
Invoking Semi-Honest 2PC Simulators

Christopher Smith

Last Updated: November 20, 2025

Abstract

Theoretical constructions of MPC protocols often include executions of MPC subprotocols.
While composition theorems sometimes yield easier security proofs of the overall protocol, it
may be easier/instructive/necessary to prove security by “manually” invoking the simulators
for the subprotocols. Restricting ourselves to the semi-honest two-party case, we give a couple
generic examples of how a 2PC subprotocol might show up in a larger protocol, and how we
can transition from a real view to a hybrid view where the execution of the subprotocol has
been replaced by invocation of the simulator. Our first example is an easy case with a uniform
reduction where the protocol begins with the 2PC subprotocol. Our second example is only a
slightly harder case with a non-uniform reduction where the protocol exchanges some arbitrary
messages in a preamble, and then ends with a 2PC subprotocol that is dependent on this
preamble.

1 Preliminaries

Non-Uniform Computation. A non-uniform Turing machine is a Turing machine equipped
with an extra “advice” tape. At the start of the machine’s execution, the tape may be loaded
with arbitrary information that can depend on the length of the input on the machine’s input
tape (but not the content of the input). Typically, one considers polynomial time machines
where the length of the advice is polynomial in the input length. In cryptography, the input
length is typically the security parameter λ, which is written in unary on every machine’s input
tape as 1λ. In what follows, it may often look notationally like the non-uniform reductions we
give advice to receive more input than just 1λ, and so one might complain that advice needs to
depend on the length of the “entire input”, not just a λ-length prefix of the input. However, this
is not the case (at least in this document), as any “extra” input beyond 1λ for reductions re-
ceiving advice semantically comes from other machines as part of an interaction or oracle query.
More precisely, this means that the extra input is written on additional communication/oracle
tapes distinct from the machine’s “one true input tape”1, which is just initialized with 1λ. These
formal technicalities are not particularly important for the purposes of this document, at least
beyond convincing the reader that non-uniform advice in our reductions only depends on λ. For
a more formal reference on interactive and oracle access Turing machines, and, more generally,
computational models in cryptography, see [Gol01].

Definition 1 (Negligible Function). We say a function µ is negligible if for every positive
polynomial p there exists N ∈ N such that for all λ > N it holds that µ(λ) < 1/p(λ).

1To really get in the weeds, interactive Turing machines share a common input tape, so all parties in an interactive
computation automatically share a common security parameter. The situation is different with an oracle access
machine, which may query its oracle on any input of its choosing, and this input may include an arbitrary security
parameter. This subtle issue is sometimes important in security proofs (e.g., [GW11])

1

Definition 2 (Computational Indistinguishability [Lin17]). Two probability ensembles (i.e., in-
finite sequences of random variables) X = {X(a, λ)}a∈{0,1}∗,λ∈N and Y = {Y (a, n)}a∈{0,1}∗,λ∈N

are computationally indistinguishable, denoted X
c
≈ Y , if for every non-uniform PPT algorithm

D there exists a negligible function µ such that for every a ∈ {0, 1}∗ and every λ ∈ N,∣∣∣Pr [D(1λ, X(a, λ), a) = 1
]
− Pr

[
D(1λ, Y (a, λ), a) = 1)

]∣∣∣ ≤ µ(λ)

Definition 3 (Semi-Honest 2PC [Lin17]). We say that the two-party protocol Π = (A,B)
securely evaluates a PPT functionality f : {0, 1}∗ × {0, 1}∗ → {0, 1}∗ × {0, 1}∗ in the presence
of semi-honest adversaries, if there exists a PPT simulator Sim = (SimA,SimB) such that for
all xA, xB, and for all λ ∈ N, it holds that:{
(SimA(1

λ, xA, fA(xA, xB)), f(xA, xB))
}
xA,xB ,λ

c
≈

{
(viewΠ

A(xA, xB , λ), out
Π(xA, xB , λ))

}
xA,xB ,λ{

(SimB(1
λ, xB , fB(xA, xB)), f(xA, xB))

}
xA,xB ,λ

c
≈

{
(viewΠ

B(xA, xB , λ), out
Π(xA, xB , λ))

}
xA,xB ,λ

where:
• fA is f projected onto its first coordinate, and fB is f projected onto its second coordinate.
• viewΠ

A(xA, xB , λ) = (xA, rA, τA) with rA as the random coins used by a semi-honest A and
τA as the messages received by A. viewΠ

B(xA, xB , λ) is defined analogously, with τB as the
messages received by B.

