. It checks file-system
implementations directly, eliminating the need to build a formal
model [61]. To manage large file-system input and state spaces,
Metis enables parallel and distributed exploration [33] across
multiple cores and machines. Metis works with any kernel or
user file system, and does not require any specific utilities nor
any modification or instrumentation of the kernel or the file

system. It detects bugs by identifying behavioral discrepancies
between two file systems without the need for oracles or external
checkers, thus simplifying the process of applying Metis to new
file systems. With few constraints, Metis is well suited for testing
file systems that are challenging for other testing approaches,
e.g., file system fuzzing [43], that require kernel instrumentation
and utilities. Nevertheless, the quality of the reference file system
is pivotal for assessing the behavior of other file systems [26].
We therefore developed RefFS as Metis’s reference file system.
RefFS is an in-memory user-space POSIX file system with new
APIs for efficient state checkpointing and restoration [73, 86].
Prior to using RefFS as our reference file system, we used
Ext4 as the reference to check RefFS itself; Metis identified
11 RefES bugs that we fixed during that process. Subsequently,
we deployed 18 distributed Metis instances to compare RefFS
and Ext4 for one month, totaling 557 compute days across all
instances and executing over 3 billion file-system operations
without detecting any discrepancy. This ensured that RefFS is
robust enough to serve as Metis’s (fast) reference file system.
Our experiments show that Metis can configure inputs more
flexibly and cover more diverse inputs compared to other
file-system testing tools [25,59,71]. Metis’s exploration rate
scales nearly linearly with the number of Metis instances, also
known as verification tasks (VTs). Despite being a user-level file
system, RefFS’s states can be explored by Metis 3-28x faster

than other popular in-kernel file systems (e.g., Ext4, XFS, Btrfs).

Using Metis and RefFS, we discovered 12 potential bugs across
five file systems. Of these, 10 were confirmed as previously
unknown bugs, five of which were confirmed by developers as
real bugs. Moreover, one of those bugs—which the developers
confirmed existed for 16 years—and the fix we provided, was
recently integrated into mainline Linux.

In sum, this paper makes the following contributions:

1. We designed and implemented Metis, a model-checking
framework for versatile and thorough file-system input and
state-space exploration.

2. We designed and implemented an effective abstract
state representation for file systems and a corresponding
differential state checker.

3. We designed and implemented the RefFS reference file
system with novel APIs that accelerate and simplify the
model-checking process.

4. Using RefFS, we evaluated Metis’s input and state coverage,
scalability, and performance. Our results show that Metis,
together with RefFS, not only facilitates file-system
development but also effectively identifies bugs in existing
file systems.

2 Background and Motivation

In this section, we first introduce the procedures and challenges
for testing and model-checking file systems. We then discuss

two vital dimensions for file system testing: input and state.

We demonstrate the challenges of achieving versatile and
comprehensive coverage of both inputs and states.

File system testing and model checking. File systems can be
tested statically or dynamically. Static analysis [9,57] evaluates
the file system’s code without running it; while useful, it struggles
with complex execution paths that may depend on runtime state.
Our work therefore emphasizes dynamic testing—executing and
checking file systems in real-time scenarios [12,59,67]. Gener-
ally, dynamic testing involves (1) crafting test cases using system
calls, (2) initializing the file system, (3) running the test cases,
and (4) post-execution validation of file system properties. Hence,
the quality of test cases directly affects the testing efficacy.

Model checking is a formal verification technique that seeks
to determine whether a system satisfies certain properties [16,77].
The model is typically a state machine, and the properties, usually
expressed in temporal logic, are checked using state-space
exploration [15]; here, each state represents a snapshot of the
system under investigation. To automate this process, model
checkers (e.g., SPIN [31]) are used to generate the state space,
verify property adherence, and provide a counterexample when
a property is violated.

Extracting a model from a system implementation can
be challenging, especially for large systems like file sys-
tems [86, 87]. Thus, recent work on implementation-level model
checking [86, 87] seeks to check the implementation directly
(without a model). Such approaches [86] require one to create
new, specialized checkers to test new file systems, and these
checkers are typically focused on a limited range of bugs, such
as crash-consistency bugs [86, 87]. The ongoing challenge is
to simplify implementation-level file-system model checking
so that using it does not require extensive effort or significant
expertise in model checking and file systems, while at the same
time being able to identify a wide range of bugs.

Covering system calls and their inputs. We refer to the
system calls (syscalls) and their arguments as inputs or test
inputs because syscalls are commonly used by user-space
applications—and thus testing tools—to interact with file
systems [22, 81]. Thoroughly testing file system inputs is
challenging. While file-system—related syscalls represent only
a subset of all Linux syscalls [7,74], each syscall has multiple
arguments, and the potential value range for these arguments
is vast [52,74]. For example, open returns a file descriptor, ac-
cepting user-defined arguments for £1ags and mode in addition
to pathname. Both £lags and mode are bitmaps with 23 and
17 bits, respectively, representing many possible combinations.
The bits represented in flags alone have 223 possible values,
leading to an aggregate input space of 240, Similarly, write and
1seek take 64-bit-long byte-count arguments that have a large
input domain of 264 possible values. Nevertheless, it is vital to
test as many representative syscall inputs as possible.

Fully testing all syscalls with every potential argument is
impractical [25,37]. Instead, a sensible approach [45, 52] is
to segment a large input space into multiple, disjoint input
partitions—called input space partitioning [39, 52,78]. How

1. Input Driver

MDS5 Hash :

4. Event

5. Optimized

Non- . Operation File Systemunder | L Logoer Replayer
Deterministic V:;:lfel:it' and Its Test \4 : ' 88 play:
O ti ” —— .
sle)fer;i;onn Arguments y Arguments FS Image Concrete State :
L4 - > Abstract State

create_file [2. State Explorer

flags Spi
mode

Actual Bug

3. Differential State
Checker

False Positive

“-»| Abstract State

write_file :
unlink BilAs A = Reference File }
chmod offset System
7 4 FS Image

Figure 1: Metis architecture and components. From left to right, Metis generates syscalls and their arguments that are executed by both file systems,
determines resulting states, and checks for discrepancies between states. The Logger records all the operations for convenient bug replay by the
Replayer. The SPIN model checker stores previous state information for state exploration.

much a testing tool examines input partitions is called input
coverage [30,45,75]. Utilizing input partitions and coverage,
testing tools can target the coverage of different partitions—each
representing a subset of analogous test inputs. Intuitively, file
system developers recognize the need to, say, separately test
critical I/O write sizes of 512 and 4096; conversely, once one
tests an /O size of, say, 5000 bytes, the gains from testing
subsequent adjacent sizes (e.g., 5001, 5002, ...) quickly diminish.
To compute input coverage, we categorized each syscall’s
arguments into four classes [7, 52, 74]: (i) identifiers (e.g.,
file descriptors), (ii) bitmaps (e.g., open flags), (iii) numeric
arguments (e.g., write size), and (iv) categorical arguments
(e.g., 1seek “whence”). We partitioned the input space using
type-specific methods. For example, bitmaps are partitioned by
each flag and certain combinations thereof. Numeric arguments
are partitioned by boundary values (e.g., powers of 2 [38]). Our
goal is to achieve thorough input coverage while configuring it
based on test strategies to customize the overall search space. To
the best of our knowledge, no existing file system testing method
is specifically designed for comprehensive input coverage, nor
are there any techniques to flexibly define the input’s coverage.

Challenges of testing file system states. In file system testing,
the state refers to the content, status, and full context of the file
system at a given point in time [21,73]. Comprehensive state ex-
ploration is important as certain bugs manifest exclusively under
specific states [48,53,76]. Numerous file system states can be
explored when some existing testing approaches [59,71] execute
operations. Yet the majority of these approaches lack state
tracking—the ability to record and identify previously or sim-
ilarly visited states—thus wasting resources [86]. The challenges
are thus twofold: state definition and efficient state tracking.
Defining file system states involves a tradeoff, because com-
ponents such as on-disk content, in-memory data, configuration,
kernel context, and device types are all candidates for inclusion
in the state [21]. An overly detailed state definition can render
state exploration infeasible due to resources spent on visiting
multiple states that should be treated as if they were identical [16].
Conversely, an overly narrow definition can skip key states and
potentially miss defects [11]. Therefore, one should be able
to define the state space flexibly, so it contains all desired file

system attributes while maintaining a manageable state space.

Due to massive state spaces, state tracking incurs considerable
overhead, thus slowing the entire exploration process. While
model checkers provide a mechanism for state exploration [31]
with state tracking and certain optimizations, they still have
to contend with the state explosion problem—a significant
challenge where the number of system states grows exponentially
with the number of system variables, making state exploration
computationally impractical [16]. In file systems, this issue is
exacerbated by the inherently slow nature of I/O. An alternative
approach is to partition the state-exploration process across
multiple instances, with each instance exploring a certain portion
of the state space; doing so requires a sophisticated design for
diversified, parallel exploration [33].

3 Design

In this section, we describe Metis’s design principles and oper-
ation. We explain how Metis meets the challenges of exploring
file system inputs and states, and how it provides versatility.

Metis architecture. As shown in Figure 1, Metis has five main
components: (1) Input Driver, (2) State Explorer, (3) Differential
State Checker, (4) Event Logger, and (5) Optimized Replayer.
Each component is designed to be independent, allowing for
modularity and extensibility.

The Input Driver (§3.1) generates syscalls and arguments to
serve as the test inputs to both file systems. Metis is built on top
of the SPIN model checker [31] to combine input selection with
state exploration. The State Explorer (§3.2) extracts concrete
and abstract states from both file systems and interfaces with
SPIN to explore new states. The Differential State Checker
(83.3) verifies that both file systems have identical behavior after
each operation, by comparing their abstract states, syscall return
values, and error codes. Any discrepancies are reported by the
checker and treated as potential bugs. The Event Logger and the
Optimized Replayer (§3.4) help analyze reported discrepancies
and reproduce potential bugs more efficiently.

3.1 Input Driver

Metis’s Input Driver maintains a list of operations from which
the SPIN model checker can repeatedly and nondeterministically

choose what to execute, including individual syscalls (e.g.,
unlink) as well as meta-operations comprising a (small)
sequence of syscalls (e.g., the write_file operation opens a
file and writes to it at a specific offset). From a given file system
state, multiple potential successor states may arise. Through its
nondeterministic choices of operations, Metis can effectively ex-
plore many of these options, ensuring thorough state exploration.
To bound the input space, each operation randomly picks a file
or directory name from a predetermined set of pathnames. The
Input Driver is flexible and can generate files or directories with
arbitrarily deep directory structures, long pathnames, and other
unexpected scenarios such as many files inside a single directory.

We focus on state-changing operations [26] (i.e., not
read-only ones) as the Input Driver seeks to maximize the
exploration of file system states. Currently, the Input Driver
supports five meta-operations (create_file, write_file,
chown_file, chgrp_file, and fallocate_file), and 10 in-
dividual syscalls (truncate, unlink, mkdir, rmdir, chmod,
setxattr, removexattr, rename, link, and symlink).
Adding a new operation has minimal effort of about 10 LoC.
Metis exercises read-only operations such as read, getxattr,
and stat after each state-changing operation, when computing
file system abstract states in the State Explorer (§3.2).

