
Content Sifting Storage: Achieving Fast Read for Large-scale
Image Dataset Analysis

Yu Liu
Huazhong University of Science and Technology

Wuhan, China
liu yu@hust.edu.cn

Hong Jiang
University of Texas at Arlington

Arlington, TX US
hong.jiang@uta.edu

Yangtao Wang
Huazhong University of Science and Technology

Wuhan, China
ytwbruce@hust.edu.cn

Ke Zhou�
Huazhong University of Science and Technology

Wuhan, China
k.zhou@hust.edu.cn

Yifei Liu
Stony Brook University
Stony Brook, NY US

yifeiliu@cs.stonybrook.edu

Li Liu
Huazhong University of Science and Technology

Wuhan, China
lillian hust@hust.edu.cn

Abstract—Analyzing large-scale image dataset requires all images to
be read from disks first, leading to high read latency. Therefore, we
propose a Content Sifting Storage (CSS) system, which aims to reduce
the read latency by only reading sifted relevant data. CSS generates
embedded content metadata via deep learning and manages the metadata
via Semantic Hamming Graph, which achieves fast read based on content
similarity meeting the given analysis. Extensive experimental results on
image datasets show that compared with conventional semantic storage
systems, our CSS can greatly reduce the read latency by 82.21% to 94.8%
with more than 98% recall rate.

Index Terms—Content Sifting Storage, Semantic Hamming Graph,
read latency, large-scale image dataset

I. INTRODUCTION

Images are frequently used for data analysis because of their rich
semantic content. Due to the relatively large size of image files, the
latency of reading all images before image processing has gradually
become a performance bottleneck, especially in the increasing vol-
umes of data. Take 100 million images of size 1MB each for example,
with the average sequential read bandwidth of SATA hard disk on
the servers of company Tencent (one of the largest social network
companies in the world) being around 220MB/s, it will take about
5.26 days to read these images. While distributed storage offers an
initial solution to this problem, the increasing amount of data in image
datasets and the scaling out of distributed storage make this a non-
trivial problem. Therefore, it is our belief that a more fundamental
solution is called for that addresses this problem on a single node,
which in turn will complement and enhance a distributed solution.

In practice, we find that not all images read from disks will be
actually used for the given analysis. As shown in Fig. 1(a), for the
analyses of image content including animal, people, vegetable and
scenery, the percentages of the relevant data in different datasets are
averagely 20.11%, 53.45%, 17.01% and 29.43%. Subsequently and
generally, large amounts of data are put aside after simple processing
that determined their irrelevance to the analysis, but after they have
already incurred huge read latency. Based on this observation, we
decide whether it is beneficial to only read relevant data to save
bandwidth, where the set of relevant data is determined by content
sifting. Content sifting is a process that first measures the semantic
relevance between data content and the analysis, and then indexes
the relevant data. That is, if the sum of the latencies incurred by
sifting and reading the sifted dataset is likely to be less than the
read latency of the original dataset, then sifting becomes beneficial

�Corresponding author: Ke Zhou.

(a) Percentages of 6 image datasets are actually used for 4 analyses. These
datasets are collected from servers that store album data in company Tencent.

(b) Relevant content
for analysis of A.

(c) Directory structure is hard to adopt
similarity to achieve fast reads.

Fig. 1. Motivation of Content Sifting Storage.

since, the more the unrelated data, the more bandwidth will be saved.
Based on the metadata which expresses content of images, a concrete
and integrated read process is to first embed the requirement of
analysis into the metadata, then sift and index relevant data by content
similarity, and finally read the sifted data. However, there are two key
challenges in defining the proper metadata for data sifting and reading
for unstructured image data analysis.