• outΠ(xA, xB , λ) = (outΠA(xA, xB , λ), out
Π
B(xA, xB , λ)) is the joint output of both parties in

an execution of Π on inputs xA, xB with security parameter λ.

2 Easy: Simulated Preamble, Uniform Reduction

Let fpre be any two-party PPT functionality securely computed in the semi-honest setting by
some 2PC protocol Πpre. Define a new two-party protocol protocol Π = (A,B) where A and B
first execute Πpre and then exchange some polynomial number of (basically) arbitrary additional
messages. In more detail, define the view of party B in a real execution of Π as follows:

viewΠ
B(xA, xB , λ):

1. Sample sufficient poly-sized randomness rA = rpreA ∥r
post
A and rB = rpreB ∥r

post
B for both

parties.
2. Emulate an execution of Πpre where A enters the protocol with input (1λ, xA) and random

coins rpreA , and B does the same with (1λ, xB), r
pre
B . This generates a preamble transcript

(τpreA , τpreB), where τpreA are the messages received by A, and τpreB is defined analogously. It
also generates preamble outputs (ypreA , ypreB).

3. Emulate some arbitrary interactive protocol between A and B. If this interaction is ran-
domized, then A uses rpostA as random coins and B uses rpostB as random coins. Let

(τpostA , τpostB) denote the transcript of this interaction.

4. Output party B’s view consisting of: (xB , rB , τ
pre
B , τpostB).

Obviously, it is impossible to say whether Π is secure. But all we wish to show in this example
is that viewΠ

B(xA, xB , λ) is indistinguishable from the following hybrid view where we invoke the
simulator Simpre

B guaranteed by the 2PC security of Πpre for party B:

H1(xA, xB , λ):
1. Letting (ypreA , ypreB) = fpre(xA, xB), compute (xB , r

pre
B , τ̃preB)← Simpre

B (1λ, xB , y
pre
B).

2. Generate τpostA , τpostB with emulation of the same interactive protocol used in the real

execution, sampling random coins rpostA , rpostB on the fly as necessary.

3. Output party B’s hybrid view consisting of: (xB , (r
pre
B ∥r

post
B), τ̃preB , τpostB).

Claim 4. viewΠ
B(xA, xB , λ)

c
≈ H1(xA, xB , λ).

2

Proof of Claim 4. Let DH be any poly-time distinguisher between the hybrids. We construct an
adversary D2pc with oracle access to DH against the semi-honest security of Πsetup as follows.
D2pc parses its input as (1λ, (xB , r

pre
B , τ̂preB), (ypreA , ypreB)), xA, xB), and uses this information to

compute τpostA , τpostB as in the real execution, sampling rpostA , rpostB on the fly as necessary, and

setting rB = rpreB ∥r
post
B . It then queries b ← DH(1λ, (xB , rB , τ̂

pre
B , τpostB), xA, xB), and outputs

b.
Suppressing ensemble indices (xA, xB , λ) for clarity and without confusion, see that if D2pc’s

input is distributed according to (view
Πpre

B , outΠpre), then DH ’s input is distributed according

to viewΠ
B . Conversely, if D2pc’s input is distributed according to (Simpre

B , fpre), then DH ’s input

is distributed according to H1. Thus, if any DH distinguishes between viewΠ
B and H1 with non-

negligible advantage, then D2pc breaks the semi-honest security of Πpre. The claim follows.