After selecting the operation, Metis chooses its arguments
based on a series of user-specified weights that control how
often various argument partitions (§2) are tested. In the Input
Driver, weights represent the probabilities assigned to different
input partitions, which control testing frequencies. The method
of assigning weights varies based on the argument type [7,52].
For bitmap arguments, each bit receives a probability of being
set. The number of input partitions in a bitmap argument is
equivalent to its individual bit count. Given the ubiquity of
powers of 2 in file systems [38], numeric arguments like write
size (requested byte count) have input partitions segmented
by these numbers as boundary values, rounding down to the
nearest boundary. For example, write sizes ranging from 1024
to 2047 bytes (219 to 211 —1) are grouped in the same partition.
Assigning a weight (e.g., 15%) to this partition implies a 15%
chance of selecting a write size between 1024 and 2047 bytes.
The total weight of all write-size partitions equals 100%. We
placed O bytes as a distinct partition (unusual but allowed
under POSIX) because the smallest power of 2 is 1, which is
greater than 0. Additionally, Metis can also be configured to
test only boundary values (powers of 2) such as 4096 as well as
near-boundary values (£1 from the boundary, e.g., 4095/4097)
that are useful for testing underflow and overflow conditions.

The choice of weights depends on the user’s objectives.
For example, while 0_SYNC is common in crash-consistency
testing [59], it is used infrequently for POSIX compliance [67].
Due to disk I/O’s slow speed, many tests focus on small write
sizes [12]. However, testing larger sizes can uncover size-specific
bugs [67,76]. Our objective is to ensure that Metis remains
versatile and to allow one to adjust the input weights in line with
the test focus.

3.2 State Exploration and Tracking

State explorer. The objective of Metis’s State Explorer is to use
graph traversal to conduct thorough and effective “state graph ex-
ploration,” where the nodes correspond to file-system states and
the edges represent transitions caused by operations [15]. Metis
supports depth-first search (DFS) as the main search algorithm.

The State Explorer relies on the SPIN model checker [31] to
conduct the state-space exploration. SPIN supports the Promela
model-description language, and allows embedding C code in
Promela code. This capability allows us to seamlessly issue
low-level file-system syscalls and invoke utilities. SPIN’s role is
to provide optimized state-exploration algorithms (e.g., DFS) and
data structures to track and store the status of the state graph; thus,
we do not have to implement these features in the State Explorer.

In model checking, there are two types of states: concrete
and abstract. Concrete states contain all the information that
describes the states of the file system being checked. Abstract
states serve as signatures to identify different system states of
interest during the exploration.

After each operation, the State Explorer calls the abstraction
function to extract abstract states as hash values from both file
systems. Every time an abstract state is created, SPIN checks
whether it has already been visited by looking up the abstract
state in SPIN’s hash table and decides on the next action, either
backtracking to a previous concrete state or continuing from
the current one. Meanwhile, the State Explorer mmaps the full
file-system image into memory to be tracked by SPIN as a
concrete state. Concrete states are stored in SPIN’s stack to allow
the State Explorer to restore the full file-system state as required.
To improve the performance of state exploration, we use RAM
disks as backend devices for on-disk file systems. In Metis, we
create both file systems with the minimum device sizes to reduce
the memory consumption of maintaining concrete states and to
make it easier to trigger corner cases such as ENOSPC.

File system abstract states. A concrete state is a reflection or
snapshot of the entire (and highly detailed) file-system image,
which renders it inappropriate for distinguishing a previously
visited state [11]. This is because any small change to the file-
system image leads to a new concrete state, even though there
may be no “logical” change in the file system. For example,
Ext4 updates timestamps in the superblock during each mutating
operation, even if no actual change to a user-visible file was made.
This substantially expands the state space, with many states
differing only by minor timestamp changes, and leads to wasted
resources on logically identical states. Additionally, because file
systems are designed with different physical on-disk layouts, we
cannot use concrete states to compare their behaviors. Therefore,
we need a different state representation that includes only the
essential and comparable attributes common to both file systems.

To address this problem, we defined an abstraction function to
calculate file-system abstract states to distinguish unique states,
and to compare file system behaviors. The abstract state contains
pathnames, data, directory structure, and important metadata for

Problem

Cause of discrepancies

Solution

Different directory size for same contents

Size calculation methods

Ignore directory sizes

Different orders of directory entries

Internal data structures

Sort the output of getdents

FS-specific special files and directories

Internal implementations

Create an exception list of special entries

Different usable data capacities

Space reservation and utilization

Equalize free space among file systems

Table 1: Examples of false positives identified and addressed by Metis.

all files and directories (e.g., mode, size, nlink, UID, and GID);
we exclude any noisy attributes such as atime timestamps.
We then hash this information to compact the abstract state
for a more effective comparison. Metis supports several hash
functions to compute abstract states; we evaluated the speed
and collision resistance of each hash function (results elided for
brevity) and chose MDS5 by default as it had the best tradeoff
of those characteristics.

The abstraction function deterministically aggregates key file
system data and metadata, enabling comparison across different
file systems. Specifically, the abstraction function begins by
enumerating all files and directories in the file system by travers-
ing it from the mount point. Their pathnames are sorted into a
consistent, comparable order. We then read each file’s contents
and call stat to extract its important metadata mentioned above,
following the pathname order. Finally, we compute the (MD5)
hash based on the files’ content, directory structure, important
metadata, and pathnames to acquire the abstract state. Using
abstract states not only prevents visiting duplicate states but
also significantly reduces the amount of memory needed to
track previously-visited states, owing to our lightweight hash
representation, which in turn boosts Metis’s exploration speed.

Tracking full file system states. In addition to abstract states,
another complexity in tracking file system states is saving and
restoring the concrete states when Metis needs to backtrack to
a previous state (i.e., when reaching an already visited state);
this involves State Save/Restore (SS/R) operations for concrete
states. Concrete states must contain all file system information
including persistent (on-disk) and dynamic (in-memory) states.
Metis can feasibly save and restore on-disk states by copying
the on-disk device and subsequently copying it back. Kernel file
systems (e.g., Ext4 [55]) maintain states in kernel space, which
is inaccessible to Metis, a user process. Similarly, user-space
file systems built on libFUSE (e.g., fuse-ext2 [2]) are separate
processes with separate address spaces, so again Metis cannot
directly track their internal state. Tracking only persistent on-disk
state leads to cache incoherency, because cached in-kernel
information is inconsistent with the on-disk content.

We tried and evaluated several approaches to tracking full file
system states (performance results elided for brevity) including
fsync syscall, sync mount option, process snapshotting [17,84],
VM snapshotting [44,46], and LightVM [54]. None of these
approaches were effective due to their functional deficiencies
or inefficient performance. For those reasons, we adopted the
approach presented in [73] to unmount and remount the file
system between each operation in Metis. An unmount is the

only way to fully guarantee that no state remains in kernel
memory. Remounting guarantees loading the latest on-disk
state, ensuring cache coherency between each state exploration.
This unmount-remount method was a compromise that ensures
data coherency yet provides reasonable performance (§5.2),
especially coupled with our specialized RefFS (§4).

3.3 Differential State Checker

Metis checker goals and approaches. Using only the Input
Driver and State Explorer would constrain the detection of
bugs to those manifesting as visible symptoms [12], such as
kernel crashes. We thus needed a dedicated checker to identify
cases where file systems fail silently [43] (e.g., data corruption).
Moreover, existing checkers usually require considerable effort
to be applied to newly developed or constantly-evolving file sys-
tems. For example, since many checkers are hand-written (e.g.,
xfstests), the testing of new file systems involves redesigning and
refactoring test cases. Some checkers depend on an exact (e.g.,
POSIX) specification or an oracle for bug detection [59, 67]:
they are difficult to adapt to continuously-evolving file systems.

File systems vary considerably in terms of their developmental
stages [53,90]: mature file systems are typically more stable
than new, emerging, or less popular ones [53]. Yet many still
share common (POSIX) features and data-integrity requirements.
Therefore, we rely on a differential testing approach [56], to
check emerging file systems for silent bugs, eliminating the need
for a detailed specification or an oracle.

We developed Metis’s Differential State Checker to identify
a broad range of file system bugs and facilitate file system de-
velopment. Our checker can easily adapt to test new file systems;
it requires no modification to the checker, only a replacement of
the file system under test. Metis uses a well-tested, reliable file
system as the reference file system and a less-tested, emerging
one as the file system under test. After each file system operation,
the Differential State Checker compares the resulting states of
both file systems to detect any discrepancies. To prevent false
positives, it only compares the common attributes of file systems,
including their abstract states, return values, and error codes.

Eliminating false positives. As any discrepancy is reported
as a potential bug, when developing Metis we found that it
sometimes identified discrepancies that were not bugs (i.e.,
false positives). We implemented measures to avoid these false
positives. Table 1 summarizes several such cases including their
problems, causes, and solutions.

All these discrepancies arose due to different file system
designs and implementations. For instance, Ext4 has a special

lost+found directory and computes directory sizes by a
multiple of the block size. In contrast, other file systems
report sizes by the number of active entries and do not have
a lost+found directory. Despite the same device sizes for
different file systems, the available space varies due to different
utilized and reserved space (e.g., for metadata). To address this,
we equalize free space among file systems by creating dummy
files based on the differences in their available spaces.

While developing Metis, we analyzed every discrepancy we
encountered and addressed all false positives. Whenever a false
positive was identified, we updated the state abstraction function
or file system initialization code to eliminate such instances, an
infrequent process that was conducted manually. None of these
solutions introduce false negatives, because they all deal with
non-standardized behavior. For example, an application should
not expect sorted output from getdents. Nevertheless, if a
change introduces any misbehavior, Metis’s Differential State
Checker will report and handle it.

34 Logging and Bug Replay

When detecting a discrepancy, it is important to be able to analyze
the operations executed by the file systems to identify and repro-
duce the potential bug. Thus, Metis’s Event Logger records de-
tails of all file-system operations and outcomes, comprising every
syscall and their arguments, return values, error codes, SS/R oper-
ations, and resultant abstract state. Additionally, the Event Logger
logs file-system information such as the directory structure and
important metadata to pinpoint the deviant behavior as soon as a
discrepancy is detected. To reduce disk I/O, we store the runtime
logs in an in-memory queue and periodically commit them to
disk. Leveraging the Event Logger, we can reproduce the precise
sequence of operations leading to a discrepancy found by Metis.

Metis can replay identified bugs by re-executing the
operations from the start of Metis’s run. This process can be
time-consuming, however, if the discrepancy was detected
after executing many operations and passing through numerous
states [3]. So we needed a way to reproduce a discrepancy
quickly. Existing test-case minimization techniques [43, 91]
remove one operation from a sequence until the remaining
operations can reproduce the bug; but this trial-and-error process
is slow due to the abundance of I/O operations.

To replay bugs efficiently, the Optimized Replayer reproduces
them using only a few operations (recorded in logs) and one (con-
crete state) file system image. Using SPIN, we retain concrete
states in a stack, thereby capturing all file-system images along
the current exploration path and allowing for bug reproduction
from any desired location in the stack. Recent findings [43,59]
indicate that most bugs can be reproduced on a newly created file
system using a sequence of eight or fewer operations. Accord-
ingly, Metis uses an in-memory circular buffer to retain pointers
to a few of the most recent file-system images (defaults to 10, but
configurable) for quick post-bug processing. In practice, we first
attempt to reproduce the bug using the most recent image (imme-
diately preceding the bug state) along with the latest operation. If

unsuccessful, we turn to the previous image and the two last oper-
ations, and so on in a similar pattern. This eliminates the need for
Metis to replay the entire operation sequence from the beginning.

