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ABSTRACT
File systems need testing to discover bugs and to help en-
sure reliability. Many �le system testing tools are evaluated
based on their code coverage. We analyzed recently reported
bugs in Ext4 and BtrFS and found a weak correlation be-
tween code coverage and test e�ectiveness: many bugs are
missed because they depend on speci�c inputs, even though
the code was covered by a test suite. Our position is that
coverage of system call inputs and outputs is critically im-
portant for testing �le systems. We thus suggest input and
output coverage as criteria for �le system testing, and show
how they can improve the e�ectiveness of testing. We built
a prototype called IOCov to evaluate the input and output
coverage of �le system testing tools. IOCov identi�ed many
untested cases (speci�c inputs and outputs or ranges thereof)
for both CrashMonkey and xfstests. Additionally, we discuss
a method and associated metrics to identify over- and under-
testing using IOCov.
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1 INTRODUCTION
Motivation. File systems, a fundamental component of

modern operating systems, must reliably store and organize
user data. Due to their critical role, �le system bugs are a
serious matter [35, 67]. Various testing approaches have dis-
covered such bugs and improved �le system reliability [8, 38].
Testing �le systems remains a challenge, however, due to
their complexity, the presence of corner cases [66], their
ongoing development [35], and the demand for strong re-
siliency (e.g., crash consistency [45, 53]).
Although a number of approaches to testing �le systems

have been proposed and have succeeded in identifying many
defects, bugs are still discovered on an almost daily basis,
even in mature �le systems [28, 29, 35]. This raises an impor-
tant question: how can one evaluate and improve existing
�le system testing tools and thus �nd more bugs, thereby
enhancing reliability?

Limitations of code coverage. Code coverage [1], the most
commonly used metric for evaluating test quality [19], mea-
sures how much source code has been executed by a test
suite. Coverage can be calculated at di�erent levels, includ-
ing individual lines of code, functions, and branches [23].
Although coverage is helpful in evaluating �le system test-
ing, it has two signi�cant limitations: (1) Even though the
developer knows which lines were not covered, it is chal-
lenging to modify tests to cover them [1, 5]; and (2) The code
covered by tests may still hide bugs, depending on parameter
values [10, 24].

To investigate the correlation between code coverage and
testing e�ectiveness (i.e., the ability to �nd bugs), we con-
ducted a study (Section 2) of recent �le system bugs. We
found that existing testing tools are hindered by the limita-
tions of code coverage. Moreover, the connection between
test inputs (i.e., system calls) and �le system code is ob-
scure [5, 15]; so improving tests to cover more code is chal-
lenging. Additionally, in our study of xfstests—one of the
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oldest and most popular �le system test suites [52]—53% of
reported bugs involved code that xfstests covered yet failed
to expose the bug. We found a similar phenomenon with
other metrics such as function and branch coverage. Thus, it
is imperative to �nd other completeness metrics that devel-
opers can use to improve test suites.

Contributions. We conducted a bug study and found that
most bugs can be triggered by speci�c inputs (system calls
and their arguments), especially near boundaries and cor-
ner cases that might be missed by some testing techniques.
Therefore, we propose input coverage [20, 31, 60] as a �le
system testing metric.
Exploring input coverage alone is insu�cient, however,

as the same syscall input can behave di�erently depending
on the �le system state. For instance, writing to an existing
�le is di�erent from writing a brand-new one. To ensure that
the inputs are executed on meaningfully di�erent states, we
propose another metric, output coverage [3], to measure the
coverage of syscall return values and error codes. This helps
assess whether the testing reaches a wide variety of outputs,
given that many bugs happen on exit and failure paths [35]
(Section 2). Our position is that testing techniques should
include input and output coverage alongside code-coverage
metrics to improve test completeness.
To evaluate input and output coverage, we �rst selected

27 syscalls relevant to �le systems, out of approximately 400
Linux system calls [6, 59]. Next, we inspected each selected
syscall’s arguments and divided them into four categories:
identi�ers (e.g., �le descriptors), bitmaps (e.g., open �ags),
numeric arguments (e.g., write size), and categorical argu-
ments (e.g., lseek whence). We then partitioned the input
space for each type of argument and the output space for
each return value (e.g., the write bu�er size was partitioned
by powers of 2). We created separate partitions for boundary
values and corner cases. Finally, we calculated input and
output coverage by whether and how thoroughly a test suite
covered those arguments and outputs.

