
CSE-376 (Spring 2021) Homework
Assignment #2
Version 4 (2021-03-17)

Due Tuesday, 3/23/21 @ 7:00 pm EST (19:00 ET)

This assignment is worth 15-20% of your grade, prorated to all assignments and exams we would have (if
any).

1. PURPOSE:
To become familiar with many common C bugs involving pointers and memory corruptions. To develop
libraries that can capture some of these bugs, report, and possibly act on them. This program may be about
500 LoC or so.

2. Part 1: LKmalloc:
Write your own simple malloc-debugging "library" (a .c file you can compile and link with another program),
called LKmalloc (LeaK detecting malloc). This library should export AT LEAST these three functions:
lkmalloc(), lkfree(), and lkreport(). lkmalloc/lkfree should have the same functionality as the usual malloc/free
functions. In turn, lkmalloc and lkfree should use malloc and free, respectively (not the brk or sbrk system
calls). Users who use this library are expected then to call lkmalloc/lkfree directly (not malloc/free). lkreport()
would produce a report of memory leaks, allocations, and more.

Prototypes:

1. int lkmalloc(u_int size, void **ptr, u_int flags)

This will ask to allocate "size" bytes, and if successful, assign the newly allocated address to *ptr. By passing
an addr or a ptr to lkmalloc(), you can do more intelligent checking of bugs. lkmalloc() should return 0 on
success -errno on failure (e.g., -ENOMEM). Example use:

char *buf = NULL;
int ret;
ret = lkmalloc(10, &buf, flags);

The 'flags' variable should mean as follows (LKM_* is the #define name):

● LKM_REG 0x0: allocate memory without any of the special protections below.
● LKM_INIT 0x1: initialize the memory being allocated to 0s.
● LKM_OVER 0x2: allocate 8 more bytes of memory after the requested size, and write the pattern 0x5a

in those upper bytes.
1

● LKM_UNDER 0x4: allocate 8 more bytes of memory before the requested size, and write the pattern
0x6b in those lower bytes.

● LKM_EXIST 0x8: refuse to allocate new memory if the “void **ptr” that is passed is a non-NULL pointer.
If this flag is not passed, then lkmalloc() will override the value of the passed ptr (possibly causing a
memory leak that you will have to record).

● LKM_REALLOC 0x10: if the pointer passed is non-null, us realloc(3) to reallocate and extend or shrink
the memory allocation of the buffer.

These "over" and "under" are called 'redzones' — special values put before and/or after a buffer in order to try
and detect buffer over/underflows. You should consider whether some flags can be combined or not.

2. int lkfree(void **ptr, u_int flags)

This'll take the addr of the ptr that was presumably allocated by lkmalloc (but maybe not), and attempt to free it.
Return 0 on success, -errno on failure (e.g., -EINVAL, etc.).

The 'flags' variable should mean as follows (LKF_* is the #define name):

● LKF_REG 0x0: free only if the ptr passed was exactly as was allocated.
● LKF_APPROX 0x1: free an allocation even if what is passed is in the middle of a valid allocation

(normally free doesn't allow that).
● LKF_WARN 0x2: print a warning if you free a ptr as per LKF_APPROX.
● LKF_UNKNOWN 0x4: print a warning if asked to free a ptr that has never been allocated.
● LKF_ERROR 0x8: exit the program if any condition matches LKF_WARN or LKF_UNKNOWN.

You should consider whether some flags can be combined or not.

BTW, think about why the API I list above uses a double pointer and lkmalloc() doesn't just return the addr
back.

Internally, lkmalloc and lkfree should track what memory "objects" (i.e., generic bufs allocated) are being
allocated and freed. The functions should warn when at least these conditions occur, subject to the LKM_* and
LKF_* flags above: double free, double malloc (a memory leak), trying to free something in the middle of an
allocated memory chunk, trying to free a NULL or addr that was never allocated, and memory leaks. By "warn"
I mean that they should "fprintf(stderr)" a descriptive error message saying what went wrong.