3.5 Distributed State Exploration

Along with performing state abstraction and setting limits on the
number of files and directories, we also restrict the search depth
to control the exponential growth of the state space. We set the
maximum search depth to 10,000 by default [31]. If the search
hits the 10,000t level, Metis reverts to the prior state rather
than exploring deeper. Thus, the state space becomes bounded,
allowing Metis to perform an exhaustive search. Still, even with
this depth restriction, the state space remains large because of the
variety in test inputs and file system properties [21]. Exploring
this space using a single Metis process (called a verification task,
or VT) requires significant time.

To parallelize the state-space exploration [32] we use Swarm
verification [33], which generates parallel VTs based on the
number of CPU cores. Each VT examines a specific portion
of the state space. To prevent different VTs from re-exploring
the same states, and to avoid having to coordinate states across
VTs, SPIN employs several diversification techniques [33],
where every VT receives a unique combination of bit-state hash
polynomials, number of hash functions, random-number seeds,
search orders (e.g., forward or in reverse) and search algorithms
(e.g., DFS), ensuring varied exploration paths.

We enabled these parallel and distributed exploration capabil-
ities for Metis. The setup uses a configuration file to determine
the machine and CPU core count; Metis then produces the exact
VT count based on the configuration file. When Metis runs on
distributed machines, each runs a handful of VTs, one per CPU
core. Each VT is automatically configured with a distinct com-
bination of diversification parameters, guiding them to explore
different state space areas. Utilizing multiple Metis VTs across
multiple cores and machines increases the overall speed of state
exploration while testing more inputs. Every Metis VT operates
independently, with its own device, mount point, and logs, with-
out interference with other VTs. Given that VTs explore states
autonomously without inter-VT communication, there is a risk
of resource wastage if several VTs examine the same state [33].
We deployed multiple VTs on several multi-core machines and
evaluated Metis extensively under Swarm verification (§5.2).

3.6 Implementation Details

Metis uses SPIN to achieve basic model-checking functions. The
Promela modeling language [31] serves as the main interface
with SPIN. We wrote 413 lines of Promela, consisting of
do. . .od loops that repeatedly select one of a number of cases
in a nondeterministic fashion. Each case issues file-system
operations, performs differential checks, and records logs. The
main part of Metis comprises 7,911 lines of C/C++ code that
implement Metis’s components and its communication with
SPIN. We also created 1,230 lines of Python/Bash scripts to
manage different Metis VTs and runtime setup, such as invoking

mkfs, and creating mount points and devices. We created
RAM block devices as backend storage for on-disk file systems.
Linux’s RAM block device driver (brd) requires all RAM
disks to be the same size. We modified it (renamed brd?2),
to allow different-sized disks for file systems with different
minimum-size requirements. We used brd?2 to create devices
for on-disk file systems during the evaluation.

We changed 72 lines of SPIN’s code (Aug 2020 version) to
add dedicated hook functions for file system SS/R operations.
Lastly, we added 31 lines of code to the original Swarm
verification tool (Mar 2019 version) to enable more flexible
compilation options and smoother compatibility with Metis.

In our experience, adding a new file system operation to Metis
is straightforward. It requires only one additional case in the
Promela code, amounting to about 10 lines. Most functionality
in Metis is file-system-agnostic, e.g., deploying the file system
and computing abstract state. To test a new file system, we need
to specify only the device type (e.g., RAM disk for most file
systems, MTD block device for JFFS2) and the desired device
size in Metis.

3.7 Limitations of Metis

False negatives. Like many other tools, Metis might experience
false negatives: it could fail to detect an existing bug. First, since
Metis’s abstract state excludes time-related attributes, it cannot
detect, e.g., at ime-related bugs. Though that is an unavoidable
consequence of abstraction, we strive to make the abstract state
as comprehensive as possible. Second, Metis identifies bugs
by detecting behavioral discrepancies between the reference file
system and the file system under test. Given the nature of dif-
ferential testing [26, 56], Metis could fail to detect bugs shared
between both file systems as no discrepancy would be found.
To address this problem, one can either use a flawless reference
file system or leverage N-version programming [6], comparing
more than two file systems, to reduce the probability that the
same bug is present across all of them. Unfortunately, a com-
pletely bug-free file system does not exist. Despite recent efforts
to formally verify certain file system properties, these verified
file systems may still hide bugs [14]. Furthermore, while Metis
was programmed to test any number of file systems concurrently,
employing a majority voting scheme on more than two adds over-
head and slows exploration. (That is one reason why we support
distributed verification: to increase the overall exploration rate.)

Test overhead. As Metis tracks both abstract and concrete
states, it inevitably introduces extra overhead due to memory
demands and the time taken for comparisons. Metis retains file
system images in memory for state backtracking, although we
limited memory consumption to the extent possible by choosing
a minimum device size and restricting search depth. For file
systems with a relatively small device-size requirement, such
as Ext4 (256KiB minimum), Metis’s peak memory consumption
remains relatively low (2.4GiB). However, a file system with a
larger minimum device size inherently consumes more memory.
For example, XFS has a minimum size of 16MiB, leading to a

--------------- - Metis State Explorer |
| Metis Input Driver |<-

RefFS

Snapshot Service

ioctl PICKLE ioctl SAVE

joctl LOAD joctl RESTORE

File Operations
-

Data & VAl

Metadata m
[

IOCTLs to save &
restore RefFS state

Figure 2: RefFS architecture and its interaction with Metis and kernel
space. RefF'S supports standard POSIX operations and provides
snapshot services with a snapshot pool and four new APIs.

potential memory use of 156GiB when we use a maximum depth
of 10,000. To mitigate this issue, we reduced SPIN’s maximum
search depth below the default 10,000, decreasing resource and
memory consumption while concomitantly reducing the size
of the state space. Although we experimented with memory
compression (i.e., zram [28]) and added swap space to increase
effective memory capacity, these choices actually reduced the
overall state-exploration rate. The necessity of mounting and
unmounting between each operation introduces additional time
overhead to Metis. Since doing so is necessary for tracking full
file system states, we mitigated this cost by deploying more VTs
on multiple machines and using RAM disks.

Bug detection and root-cause analysis. At present, Metis
lacks the capability to identify crash-consistency and concur-
rency bugs in file systems. Due to the absence of crash state
emulation [47, 59], Metis cannot find bugs that arise solely
during system crashes. We plan to provide the option of invoking
utilities such as fsck [63] between each Metis unmount/mount
pair to help detect crash-consistency bugs. Given that Metis
operates on file systems from a single thread, it tends to miss
concurrency bugs (e.g., race conditions [83]). While Metis’s
replayer assists in reproducing bugs, another limitation is Metis’s
inability to precisely identify the root cause of detected state
discrepancies within the code [69].

4 RefFS: The Reference File System

In Metis, the reference file system must reliably represent correct
behaviors and ensure efficiency in the file system and SS/R
operations. We initially chose Ext4 as the reference file system
due to its long-standing use and known robustness [55]. Still, no
file system, including Ext4, is absolutely bug-free. Additionally,
Ext4 lacks optimizations for model-checking state operations,
limiting its suitability. We believe that a reference file system
should be lightweight [14, 72], easily testable and extensible,
robust, and optimized for SS/R operations in model checking.
Originally, we tried to modify small in-kernel file systems (e.g.,

ramfs), to track their own state changes. However, capturing and
restoring their entire state proved extremely challenging because
the state resides across many kernel-resident data structures [5].
Consequently, we developed a new file system, called RefES,
specifically designed to function as the reference system.

RefFS architecture. RefFS is a RAM-based FUSE file system.
Figure 2 shows the architecture of RefFS and its interplay with
Metis and relevant kernel components. It incorporates all the
standard POSIX operations supported by the Input Driver along
with the essential data structures for files, directories, links, and
metadata. We developed RefFS in user space to avoid complex
kernel interactions and have full control over its internal states.
Comprising 3,993 lines of C++ code, RefES uses the 1ibFUSE
user-space library together with /dev/ fuse to bridge user-space
implementations and the lower-level fuse kernel module. Metis
handles file system operations on RefFS in the same manner
as other in-kernel file systems. Most importantly, RefFS also
provides four novel snapshot APIs to manage the full RefFS
file system state via ioctls: ioctl_SAVE, ioctl _RESTORE,
ioct1l_PICKLE, and ioct1_LOAD. These are described next.

4.1 RefFS Snapshot APIs

RefFS shows how file systems themselves can support SS/R
operations in model checking through snapshot APIs. The
essence of SS/R operations lies in their ability to save, retrieve,
and restore the concrete state of the file system. Although RefFS
is an in-memory file system lacking persistence, it possesses
a concrete state (i.e., snapshot) that includes all information
associated with the file system. Existing file systems like
BtFS [68] and ZFS [8], which support snapshots, can only clone
(some of) the persistent state but not their in-memory states. In
contrast, RefFS can capture and restore the in-memory states
through its own APIs. Since RefFS stores all its data in memory,
it guarantees saving and restoring the entire file system state.

Snapshot pool. The snapshot pool is a hash table that orga-
nizes all of RefFS’s snapshots; the key is the current position in
the search tree. The value associated with each key is a snapshot
structure that saves the full file system state including all data
and metadata such as the superblock, inode table, file contents,
directory structures, etc. The memory overhead of the snapshot
pool is low because the size of the pool is smaller than Metis’s
maximum search depth. Because RefFS is a simple file system,
the average memory footprint for each state is just 12.5KB.

Save/Restore APIs. The ioct1_savE API causes RefFS to
take a snapshot of the full RefFS state and add an entry to the snap-
shot pool. The ioct1 RESTORE does the reverse, restoring an
existing snapshot from the pool. When Metis calls ioct1_SAVE
with a 64-bit key, RefFS locks itself, copies all the data and
metadata into the snapshot pool under that key, and then releases
the lock. Similarly, ioct 1 _RESTORE causes RefFS to query the
snapshot pool for the given key. If it is found, RefFS locks the
file system, restores its full state, notifies the kernel to invalidate
caches, unlocks the file system, and then discards the snapshot.

Pickle/Load APIs. Unlike other file systems, RefFS maintains
concrete states by itself in the snapshot pool, so Metis does not
need to keep RefFS’s concrete states in its stack. To ensure
good performance, RefFS’s snapshot pool resides in memory.
However, this means that all snapshots are lost when RefFsS is
unmounted, which would make it challenging to analyze and
debug RefFS from a desired state. Thus, committing these
snapshots to disk before Metis terminates is important to ensure
they are available for post-testing analysis and debugging. Given
a hash key, the ioct1 PICKLE API writes the corresponding
RefFS state to a disk file. It can also archive the entire snapshot
pool to disk. Likewise, the i oct 1_LOAD API retrieves a snapshot
from disk, loading it back into RefFS to reinstate the file system
state. Using the ioct1 PICKLE and ioct1_LOAD APIs, RefFS
can flexibly serialize and revert to any file system state both
during and after model checking, aiding bug detection and
correction. Specifically, these APIs allow RefFS to gain the same
benefits as Metis’s post-bug replay and processing, enabling bug
reproduction from any point in a Metis run.

5 Evaluation

We evaluated the efficacy and performance of Metis and RefFS,
specifically: (1) Does Metis have the versatility to test different
input partitions compared to other testing tools? (See §5.1.)
(2) What is Metis’s performance? How does it scale with the
number of VTs when using Swarm verification? (See §5.2.)
(3) What is RefFS’s performance compared to other file systems?
How reliable and stable is RefFS, as Metis’s reference file sys-
tem? (See §5.3.) (4) With RefFS set as the reference file system,
does Metis find bugs in existing Linux file systems? (See §5.4.)
Experimental setup. We evaluated Metis on three identical
machines, trying various configurations, particularly with
multiple distributed VTs. Each machine runs Ubuntu 22.04
with dual Intel Xeon X5650 CPUs and 128GB RAM. We also
allocated a 128GB NVMe SSD for swap space. We evaluated
Metis’s performance using RAM disks, HDDs, and SSDs by
comparing Ext4 with Ext2. The results showed that RAM disks
were 20x faster than HDD and 18x than SSD. Also, Metis
performs best when the file system device is as small as possible.
Therefore, we used RAM disks as backend devices for on-disk
file systems and minimum mountable device sizes for all file
systems in all evaluations that follow.