We developed a prototype analyzer, called IOCov, to com-
pute the input and output coverage of �le system test suites.
We make the following contributions:

(1) We studied patches and bugs from two popular Linux
�le systems and investigated the correlation between
code coverage and bug-�nding e�ectiveness of xfstests.
We also identi�ed common triggers of �le system bugs;
this was not addressed in previous studies [35, 67].

(2) We studied syscalls to de�ne their input and output
coverage, and used that analysis to evaluate �le system
testing methods and to discover and overcome their
code-coverage limitations.

(3) We designed IOCov to accurately measure the input
and output coverage of existing �le system test suites.

(4) We empirically evaluated the input and output cov-
erage for two representative �le system test suites,
xfstests [52] and CrashMonkey [41], and found many
untested regions for both.

2 REAL-WORLD BUG STUDY
Code coverage e�ectiveness. Although many researchers

have studied the correlation between code coverage and test
e�ectiveness, they usually focused on small programs [10,
21, 43] or relatively simple user applications [16, 24]. To
the best of our knowledge, there is no existing work that
considers this correlation for in-kernel �le systems based
on real-world bugs and test suites. Here, we discuss the
�ndings from a study we conducted on two popular Linux
�le systems: Ext4 [37] and BtrFS [50]. First, because of the
strong link between Git commits and accepted patches [25,
57], we manually analyzed the latest 100 Git commits from
the Linux kernel repository [58] applied in 2022 for each
�le system—200 commits in total. Second, using Lu et al.’s
technique [35], we identi�ed which of the 200 commits were
bug �xes. This identi�ed 51 Ext4 bugs and 19 BtrFS bugs.
We found fewer bugs for BtrFS because many commits were
due to a major code refactoring in December 2022. Third, we
ran xfstests on Ext4 and BtrFS with all the generic and �le-
system–speci�c tests and recorded code coverage, including
line, function, and branch coverage. For each bug �x, we
examined whether xfstests covered the pertinent code, and
whether the suite detected the bug. This approach allowed
us to study the correlation between bug-detection ability and
code coverage in xfstests. Finally, we analyzed the syscalls
required to trigger these bugs and code paths of each bug.

We used Gcov [23] to compute the code coverage of xfstests
on Linux kernel v6.0.6. For each bug-�x commit, wemanually
inspected Gcov’s report to determine whether the buggy code
was covered. Since our bug study was manual, two people
independently cross-validated all �ndings. We found that for
37 out of 70 bugs (53%), xfstests covered the relevant code
lines but still missed the bugs. Moreover, xfstests missed bugs
in 61% (43 out of 70) of covered functions and 29% (20 out of
70) for covered branches. We conclude that code-coverage
metrics are not strongly correlated with test e�ectiveness
(i.e., the ability to �nd bugs).

Bug Classi�cation. Next, we manually inspected each bug-
�x commit from the perspective of software testing and
analyzed the factors that triggered the bug in question. We
observed that most bugs could be detected only with speci�c
syscall inputs, which we characterized as input bugs. An-
other �nding is that many bugs occur on the exit path; such
bugs may alter the behavior of syscall returns. We de�ned
these as output bugs. We analyzed each bug to determine its
classi�cation as an input bug, output bug, both, or neither.
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fs/ext4/xattr.c, v6.0-rc1
sys_lsetxattr(size, ...)
…
 vfs_setxattr(size, ...)
…
  ext4_xattr_set(value_len, ...)
…
   int ext4_xattr_ibody_set(inode, ...) {
-    if (EXT4_I(inode)->i_extra_isize == 0)
+    if (!EXT4_INODE_HAS_XATTR_SPACE(inode))
       return -ENOSPC;

Figure 1: An example of a both input-related and
output-related Ext4 bug. The bugwas�xed by checking
whether the inode has room to store additional xattrs
in ext4_xattr_ibody_set.