First, conventional metadata cannot meet the expression of
semantic relevance for content sifting demands. Conventional
metadata that expresses unstructured data content by text labels has
several drawbacks, including high cost of hand-crafted annotation,
lack of uniform description, time-consuming comparison, etc., ren-
dering them unsuitable and impractical. On the other hand, hash codes
have been widely used as metadata because of their compact binary
codes and fast exclusive-OR (XOR) comparisons that make them
lightweight and efficient. Using Locality Sensitive Hash (LSH) [1] in
semantic storage can not only embed data content without relying on
hand-crafted labels, but also achieve efficient comparison. Neverthe-
less, LSH also has limitations. As shown in Fig. 1(b), while LSH can
estimate content similarity according to the global pixel distribution
of an image (i.e., A is similar to B), it fails to understand semantic
relevance on different postures (i.e., A and C) and local content
similarity (i.e., A and D). However, these semantically similar images
(i.e., C and D) are equally important for the analysis of A.

Second, conventional metadata structures lack efficient mecha-
nisms for reading data based on content similarity. Conventional
storage systems [2], [3] by and large manage data by a directory
structure that identifies data by its name-path, mostly ignoring the
content relationships among data items, and making it hard to take
full advantage of similarity to achieve fast reads. As shown in
Fig. 1(c), although similar data items are linked by the path on
the blue dotted line that hints at sequential reads of these similar
data, the directory structure does not allow for such sequential reads.
While the graph-based structure is considered a flexible way to
manage relationships [4], the content similarity between data items
in existing methods, defined by whether there is an edge between
them (represented by nodes), is too simple to express the degree of
relevance. FishStore [5] records and puts the location of new data
into the subspace by customized text labels, then searches matched
data in the subspace for the given requirement, thus reducing the read
latency. However, this scheme has a high probability to degenerate
to the traditional read mechanism when missing customized labels.

To overcome the above challenges, we propose a Content Sifting
Storage (CSS) system, which aims to sift and only read those data
that are relevant to the analysis to reduce read latency for large-
scale image dataset analysis. We adopt deep similarity hash codes
as embedded content metadata to meet the expression of semantic
relevance and design Semantic Hamming Graph (SHG) to achieve
fast read through content similarity. On the one hand, we use the Deep
Self-taught Hashing (DSTH) [6], [7] algorithm to map embedded
content metadata. DSTH combines the advantages of unsupervised
hashing and deep hashing, which owns generalization ability to map
the unseen data. Moreover, DSTH expresses valid content of an image
and owns the ability to measure relevance by Hamming distance,
which is more precise than LSH in expression of semantic relevance.
On the other hand, we use the metadata to build SHG which takes
the hash code as vertex and expresses the relevance degree (i.e.,
Hamming distance) between data on the edge. Therefore, CSS can
index the relevant data through graph traversal to achieve fast read in
the precise similarity range. Specifically, we implement CSS based on
the OpenStack Swift1 system and Neo4j [8] database, where Swift
is used to store raw images and Neo4j is a graph database used
to store embedded content metadata as well as build and manage
SHG. We design a variety of analyses for testing the recall rate and
read latency of CSS on large-scale public and real-world datasets.
Extensive experimental results show that compared with conventional
semantic storage systems, our CSS is able to substantially reduce the
read latency, by 82.21% to 94.8%, with more than 98% recall rate.

II. CSS METHODOLOGY

A. Read Latency

We assume that the total number of images in a dataset is C, the
number of relevant data for the given analysis A is P , the average
size of an image is IB, the read bandwidth of disk is VB/s, and the
latency for each image in content sifting is J s. Let α(A) denote the
latency of reading all data, and β(A) the total latency of sifting all
data (content) and reading relevant data, where

α(A) =
C × I
V

β(A) = C × J +
P × I
V

1https://github.com/openstack/swift.

We denote the difference between above latencies as

Ω(A) = α(A)− β(A) = C[I × (1− P/C)
V − J]

Obviously, the bigger the Ω is, the more efficient our proposed
method will be. In the real world, the pixel level of cameras equipped
on mobile devices has been increasing rapidly. As a result, the growth
rate of I will certainly exceed that of V (i.e., I/V > 1) with
time. Meanwhile, the data resources will be increasingly abundant
and what applications focus on will frequently change, which means
that the proportion of required resources for a given analysis in total
resources, i.e.P/C, will be getting smaller, so 1−P/C will become
larger. In addition, using hash code to sift data has nearly approached
the limit of comparative cost, which leads to a basically stable J . In
summary, Ω will grow larger with time.