5.1 Test Input Coverage

We assessed input coverage (§2) for Metis and other file
system tests on two dimensions: completeness and versatility.
Completeness considers whether a testing tool covers all input
partitions (§2) in test cases. Versatility is the ability to tailor test
cases for any desired input coverage. Metis outperforms existing
checkers and a fuzzer [25] on both dimensions.

Comparison with existing testing tools. We selected
three testing tools, each representing a unique technique:
CrashMonkey [59] for automatic test generation, xfstests [71] for
(hand-written) regression testing, and Syzkaller [25] for fuzzing.

10M

Il CrashMonkey [xfstests I Syzkaller I Metis-Uniform [Metis-RSD I Metis-IRSD
~ 1M A
- n
g 100K 4 .
2
> 10K A
=
3 1K 1
o0
S 100 A
-
E} 10 4
S
Q 14
0_
Q ¢ S < S < & s & A Q & Q> & ¢ 4 ¢ s
& @ F Y F & F & S L&F &S Q_é% & &
F N T E Y Y E T O TS oS
SENY o0 & ° F o o & 8 o X
o’ o~ o/ O/ Z

Figure 3: Input coverage counts (logio, y-axis) of open flags (z-axis) for CrashMonkey, xfstests, Syzkaller, and Metis with 3 different weight

distributions.

To ensure fairness, we ran all of them and Metis (with one VT)
to check Ext4 for 40 minutes each, because this time length was
sufficient to complete all xfstests test cases and CrashMonkey’s
default test cases [60].

Measuring input coverage requires tracking the file system
syscalls executed by the testing tool, including their associated
arguments. Traditional syscall tracers (e.g., pt race-based ones)
cannot distinguish the syscalls used on the file systems under
test, because a testing tool makes many testing-unrelated syscalls,
such as opening and reading dynamically linked libraries or log-
ging statistics. CrashMonkey and xfstests do not inherently log
their test inputs. Hence, we used a tool [52] specifically designed
for measuring input coverage in file system testing to assess cov-
erage for CrashMonkey and xfstests. Syzkaller’s debug option
and Metis’s logger record all syscalls and arguments, enabling us
to compute their input coverage using their internal mechanisms.
Input coverage for open flags. Figure 3 shows the input cov-
erage of open, partitioned by individual flags, for CrashMonkey,
xfstests, Syzkaller, and Metis. In Metis, we set weights according
to three input partition distributions: Uniform, RSD (Rank-Size
Distribution [66]), and IRSD (Inverse Rank-Size Distribu-
tion [62]). Metis-Uniform denotes that Metis tests each input
partition (i.e., open flag) with a fixed weight (i.e., probability).
Both RSD and IRSD represent non-uniform distributions. We
adopted the core principle of RSD, such that flags with higher
ranks have higher test frequencies. Conversely, in IRSD, lower-
ranked flags have higher frequencies. We analyzed the frequency
of individual open flags’ appearance in the 6.3 Linux kernel
source. Metis employed those flags based on their proportional
(Metis-RSD) and inverse-proportional (Metis-IRSD) frequencies.
These distributions attempt to model two contrasting strategies:
(1) Flags that appear more frequently in the kernel sources
warrant proportionally more testing because they are used more
frequently; conversely, (2) Flags with fewer occurrences in the
kernel should be tested more thoroughly because they are more
rarely used and hence could hide bugs for years.

In Figure 3, the z-axis labels every single-bit open flag and
the y-axis (log1g) counts how often each was exercised by the

testing tool. A higher y-value means more testing was conducted.
We see that only Syzkaller and Metis covered all open flags.
For instance, neither CrashMonkey nor xfstests tested the
O-LARGEFILE flag, which could lead to missing related
bugs [79]. Metis-Uniform test all flags equally; its coefficient
of variation (CV) [1] (standard deviation as percentage of
the mean) is only 1.2% (40-minute run). For its non-uniform
test distributions, close examination of Figure 3 shows that
O-CREAT (the most common open flag in the kernel source) is
indeed tested most often in Metis-RSD and least in Metis-IRSD.
__O_TMPFILE, the least-frequent flag, exhibits the opposite trend.
Other tools lack the versatility to adapt their test input partitions
to the desired amount of testing.

Moreover, we observed that xfstests tested certain input
values (e.g., 0_DIRECTORY) millions of times while others (e.g.,
FASYNC) are not tested at all. However, other tools sometimes
have a higher total operation count than Metis because Metis has
to unmount and remount the file system to achieve state tracking
and verify state equality after each operation, slowing its syscall
execution speed. Given the essential role of unmount/mount for
state tracking (§3.2) and the need for state comparison (§3.3),
we use Swarm verification to improve the overall operation
efficiency (§3.5).

Input coverage for write size. Figure 4 shows the input
coverage for the write size (requested byte count). The z-axis
represents the logo of the size, corresponding to the write
size partitions (see §3.1). For example, x = 10 represents all
sizes from 210 to 2'' — 1 (or 1024-2047). The y-axis (logig)
shows the number of times each x bucket was tested by a given
tool. Only Metis ensured complete input coverage across all
write size partitions. All other tools primarily tested sizes
under 16MiB (z < 24). Certain partitions (e.g., © = 26) were
omitted by all these tools, even though systems with many GBs
of RAM are now common. As with the open flags above, here
Metis-Uniform also assigns uniform test probabilities to each
write size partition. To illustrate Metis’s versatility, we chose
exponentially decaying distributions for write sizes. Metis-XD
prioritizes testing smaller sizes more often, because they tend

0B 1B 16B 256B 4KiB 64KiB IMiB 16MiB 256MiB
10M 1 1 1 1 1 1 1 1 1
1M - I B CrashMonkey I Metis-Uniform
2 [xfstests B Metis-XD
2 100K 1 B Syzkaller B Metis-IXD
<
= 10K A
)
=
2 1K A
&
< 100 -
=
2 104
@]
1 -
0 -

e

> 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31

Figure 4: Input coverage (counts, logio, y-axis) of write size (in bytes) for CrashMonkey, xfstests, Syzkaller, and Metis with three different weight
distributions. The x-axis denotes the power of 2 of the write size (shown as x2-axis). Note a special “Equals 0” x-axis value for writes of size zero.

0BIB 16B 256B 4KiB 64KiB IMiB 16MiB 256MiB
1000 L L L L L L L L
I Metis-Uniform [Metis-XD I Metis-IXD
800 A
-
= 4
S 600
S
QO 400
200 A
“3\50 0O 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30
A

Figure 5: Input coverage of write size (in bytes) for Metis-Uniform,
Metis-XD, and Metis-IXD, each running for 4 hours. The x-axis and
x2-axis here are the same as in Figure 4, but the y-axis shows counts
on a linear scale. As seen, with a longer run, the expected distributions
are more accurate.

to be more popular in applications. The probability of each
input partition is set to 0.9 smaller than the previous one (in
frequency order); all probabilities are then normalized to sum to
1.0. Metis-IXD emphasizes the inverse: testing input partitions
with larger write sizes, on the hypothesis that they are less used by
applications and thus latent bugs may exist. Here, the probability
of each test partition is 0.9 that of the next larger partition.

In Figure 4, the trend does not precisely align with the
probabilities due to the relatively short 40-minute runtime and
a correspondingly limited number of write operations, so the
CV was 17.0%. When we ran Metis six times longer (4 hours),
however, the CV dropped to 3.9% as seen in Figure 5; and when
we ran it six times longer still (24 hours), the CV fell to a mere
2.6%. Due to space limitations, we omit showing the input
coverage for other Metis-supported syscalls.

5.2 Metis Performance and Scalability

To evaluate performance with distributed Metis VTs, we
deployed it on three physical nodes, comparing Ext4 (reference)
to Ext2 (system under test) for 13 hours. Each node (machine)
operated six individual VTs, totaling 18 VTs. Figure 6 shows
the aggregate performance of the six VTs on each node, as well
as the overall performance across all 18 VTs. We measured both
file system operations (left) and unique abstract states (right).

—e— Overall (18 VTs) --#-- Node 1 —#+- Node 2 -+ Node 3
150 -

g g

2 100 g

° Z

S 50 =

w* 3

f=}

Duration (Hours)
(a) File System Operations

Duration (Hours)
(b) Unique Abstract States

Figure 6: Metis performance with Swarm (distributed) verification,
measured in terms of the number of operations and unique abstract
states (in millions). Each node runs 6 VTs (one per CPU core), for a
total of 18 unique VTs that collectively explored the state space. As seen,
performance scales generally linearly with the number of VTs.

All VTs exhibited a linear increase in the number of operations
executed over time. Over 13 hours, these 18 VTs executed more
than 164 million operations, with each VT averaging 195 ops/s.

The count of explored states also increased steadily over time,
although not exactly linearly. This is because executing opera-
tions does not always produce new, unseen states. For example, if
a file exists, creating it again will not change the state. Thus, the
number of unique states is fewer than the number of operations
in a given time frame. Collectively, these VTs explored over
30 million unique states. On average, each explored 2.7 million
states. Using 18 VTs resulted in exploring 11.2x more unique
states than with a single VT. This experiment shows Metis’s
almost linear performance scalability with the number of VTs.

Different VTs might explore the same states, as each VT
operates independently and without communicating with others.
We evaluated the proportion of states explored by more than one
VT, which represents “wasted” effort, a figure we want mini-
mized. Our results showed that only about 1% of all states were
duplicated across all VTs. Therefore, the redundancy of states
explored by multiple VTs is relatively small and acceptable.

Bug# | File System | Causes & Consequences Deterministic | Confirmed | New Bug
1 | BetrFS [36] | Repeated mount and unmount caused a kernel panic v v 4
2 | BetrFS statfs returned an incorrect £ bfree v 4 X
3 | BetrFS truncate failed to extend a file v 4 4
4 | F2FS A file showed the wrong size after another file was deleted b 4 b 4 v
5% | JFFS2 Data corruption occurred in a truncated file when writing a hole v v 4
6 |JFFS2 A deleted directory remained after unmounting b 4 b 4 (4
7 | JFES2 GC task timeouts and deadlocks during operations 4 4 X
8 |JFS NULL pointer dereference on jfs_lazycommit v b 4 4
9 |JFS After writing to one file, another file’s size changes X b 4 v
10 | NILFS2 NULL pointer dereference on mdt _save_to_shadow_map v b 4 4
11 | NILFS2 Failed to free space on a small device with cleaner v b 4 4
12 | NILFS2 Unmount operation hung after using creat on an existing file v b 4 v

Table 2: Kernel file system bugs discovered by Metis. This list excludes the 11 RefFS bugs that Metis detected and fixed. JFFS2 bug fix #5 (marked

by *) was integrated into the Linux mainline recently.

1000

4 830.0

L; 800 B ops/ sec
7 [states / sec
= 600

=]

w»

& 400 280.3 281.6

S 200

E:3 29.2 29.9

0 — ¥
RefFS Ext4 Ext2 XFS BtrFS
File Systems (Using RAM Disks)

Figure 7: Performance comparison between RefFS and other mature

file systems while being checked by Metis. The y-axis applies to both
ops/sec and states/sec.