We found that a major proportion (71%, 50 out of 70) of
the bugs were input bugs; also, 59% of bugs (41 out of 70)
appeared in exit paths that a�ect syscall returns [22, 36].
Altogether, 57 out of 70 bugs (81%) were related to syscall
inputs or outputs. Among the bugs in covered code that were
missed by xfstests, 24 out of 37 (65%) could be triggered by
speci�c syscall arguments, indicating that input coverage can
compensate for the shortcomings of code coverage. Speci�-
cally, these arguments frequently involved corner cases [7],
less-tested inputs [32], and boundary values [61]; these are
usually ignored by code-coverage metrics because they often
execute the same code as heavily-tested inputs [59].

Figure 1 shows such an example from a recent bug [61] in
Ext4 that involves both input and output. This bug’s lines,
function, and branches are all covered by xfstests, which
nevertheless failed to �nd it because it happened only when
lsetxattr used the maximum allowed size argument, caus-
ing theminimum o�set (min_offs) between two block groups
to over�ow. As this bug is also an output bug, a �le system
tester could detect it by checking the correctness of the con-
dition for the error case (i.e., ENOSPC). In sum, covering code
alone is not enough for �nding bugs because many bugs
depend on speci�c inputs and outputs.
We will make the bug study dataset publicly available,

including the code-coverage analysis and triggers for each
bug, as well as the classi�cation of input and output bugs.

3 IOCOV FRAMEWORK
We de�ne input and output coverage by partitioning those
spaces, and describe how the IOCov framework computes
input and output coverage for �le system test suites.

Input- and output-space partitioning. Our bug study con-
�rmed the importance of thoroughly covering test inputs

and outputs, so we wanted to de�ne metrics to measure that
coverage. Linux has around 400 syscalls [6, 59]. It is impracti-
cal to measure test adequacy for all of them, so we focused on
the core �le-system-related syscalls. Still, the input space is
large because most syscalls take multiple arguments with ar-
bitrarily large values. Thus, we partitioned each argument’s
input space to identify the partitions that are under- or over-
tested [48].We divided arguments into four classes: identi�er,
bitmap, numeric, and categorical. Identi�ers include �le de-
scriptors and path names. Bitmaps can be logically ��ed (e.g.,
open �ags or chmod permissions). Numeric arguments often
represent a number of bytes (e.g., write size). Categorical
arguments have �xed available values (e.g., lseek’s whence).
We used di�erent methods to partition each argument

type. For bitmaps we considered each �ag and certain com-
binations thereof. For numeric arguments, we considered
boundary-value analysis [12, 44, 48, 68], but ultimately used
powers of 2 as boundaries because they are common in �le
systems [26]. Most syscall outputs return either success or
an error code, so we partitioned the output space on success
vs. failure, and further by each error code. For syscalls that
return a byte count on success (e.g., write), we partitioned
successful returns by powers of 2.

Input and output coverage. Next, we de�ned input coverage
and output coverage as how much a tester exercises an argu-
ment’s input or output partitions; the latter also indirectly
measures how well error codes are exercised, since many
bugs happen on error paths. We note that some errors are
harder to trigger than others. For example, triggering ENOMEM

requires a system with limited memory. Therefore, achieving
100% coverage of all errors may be challenging. Nevertheless,
using input- and output-coverage metrics, developers can
compare and improve �le system test suites more easily than
by considering code coverage alone, because: (1) our metrics
more directly identify any missed or under-tested inputs or
outputs, and (2) code-coveragemetrics require going through
complex kernel call stacks [5].

IOCov implementation. Our prototype IOCovmeasures the
input and output coverage of existing �le system testers by
tracing syscalls with LTTng, a low-overhead tracing frame-
work [2, 34]. Traced syscalls and their arguments are sent to
the IOCov analyzer, which analyzes them and calculates cov-
erage metrics. IOCov has three components: the trace �lter,
the syscall variant handler, and the input/output partitioner.