B. Deep Similarity Hash

Compared with binary codes generated by LSH, similarity hash
codes can precisely measure the semantic relevance between data
content by Hamming distance. This kind of deep similarity hash
method no longer maps data by global pixel distribution, but relies
on convolution neural network (CNN) [6] to detect and map the valid
region of each image, so as to provide more relevant data for data
analysis [9].

In practice, we adopt DSTH consisting of two steps to obtain the
deep similarity hash code of each image. In the first step, DSTH
constructs deep features extracted from pre-trained model into a graph
and utilizes graph embedding technique to map these features into
hash codes. In doing so, the generated hash codes are able to perceive
the key information of an image by the generalization ability. In order
to improve the on-line efficiency of hash mapping, in the second step,
DSTH learns the above generated hash codes as labels to achieve
an end-to-end model for real-time feature extraction and hash code
generation.

DSTH provides the Hamming distance which is acquired by
executing XOR on a pair of hash codes, to express the semantic
relevance between them. Shorter Hamming distance implies that hash
codes are more semantically relevant (containing the same or similar
objects). The most similar images share the same hash code, thus the
Hamming distance between them is 0. In practice, DSTH achieves
the best precision-recall performance on the 48-bit code length, and
the best retrieval precision when the Hamming radius is no more than
2 [10].

C. Semantic Hamming Graph

The proposed semantic Hamming graph methodology aims to
organize embedded content metadata (i.e., similarity hash codes)
efficiently. For N images in a storage system, each hash code
corresponding to an image is represented as a node in graph G.
Considering some images share the same hash code, we merge the
same hash codes into one node and M(≤ N,∈ Z+) denotes the
number of different hash codes as well as the number of nodes [11].
Meanwhile, the Hamming distance between two hash codes stands
for the weight of an edge that links each two nodes. The edge is
undirected because the relevance is mutual.

As for G containing M nodes, the maximal number of edges
is M × (M − 1)/2 in the case of fully connected nodes. It will
certainly cause huge latency and burden for processing such a graph
that contains too many links. Therefore, we set a threshold T for
restricting the number of edges. Let V∗ denote ∗-th node of G and
H(V∗) is the hash code of V∗. For any i and j (0 < i, j ≤M, i 6= j),
the Hamming distance Fij between two hash codes Vi and Vj can

1' 2'

3'

110111

000101 011100

Ham. Dis.

= MIN

(a) example for T = min-
imal Hamming distance

1'

3'

2'

4'

6'

5'

011100

100101

000101110111

101100

111100

Ham. Dis. 2£

(b) example for T ≤ 2

Fig. 2. The choice of threshold T .

be calculated by H(Vi) ⊕ H(Vj) where ⊕ is XOR operation. We
denote Fij as

Fij = 0(H(Vi), H(Vj))

Let Ti denote the Hamming distance threshold of the i-th node.
For ∀i ∈ (0,M], the choice of Ti can be interpreted as:

Ti =

{
minFij j 6= i, j ∈ (0,M], if minFij > 2

2 otherwise

In order to decrease the number of edges, we stipulate there exists
an edge with Vi, only if

Fij ≤ Ti

As shown in Fig. 2(a), node 3 is a newcomer. It computes the
Hamming distance from all existing nodes, and the minimum distance
is more than 2. In this case, node 3 is only connected with node
1 because they have the shortest Hamming distance. As shown in
Fig. 2(b), node 6 is a newcomer. In this case, node 6 is connected
with node 2 and node 4 because their Hamming distances are 2 and
1 respectively.