5.3 RefFS Performance and Reliability

To evaluate RefFS’s performance, we used Metis to check it
against a single file system. We also considered four other
mature file systems (Ext4, Ext2, XFS, and BtrFS) as potential
references. For a fair comparison, we use RAM disks as the
backend devices and adopted the smallest allowed device size
for each. Figure 7 shows that RefFS outperformed the others
in terms of both operations and unique states per second. Even
though RefFS is a FUSE file system—generally slower than
in-kernel ones—it was 3.0x, 2.9x, 28.4x, and 27.7x faster
than Ext4, Ext2, XFS, and BtrFS, respectively. This is primarily
because Metis was able to use the save/restore APIs (§4.1) and
thus did not have to unmount and remount RefFS.

Ext4 and Ext2 were faster than XFS and BtrFS due to the
difference in minimum device sizes: the former require just
256KiB, whereas the latter need 16MiB. Mapping and copying
larger devices in memory naturally increased time overheads.

Reliability. To serve as a reference, RefFS must be highly
reliable. While developing RefFS and Metis, we made necessary
changes (110 lines of code) to xfstests so that we also could use
it to debug RefFS. While we used xfstests to find certain bugs
in RefFS, xfstests often misreported the bug information. For
example, although we implemented RefFS’s 1ink operation,
it still did not pass generic test #2, incorrectly indicating that the
operation was unsupported. For that reason, we also used Metis

to check RefFS with Ext4 as the reference. We discovered and
fixed 11 RefFS bugs, aided by Metis’s logs and replayer. Those
bugs included failure to invalidate caches, inaccurate file size
updates, erroneous ENOENT handling, and improper updates to
nlink, among others. After fixing them, we evaluated RefFS
against Ext4 using 18 distributed Metis VTs for 30 days, execut-
ing over 3.1 billion operations and exploring 219 million unique
states. No discrepancies were reported, demonstrating that
RefFS’s reliability and robustness are similar to Ext4’s—but with
better performance when used as Metis’s reference file system.

54 Bug Finding

With RefFS as our reference file system, we applied Metis to
check seven existing file systems: BetrFS [36], BtrFS [68],
F2FS [49], JFFS2 [80], JES [35], NILFS2 [18], and XFS [82],
discovering potential bugs in five. Table 2 summarizes these
bugs, including causes and consequences, whether they were
confirmed by developers, and whether they were new or
previously known. Metis found bugs using both uniform and
non-uniform input distributions, but some distributions found
bugs faster. Some bugs were detected within minutes, while
others took up to 22 hours, which is reasonable for long-standing
bugs. The bugs we identified were not detected by xfstests [71]
or Syzkaller [25]. Metis identified an F2FS bug that was not
detected by Hydra [43]. We also checked file systems (e.g.,
BetrFS) that are not currently supported by Hydra [43].

We found bugs using Metis through different indicators. Dis-
crepancies reported by the differential checker accounted for
seven out of twelve detected bugs (# 2-6, 9, and 11). The remain-
ing five caused a kernel panic (Linux “oops”) or hung syscall (due
to a deadlock). After analyzing each discrepancy using Metis’s
logger and replayer, we verified that all behavior mismatches orig-
inated from incorrect behavior in the file system under test—the
reference file system, RefFS, was consistently correct.

We reported five bugs to BetrFS’s and JFFS2’s developers, all
of which were confirmed as real bugs; however, one bug each in
BetrFS and JFFS2 had already been fixed in the latest code base.

FS Testing Approach Input | Effort to test | Effort to add | State | Code Cover- | Bug
(Examples) Versatility new FS new ops Tracking | age Tracking | Detection
Metis: this work wlndnd g g v b 4 B.ehaV1oral.
discrepancies
Traditional User-specified
[1Y []
Model Checking: CVFES [21], CREFS [88] e vee e v X assertions
Implementation-level Model Checking: . . User-written
FiSC [87], eXplode [86] h e e v X checkers
Fuzzing: SyzKaller [25], Hydra [43] il ipg g X External checkers
Preset expected
Qi Hno- tecte i@ [il
Regression Testing: xfstests [71], LTP [58]) L L) QIgip b 4 X outcome
Automatic Test Generation: External checkers
[] 1]
CrashMonkey [59], Dogfood [12] ooy . e X X or an oracle

Table 3: Comparison of representative file system testing tools. In column 2, the more sl symbols, the more relatively versatile the system is; conversely,

in columns 3—4, more " symbols denote more effort.

Of the remaining unconfirmed bugs, four were deterministic and
three were nondeterministic. Deterministic bugs are those easily
reproducible after Metis reported a discrepancy or the kernel
returned errors (e.g., hang or BUG). We are currently pinpointing
the faulty code for the deterministic bugs and preparing patches
for submission to the Linux community. Metis also detected
nondeterministic bugs that its replayer could not reproduce. For
instance, after using unlink to delete file d-00/£-01, the size
of another file £-02 in F2FS incorrectly changed to 0 instead of
the correct value. Replaying the same syscall sequence did not
reproduce this bug. To trigger it, we had to rerun Metis, but the
time and number of operations needed varied across experiments.
Given the bug’s nondeterminism, we suspect a race condition be-
tween F2FS and other kernel contexts. We verified that these un-
confirmed bugs persist in the Linux kernel repository (v6.3, May
2023) without any fixes, thus classifying them as unknown bugs.

To detect them, all these potential bugs require specific
operations on a particular file system state, underscoring the
value of both input and state exploration. JFFS2 bug #5 is
an example of the interplay between input and state. After
4.3 hours of comparing JFFS2 with RefFS, Metis reported
a discrepancy due to differing file content. We observed the
bug occurred when truncating a file to a smaller size, writing
bytes to it at an offset larger than its size, and then unmounting
the file system to clear all caches. Uncovering this multi-step,
data-corruption bug required specific inputs (t runcate, write)
and then unmounting and remounting, because there was a
cache incoherency between the JFFS2 in-memory and on-disk
states. Ironically, the fact that Metis was “forced” to un/mount, is
exactly why we found this bug, which was present in the 2.6.24
Linux kernel and remained hidden for 16 years. We fixed this
long-standing bug, and our patch has since been integrated into
the Linux mainline (all stable and development branches).

6 Related Work

File system testing and debugging. We divide existing file
system testing and bug-finding approaches into five classes: Tra-

ditional Model Checking, Implementation-level Model Checking,
Fuzzing, Regression Testing, and Automatic Test Generation.
Table 3 summarizes these approaches across various dimensions.

Traditional model checking [21, 88] builds an abstract model
based on the file system implementation and verifies it for
property violations. Doing so demands significant effort to create
and adapt the model for each file system, given the internal
design variations among file systems [53].

Implementation-level model checking [86,87] directly exam-
ines the file system implementation, eliminating the need for
model creation. Due to file systems’ complexity, however, this ap-
proach requires either intrusive changes to the OS kernel [86, 87]
or manually crafting system-specific checkers [86]. Additionally,
existing work [86,87] based on this approach generally only iden-
tifies crash-consistency bugs and is incapable of detecting silent
semantic bugs. Unlike these methods, Metis checks file systems
for behavioral discrepancies on an unmodified kernel. Thus,
there is no need to manually create checkers when testing a new
file system [86]. Moreover, other model-checking approaches
rely on fixed test inputs [21, 86] and lack the versatility to accom-
modate different input patterns. All model-checking approaches,
including Metis, track file system states to guarantee thorough
state exploration [15], a feature often lacking in other approaches.

Model checking and fuzzing are orthogonal approaches,
each with its own advantages and disadvantages. File system
fuzzing [25,43, 83, 85] continually mutates syscall inputs from
a corpus, prioritizing those that trigger new code coverage
for further mutation and execution, but they cannot make
state-coverage guarantees, risk repeatedly exploring the same
system states, and require kernel instrumentation. Some fuzzing
techniques [43, 85] also corrupt metadata to trigger crashes
more easily and use library OS [65] to achieve faster and more
reproducible execution than VM-based fuzzers. However, such
designs have their own drawbacks: they require file-system—
specific utilities to locate metadata blocks and cannot test
out-of-tree file systems unsupported by library OS. Hybridra [89]
enhances existing file system fuzzing with concolic execution,

but it remains fuzzing-based and has the same limitations of file
system fuzzers, including the lack of state-coverage guarantees.

Fuzzing mainly supplies inputs to stress file systems and com-
monly finds bugs using external checkers, such as KASan [24]
(memory errors) and SibylFS [67] (POSIX violations). Cur-
rent fuzzers configure the tested syscalls but not their argu-
ments [25,70], as testing is driven by code coverage. Compared to
fuzzing, Metis employs a test strategy that explores both the input
and state spaces, rather than solely maximizing code coverage.

Manually written regression-testing suites like xfstests [71]
and LTP [58] check expected outputs and ensure that code
updates do not [re]introduce bugs. Because they are hand-created,
they are not easily extensible and do not attempt to automate
or systematize their input or state exploration. Compared to their
XFS-specific tests, xfstests’ “generic” tests can be used with any
file system. Nevertheless, from our past experience (including
building RefFS), even when adopting the generic tests, some
setup functions must be manually modified.

Automatic test generation [12, 47, 59] creates rule-based
syscall workloads (e.g., opening a file before writing) and
employs external checkers (e.g., KASan [24]) or an oracle [59]
to identify file system defects. This technique is easily adapted
to new file systems and extensible with new operations, owing to
the universality of syscalls. Nevertheless these implementations
have lacked the versatility needed to explore diverse inputs
and do not explore the state space like Metis. Furthermore,
these testing methods typically identify only a limited range of
bugs; for instance, CrashMonkey [59] exclusively detects crash-
consistency bugs. We do not include a comparative analysis of
testing for other storage systems, such as NVM libraries [19] and
data structures [20], given their different testing targets and goals.

Ultimately, Metis is not designed to replace any existing tech-
nique; rather, we believe that it is an additional tool that offers a
complementary combination of capabilities not found elsewhere.

Verified file systems. For Metis, a reliable and ideally bug-free
reference file system is critical. Verified file systems are built ac-
cording to formally verified logic or specifications. For example,
FSCQ [14] uses an extended Hoare logic to define a crash-safe
specification and avoid crash-consistency bugs. Yggdrasil [72]
constructs file systems that incorporate automated verification
for crash correctness. DFSCQ [13] introduces a metadata-prefix
specification to specify the properties of £sync and fdatasync
for avoiding application-level bugs. SFSCQ [34] offers a
machine-checked security proof for confidentiality and uses data
non-interference to capture discretionary access control to pre-
clude confidentiality bugs. However, the specifications of verified
file systems have only been used to verify particular properties
(e.g., crash consistency [13, 14,72] or concurrency [93]), so other
unverified components can still contain bugs. Worse, even after
rigorous verification, bugs can still hide due to erroneous spec-
ifications (e.g., a crash-consistency bug reported on FSCQ [43]).
None of these verified file systems include the extra APIs that
RefFS provides, which are crucial for optimizing model-checking
performance. While RefES has not been formally verified, it re-

lies on long-term Metis testing to attain high robustness. Thus,
we chose it, rather than a verified file system, as the reference.

7 Conclusion

File system development is difficult due to code complexity,
vast underlying state spaces, and slow execution times due to
high I/O latencies. Many tools and techniques exist for testing
file systems, but they cannot be easily updated to test specific
conditions at a configurable level of thoroughness. Moreover,
they tend to require code or kernel changes or cannot easily
adapt to testing new file systems.