Most �le system testers use dedicated devices and mount
points for testing (e.g., /mnt/test for xfstests). Since LTTng
records all syscalls from the �le system tester, it observes
other syscalls that are not directly used to test a �le system.
We therefore developed a set of regular expressions to �lter
out those irrelevant system call records (e.g., based on the
mount point pathname) before IOCov analyzes them further.
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Figure 2: Input coverage of open �ags for CrashMon-
key and xfstests. The G-axis lists all possible �ags sup-
ported by open. The ~-axis (;>610) shows the frequency
of each open �ag exercised by each testing tool.

Many syscalls have variants with di�erent prototypes (e.g.,
open, openat, creat, and openat2). Variants share almost the
same kernel implementation [47, 59], so IOCov’s variant
handler merges their input and output spaces when comput-
ing coverage. Lastly, the input/output partitioner divides the
input and output spaces, counts the occurrences of each par-
tition, and calculates coverage metrics. IOCov is easy to use.
The only setting that needs to be adjusted when applying it
to a new �le system tester is the regular expression used to
identify the tester’s mount points.

4 EVALUATION
We experimented with the IOCov prototype on two �le sys-
tem testers: CrashMonkey [41] and xfstests [52]. The test
machine had 4 cores and 128GB RAM. CrashMonkey is an
automatic black-box tester for �le system crash consistency;
xfstests is a hand-written regression test suite. We tested
Ext4 with all CrashMonkey’s tests (including all of seq-1’s
300 workloads and all generic tests) as well as all of the 706
generic tests and 308 Ext4-speci�c tests from xfstests.
Currently, IOCov measures input coverage for 14 dis-

tinct arguments from a total of 27 syscalls, including 11
base syscalls (open, read, write, lseek, truncate, mkdir, chmod,
close, chdir, setxattr, and getxattr) and their variants; it
also records output coverage for all 27 syscalls.

Input coverage results. Figure 2 shows the input coverage
of open, partitioned by individual �ags, for CrashMonkey
and xfstests. The G-axis labels all possible �ags supported by
open. The ~-axis (;>610) shows how often each open �ag was
exercised by the testing tool. A higher ~-value corresponds

Test Suite / % for #�ags 1 2 3 4 5 6
CrashMonkey: all �ags 9.3 2.8 22.1 65.4 0.5 0
CrashMonkey: O_RDONLY 9.3 2.8 21.9 65.6 0.5 0
xfstests: all �ags 6.1 28.2 18.2 46.8 0.5 0.4
xfstests: O_RDONLY 6.0 30.8 10.5 51.9 0.5 0.3
Table 1: Percentage of time that 1–6 open �ags were
used together, for CrashMonkey and xfstests. The table
header numbers indicate how many �ags were com-
bined in open for testing (where “1” means a single
�ag used alone). Because O_RDONLY is the most pop-
ular �ag, we also analyze all �ag combinations that
included that �ag.

to more frequent usage of a particular open �ag by a test
suite. For instance, O_RDONLY, which is universally applied to
open a �le as read only, is the most-used �ag for both Crash-
Monkey and xfstests. Figure 2 shows that CrashMonkey and
xfstests used the O_RDONLY �ag 7, 924 and 4, 099, 770 times,
respectively.
The open �ag frequency of xfstests is larger than Crash-

Monkey’s for every �ag, showing that xfstests tests them
more thoroughly. We can see that some �ags are not tested
at all; this information can help developers identify new tests
(e.g., bugs exist for O_LARGEFILE [62]). We also analyzed the
number of tested combinations of �ags. Table 1 shows that
both suites used at most six open �ags together. In this table,
“All” denotes all instances of open �ags, and “O_RDONLY”
limits the results to instances with that (most popular) �ag.
Using four �ags was the most common. For CrashMonkey,
the second most frequent combination was three �ags; for xf-
stests it was two. This highlights the di�erent strategies used
by the two test suites and suggests that more diversi�ed test
cases can be designed to test more open �ag combinations.