The lkmalloc library should internally capture the following information in each "record" (e.g., each time
lkmalloc/lkfree is called): the file name, line number, and function name where the allocation or free took place;
the pointer allocated and returned; the pointer passed; and the time of the allocation (in UNIX
seconds+microseconds since the epoch). Feel free to capture any additional information you deem suitable
and document it in your README. You will need to design/use an efficient data structure to store this
information (e.g., a hash table, tree, something else? Think how this'll scale if you have millions of alloc/free
records).

3. int lkreport(int fd, u_int flags)

2

This will dump a report of memory issues to the file whose file descriptor is 'fd'. Return -errno on any error
(e.g., invalid fd); return the number of records in your report (e.g., return 17 if the report written to fd had 17
"records" captured) on success. Note that 'fd' can be stdout or stderr, as well as any file you opened for
writing.

The 'flags' field can be as follows (LKR_* is the #define name):

● LKR_NONE 0x0: do not produce a report
● LKR_SERIOUS 0x1: print memory leaks (e.g., mallocs w/o a corresponding free of the same addr)
● LKR_MATCH 0x2: print perfectly matching alloc/free pairs
● LKR_BAD_FREE 0x4: print bad ‘free's (ones where the passed addr is in middle of alloc addr)
● LKR_ORPHAN_FREE 0x8: print orphan ‘free's (ones that had never been allocated)
● LKR_DOUBLE_FREE 0x10: print double free’d pointers
● LKR_APPROX 0x20: print matching alloc/free pairs that were freed due to LKF_APPROX above.

You should consider whether some flags can be combined or not. A report should generate records that match
the flag conditions specified.

Study on_exit(3) and call lkreport on exit from your program. This has the benefit of reporting real memory
leaks when the program is exiting (meaning that anything that wasn't free is potentially a leak).

When printing, use a CSV format such as this, which can be loaded into any spreadsheet program (also print
the following headers as line 1 of the CSV file):

record_type,filename,fxname,line_num,timestamp,ptr_passed,retval,size_or_flags,
alloc_addr_returned

Your report will include both lkmalloc and lkfree records, distinguished by a different integer in the
“record_type” field; but there’s some different information needed for each record type. All columns from
“filename” to “retval” are common fields to both records. If "record_type" is 0 (for lkmalloc records), then
“size_or_flags” should print the size requested; and “addr_returned” should be the address returned to the
caller of lkmalloc. If "record_type" is 1 (for lkfree records), “size_or_flags” should print the flags passed;
addr_returned should be left empty.

Your debugging library should be put into a file called lkmalloc.c.

Next, write several small test C programs to detect each one of the issues listed above for programs that link
with your lkmalloc.a. Your test programs can use on_exit as needed. Also write a driver program to
demonstrate each of the flags and each of the "bad things" that your library catches through these tests.

3. Part 2: Test scripts
For each of the test conditions above, write a short test script to exercise the condition. Like the first
assignment, name your tests test01.sh, test02.sh, etc.

3

4. Part 3: Makefile
Your Makefile should have different targets for building the library, each test C program, for cleaning, for
running test scripts, etc. Be sure to set proper CFLAGS, LDFLAGS, CC, etc. Use at least "-Wall -Werror" as
your flags.

Add also a "make depend" target: to build a dependency set of files automatically, which will get included in the
makefile if they exist. You can assume GNU Make (hint: -include syntax) and GNU gcc syntax (so check the
gcc man page for -MD options).

5. Style and More
Aside from testing the proper functionality of your code, we will also evaluate the quality of your code. Be sure
to use a consistent style, well documented, and break your code into separate functions and/or source files as
it makes sense.

To be sure your code is very clean, it must compile with "gcc -Wall -Werror" without any errors or warnings! If
the various sources you use require common definitions, then do not duplicate the definitions. Make use of C's
code-sharing facilities.

You must include a README file with this and any assignment. The README file should describe what you
did, what approach you took, results of any measurements you made, which files are included in your
submission and what they are for, etc. Feel free to include any other information you think is helpful to us in
this README; it can only help your grade. The code you write should be your own, but if you want to use any
online code, you must clear it with me (note: github sources NOT allowed), and cite it both in your code and
your README. Make sure to reasonably adhere to the requirements of the README.