In this paper, we presented Metis, a versatile model-checking
framework that can thoroughly explore file-system inputs and
states. Metis abstracts file-system states into a representation
that can be used to compare the file system under test against
a reference one. We designed and built RefFS, a reference
POSIX file system with novel features that accelerate the
model-checking process. When used with Metis, RefFS is
3-28x faster than other, more established, file systems. We
extensively evaluated Metis’s input and state coverage, scalability,
and performance. Metis, helped by RefFS, can speed file-system
development: we already found a dozen bugs across several file
systems. Overall, we believe that Metis, with its unique features,
serves as a valuable addition to file system developers’ tool suite.
Finally, Metis’s framework is versatile enough to be adapted to
other systems (e.g., databases).

Future work. Our near-term plans include expanded state
exploration using Swarm verification, investigating any bugs we
discover, and then fixing and reporting them. We are also be-
ginning to test network and distributed/parallel file systems [29].
In the long run, we plan the following: (i) Metis can trigger
nondeterministic bugs, such as race conditions. Therefore, we
need to integrate techniques to more deterministically explore
and reproduce such bugs [23]. Also, we plan to explore kernel
thread interleaving states to find more concurrency bugs [83].
(i) We intend to enhance Metis by emulating crash states to
identify crash-consistency bugs in kernel file systems [47, 59].
(iii) We aim to add support for testing controlled file-system
corruptions [29, 85]. For example, if both RefFS and the test file
system can be corrupted in a logically identical fashion, Metis
can investigate more error paths (e.g., those leading to E10).

Acknowledgments

We thank the anonymous FAST reviewers, our shepherd
Haryadi S. Gunawi, and Dongyoon Lee for their valuable
comments; and to Yizheng Jiao and Richard Weinberger for
their assistance in confirming bugs in BetrFS and JFFS2. We
also thank fellow students Rohan Bansal, Tejeshwar Gurram,
and Shushanth Madhubalan for their contributions. This work
was made possible in part thanks to Dell-EMC, NetApp,
Facebook, and IBM support; a SUNY/IBM Alliance award;
and NSF awards CNS-1900589, CNS-1900706, CCF-1918225,
CNS-1951880, CNS-2106263, CNS-2106434, CNS-2214980,
CPS-1446832, ITE-2040599, and ITE-2134840.

A Artifact Appendix
Abstract

The paper artifact contains the implementations of the Mefis
model-checking framework, the RefFS reference file system,
and other necessary components as well as the code needed
to reproduce most of the experimental results presented in this
paper. Our artifact allows straightforward checking of those
Linux file systems supported by Metis, and can be easily adapted
to examine other file systems. We also provide documentation
that explains how to set up the environment, scale up the
exploration process, and detect and reproduce file system bugs
based on Metis’s logs and replayer.

Scope

This artifact is intended not only to validate the main claims
in this paper but also to enable others to use and extend our

tools, find more file-system defects, and enable future research.

Specifically, we include code that automatically reproduces the
results discussed in §5, including:

* Input coverage results shown in Figures 3, 4, and 5.

e Metis performance using Swarm verification in terms
of operations and unique abstract states per second, as
presented in Figure 6.

* RefFS performance compared to other file systems while
using Metis, as shown in Figure 7.

* Detection and reproduction of file system bugs that were
found by Metis.

Contents

The artifact includes two main Git repositories: the Metis file
system model-checking framework and the RefFS user-space
reference file system. Additionally, it contains several auxiliary
Git repositories that support a basic model-checking facility and
coverage analysis. Specifically, the artifact includes:

* Source to compile and execute the Metis framework for
checking file systems.

* Source to build and operate the RefFS reference file system.

* Scripts to reproduce most of the experimental results
appearing in this paper.

Modified SPIN and Swarm verification scripts, optimized
for seamless integration with Metis.

* The IOCov [52] tool used to compute input and output
coverage for file-system testing tools.

Hosting

All the repositories are hosted on GitHub with README files
for documentation; some are archived using Chameleon Cloud’s
Trovi service [41] and Zenodo with a permanent DOL

Metis Repository
 Repository: https://github.com/sbu-fsl/Metis

* Branch: “master”
e Commit: ac08f6802be7cacb614847ebce78c18af86d553a
e Zenodo Archive [50]: https://zenodo.org/records/ 10537199
* DOL: https://doi.org/10.5281/zenodo. 10537199
RefFS Repository
* Repository: https://github.com/sbu-fsl/RefFS
* Branch: “master”
e Commit: 680f5539791fc9c410d7d3cfcf2970ec4edf43a6

e Zenodo Archive [51]: https://zenodo.org/records/ 10558327

DO https://doi.org/10.5281/zenodo. 10558327

Other Repositories

* Repository of the Modified SPIN: https://github.com/sbu-fsl/
fsl-spin

* Repository of the Modified Swarm Verification Tool:
https:// github.cony/ sbu-fsl/swarm-mcfs

* IOCov Repository: https://github.com/sbu-fsl/IOCov

Requirements

Generic Requirements

The artifact requires x86 Ubuntu 20.04 or 22.04 with one of
the following Linux kernel versions: 5.4.0, 5.15.0, 5.19.7, 6.0.6,
6.2.12,6.3.0, or 6.6.1. It may work with other Linux distributions
and kernels but we did not test that.

Metis is both CPU- and memory-intensive. Running
the artifact does not demand specific CPU resources, but a
higher-end CPU can improve the performance of Metis’s
state-space exploration. Metis’s memory usage depends on
the type of file system being checked. Generally, the required
memory size needs to be at least the sum of the minimum
mountable sizes of the two file systems being compared (the
file system under test and a reference file system), multiplied
by Metis’s maximum search width (default 10,000). Therefore,
larger amounts of RAM are helpful. If sufficient RAM is not
available, we recommend setting up a swap disk on a fast device
such as a high-end SATA-SSD or NVMe-SSD. Metis also
generates many logs during execution, so we recommend using
at least a 500GB disk to avoid running out of log space.

This artifact comes with several prerequisites. We therefore
provide a script script/setup-deps.sh in the Metis
repository to automatically install all the required tools and
libraries on an Ubuntu system.

https://github.com/sbu-fsl/Metis
https://github.com/sbu-fsl/Metis/tree/ae08f6802be7cacb614847ebce78c18af86d553a
https://zenodo.org/records/10537199
https://doi.org/10.5281/zenodo.10537199
https://github.com/sbu-fsl/RefFS
https://github.com/sbu-fsl/RefFS/tree/680f5539791fc9c410d7d3cfcf2970ec4edf43a6
https://zenodo.org/records/10558327
https://doi.org/10.5281/zenodo.10558327
https://github.com/sbu-fsl/fsl-spin
https://github.com/sbu-fsl/fsl-spin
https://github.com/sbu-fsl/swarm-mcfs
https://github.com/sbu-fsl/IOCov

Requirements for running Metis with Swarm verification

When using multiple parallel Verification Tasks (VTs) in
Metis, the required computational resources amount to the
demand of a single VT, multiplied by the total number of
VTs. Specifically, the number of CPU cores should equal or
exceed the number of VTs operating on a machine. Similarly,
memory and disk resources should linearly scale with the
number of VTs. The number of VTs can be configured in the
fs-state/swarm. 1ib file within the Metis repository.

When VTs in Metis are distributed over multiple machines,
each machine must be equipped with resources proportional to
the number of VTs it runs. Moreover, in this distributed setting,
one machine should be designated as the primary, with the
remaining machines serving as workers. The primary machine
should be set up for password-less SSH key-based access to the
workers. We recommend that the hostnames of the workers are
accurately entered in the swarm.1ib configuration file on the
primary machine.

References

[1] Hervé Abdi. Coefficient of variation. Encyclopedia of Research
Design, 1(5), 2010.

[2] Alper Akcan. Fuse-ext2 GitHub
https:// github.com/alperakcan/fuse-ext2.

[3] Ibrahim Umit Akgun, Geoff Kuenning, and Erez Zadok.
Re-animator: Versatile high-fidelity storage-system tracing and
replaying. In Proceedings of the 13th ACM International Systems
and Storage Conference (SYSTOR ’20), pages 61-74, Haifa, Israel,
June 2020. ACM.

[4] Naohiro Aota and Kenji Kono. File systems are hard to test —
learning from xfstests. IEICE Transactions on Information and
Systems, 102(2):269-279, 2019.

[5] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau.
Operating Systems: Three Easy Pieces. Arpaci-Dusseau Books,
1.10 edition, November 2023.

[6] Algirdas Avizienis. The N-Version approach to fault-tolerant
software. IEEE Transactions on Software Engineering,
SE-11(12):1491-1501, 1985.

[7] Mojtaba Bagherzadeh, Nafiseh Kahani, Cor-Paul Bezemer,
Ahmed E. Hassan, Juergen Dingel, and James R. Cordy.
Analyzing a decade of Linux system calls. Empirical Software
Engineering, 23:1519-1551, 2018.

[8] Jeff Bonwick, Matt Ahrens, Val Henson, Mark Maybee, and Mark
Shellenbaum. The Zettabyte file system. In Proceedings of the
2nd USENIX Conference on File and Storage Technologies, San
Francisco, CA, March 2003. USENIX.

[9] James Bornholt, Antoine Kaufmann, Jialin Li, Arvind Krishna-
murthy, Emina Torlak, and Xi Wang. Specifying and checking
file system crash-consistency models. In Proceedings of the
21st International Conference on Architectural Support for
Programming Languages and Operating Systems (ASPLOS),
pages 83-98, Atlanta, GA, April 2016. ACM.

[10] Zhen Cao, Vasily Tarasov, Sachin Tiwari, and Erez Zadok.
Towards better understanding of black-box auto-tuning: A
comparative analysis for storage systems. In Proceedings of the

repository, 2021.

(11]

[12]

[13]

(14]

[15]

[16]

[17]

(18]

[19]

[20]

[21]

[22]

Annual USENIX Technical Conference, Boston, MA, July 2018.
USENIX Association. Data set at http://download.filesystems.
org/ auto-tune/ ATC-2018-auto-tune-data.sql.gz.

Marsha Chechik, Benet Devereux, and Arie Gurfinkel. Model-
checking infinite state-space systems with fine-grained abstractions
using SPIN. In International SPIN Workshop on Model Checking
of Software, pages 16-36, Toronto, ON, Canada, May 2001.
Springer.

Dongjie Chen, Yanyan Jiang, Chang Xu, Xiaoxing Ma, and Jian
Lu. Testing file system implementations on layered models. In
Proceedings of the ACM/IEEE 42nd International Conference on
Software Engineering (ICSE), pages 1483-1495, Seoul, South
Korea, June 2020. ACM.

Haogang Chen, Tej Chajed, Alex Konradi, Stephanie Wang,
Atalay Mert Ileri, Adam Chlipala, M. Frans Kaashoek, and
Nickolai Zeldovich. Verifying a high-performance crash-safe
file system using a tree specification. In Proceedings of the
26th Symposium on Operating Systems Principles (SOSP), pages
270-286, Shanghai, China, October 2017. ACM.

Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala,
M. Frans Kaashoek, and Nickolai Zeldovich. Using Crash Hoare
Logic for certifying the FSCQ file system. In Proceedings of the
25th Symposium on Operating Systems Principles (SOSP), pages
18-37, Monterey, CA, October 2015.

Edmund M. Clarke, Orna Grumberg, Daniel Kroening, Doron A.
Peled, and Helmut Veith. Model Checking, 2nd Edition. MIT
Press, 2018.

