CSE 376 — Advanced Systems Programming in Unix/C Stony Brook University
Spring 2021 Computer Science Department
February 20, 2021 Handout No. 4

Why You Need Double “int ***° Pointers

Enclosed is a small program which shows you why you need to pass int «* x to a function, if you want that function to change a pointer
to an integer. There is also the output from the program, and the corresponding symbol table and memory contents for the relevant
symbols.

1 The Program

/ *

* ptr.c:

*

* Test pointers to arrays, and show why it is necessary to

* pass an intx% to the init function if you want to change an array of
* integers.

*

* Erez Zadok.

*

*/

#include <stdio.h>
#include <malloc.h>

/+ This function takes a pointer to an integer, which should not work =*/
void initl (int =xap, int size)
{

int *tmp = NULL;

int i;

printf ("\tap inside initl is %x\n", (int) ap);

tmp = (int %) malloc(sizeof (int) x size);
if (!'tmp) {
fprintf (stderr, "no more memory");
exit (1);
}
printf ("\ttmp inside initl is %x\n", (int) tmp);

for (i=0; i<size; ++1i) /% zero out the array */
tmp[i] = 100 + 1i;

ap = tmp;

for (i=0; i<size; ++1i) /* print the array INSIDE initl =/
printf ("\tInside init ap[%d] = %d\n", i, aplil);

}

/+ This function takes a DOUBLE pointer to an integer, which should work =/
void init2 (int xxapp, int size)

{

int

int *tmp = NULL;
int 1i;

printf ("\tapp inside init2 is $%$x\n", (int) app);
printf ("\txapp inside init2 is %x\n", (int) =app);
tmp = (int *) malloc(sizeof (int) x size);
if (!'tmp) {

fprintf (stderr, "no more memory");

exit (1);

printf ("\ttmp inside init2 is %x\n", (int) tmp);

for (i=0; i<size; ++1i) /+ zero out the array =/
tmp[i] = 200 + 1i;

(xapp) = tmp;

main ()

int %X, *Y, length;
int i;

length = 10;

X = NULL;
Y = NULL;

printf ("X before initl () is %x\n", (int) X);

printf ("Address of X before initl() is %$x\n" (int) &X);
initl (X, length);

printf ("X after initl() is %x\n", (int) X);

printf ("Address of X after initl() is %$x\n" (int) &X);
if (X == NULL) {

printf ("DID NOT WORK: X is still NULL\n");
} else {

printf ("Dereferencing *X after initl () is %x\n", (int)
for (i=0; i<length; ++1i) /* print the array =/
printf ("X[%d] = %d\n", i, X[1]);

printf ("\n");

printf ("Y before initl () is %x\n", (int) Y);

printf ("Address of Y before initl() is %$x\n" (int) &Y);
init2 (&Y, length);

printf ("Y after initl () is %$x\n", (int) Y);

printf ("Address of Y after initl () is %$x\n" (int) &Y);
if (Y == NULL) {

printf ("DID NOT WORK: Y is still NULL\n");
} else {

printf ("Dereferencing *xY after initl() is %d\n", (int)
for (i=0; i<length; ++1i) /* print the array =/
printf ("Y[%d] = %d\n", i, Y[i]);
}
exit (0);

(xX)) i

(xY));

2 Output from the Program

$./ptr

X before initl () is O

Address of X before initl() is effffla4
ap inside initl is O
tmp inside initl is 23110

Inside init ap[0] = 100
Inside init ap[l] = 101
Inside init apl[2] = 102
Inside init ap[3] = 103
Inside init apl[4] = 104
Inside init ap[5] = 105
Inside init ap[6] = 106
Inside init apl[7] = 107
Inside init ap[8] = 108
Inside init apl[9] = 109

X after initl () is O
Address of X after initl () is efffflOa4d
DID NOT WORK: X is still NULL

Y before initl() is O

Address of Y before initl () is effff0al
app inside init2 is effff0al
x*app inside init2 is O
tmp inside init2 is 23140

Y after initl () is 23140

Address of Y after initl () is effff0al

Dereferencing xY after initl () is 200
Y[0] = 200
Y[1] = 201
Y[2] = 202
Y[3] = 203
Y[4] = 204
Y[5] = 205
Y[6] = 206
Y[7] = 207
Y[8] = 208
Y[9] = 209

3 The Symbol Table

[Symbol | Address |
X effffOad
Y effff0a0

4 Memory Contents

[Memory Address | Contents Before init | Contents After init |

eftffOa4 0 0
eftff0a0 0 23140