The definition of Ti is based on two principles. One is that the
minimal Hamming distance can ensure that there are no isolated
nodes in Graph G as well as effective data query within predefined
Hamming radius. It is worth mentioning that the shortest edges
can ensure at least a recall result from retrieval nodes within the
Hamming radius. For any i and j (0 < i, j ≤ M, i 6= j),
assuming that the indirect Hamming distance between two hash
codes is U(H(Vi), H(Vj), where there is at least one node Vk

(k 6= i, k 6= j, k ∈ (0,M]) in G satisfying U(H(Vi), H(Vj) =
0(H(Vi), H(Vk)) + 0(H(Vk), H(Vj)), the following must hold:

min{U(H(Vi), H(Vj)} ≥ 0(H(Vi), H(Vj))

The other is that the accuracy achieves the best performance under
the same recall rate when the Hamming radius is no more than 2,
according to Section II-B. Therefore, the value of Ti we set can
promote the query efficiency. When querying on SHG for an analysis,
the time complexity is linear and expressed as O(|Mt|+ |Et|) where
Mt is the number of used nodes and Et denotes the number of edges
during traversal.

III. CSS DESIGN

A. CSS overview

Fig. 3 shows the architecture and workflow of CSS. CSS is mainly
composed of three parts: DSTH model, SHG and file storage. DSTH
model generates similarity hash code as embedded content metadata
for each image. This embedding process occurs outside the critical
path of user-oriented operations after the data are stored. To obtain
more precise embedded content metadata, CSS configures 48-bits
hash codes according to Section II-B. Subsequently, as the most

crucial component of CSS, SHG leverages Hamming distance and
graph structure to organize the embedded content metadata generated
by DSTH model. Note that it is a new independent metadata
management scheme without affecting native metadata organizations,
attempting to provide accurate and fast content-based queries. SHG
can speed up the sifting process by clustering semantically relevant
objects into adjacent areas of the graph. In addition, this graph model
can be updated incrementally since the relationships between former
hash codes are certain and only new hash codes should be added to
it. In the bottom of CSS, file storage reads a file by its name-path.

We design CSS on the top of OpenStack Swift storage system.
It is worth mentioning that the white dotted frame part of CSS
works as a system middleware, which can be applied to any existing
file storage systems and is an independent component working with
searchable metadata systems such as Sypglass [12], SmartStore [2],
and FAST [1].

When a new image comes, CSS will generate its embedded content
metadata by DSTH model and store original data into file storage
system by traditional way. Then the hash code along with file name
is sent to SHG, and SHG estimates whether this hash code already
exists. If it exists, SHG will edit the property of node corresponding
to the hash code by adding this file name. Otherwise, SHG will
add a new node, and add this hash code along with its file name
to the property of this node. Furthermore, SHG will generate new
connections according to the principle in Section II-C.

When an analysis requirement comes, this requirement will be
represented by one or more images with expected sifting radius
and sent to DSTH model. DSTH generates the embedded content
(similarity hash codes) of these images, and sends them along with
corresponding radius to SHG. SHG retrieves a set of metadata
according to the hash code and its radius, organizes the file names
from the set of metadata into a subset, and then sends this subset to
file storage layer. According to these file names, file storage system
reads and returns the corresponding files to the memory for data
analysis.

B. SHG management

Compared with a tree structure, SHG plays a key role in speeding
up reading of metadata base on similarity shown in Fig. 4. As meta-
data structure of CSS, it not only records correlations of metadata but

Semantic Hamming

Graph

Analysis Requirement
New Image

Data

DSTH Model

INSERTION EDIT DELETION QUERY

Semantic Hamming Graph

(SHG)

File Storage

hash code &
file name

d
a
ta

d
a
tase

t

Images &
sifting radii

hash codes &
sifting radii

file names

C
o

n
ten

t S
iftin

g
 S

to
rag

e (C
S

S
)

Fig. 3. CSS architecture.