Edmund M. Clarke, William Klieber, Milos Novacek, and Paolo
Zuliani. Model checking and the state explosion problem. In
LASER Summer School on Software Engineering, pages 1-30,
Elba Island, Italy, 2011. Springer.

CRIU Community. Checkpoint/restore in userspace (CRIU), 2021.
https://criu.org/.

Benixon Arul Dhas, Erez Zadok, James Borden, and Jim Malina.
Evaluation of Nilfs2 for shingled magnetic recording (SMR) disks.
Technical Report FSL-14-03, Stony Brook University, September
2014.

Xinwei Fu, Wook-Hee Kim, Ajay Paddayuru Shreepathi, Mohan-
nad Ismail, Sunny Wadkar, Dongyoon Lee, and Changwoo Min.
Witcher: Systematic crash consistency testing for non-volatile
memory key-value stores. In Proceedings of the ACM SIGOPS
28th Symposium on Operating Systems Principles (SOSP), pages
100-115, Virtual Event / Koblenz, Germany, October 2021. ACM.
Xinwei Fu, Dongyoon Lee, and Changwoo Min. DURINN:
adversarial memory and thread interleaving for detecting durable
linearizability bugs. In Proceedings of the 16th USENIX Sympo-
sium on Operating Systems Design and Implementation (OSDI),
pages 195-211, Carlsbad, CA, July 2022. USENIX Association.
Andy Galloway, Gerald Liittgen, Jan Tobias Miihlberg, and Radu I.
Siminiceanu. Model-checking the Linux virtual file system. In
Proceedings of the 10th International Conference on Verification,
Model Checking, and Abstract Interpretation (VM CAI), pages
74-88, Savannah, GA, USA, January 2009. Springer.

Bernhard Garn and Dimitris E. Simos. Eris: A tool for combi-
natorial testing of the Linux system call interface. In Proceedings
of the IEEE Seventh International Conference on Software Testing,
Verification and Validation Workshops, pages 58-67, Cleveland,
Ohio, USA, March 2014. IEEE Computer Society Press.

https://github.com/alperakcan/fuse-ext2
http://download.filesystems.org/auto-tune/ATC-2018-auto-tune-data.sql.gz
http://download.filesystems.org/auto-tune/ATC-2018-auto-tune-data.sql.gz
https://criu.org/

(23]

(24]

(25]

[26]

(27]

(28]

[29]

(30]

(31]

(32]

(33]

[34]

[35]

[36]

[37]

(38]

Sishuai Gong, Deniz Altinbiiken, Pedro Fonseca, and Petros Mani-
atis. Snowboard: Finding kernel concurrency bugs through system-
atic inter-thread communication analysis. In Proceedings of the
ACM SIGOPS 28th Symposium on Operating Systems Principles
(SOSP), pages 66-83, Koblenz, Germany, October 2021. ACM.

Google. KASan: Linux Kernel Sanitizers, fast bug-detectors for the
Linux kernel, 2023. https://github.com/google/kernel-sanitizers.

Google. Syzkaller: Linux 2023.
https:// github.com/google/syzkaller.

Alex Groce, Gerard Holzmann, and Rajeev Joshi. Randomized
differential testing as a prelude to formal verification. In
Proceedings of the 29th International Conference on Software
Engineering (ICSE), pages 621-631, Minneapolis, MN, USA,
May 2007. IEEE Computer Society Press.

Haryadi S. Gunawi, Vijayan Prabhakaran, Swetha Krishnan,
Andrea C. Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau.
Improving file system reliability with I/O shepherding. In Proceed-
ings of the 21st ACM SIGOPS Symposium on Operating Systems
Principles (SOSP), pages 293-306, Stevenson, WA, October 2007.

Nitin Gupta. zram: Compressed RAM-based block devices, 2023.
https://www.kernel.org/ doc/ html/next/admin-guide/ blockdev/
zram.html.

syscall fuzzer,

Runzhou Han, Om Rameshwar Gatla, Mai Zheng, Jinrui Cao,
Di Zhang, Dong Dai, Yong Chen, and Jonathan Cook. A study
of failure recovery and logging of high-performance parallel file
systems. ACM Transactions on Storage (TOS), 18(2):1-44, 2022.

Nikolas Havrikov, Alexander Kampmann, and Andreas Zeller.
From input coverage to code coverage: Systematically covering
input structure with k-paths. Technical report, CISPA Helmholtz
Center for Information Security, 2022.

Gerard J. Holzmann. The model checker SPIN. [EEE
Transactions on software engineering, 23(5):279-295, 1997.

Gerard J. Holzmann and Dragan Bosnacki. The design of
a multicore extension of the SPIN model checker. IEEE
Transactions on Software Engineering, 33(10):659-674, 2007.

Gerard J. Holzmann, Rajeev Joshi, and Alex Groce. Swarm ver-
ification techniques. IEEE Transactions on Software Engineering,
37(6):845-857, 2010.

Atalay Mert Ileri, Tej Chajed, Adam Chlipala, M. Frans Kaashoek,
and Nickolai Zeldovich. Proving confidentiality in a file system
using DiskSec. In Proceedings of the 13th USENIX Symposium
on Operating Systems Design and Implementation (OSDI), pages
323-338, Carlsbad, CA, October 2018. USENIX Association.

JES developers. Journaled file system technology for Linux, 2011.
https://jfs.sourceforge.net/.

Yizheng Jiao, Simon Bertron, Sagar Patel, Luke Zeller, Rory
Bennett, Nirjhar Mukherjee, Michael A. Bender, Michael
Condict, Alex Conway, Martin Farach-Colton, et al. BetrFS:
A compleat file system for commodity SSDs. In Proceedings
of the Seventeenth European Conference on Computer Systems
(EuroSys), pages 610-627, Rennes, France, April 2022. ACM.
Dave Jones. Trinity: Linux system call fuzzer, 2023.
https://github.conv/kernelslacker/trinity .

Nikolai Joukov, Ashivay Traeger, Rakesh Iyer, Charles P. Wright,
and Erez Zadok. Operating system profiling via latency analysis.
In Proceedings of the 7th USENIX Symposium on Operating

(391

[40]

(41]

(42]

[43]

[44]

[45]

[46]

[47]

(48]

[49]

(50]

[51]

Systems Design and Implementation (OSDI 2006), pages 89-102,
Seattle, WA, November 2006. ACM SIGOPS.

Natalia Juristo, Sira Vegas, Martin Solari, Silvia Abrahao, and
Isabel Ramos. Comparing the effectiveness of equivalence
partitioning, branch testing and code reading by stepwise
abstraction applied by subjects. In Proceedings of the IEEE Fifth
International Conference on Software Testing, Verification and
Validation, pages 330-339, Montreal, QC, Canada, April 2012.
IEEE Computer Society Press.

Simon Kagstrom. KCOV: code coverage for fuzzing, 2023.
https://docs.kernel.org/ dev-tools/kcov.html .

Kate Keahey, Jason Anderson, Zhuo Zhen, Pierre Riteau, Paul
Ruth, Dan Stanzione, Mert Cevik, Jacob Colleran, Haryadi S.
Gunawi, Cody Hammock, Joe Mambretti, Alexander Barnes,
Francois Halbach, Alex Rocha, and Joe Stubbs. Lessons learned
from the Chameleon testbed. In Proceedings of the 2020 USENIX
Annual Technical Conference (USENIX ATC ’20), pages 219-233.
USENIX Association, Virtual Event, July 2020.

Kernel.org Bugzilla. Ext4 bug entries, 2023.
//bugzilla.kernel.org/ buglist.cgi? component=ext4.

https:

Seulbae Kim, Meng Xu, Sanidhya Kashyap, Jungyeon Yoon,
Wen Xu, and Taesoo Kim. Finding semantic bugs in file systems
with an extensible fuzzing framework. In Proceedings of the 27th
ACM Symposium on Operating Systems Principles (SOSP), pages
147-161, Huntsville, ON, Canada, October 2019. ACM.

Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony
Liguori. kvm: the Linux virtual machine monitor. In Proceedings
of the 2007 Ottawa Linux Symposium (OLS 2007), volume 1,
pages 225-230, Ottawa, Canada, June 2007.

Rick Kuhn, Raghu N. Kacker, Yu Lei, and Dimitris E. Simos.
Input space coverage matters. Computer, 53(1):37-44, 2020.

Philip Lantz, Subramanya Dulloor, Sanjay Kumar, Rajesh
Sankaran, and Jeff Jackson. Yat: A validation framework for
persistent memory software. In Proceedings of the 2014 USENIX
Annual Technical Conference (USENIX ATC ’14), pages 433-438,
Philadelphia, PA, June 2014. USENIX Association.

Hayley LeBlanc, Shankara Pailoor, Om Saran K. R. E, Isil Dillig,
James Bornholt, and Vijay Chidambaram. Chipmunk: Investi-
gating crash-consistency in persistent-memory file systems. In
Proceedings of the Eighteenth European Conference on Computer
Systems (EuroSys), pages 718-733, Rome, Italy, May 2023.

Doug Ledford and Eric Sandeen. Bug 513221:
filesystem corruption and data loss, 2009.
//bugzilla.redhat.com/show _bug.cgi?id=513221.

Changman Lee, Dongho Sim, Jooyoung Hwang, and Sangyeun
Cho. F2FS: A new file system for flash storage. In Proceedings
of the 13th USENIX Conference on File and Storage Technologies
(FAST ’15), pages 273-286, Santa Clara, CA, February 2015.
USENIX Association.

Yifei Liu, Manish Adkar, Gerard Holzmann, Geoff Kuenning, Pei
Liu, Scott Smolka, Wei Su, and Erez Zadok. Artifact package:
the Metis file system model checking framework, January 2024.
Yifei Liu, Manish Adkar, Gerard Holzmann, Geoff Kuenning, Pei
Liu, Scott Smolka, Wei Su, and Erez Zadok. Artifact package:
the RefFS reference file system for the Metis model checking
framework, January 2024.

Ext4
https:

https://github.com/google/kernel-sanitizers
https://github.com/google/syzkaller
https://www.kernel.org/doc/html/next/admin-guide/blockdev/zram.html
https://www.kernel.org/doc/html/next/admin-guide/blockdev/zram.html
https://jfs.sourceforge.net/
https://github.com/kernelslacker/trinity
https://docs.kernel.org/dev-tools/kcov.html
https://bugzilla.kernel.org/buglist.cgi?component=ext4
https://bugzilla.kernel.org/buglist.cgi?component=ext4
https://bugzilla.redhat.com/show_bug.cgi?id=513221
https://bugzilla.redhat.com/show_bug.cgi?id=513221

[52]

(53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]

[61]

[62]

[63]

[64]

Yifei Liu, Gautam Ahuja, Geoff Kuenning, Scott Smolka, and Erez
Zadok. Input and output coverage needed in file system testing. In
Proceedings of the 15th ACM Workshop on Hot Topics in Storage
and File Systems (HotStorage ’23), Boston, MA, July 2023. ACM.
Lanyue Lu, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-
Dusseau, and Shan Lu. A study of Linux file system evolution.
In Proceedings of the USENIX Conference on File and Storage
Technologies (FAST ’13), pages 31-44, San Jose, CA, February
2013. USENIX Association.

Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon
Kuenzer, Sumit Sati, Kenichi Yasukata, Costin Raiciu, and Felipe
Huici. My VM is lighter (and safer) than your container. In Pro-
ceedings of the 26th Symposium on Operating Systems Principles
(SOSP), pages 218-233, Shanghai, China, October 2017. ACM.
Avantika Mathur, Mingming Cao, Suparna Bhattacharya, Andreas
Dilger, Alex Tomas, and Laurent Vivier. The new ext4 filesystem:
current status and future plans. In Proceedings of the Ottawa
Linux Symposium (OLS), volume 2, pages 21-33, Ottawa, Canada,
June 2007. Ottawa Linux Symposium.