3 Harder: Simulated Postamble, Non-Uniform Reduction

Now let fpost be any two-party PPT functionality securely computed in the semi-honest set-
ting by some 2PC protocol Πpost. Define a new protocol Π = (A,B) where A and B first
exchange some arbitrary messages in a preamble, and then run Πpost using information derived
from the preamble. More formally, define the view of party B in a real execution of Π as follows:

viewΠ
B(xA, xB , λ):

1. Sample sufficient poly-sized randomness rA = rpreA ∥r
post
A and rB = rpreB ∥r

post
B for both

parties.
2. Let z(·, ·) be some arbitrary PPT computable function. Emulate an interactive protocol

between A and B for computing zA, zB = z(xA, xB). If the interaction is randomized, A
uses rpreA as random coins and B uses rpreB as random coins. Let τpre = (τpreA , τpreB) denote
the transcript of this preamble.

3. Emulate an execution of Πpost, where A enters the protocol with input (1λ, zA) and random
coins rpostA , and B enters the protocol with input (1λ, zB) and random coins rpostB . Let

y = (yA, yB) and τpost = (τpostA , τpostB) denote the output and transcript of this execution,
respectively.

4. Output party B’s view consisting of: (xB , rB , τ
pre
B , τpostB).

We wish to show that this view is indistinguishable from the following hybrid view where we
invoke the simulator Simpost

B guaranteed by the 2PC security of Πpost for party B:

H1(xA, xB , λ):
1. Emulate the same interactive protocol between A and B for computing zA, zB = z(xA, xB)

as in the real execution, sampling random coins rpreA , rpreB as necessary. Let τpre =
(τpreA , τpreB) denote the transcript of this preamble.

2. Letting (yA, yB) = fpost(zA, zB), compute (zB , r
post
B , τ̃postB)← Simpost

B (1λ, zB , yB).

3. Output party B’s hybrid view consisting of xB , (r
pre
B ∥r

post
B), τpreB , τ̃postB .

Claim 5. viewΠ
B(xA, xB , λ)

c
≈ H1(xA, xB , λ)

We present two proofs, where both construct essentially the same non-uniform reduction.
The first proof carefully unpacks the formal definitions of non-uniformity and computational
indistinguishability (right down to quantifiers), but results in an annoyingly verbose argument.
The second proof is less formal but significantly shorter and easier to read; much of the awk-
wardness of the first proof is avoided by re-interpreting the “rules of the game” for adversaries
in a reduction proof of the kind we are dealing with here. Specifically, in the second proof we
allow adversaries to submit ensemble indices to their outside challengers.

Verbose Proof of Claim 5. Suppose the two distributions are not computationally indistinguish-
able. Then (unpacking definitions and quantifiers, including that of negligible function), there

3

exists a non-uniform poly-time distinguisher DH , and a polynomial p(·), such that for every
N ∈ N there exists a “bad” λ∗ > N and some “bad” x∗

A, x
∗
B such that∣∣∣Pr [DH(1λ

∗
, viewΠ

B(x
∗
A, x

∗
B , λ

∗), x∗
A, x

∗
B)

]
− Pr

[
DH(1λ

∗
, H1(x

∗
A, x

∗
B , λ

∗), x∗
A, x

∗
B)

]∣∣∣ ≥ 1/p(λ∗)

We use this DH to construct the following non-uniform adversary D2pc against the semi-
honest security of Πpost as follows.

D2pc parses its input as (1λ, ((zB , r
post
B , τ̂postB), (yA, yB)), zA, zB). If λ is one of those bad λ∗

for which there exist some bad (x∗
A, x

∗
B) on which DH distinguishes with non-negligible advan-

tage, thenD2pc receives this bad pair as non-uniform advice, along with some (τpre∗B , rpreB , z∗A, z
∗
B)

distributed according to z(x∗
A, x

∗
B ; r

pre
A ∥r

pre
B) (over random choice of rpreA)2. Otherwise, it re-

ceives an empty string as advice. If D2pc has nothing written on its advice tape, or if the (zA, zB)
parsed from its input does not equal the (z∗A, z

∗
B) written on its advice tape, then D2pc outputs

a random bit3. Else, it must be that (zA, zB) = (z∗A, z
∗
B). In this case, D2pc queries and outputs

b← DH(1λ
∗
, (x∗

B , (r
pre
B ∥r

post
B), τpre∗B , τ̂postB), x∗

A, x
∗
B).

