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1 Overview

The Gentry Wichs separation [GW11] is a fundamental barrier in theoretical cryptography stating
that the adaptive soundness of any SNARG cannot be proved with a black-box reduction to any
falsifiable assumption. It should be mentioned that recent results [WW24,WZ24, WW25] circumvent
this barrier through clever uses of complexity leveraging (and pay for this in CRS size). Barrier
busting aside, some of the techniques used in [GW11] are quite interesting. In particular, the proof
of their key “indistinguishability with auxiliary information” lemma relies on an application of von
Neumann’s minimax theorem. The aim of this note is to introduce this minimax theorem and
unpack its usage within [GW11].

2 Minimax Theorems

See the Wikipedia page on minimax theorems [Wik25b] for a solid introduction to the topic. For
more in-depth resources, see Sion [Sio58] and Kjeldsen [KjeO1]. In short, a minimax theorem is a
theorem claiming something of the form

max min X = min max X
zeX yeyYy f( y) yeY zeX f( y)

under specific conditions on X, Y, and f. Any point (z,y) at which the equality holds is often
called a saddle point. John von Neumann [vN28] is credited with the first of these theorems, which
is stated as follows.

Theorem 1 (von Neumann minimax [Wik25b)). Let X = {(x1,...,zn) € [0,1]" | > 2z; =1} and
Y ={(y1, -, ym) € [0,1]™ | D y; = 1} be standard simplexes, and let f(x,y) be a linear function
in both of its arguments (that is, f is bilinear), and can therefore be written as f(x,y) = x| Ay for
a finite matriz A € R™™, or equivalently as f(z,y) = >, > 10, Aijziy;. Then

R ) = )

Type Inference for f. Note that f technically cannot be bilinear over X x Y as X,Y are not
proper vector spaces. It follows that f must at least be bilinear over some pair of vector spaces
X > X, Y O Y. From the characterization in Theorem 1 of f as ZZ 1 Z 1 Aijxiy; where A;; are

entries in a finite matrix A € R™ ™ we can deduce that the scalar field of f is R, and that X,V
must be finite dimensional. Specifically, dim X < n and dimY < m. But notice that any vector
space containing X must necessarily contain span(X), and span(X) = R” since the n standard



basis vectors for for R™ already belong to X. Thus, X must be isomorphic to R", and Y must
be isomorphic to R™. All this to conclude that we can safely think of f as a bilinear function
R™ x R™ — R (i.e., a bilinear form, depending on whether you insist that n = m).

Bilinear vs. continuous quasi-concave-convex I feel compelled to mention that, as explained
in [Kje01], von Neumann actually proved his theorem for the more general case of a continuous
function f : X x Y — R that is quasiconcave in in X and quasiconvex in Y (Definition 5 implies
X and Y are convex subsets of a real vector space). Perhaps to nobody’s surprise, the bilinear
function f(z,y) =>, > j Ajjx;y; of Theorem 1 satisfies these conditions. Let us prove this anyway.

Claim 2. Let f : R® x R™ — R be bilinear. Then f is continuous, quasiconcave in its first
argument, and quasiconvex in its second argument.

Proof. We first prove continuity. We do this by showing that f is separately continuous (i.e.,
f(z,-) and f(-,y) are continuous Vz,y), and then appealing to the fact [Wik25a] that a separately
continuous bilinear map f : X X Y — Z is continuous if X is a Baire space and Y is metrizable.
Indeed, since R™ is a complete metric space it is both Baire and metrizable, so it remains to be
seen that f is separately continuous. By symmetry it is enough to show that f(-,y) : R™ — R is
continuous. Because R™ is a normed and finite dimensional space, by Theorem 2.7-8 of [Kre91], it
is bounded. By Theorem 2.7-9 of [Kre91], since f(-,y) is a bounded linear operator and R™, R are
normed spaces, f(-,y) is continuous.