William M. McKeeman. Differential testing for software. Digital
Technical Journal, 10(1):100-107, 1998.

Changwoo Min, Sanidhya Kashyap, Byoungyoung Lee, Chengyu
Song, and Taesoo Kim. Cross-checking semantic correctness:
The case of finding file system bugs. In Proceedings of the
25th Symposium on Operating Systems Principles (SOSP), pages
361-377, Monterey, CA, October 2015. ACM.

Subrata Modak. Linux
http://Itp.sourceforge.net/.
Jayashree Mohan, Ashlie Martinez, Soujanya Ponnapalli, Pandian
Raju, and Vijay Chidambaram. Finding crash-consistency bugs
with bounded black-box crash testing. In Proceedings of the
13th USENIX Symposium on Operating Systems Design and
Implementation (OSDI), pages 33-50, Carlsbad, CA, October
2018. USENIX Association.

Jayashree Mohan, Ashlie Martinez,
palli, Pandian Raju, and Vijay Chidambaram.
Monkey: tools for testing file-system reliability,
https://github.com/utsaslab/crashmonkey .

Madanlal Musuvathi, David Y. W. Park, Andy Chou, Dawson R.
Engler, and David L. Dill. CMC: A pragmatic approach to model
checking real code. In Proceedings of the 5th Symposium on
Operating System Design and Implementation (OSDI), Boston,
MA, December 2002. USENIX Association.

Can Ozbey, Talha Colakoglu, M Safak Bilici, and Ekin Can
Erkus. A unified formulation for the frequency distribution of
word frequencies using the inverse Zipf’s law. In Proceedings of
the 46th International ACM SIGIR Conference on Research and
Development in Information Retrieval (SIGIR), pages 1776-1780,
Taipei, Taiwan, July 2023. ACM.

Brandon Philips. The fsck problem. In The 2007 Linux Storage and
File Systems Workshop, 2007. https://Iwn.net/ Articles/226351/.
Thanumalayan Sankaranarayana Pillai, Vijay Chidambaram,
Ramnatthan Alagappan, Samer Al-Kiswany, Andrea C. Arpaci-
Dusseau, and Remzi H. Arpaci-Dusseau. All file systems are
not created equal: On the complexity of crafting crash-consistent
applications. In Proceedings of the 11th USENIX Symposium
on Operating Systems Design and Implementation (OSDI), pages
433-448, Broomfield, CO, October 2014. USENIX Association.

test project (LTP), 2009.

Soujanya Ponna-
Crash-
2023.

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

(73]

[74]

[75]

[76]

(771

(78]

Octavian Purdila, Lucian Adrian Grijincu, and Nicolae Tapus.
LKL: The Linux kernel library. In 9th RoEduNet IEEE Interna-
tional Conference, pages 328-333, Sibiu, Romania, 2010. IEEE.

William J. Reed. On the rank-size distribution for human
settlements. Journal of Regional Science, 42(1):1-17, 2002.

Tom Ridge, David Sheets, Thomas Tuerk, Andrea Giugliano, Anil
Madhavapeddy, and Peter Sewell. SibylFS: formal specification
and oracle-based testing for POSIX and real-world file systems.
In Proceedings of the 25th Symposium on Operating Systems Prin-
ciples (SOSP), pages 38-53, Monterey, CA, October 2015. ACM.

Ohad Rodeh, Josef Bacik, and Chris Mason. BTREFS: The
Linux B-tree filesystem. ACM Transactions on Storage (TOS),
9(3):1-32, 2013.

Cindy Rubio-Gonzélez, Haryadi S. Gunawi, Ben Liblit, Remzi H.
Arpaci-Dusseau, and Andrea C. Arpaci-Dusseau. Error propa-
gation analysis for file systems. In Proceedings of the 30th ACM
SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), pages 270-280, Dublin, Ireland, June
2009. ACM.

Sergej Schumilo, Cornelius Aschermann, Robert Gawlik,
Sebastian Schinzel, and Thorsten Holz. kAFL: Hardware-assisted
feedback fuzzing for OS kernels. In Proceedings of the 26th
USENIX Security Symposium (USENIX Security), pages 167-182,
Vancouver, BC, Canada, August 2017. USENIX Association.

SGI XFS. xfstests, 2016.
Getting _the _latest_source _code.

http://xfs.org/index.php/

Helgi Sigurbjarnarson, James Bornholt, Emina Torlak, and
Xi Wang. Push-button verification of file systems via crash
refinement. In Proceedings of the 12th USENIX Symposium on
Operating Systems Design and Implementation (OSDI), pages
1-16, Savannah, GA, November 2016. USENIX Association.

Wei Su, Yifei Liu, Gomathi Ganesan, Gerard Holzmann, Scott
Smolka, Erez Zadok, and Geoff Kuenning. Model-checking
support for file system development. In Proceedings of the
13th ACM Workshop on Hot Topics in Storage and File Systems
(HotStorage '21), pages 103—110, Virtual, July 2021. ACM.

Chia-Che Tsai, Bhushan Jain, Nafees Ahmed Abdul, and Donald E.
Porter. A study of modern Linux API usage and compatibility:
What to support when you’re supporting. In Proceedings of the
Eleventh European Conference on Computer Systems (EuroSys),
pages 1-16, London, United Kingdom, April 2016. ACM.

Petar Tsankov, Mohammad Torabi Dashti, and David Basin.
Semi-valid input coverage for fuzz testing. In Proceedings of the
2013 International Symposium on Software Testing and Analysis
(ISSTA), pages 5666, Lugano, Switzerland, July 2013. ACM.

Theodore Ts’o. Ext4: Fix use-after-free in ext4 _xattr_set_entry,
2022. https://lore.kernel.org/lkml/ 165849767593.303416.
8631216390537886242.b4-ty @ mit.edu/.

Dong Wang, Wensheng Dou, Yu Gao, Chenao Wu, Jun Wei,
and Tao Huang. Model checking guided testing for distributed
systems. In Proceedings of the Eighteenth European Conference
on Computer Systems (EuroSys), pages 127-143, Rome, Italy,
May 2023. ACM.

Elaine J. Weyuker and Bingchiang Jeng. Analyzing partition
testing strategies. IEEE Transactions on Software Engineering,
17(7):703, 1991.

http://ltp.sourceforge.net/
https://github.com/utsaslab/crashmonkey
https://lwn.net/Articles/226351/
http://xfs.org/index.php/Getting_the_latest_source_code
http://xfs.org/index.php/Getting_the_latest_source_code
https://lore.kernel.org/lkml/165849767593.303416.8631216390537886242.b4-ty@mit.edu/
https://lore.kernel.org/lkml/165849767593.303416.8631216390537886242.b4-ty@mit.edu/

[79]

(80]

(81]

(82]

(83]

(84]

(85]

(86]

(87]

(88]

(89]

(90]

[91]

[92]

(93]

Matthew Wilcox and Dave Chinner. XFS: Use
generic_file_open(), 2022. https:// github.com/torvalds/
linux/commit/t3bf67c6c6fe863b7946ac0c2214a147dc50523d.

David Woodhouse, Joern Engel, Jarkko Lavinen, and Artem
Bityutskiy. JFFS2, 2009.

Yilun Wu, Tong Zhang, Changhee Jung, and Dongyoon Lee. DE-
VFUZZ: automatic device model-guided device driver fuzzing. In
Proceedings of the 44th IEEE Symposium on Security and Privacy
(SP), pages 3246-3261, San Francisco, CA, May 2023. IEEE.
XFS - high-performance 64-bit journaling file system.
https://www.linuxlinks.com/xfs/. Visited February, 2021.

Meng Xu, Sanidhya Kashyap, Hanging Zhao, and Taesoo Kim.
KRACE: Data race fuzzing for kernel file systems. In Proceedings
of the 41st IEEE Symposium on Security and Privacy (Oakland),
pages 1643-1660, Virtual Event, November 2020. IEEE.

Wen Xu, Sanidhya Kashyap, Changwoo Min, and Taesoo
Kim. Designing new operating primitives to improve fuzzing
performance. In Proceedings of the ACM SIGSAC Conference on
Computer and Communications Security (CCS), pages 2313-2328,
Dallas, TX, October 2017. ACM.

Wen Xu, Hyungon Moon, Sanidhya Kashyap, Po-Ning Tseng,
and Taesoo Kim. Fuzzing file systems via two-dimensional input
space exploration. In Proceedings of the 40th IEEE Symposium on
Security and Privacy (Oakland), pages 818—834, San Francisco,
CA, May 2019. IEEE.

Junfeng Yang, Can Sar, and Dawson Engler. eXplode: a
lightweight, general system for finding serious storage system
errors. In Proceedings of the 7th USENIX Symposium on
Operating Systems Design and Implementation (OSDI), pages
131-146, Seattle, WA, November 2006. USENIX Association.
Junfeng Yang, Paul Twohey, Dawson Engler, and Madanlal
Musuvathi. Using model checking to find serious file system
errors. In Proceedings of the USENIX Symposium on Operating
Systems Design and Implementation (OSDI), pages 273-288, San
Francisco, CA, December 2004. ACM SIGOPS.

Jingcheng Yuan, Toshiaki Aoki, and Xiaoyun Guo. Comprehensive
evaluation of file systems robustness with SPIN model checking.
Software Testing, Verification and Reliability, 32(6).¢1828, 2022.

Insu Yun. Concolic Execution Tailored for Hybrid Fuzzing. PhD
thesis, Georgia Institute of Technology, December 2020.

Erez Zadok, Rakesh Iyer, Nikolai Joukov, Gopalan Sivathanu,
and Charles P. Wright. On incremental file system development.
ACM Transactions on Storage (TOS), 2(2):161-196, 2006.
Andreas Zeller, Holger Cleve, and Stephan Neuhaus. Delta
debugging: From automated testing to automated debugging,
2023. https://www.st.cs.uni-saarland.de/dd/.

Duo Zhang, Om Rameshwar Gatla, Wei Xu, and Mai Zheng.
A study of persistent memory bugs in the Linux kernel. In
Proceedings of the 14th ACM International Conference on Systems
and Storage (SYSTOR), pages 1-6, Haifa, Israel, June 2021. ACM.
Mo Zou, Haoran Ding, Dong Du, Ming Fu, Ronghui Gu, and
Haibo Chen. Using concurrent relational logic with helpers for
verifying the AtomFS file system. In Proceedings of the 27th
ACM Symposium on Operating Systems Principles (SOSP), pages
259-274, Huntsville, ON, Canada, October 2019. ACM.

https://github.com/torvalds/linux/commit/f3bf67c6c6fe863b7946ac0c2214a147dc50523d
https://github.com/torvalds/linux/commit/f3bf67c6c6fe863b7946ac0c2214a147dc50523d
https://www.linuxlinks.com/xfs/
https://www.st.cs.uni-saarland.de/dd/

	Introduction
	Background and Motivation
	Design
	Input Driver
	State Exploration and Tracking
	Differential State Checker
	Logging and Bug Replay
	Distributed State Exploration
	Implementation Details
	Limitations of Metis

	RefFS: The Reference File System
	RefFS Snapshot APIs

	Evaluation
	Test Input Coverage
	Metis Performance and Scalability
	RefFS Performance and Reliability
	Bug Finding

	Related Work
	Conclusion
	Artifact Appendix