Deep

Model

Conventional directory tree
Directory tree +

 Semantic Hamming graph

Directory tree path Semantic graph path

Storage units

Directory nodes

Directory path for Semantic path for

Fig. 4. Comparison with conventional directory structure in term of query.

also provides the interfaces for content sifting. The implementation
of SHG in our prototype relies on a graph database Neo4j. By
taking advantage of the functionality of Neo4j, SHG can sustain large
amounts of data and use specialized query interfaces. CSS applies
these specialties to simplify and accelerate content sifting processes.
In practice, each node has four properties, i.e., hash code, file name,
edge and note.

It is worth noting that the hash code denotes the node’s ID in the
graph. If there exists hash collision that multiple file names share one
hash code, we use ”&” as symbol to concatenate file names in the
property of file name. The edge records the connection relationships
with their weights of the node. The note is an emergency property.
Edge and note are automatically maintained by the graph database
system. In addition, we provide four interfaces (i.e., INSERTION,
EDIT, DELETION and QUERY) for node operation on the graph.

INSERTION: For the newly appeared hash code, we create a new
node in the graph database. The property of hash code records new
hash code. The property of file name records new file name. The
property of edge will be generated by the connection principle in
Section II-C.

EDIT: If the file name corresponding to existing hash code changes,
the edit function will be triggered. It may result from the change of
file name, the addition of file or the deletion of file.

DELETION: When the last file name in the node is deleted which
leads to an empty file name, the node corresponding to this hash code
along with its connections will be removed from SHG.

QUERY: Query on SHG needs two parameters: query node (i.e.,
a hash code) and sifting radius R (R ∈ N). According to Breadth
First Search (BFS), from the query node, SHG explores the nodes by
weights on edges and collects nodes within the sifting radius into the
subset. Finally, SHG returns the file name of all nodes in the subset.

IV. PERFORMANCE EVALUATION

A. Dataset

To test the performance of CSS, we conduct experiments on three
image datasets, i.e., ImageNet [13], MS-COCO [14] and a real-world
dataset. We summarize the characteristics of these datasets below.

ImageNet: ImageNet is a public image database which contains
over 14 million URLs of images. The used images in the experiment
are from classification-localization dataset which includes a total of
1,281,167 images for training. We use all the 1,281,167 images to
test our prototype in the big data circumstance. ImageNet can be used
for content sifting test of global target.

MS-COCO: MS-COCO is a public dataset for image recognition,
segmentation and captioning. The current release contains 118,287
training images, 40,504 validation images and 40,775 test images,
where each image is labeled by some of the 80 semantic concepts.

We use all the 199,566 images to test our prototype in the big data
circumstance. MS-COCO can be used for content sifting test of partial
target.

Real-world dataset: This dataset is collected from company
Tencent during a certain period, whose size is around 5TB con-
sisting of 1,000,000 images. It can be used for content sifting test in
real world.

B. Experimental Setup

We have implemented the CSS prototype in Ubuntu 16.04 with
OpenStack Swift Storage 2.16.1. The performance evaluation is
conducted on two servers, with a 2-node distributed OpenStack
Swift storage system, each of which has two 10-core Intel Xeon
E5-2640 CPU, 64GB DDR4 memory, and a single NVIDIA Tesla
K40m GPU. The hash codes generation uses TensorFlow [17] which
provides stable Python APIs. Considering OpenStack Swift is written
in Python, for compatibility, we implement the CSS prototype by
Python.

Recall rate and read latency are two most important performance
metrics in this study. As for recall rate measurement, we can take
advantage of the labels of public datasets (ImageNet and MS-COCO)
to test. The read latency can be tested on real-world dataset with
8TB SATA hard disk whose sequential read bandwidth is around
500MB/s. For ImageNet, we choose house, fish and bird as the
analysis requirement. Similarly, person, car and sky are chosen for
MS-COCO while person, scenery and street are chosen for real-world
dataset. These objects account for a relatively large proportion in their
respective dataset, which is conducive to data display.

