
CSE 376 – Advanced Systems Programming in Unix/C Stony Brook University
Spring 2021 Computer Science Department
February 15, 2021 Handout No. 3

How to Use GDB

This is a sample debugging session I captured and annotated. You can use the builtin help, Unix manual pages, or

“emacs info” pages for more information on gdb. What I typed to the computer will show in bold. What the computer

responded will show in courier font. My annotations appear in italics before the line in question.

Compile my program with -g.

$ gcc -Wall -Werror -g f2c.c -o f2c

Start the symbolic debugger.

$ gdb f2c

GDB is free software and you are welcome to distribute copies of it

under certain conditions; type "show copying" to see the conditions.

There is absolutely no warranty for GDB; type "show warranty" for details.

GDB 4.14 (sparc-sun-solaris2.4),

Copyright 1995 Free Software Foundation, Inc...

Get some startup help.

(gdb) help

List of classes of commands:

running -- Running the program

stack -- Examining the stack

data -- Examining data

breakpoints -- Making program stop at certain points

files -- Specifying and examining files

status -- Status inquiries

support -- Support facilities

user-defined -- User-defined commands

aliases -- Aliases of other commands

obscure -- Obscure features

internals -- Maintenance commands

Type "help" followed by a class name for a list of commands in that class.

Type "help" followed by command name for full documentation.

Command name abbreviations are allowed if unambiguous.

List the program source, first 50 lines.

(gdb) list 1,50

1 /*
2 * f2c.c:

3 * Convert temperatures from Fahrenheit to Celsius.

4 * Erez Zadok, W3131, Fall 1995.

5 */

6

7 #include <stdio.h>

8

1

9 /*
10 * convert():

11 * Takes a floating number as input (Fahrenheit degrees).

12 * Returns a floating number as output (Celsius degrees).

13 */

14 float convert(float f)

15 {
16 float c;

17

18 c = (f - 32) * 5.0 / 9.0;

19 return c;

20 }
21

22 /*
23 * main():

24 * Iterate over a range of numbers, convert them from Fahrenheit to

25 * Celsius degrees, and print them.

26 */

27 void main()

28 {
29 float min, max, step, f, c;

30

31 min = -40.0;

32 max = 100.0;

33 step = 25.0;

34

35 for (f=min; f<=max; f+=step) {
36 c = convert(f);

37 printf("%6.2ff = %6.2fc\n", f, c);

38 }
39 }
Set a breakpoint in the function main().

(gdb) break main

Breakpoint 1 at 0x107ec: file f2c.c, line 31.

Run the program.

(gdb) run

Starting program: /n/shekel/u/zing/ezk/teach/misc/f2c

Breakpoint 1, main () at f2c.c:31

31 min = -40.0;

Program stopped at main, right before really starting to run. It shows

me the next line that is about to execute before it runs it. Now I want to

execute that line and go to the next one using the ‘‘step’’ command.

(gdb) step

32 max = 100.0;

(gdb) step

33 step = 25.0;

Print the value of variable ‘‘min’’.

(gdb) print min

$1 = -40

2

(gdb) print max

$2 = 100

Print the value of variable ‘‘step’’ not to be confused with the gdb

step command.

(gdb) print step

$3 = 0

Single-step to the next line of source code.

(gdb) step

35 for (f=min; f<=max; f+=step) {
(gdb) print f

$4 = -7.84398484e+28

(gdb) step

36 c = convert(f);

(gdb) print f

$5 = -40

(gdb) step

convert (f=-40) at f2c.c:18

18 c = (f - 32) * 5.0 / 9.0;

Print the stack trace, showing the calling sequence of functions.

(gdb) where

#0 convert (f=-40) at f2c.c:18

#1 0x10848 in main () at f2c.c:36

(gdb) print c

$6 = 0

(gdb) step

19 return c;

(gdb) print c

$7 = -40

(gdb) step

20 }
(gdb) step

main () at f2c.c:37

37 printf("%6.2ff = %6.2fc\n", f, c);

(gdb) where

#0 main () at f2c.c:37

(gdb) step

-40.00f = -40.00c

35 for (f=min; f<=max; f+=step) {
Rather than use step, I use ‘‘next’’ which skips over invocations of

functions.

(gdb) next

36 c = convert(f);

Indeed, the next line to run is the one after the convert()

function. We did not enter it.

(gdb) next

37 printf("%6.2ff = %6.2fc\n", f, c);

Just hitting ENTER will re-execute the last gdb command (next in this

case).

(gdb)

-15.00f = -26.11c

3

35 for (f=min; f<=max; f+=step) {
(gdb)

36 c = convert(f);

(gdb)

37 printf("%6.2ff = %6.2fc\n", f, c);

(gdb)

10.00f = -12.22c

35 for (f=min; f<=max; f+=step) {
Set a breakpoint in line 37 of the current source file.

(gdb) break 37

Breakpoint 2 at 0x10850: file f2c.c, line 37.

Let me see all the breakpoints I’ve setup.

(gdb) info breakpoints

Num Type Disp Enb Address What

1 breakpoint keep y 0x000107ec in main at f2c.c:31

breakpoint already hit 1 time

2 breakpoint keep y 0x00010850 in main at f2c.c:37

Continue running without stopping or single-stepping, until the next

breakpoint is hit.

(gdb) continue

Continuing.

Breakpoint 2, main () at f2c.c:37

37 printf("%6.2ff = %6.2fc\n", f, c);

Every gdb command has an abbreviation. ‘‘c’’ is for ‘‘continue’’.

(gdb) c

Continuing.

35.00f = 1.67c

Breakpoint 2, main () at f2c.c:37

37 printf("%6.2ff = %6.2fc\n", f, c);

(gdb)

Continuing.

60.00f = 15.56c

Breakpoint 2, main () at f2c.c:37

37 printf("%6.2ff = %6.2fc\n", f, c);

(gdb)

Continuing.

85.00f = 29.44c

Program exited with code 01.

Enough of this...

(gdb) quit

4

