The Schwartz-Zippel Lemma

Christopher Smith

April 15, 2024

Lemma 1 (Schwartz-Zippel). Let $g \in \mathbb{F}[x_1, ..., x_m]$ be an *m*-variate polynomial over a field \mathbb{F} of total degree at most d. Then, for any finite set $S \subseteq \mathbb{F}$,

$$\Pr_{x \leftarrow S^m}[g(x) = 0] \le \frac{d}{|S|}$$

Proof. The proof is by induction on m. Consider the base case m = 1 where $g \in \mathbb{F}[x]$, and let $S \subseteq \mathbb{F}$ be any finite set. We know g has at most d roots in \mathbb{F} , so S has at most d of these roots. Thus, $\Pr_{x \leftarrow S}[g(x) = 0] \leq d/|S|$.

Now suppose the lemma is true for m-1, and let $g \in \mathbb{F}[x_1, ..., x_m]$. The first trick is to rewrite g as

$$g(x_1, ..., x_m) = \sum_{i=0}^d x_1^i g_i(x_2, ..., x_m)$$

Because g is not identically zero, there must exist an i such that $g_i(x_2, ..., x_m)$ is not identically zero. Let i^* be the largest such i. Then $\deg(x_1^{i^*}g_{i^*}(x_2, ..., x_m)) \leq d$, so $\deg(g_{i^*}) \leq d - i^*$. By the induction hypothesis, we have that

$$\Pr_{r_2,...,r_m \leftarrow S^{m-1}}[g_{i^*}(r_2,...,r_m) = 0] \le \frac{d-i^*}{|S|}$$

Consider the complementary case where $g_{i^*}(r_2, ..., r_m) \neq 0$. Notice that $g(x_1, r_2, ..., r_m)$ is of degree i^* , so applying the inductive hypothesis again we get

$$\Pr_{r_1,...,r_m \leftarrow S^m}[g(r_1,...,r_m) = 0 \mid g_{i^*}(r_2,...,r_m) \neq 0] \le \frac{i^*}{|S|}$$

Finally, using the total law of probability we get

$$\begin{aligned} \Pr_{r_1,...,r_m \leftarrow S^m}[g(r_1,...,r_m) = 0] &= \Pr[g(r_1,...,r_m) = 0 \mid g_{i^*}(r_2,...,r_m) = 0] \Pr[g_{i^*}(r_2,...,r_m) = 0] + \\ \Pr[g(r_1,...,r_m) = 0 \mid g_{i^*}(r_2,...,r_m) \neq 0] \Pr[g_{i^*}(r_2,...,r_m) \neq 0] \\ &\leq \frac{d-i^*}{|S|} + \frac{i^*}{|S|} = \frac{d}{|S|} \end{aligned}$$