Next we show f(+,y) is quasiconcave for all y. Let x1,29 € R™, ¢t € [0, 1] be arbitrary. We have:

f(tajl + (1 - t)x%y) = tf(xlvy) + (1 - t)f(.l‘z,y) > min {f(wlay)¢f($2ﬁy)}

Similarly we show quasiconvexity for f(z,-) for all z. Let y1,y2 € R™, t € [0, 1]. We have:

f(x7ty1 + (1 - t)yQ) = tf(.%,yl) + (1 - t)f(.%',yg) < max {f(x,y1),f(x,y2)}

3 Minimax in Gentry Wichs

In order to see exactly how minimax is applied in [GW11], we introduce relevant notation from
the paper. Let size(m) denote the set of all circuits of size m, and dist(m) denote the set of
all distributions over size(m). So for example (specifically the example from [GW11]), if s*(-) is
some polynomial, then dist(s*(n) + 1) is the set of all distributions over circuits of size s*(n) + 1.
Further, fix some distribution ensembles £,, and £,, over a language L and its complement L (there
are further conditions on L in the paper but they are not important if we just want to see how
minimax is applied), and fix some joint distribution £} over tuples (z,7) such that z < L,, and

let dist(L,,) be the set of all joint-distributions on tuples (Z,7) with & < L,,.

Additionally, for purposes of this note let £*(n) := |z| + |7| for (z,7) + L, € dist(L,). Then L,
takes values in LN {0,1}* ™, and we can let M = |L N {0,1}* ™| denote the size of the support

for any £, € dist(£,). Similarly, let N := |size(s*(n) + 1)| denote the size of the support for any
D, € dist(s*(n) + 1).



By von Neumann’s minimax theorem, the proof of Lemma 3.1 in the paper claims the following
equality:

min max E [Dn(x,w) — Pr [Dyp(z,7) = 1]]
L, edist(Ly,) Dnéedist(s*(n)+1) (z,7)«L, (z,m)+L3,
Dyp+Dyp
= max min E D,(x,7)— Pr D,(x,m)=1
D edist(s*(n)+1) L edist(Ln) (x,ﬂ)ell,i[ (&) (r,vr)<—£;;[ n(@7) ]]
Dyp<+Dyp,

In light of Sec. 2, in order to invoke Theorem 1 in this way, it must be the case that dist(£,) and
dist(s*(n) 4+ 1) are standard simplexes, and that the above expectation is bilinear.

Indeed, dist(L,,) is the set of all finite probability distributions supported over L N {0, 1}5* ("), and
each Zz € dist(£,,) can be represented by a vector (p1, ..., par), where p; is the probability that ZZ
takes the value of the i-th tuple (z,7); € LN {0, 1}£*(”). Thus, dist(£,) is the standard (M — 1)-
simplex. Similarly, dist(s*(n) + 1) is the standard (N — 1)-simplex, and any D,, € dist(s*(n) + 1)
can be represented by a vector (qi,...,qn) where g; is the probability that D, takes the value of
the j-th circuit DY) € size(s*(n) + 1).

Now we show that the expectation expression above is bilinear. Begin by defining the function
g: (LN {0, 1} ™) x size(s*(n) + 1) — R as follows:

9((z,7),Dy) == Dyp(z,7) — Pr [Dy(x,m)=1]

(z,m) L5,

Because we can index the values in the domain of g with elements of [M] x [N], we can equivalently
define g : [M] x [N] — R as:
9(i.j) = DY (@ 7))~ Pr [DP(w,7) =1]
(z,m)L3

Now let f|simplex : dist(Ly,) x dist(s*(n) + 1) — R be given by

flempex(E1Dn) = B [g(Z}.D0)

= > > gli,)pig

i€[M] j€[N]

Written in this way, it is clear that the extension f of flsimplex tO RN x RM — R is bilinear, and
therefore the use of the minimax theorem is justified.

A Supplementary Definitions

Definition 3 (Standard Simplex [Wik25d]). The standard n-simplex (or unit n-simplex) is the
subset of R™*1 given by

A" = {(to, ...,tn) S R+

Zti =landt; >0 fori:(),...,n}

=0



Definition 4 (Bilinear Map). Let X,Y,Z be three vector spaces over the same base field F. A
bilinear map is a function f : X XY — Z such that for ally € Y, the map f(-,y) : X — Z is
linear, and for oll x € X, the map f(x,-):Y — Z is linear. If Z =TF, then f is a bilinear form.

Definition 5 (Quasiconvex function [Wik25c|). A function f : S — R defined on a conver subset
S of a real vector space is quasiconvex if for all z,y € S and t € [0, 1] we have

flte + (1 =t)y) <max{f(z), f(y)}

Alternatively, f is quasiconcave if (—f) is quasiconvez, and in this case we have:

[tz + (1= t)y) = min {f(z), f(y)}
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