The comparisons of CSS with other metadata search systems are
manifested in two aspects: one is using embedded content metadata
to improve recall rate and the other is using weighted graph structure
to accelerate query processes. We list the differences in Table I. Note
that both SmartStore and Spyglass use text labels for full scan, so
they will not participate in the recall rate comparison. In addition,
each image in public datasets almost occupies the same storage space,
so the read latency is basically the same for each one. Therefore, the
latency we compare on public datasets represents the sifting latency in
metadata. Moreover, in order to better show this latency comparison,
we display the cumulative latency of executing 100,000 queries. On
real-world dataset, we manifest a total read latency [18] comparison
where the outset is that the client posts request and the termination
is that all data have been read to memory. It should be noted that all
data have already been stored in respective system before carrying
out the experiments. In particular, R denotes sifting radius.

C. Performance Comparison Varying R

When using hash codes as metadata, some relevant data could not
be found because of the inherent accuracy loss of hash embedding.
Therefore, we focus the recall rate primely. In CSS, the recall rate
relies on both the quality of hash code and the value of R. The
increase of R will promote the recall rate but also increase the
sifting latency. Therefore, we list the changes of recall rate and sifting
latency when varying R on public datasets. It should be noted that for
the same analysis requirement, we use 10 different images as query
points to independently test with each R, so each key point on the
curve shows the average result after 10 tests.

As shown in Fig. 5(a), both the recall rate and sifting latency
increase with an increasingR on ImageNet, and the recall rate reaches
98.12% at least on fish analysis when R = 8. Furthermore, the recall
rate increases slowly after R = 8. However, as shown in Fig. 5(b),

TABLE I
COMPARISON OF CSS WITH OTHER METADATA SEARCH SYSTEMS

CSS FAST [1] SmartStore [2] Spyglass [12]

Feature Extraction Convolutional Neural Network [6] PCA-SIFT [15] Traditional Metadata Traditional Metadata
Metadata Arrangement DSTH [7] Locality Sensitive Hashing [16] Latent Semantic Indexing Hierarchical Partition

Organizational Structure SHG Cuckoo Hashing R-Tree K-D Tree

(a) Recall rate with different R (b) Sifting latency with different R

Fig. 5. Performances with different R on ImageNet.

(a) Recall rate with different R (b) Sifting latency with different R

Fig. 6. Performances with different R on MS-COCO.

the sifting latency continues to rise fast after R = 8. As a result, we
achieve the best outcome when R = 8 on ImageNet.

Similarly, as shown in Fig. 6, the best benefit can be captured when
R = 6 on MS-COCO, and the recall rate reaches 99.37% at least.
Different from ImageNet, the best result of MS-COCO comes from
a smaller R, which may result from that DSTH is able to achieve
better results when dealing with images containing mixed content.

D. Performance Comparison with Semantic Storage Systems

In this part, we compare the sifting latency to verify that our
CSS accelerates the data reading because of our well-designed data
structure and sifting way. In addition, compared with FAST, we list
the recall rate of relevant data to verify that using deep similarity hash
code as metadata is more suitable for sifting data in analysis scenes.
Similarly, we also use 10 different images to independently test for
the same analysis requirement. According to section IV-C, we choose
R = 8 and R = 6 to carry out this experiment on ImageNet and
MS-COCO respectively. We use K-D Tree and R-Tree to simulate
Spyglass and SmartStore respectively.

Table II lists the recall rate and sifting latency of three analysis
requirements (i.e., house, fish and bird) respectively on ImageNet.
In terms of recall rate, compared with FAST, CSS is superior and
averagely reaches 98.5%, which shows deep similarity hash is more
suitable than LSH for data sifting in analysis scenes. As for sifting
latency, CSS produced the least latency in all the three analysis
requirements, because CSS has improved both data structure and
sifting way, while other three systems have been improved only in
one of these two aspects. In addition, although the latency of FAST

TABLE II
RECALL AND SIFTING LATENCY COMPARISON ON IMAGENET.