6. Submission
You will need to submit all of your sources, headers, scripts, Makefiles, and README. Submission is accepted
via GIT only! Do not submit regenerable files like binaries, *.o files, or any temp files — only true "source" files.

PLEASE test your submission before submitting it, by checking it out in a separate directory, compiling it
cleanly, and testing it again. DO NOT make the common mistake of writing code until the very last minute, and
then trying to figure out how to use GIT and skipping the testing of what you submitted. You will lose valuable
points if you do not get to submit on time or if your submission is incomplete!!!

(General GIT submission guidelines are available on the class website.)

4

7. Extra Credit
If you do any of the extra credit work, then your EC code must be wrapped in the following macro exactly.
Please do not use any other ifdef other than EXTRA_CREDIT precisely as spelled; deviations will result in
point deductions.

#ifdef EXTRA_CREDIT
// EC code here

#else
// base assignment code here

#endif

This extra credit is worth a total of 20 extra points (the main assignment is worth 100 points).

7.1. [A] 16 points.

Study the mmap(2) API including mprotect(2) and more. Support the following two additional lkmalloc flags:

● LKM_PROT_AFTER 0x20: given requested allocation of size S, allocate one or more "primary" new
pages, using mmap, to hold the newly requested buffer of size S. Align this new memory allocation so
the last byte of the requested size S is also the last byte of the newly primary allocated pages. This
means that the user will be given a starting address to access the buffer, that is calculated as the last
addr of the primary set of pages minus S. Then allocate using mmap ANOTHER memory page whose
address is right after the that last byte of the primary pages, and set this new page's protection to
PROT_NONE.

● LKM_PROT_BEFORE 0x40: Same as LKM_PROT_AFTER, but instead, align the first byte of S with
the first byte of the primary pages; and then alloc a new page before the first byte, and set that new
page's protection to PROT_NONE.

Note: it may be possible to alloc all these pages at once and just set the mmap protection bits for each page as
needed.

By using PROT_NONE, any program that tries to read or write a byte from a PROT_NONE-protected page,
will generate a SEGV. This is a clean way, using OS and MMU facilities, to catch buffer under/overflows. Note
that if the memory allocated size is a multiple of 4KB, then it would be possible to turn on BOTH
LKM_PROT_AFTER and LKM_PROT_BEFORE. Add more test scripts to showcase any combination of these
two new LKM_PROT_* flags.

7.2. [B] 4 points (max).

To incentivize you to submit your code earlier than the deadline, we'll give you 2 points if you submit your
assignment at least 24 hours before the official deadline; and 4 points if you submit at least 48 hours before.

5

Note that we count the LAST git-push to your repo as the last time you submitted the assignment, even if you
made a very small change.

Good Luck.

8. Copyright Statement
(c) 2021 Erez Zadok
(c) Stony Brook University

DO NOT POST ANY PART OF THIS ASSIGNMENT OR MATERIALS FROM THIS COURSE ONLINE IN ANY
PUBLIC FORUM, WEB SITE, BLOG, ETC. DO NOT POST ANY OF YOUR CODE, SOLUTIONS, NOTES,
ETC.

ALL CODE SHOULD BE YOURS! WE WILL COMPARE YOUR CODE USING SEMI-AUTOMATED
CODE-COMPARISON TOOLS AGAINST CODE USED IN PAST YEARS IN THIS CLASS AS WELL AS CODE
WE MAY DOWNLOAD FROM THE INTERNET. ALL SUSPECTED PLAGIARISM OR CHEATING CASES
WILL BE INVESTIGATED AND POSSIBLY REFERRED FURTHER.

9. ChangeLog
● V1: initial draft
● V2: TA reviewed
● V3: clarifications, added LKM_EXIST and LKM_REALLOC
● V4: fix extra credit LKM_* flags to avoid conflict with v3 flags
●

6