Let (x∗
A, x

∗
B , τ

pre∗
B z∗A, z

∗
B) be an advice string for D2pc on input a bad λ∗. See that if

D2pc’s input is distributed according to (view
Πpost

B , outΠpost)(z∗A, z
∗
B , λ

∗), then DH ’s input is

distributed according to viewΠ
B(x

∗
A, x

∗
B , λ

∗). Else, if D2pc’s input is distributed according to
(Simpost

B (1λ
∗
, z∗B , yB), (yA, yB)) for (yA, yB)← fpost(z

∗
A, z

∗
B), then DH ’s input is distributed ac-

cording to H1(x
∗
A, x

∗
B , λ

∗). The claim follows, as we have just shown that for every N ∈ N
there exists a λ∗ > N and some z∗A, z

∗
B such that the distinguishing advantage of D2pc between

(view
Πpost

B , outΠpost)(z∗A, z
∗
B , λ

∗) and (Simpost
B (1λ

∗
, z∗B , yB), (yA, yB)) for (yA, yB)← fpost(z

∗
A, z

∗
B)

is non-negligible.

Observe that much of the verbosity of the above proof concerns itself with boilerplate for
getting the reduction to only play against challenges of its choosing: it basically “gives up” on any
challenge that does not agree with its non-uniform advice. Thus, in this specific situation where
adversaries only need to show indistinguishability for an infinite subsequence of “bad” ensemble
indices that they receive non-uniform advice for, we can take the liberty of re-interpreting the
rules of the reduction proof such that adversaries can submit desired ensemble indices to their
outside challengers. This significantly cleans up the proof while preserving the main idea of the
reduction, and not sacrificing too much rigor.

Shorter Proof. Let DH be a (non-uniform) poly-time distinguisher between the hybrids. We
use this DH to construct a (non-uniform) adversary D2pc against the semi-honest security of
Πpost as follows. D2pc(1

λ) queries (xA, xB) ← DH(1λ) and computes τpreB , rpreB , zA, zB dis-
tributed according to z(xA, xB ; r

pre
A ∥r

pre
B) (over random choice of rpreA). It then submits zA, zB

to the challenger, and parses the received challenge as ((zB , r
post
B , τ̂postB), (yA, yB)). Letting

rB = rpreB ∥r
post
B , D2pc queries and outputs b← DH(xB , rB , τ

pre, τ̂post).
See that if τ̂post is belongs to a real view of Πpost, then DH ’s input is distributed according

to viewΠ
B . If τ̂

post belongs to a simulated view, then DH ’s input is distributed according to H1.
Thus, if DH distinguishes with non-negligible probability, so does D2pc.

References

[Gol01] Oded Goldreich. Foundations of cryptography: volume 1, basic tools, volume 1. Cam-
bridge university press, 2001.

2Giving the reduction (τpre∗
B , rpreB , z∗A, z

∗
B) as advice is only a convenience, as it could sample these on its own if

necessary from (x∗
A, x

∗
B).

3Or it outputs a garbage bit, or it aborts. Intuitively, this is because our proof only needs D2pc to “win” against
its challenger for some infinite subsequence of bad ensemble indices (z∗A, z

∗
B , λ

∗)N∈N that it receives advice for. That
is, we only care about the behavior of D2pc on the bad challenges it is rigged to win against.

4

[GW11] Craig Gentry and Daniel Wichs. Separating succinct non-interactive arguments from
all falsifiable assumptions. In Proceedings of the forty-third annual ACM symposium
on Theory of computing, pages 99–108, 2011.

[Lin17] Yehuda Lindell. How to simulate it - A tutorial on the simulation proof technique. In
Yehuda Lindell, editor, Tutorials on the Foundations of Cryptography, pages 277–346.
Springer International Publishing, 2017.

5

	Preliminaries
	Easy: Simulated Preamble, Uniform Reduction
	Harder: Simulated Postamble, Non-Uniform Reduction