Systems Analysis Requirements

house fish bird

recall FAST 0.3011±0.0288 0.2612±0.0193 0.2779±0.0344
CSS 0.9883±0.0003 0.9812±0.0016 0.9855±0.0006

sifting latency Spyglass 6.5128×103 6.5128×103 6.5128×103

SmartStore 7.6917×104 7.6917×104 7.6917×104

(unit:s) FAST 32.3232±0.0003 32.3231±0.0002 32.3232±0.0002
CSS 9.3190±0.0021 9.6606±0.0018 9.3102±0.0020

TABLE III
RECALL AND SIFTING LATENCY COMPARISON ON MS-COCO.

Systems Analysis Requirements

person car sky

recall FAST 0.2333±0.0144 0.1537± 0.0126 0.1667±0.0131
CSS 0.9950±0.0011 0.9937±0.0008 0.9942±0.0012

sifting latency Spyglass 8.7212×102 8.7212×102 8.7212×102

SmartStore 3.1687×103 3.1687×103 3.1687×103

(unit:s) FAST 6.1873±0.0002 6.1871±0.0002 6.1871±0.0001
CSS 6.8902±0.0031 5.8701±0.0023 6.6084±0.0025

is close to ours, it missed too much relevant data, thus making it
meaningless to compare CSS with FAST. Compared with Spyglass
and SmartStore, CSS shortened the shortest latency by nearly 600
times.

Table III lists the recall rate and sifting latency of three analysis
requirements (i.e., person, car and sky) respectively on MS-COCO.
The recall rate of CSS outperforms that of FAST again, and averagely
reaches 99.43%. In terms of sifting latency, CSS has averagely
shortened the latency by 100 times compared with Spyglass.

Above comparisons show that CSS can greatly decrease the data
sifting latency on the premise of high recall rate of relevant data, as
well as has the potential to be applied to large-scale real-world image
datasets.

E. Latency Comparison on Real-World Dataset

Finally, we validate our system on the real-world dataset. The
starting point is that the client posts request, and the end point is that
all data have been read to memory. We collect the latency during this
period (we ignore the latency of data replacement in memory).

Table IV lists the data read latency responding to the analysis
requirements on real-world dataset. We can see that the read latency
on real-world dataset presents our overwhelming advantage and the
same trend as that on public datasets with the change of R. Besides,
the longest read latency of CSS is only 17.79%, 7.96%, and 5.20%
of the shortest read latency of other systems, respectively. This may
reflect the proportion of relevant data in the total data, but also verify
our efficiency and the ratiocination in section II-A that more unrelated
data will lead to less read latency.

V. CONCLUSION

In this paper, we introduce deep similarity hash codes and weighted
graph structure into storage systems, aiming at alleviating the latency

TABLE IV
LATENCY COMPARISON ON REAL-WORLD DATASET.

Systems Analysis Requirements

person scenery street

Spyglass 2.1121h 2.1121h 2.1121h
SmartStore 2.2271h 2.2271h 2.2271h

CSS (R=2) 0.0918h 0.0452h 0.0384h
CSS (R=6) 0.2816h 0.1158h 0.0889h
CSS (R=8) 0.3757h 0.1681h 0.1098h

caused by reading all data from the disks for large-scale image
dataset analysis. We design CSS with embedded content metadata
and SHG, which sifts the data meeting the analysis and indexes them
to achieve fast reads. Extensive experiments on public and real-world
datasets demonstrate the excellent effects of method compared with
conventional semantic storage systems that CSS can greatly reduce
the read latency by 82.21% to 94.8% with more than 98% recall rate.

ACKNOWLEDGMENT

This work is supported by the National Natural Science Foundation
of China No.61902135 and the Innovation Group Project of the
National Natural Science Foundation of China No.61821003. Wuhan
is a great city whose residents are all heroes. We will surely overcome
the COVID-19 and harvest freedom in the end.

REFERENCES

[1] Y. Hua, H. Jiang, and D. Feng, “Fast: Near real-time searchable data
analytics for the cloud,” in SC, 2014.

[2] Y. Hua, H. Jiang, Y. Zhu, D. Feng, and L. Tian, “Smartstore: A
new metadata organization paradigm with semantic-awareness for next-
generation file systems,” in SC, 2009.

