The Schwartz-Zippel Lemma

Christopher Smith

April 15, 2024

Lemma 1 (Schwartz-Zippel). Let $g \in \mathbb{F}\left[x_{1}, \ldots, x_{m}\right]$ be an m-variate polynomial over a field \mathbb{F} of total degree at most d. Then, for any finite set $S \subseteq \mathbb{F}$,

$$
\operatorname{Pr}_{x \leftarrow S^{m}}[g(x)=0] \leq \frac{d}{|S|}
$$

Proof. The proof is by induction on m. Consider the base case $m=1$ where $g \in \mathbb{F}[x]$, and let $S \subseteq \mathbb{F}$ be any finite set. We know g has at most d roots in \mathbb{F}, so S has at most d of these roots. Thus, $\operatorname{Pr}_{x \leftarrow S}[g(x)=0] \leq d /|S|$.
Now suppose the lemma is true for $m-1$, and let $g \in \mathbb{F}\left[x_{1}, \ldots, x_{m}\right]$. The first trick is to rewrite g as

$$
g\left(x_{1}, \ldots, x_{m}\right)=\sum_{i=0}^{d} x_{1}^{i} g_{i}\left(x_{2}, \ldots, x_{m}\right)
$$

Because g is not identically zero, there must exist an i such that $g_{i}\left(x_{2}, \ldots, x_{m}\right)$ is not identically zero. Let i^{*} be the largest such i. Then $\operatorname{deg}\left(x_{1}^{i^{*}} g_{i^{*}}\left(x_{2}, \ldots, x_{m}\right)\right) \leq d$, so $\operatorname{deg}\left(g_{i^{*}}\right) \leq d-i^{*}$. By the induction hypothesis, we have that

$$
\operatorname{Pr}_{r_{2}, \ldots, r_{m} \leftarrow S^{m-1}}\left[g_{i^{*}}\left(r_{2}, \ldots, r_{m}\right)=0\right] \leq \frac{d-i^{*}}{|S|}
$$

Consider the complementary case where $g_{i^{*}}\left(r_{2}, \ldots, r_{m}\right) \neq 0$. Notice that $g\left(x_{1}, r_{2}, \ldots, r_{m}\right)$ is of degree i^{*}, so applying the inductive hypothesis again we get

$$
\underset{r_{1}, \ldots, r_{m} \leftarrow S^{m}}{\operatorname{Pr}}\left[g\left(r_{1}, \ldots, r_{m}\right)=0 \mid g_{i^{*}}\left(r_{2}, \ldots, r_{m}\right) \neq 0\right] \leq \frac{i^{*}}{|S|}
$$

Finally, using the total law of probability we get

$$
\begin{aligned}
\operatorname{rr}_{1, \ldots, r_{m} \leftarrow S^{m}}\left[g\left(r_{1}, \ldots, r_{m}\right)=0\right]= & \operatorname{Pr}\left[g\left(r_{1}, \ldots, r_{m}\right)=0 \mid g_{i^{*}}\left(r_{2}, \ldots, r_{m}\right)=0\right] \operatorname{Pr}\left[g_{i^{*}}\left(r_{2}, \ldots, r_{m}\right)=0\right]+ \\
& \operatorname{Pr}\left[g\left(r_{1}, \ldots, r_{m}\right)=0 \mid g_{i^{*}}\left(r_{2}, \ldots, r_{m}\right) \neq 0\right] \operatorname{Pr}\left[g_{i^{*}}\left(r_{2}, \ldots, r_{m}\right) \neq 0\right] \\
\leq & \frac{d-i^{*}}{|S|}+\frac{i^{*}}{|S|}=\frac{d}{|S|}
\end{aligned}
$$