Figure 3 shows the input coverage of the write size param-
eter (i.e., requested byte count). The G-axis shows the ;>62
of the size. Because we use powers of 2 as boundary values,
each interval (i.e., input-space partition [4]) along the G-axis
includes the actual write sizes rounded down to the nearest
lower boundary value. For example, G = 10 represents all
write sizes from 210 to 211 � 1 (or 1024–2047). The G-axis
also includes a special “Equal to 0” value (unusual but al-
lowed under POSIX [56]). The size 0 is also a boundary value
because it is the minimum possible size accepted by write

but is easily neglected by testing [48]. The ~-axis (;>610) of
Figure 3 shows the frequency of each G value.
The write size frequency of xfstests is larger than Crash-

Monkey’s for every interval. CrashMonkey did not exer-
cise many write sizes, and neither tool tested any sizes over
258 MiB (annotated in Figure 3) despite the fact that 64-bit
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Figure 3: Input coverage of write size (in bytes) for
CrashMonkey and xfstests. The G-axis shows the ;>62
of write size, rounded down to the nearest boundary
value. The G2-axis shows the actual size corresponding
to the G-axis. For example, G = 28 represents 228 or
256MiB. The ~-axis (;>610) shows the frequency.
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Figure 4: Output coverage of open for CrashMonkey
and xfstests. The G-axis shows outputs (i.e., success and
error codes) returned by open and its variants. The ~-
axis (;>610) shows the frequency.

systems with many GB of RAM are common (and the maxi-
mum Ext4 �le size is 16TB). Due to space limitations, we do
not show input coverage for other IOCov-supported syscalls.
Overall, we found untested input partitions formany syscalls;
xfstests generally has better coverage than CrashMonkey.

Output coverage results. Figure 4 shows the output cov-
erage for open syscalls. The G-axis shows all possible error

codes returned by open and its variants. The ~-axis (;>610)
shows the frequency of each output partitioned by success
and error codes. Notably, we obtained the error codes ap-
pearing along the G-axis from the open manual page, which
may not be consistent with the actual implementation. “OK”
means any return value that is � 0 (i.e., open succeeded). The
xfstests suite covered more error cases than CrashMonkey
except for ENOTDIR. Still, many possible error codes remain
untested.

Application: syscall test adequacy. The above �gures show
howmuch coverage each test suite had for each partition; but
we also wanted to o�er a single metric that can numerically
represent the test adequacy for each input and output. We
observed that some partitions are tested millions of times
while others are not tested at all. Thus, we introduced the
notions of under-testing and over-testing for each partition.
Under-testing means that the partition gets too little testing
if at all; this can miss bugs. Over-testing means the partitions
are excessively tested; this could waste resources better di-
verted elsewhere (e.g., under-tested partitions). We note that
assessing the appropriate amount of testing may depend on
the partition itself: for example, smaller write sizes are more
common and may bene�t from more testing than large ones.
Moreover, we wanted our metric to “penalize” under-testing
as well as possible over-testing.
Thus, we de�ne a Test Coverage Deviation (TCD) metric

as our �rst attempt to evaluate how comprehensive are the
input and output coverage values. Given an input or output
coverage for a syscall with # partitions, where the frequency
for partition 8 is �8 , we �rst de�ne a target array ) of length
# , where )8 is the number of times (frequency) we want to
test partition 8 . The TCD for the array ) is the Root Mean
Square Deviation (RMSD [27]):

TCD) =

vut
1

#

#’
8=1

(log �8 � log)8 )2

We use logarithms for the frequencies and target because
under-testing is more problematic than over-testing [33],
so we want to downplay the latter. A lower TCD is better
because it is closer to the pre-de�ned test target ) . The se-
lection of ) depends on �le system developers’ preferences.
For example, crash-consistency testing heavily exploits per-
sistence operations [41], such as sync or the O_SYNC �ag of
open. Thus, developers might want to set a larger target )8
for persistency-related input or output partitions. IOCov can
be used to evaluate TCD iteratively; this can help developers
design test cases that avoid under- or over-testing of the
desired inputs and outputs.
For simplicity, in our study we set all elements of the ar-

ray ) to the same value. Figure 5 shows the TCD for Crash-
Monkey and xfstests with di�erent target arrays. The G-axis
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Figure 5: Test Coverage Deviation (TCD) for open �ags,
for CrashMonkey and xfstests. The G-axis (;>610) shows
the target number of tests for each open �ag. The ~-axis
shows the TCD value of each testing tool for di�erent
target values.