[3] J. Zhang, Y. Liu, K. Zhou, G. Li, Z. Xiao, B. Cheng, J. Xing, Y. Wang,
T. Cheng, L. Liu, M. Ran, and Z. Li, “An end-to-end automatic cloud
database tuning system using deep reinforcement learning,” in SIGMOD,
2019, pp. 415–432.

[13] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “Imagenet classification
with deep convolutional neural networks,” in NIPS, 2012.

[4] N. Hochgeschwender, S. Schneider, H. Voos, H. Bruyninckx, and G. K.
Kraetzschmar, “Graph-based software knowledge: Storage and semantic
querying of domain models for run-time adaptation,” in 2016 IEEE
International Conference on Simulation, Modeling, and Programming
for Autonomous Robots (SIMPAR), Dec 2016, pp. 83–90.

[5] D. Xie, B. Chandramouli, Y. Li, and D. Kossmann, “Fishstore: Faster
ingestion with subset hashing,” in SIGMOD, 2019, pp. 1711–1728.

[6] K. Zhou, Y. Liu, J. Song, L. Yan, F. Zou, and F. Shen, “Deep self-taught
hashing for image retrieval,” in MM, 2015, pp. 1215–1218.

[7] Y. Liu, J. Song, K. Zhou, L. Yan, L. Liu, F. Zou, and L. Shao, “Deep self-
taught hashing for image retrieval,” IEEE Trans. Cybernetics, vol. 49,
no. 6, pp. 2229–2241, 2019.

[8] J. Webber, “A programmatic introduction to neo4j,” in SPLASH, 2012.
[9] H. Wang, X. Yi, P. Huang, B. Cheng, and K. Zhou, “Efficient SSD

caching by avoiding unnecessary writes using machine learning,” in
ICPP, 2018, pp. 82:1–82:10.

[10] Y. Liu, Y. Wang, K. Zhou, Y. Yang, and Y. Liu, “Semantic-aware data
quality assessment for image big data,” Future Gener. Comput. Syst.,
vol. 102, pp. 53–65, 2020.

[11] Y. Wang, Y. Liu, Y. Liu, K. Zhou, Y. Yang, J. Zeng, X. Xu, and Z. Xiao,
“Analysis and management to hash-based graph and rank,” in Web and
Big Data - Third International Joint Conference, APWeb-WAIM 2019,
Chengdu, China, August 1-3, 2019, Proceedings, Part I, 2019, pp. 289–
296.

[12] A. W. Leung, M. Shao, T. Bisson, S. Pasupathy, and E. L. Miller, “Spy-
glass: Fast, scalable metadata search for large-scale storage systems.” in
FAST, 2009.

[14] T. Lin, M. Maire, S. J. Belongie, J. Hays, P. Perona, D. Ramanan,
P. Dollár, and C. L. Zitnick, “Microsoft COCO: common objects in
context,” in Computer Vision - ECCV 2014 - 13th European Conference,
Zurich, Switzerland, September 6-12, 2014, Proceedings, Part V, 2014,
pp. 740–755.

[15] Y. Ke and R. Sukthankar, “Pca-sift: A more distinctive representation
for local image descriptors,” in CVPR, 2004.

[16] S. Har-Peled, P. Indyk, and R. Motwani, “Approximate nearest neighbor:
Towards removing the curse of dimensionality,” Theory of computing,
vol. 8, no. 1, pp. 321–350, 2012.

[17] M. Abadi, P. Barham, J. Chen, Z. Chen, A. Davis, J. Dean, M. Devin,
S. Ghemawat, G. Irving, M. Isard et al., “Tensorflow: a system for large-
scale machine learning.” in OSDI, 2016.

[18] J. Zhang, K. Zhou, P. Huang, X. He, Z. Xiao, B. Cheng, Y. Ji, and
Y. Wang, “Transfer learning based failure prediction for minority disks
in large data centers of heterogeneous disk systems,” in ICPP, 2019, pp.
66:1–66:10.