(;>610) shows the uniform value of the target array for open
�ags. We see that below G ⇡5,237, CrashMonkey has a bet-
ter (lower) TCD; above that value, xfstests is better. This
matches Figure 2, where CrashMonkey generally had lower
test frequencies for open �ags.

Our TCD metric accounts for both under-testing and over-
testing, and provides developers with a more comprehensive
view of the test suite’s adequacy for a given target, allowing
developers to optimize test strategies and e�ectiveness.

5 RELATEDWORK
Test coverage metrics. The correlation between code cover-

age and test e�ectiveness has been well studied, but the
strength of the correlation varies depending on test tar-
gets [16, 17, 30] or subclass metrics [13, 14, 19, 21]. Gopinath
et al. [19] stated that statement coverage is best at �nding
faults, but Hemmati et al. [21] found it weaker than other
metrics (e.g., branch coverage) for the same task. However,
other work [9, 10, 24, 43] showed that code coverage has a
low-to-moderate correlation with test e�ectiveness, and thus
new, complementary coverage criteria are needed [54]. Still,
no existing research considers the correlation for complex
low-level software like in-kernel �le systems. Some research
proposed input-coverage concepts [20, 31, 60] but did not of-
fer syscall metrics and is not applicable to �le-system testing.
The input and output coverage we propose for �le system
testing can also apply to other testing tasks like database
testing [39], where the syscall inputs and outputs are trans-
formed into inputs and outputs of database queries.

File-system testing. Regression-testing suites such as xf-
stests [52] and LTP [40] use hand-written tests for various
aspects of �le system functionality. It is di�cult for hand-
written tests to guarantee thorough coverage of inputs and

outputs. Model checking [15, 42, 49, 55, 65, 66] compares the
�le system implementation with a speci�cation and searches
for mismatches. Although it can check many corner states,
model checking is slow (especially for I/O-bound storage
systems) and has a state-explosion problem.
Black-box testing [11, 41] generates rule-based syscall

workloads, but does not ensure full exploration of input and
output spaces. Finally, fuzzing [18, 29, 51, 63, 64] stresses �le
systems by input mutation to maximize path coverage, but
path coverage (i.e., subtype of code coverage) has drawbacks—
missing bugs—similar to code-coverage methods [19, 24].

6 CONCLUSION AND FUTUREWORK
In this paper, we studied real �le system bugs and identi�ed
the limitations of code coverage and the importance of cov-
ering diverse syscall inputs and outputs. This motivated us
to propose input and output coverage for �le system testing
and implement IOCov to measure this coverage for existing
�le system testing tools. Our preliminary results show that
CrashMonkey and xfstests fail to test many input and output
cases; this information can be readily used to improve these
testing tools. We also proposed and analyzed a new metric,
Test Coverage Deviation (TCD), to evaluate and compare the
amount of under- and over-testing of �le system test tools.

Future work. We plan to support more syscalls, enhance
ourmetrics to support bit combinations, explore non-uniform
target arrays () ), and support �le descriptors and pointer ar-
guments. We also plan to evaluate fuzzing systems [18, 29, 63,
64]. For di�erent fuzzers, IOCov needs to apply other tech-
niques to trace fuzzed syscalls. For example, Syzkaller [18]
logs syscalls with declarative descriptions, which need to be
parsed by IOCov. Hydra [29, 64], however, exercises syscalls
with Library OS [46], so IOCov requires a di�erent method
than LTTng to trace syscalls.
We are currently developing a di�erential-testing-based

�le system tester utilizing IOCov. Our approach has found
several new bugs that we �xed and reported; one has already
been merged into the Linux mainline.
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