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A self-contained document on the statement and proof of the Merkle-tree lemma, as found in [1].

1 Definitions

Definition 1.1 (Merkle Tree). Denote by MTh,b(X) the Merkle tree over string X ∈ {0, 1}∗ with hash function h and
b-bit leaf values. For each node n ∈ MTh,b(X), denote by vn the value associated with node n. The value of a leaf is the
corresponding block of X, and the value of an intermediate node n is the hash vn = h(vl, vr), where vl and vr are the
values of the left and right children of n. MTh,b(X) is a completely balanced binary tree, as we can fill in missing nodes
with empty string valued nodes.

Definition 1.2 (Sibling Path). For a leaf node l ∈ MTh,b(X), the sibling path of l consists of the value vl, along with all
the values of all the siblings of nodes on the path from l to the root.

Definition 1.3 (Valid Path). An alleged sibling path (vl, vn0 , ..., vni) is valid with respect to MTh,b(X) if i is the height
of the tree, and the root value as computed on the sibling path agrees with the root value of MTh,b(X).

Note: In order to verify a given alleged sibling path, it suffices to know the hash h, the number of leaves, and the root
value of MTh,b(X).

Definition 1.4 (Merkle-tree Protocol). Denote by MTPh(v, s, u) the Merkle-tree Protocol with respect to hash function
h where the verifier knows the root value v and number of leaves s, and asks the prover to see q leaves of the tree along
with sibling paths. The verifier accepts if all the sibling paths are valid.

2 Lemma and Proof

Lemma 2.1 (Merkle-tree Lemma). There exists a black-box extractor K with oracle access to a Merkle-tree prover, that
has the following properties:

1. For every prover P and v ∈ {0, 1}∗, s, u ∈ N, and δ ∈ [0, 1], KP (v, s, u, δ) makes at most u2s(log(s) + 1)/δ calls to
its prover oracle P .

2. Fix any hash function h and string X ∈ {0, 1}sb, and let v be the root value of MTh,b(X). Also fix some u ∈ N, and
a prover P ∗ that may depend on h,X, u.
Then if P ∗ has probability at least (1− α)u + δ of convincing the verifier in the Merkle-tree protocol MTPh(v, s, u)
(for some α, δ ∈ (0, 1]), then with probability at least 1/4 (over its internal randomness) the extractor KP∗

(v, s, u, δ)
outputs values for at least (1− α)s of the leaves, together with valid sibling paths for all these leaves.

Proof. Let α, δ ∈ (0, 1], u ∈ N. Fix a hash function h, and a string X ∈ {0, 1}sb. Fix a prover P ∗ that possibly depends
on h,X, u, and suppose P ∗ convinces the verifier in MTPh(v, s, u) with probability at least (1− α)u + δ.

Consider the following extractor K:

procedure KP∗(v, s, u, δ)
for i = 1 to u do

for l = 1 to s do
for u(log(s) + 1)/δ times do

Choose at random l1, ..., lu ∈ [s]
Query P ∗(l1, ..., li−1, l, li+1, ..., lu)

end for
end for
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end for
Output sibling paths for all the leaves for which P ∗ ever gave a valid sibling path.

end procedure

It is obvious that K makes at most u2s(log(s) + 1)/δ calls to its oracle, so property 1 of the lemma is satisfied. We must
now show that K outputs values for at least (1− α)s of the leaves with probability at least 1/4.

We say “P ∗(l1, ..., lu) is valid” if P ∗ responds with valid sibling paths for every leaf when queried on leaves l1, ..., lu.

For leaf index l ∈ [s] and query index i ∈ [u], we say “l is i-good” if Prl1,...,lu [P
∗(l1, ..., li−1, l, li+1, ..., lu) is valid] ≥ δ/u.

For i ∈ [u], let Goodi := {l ∈ [s] : l is i-good}.

A key claim is that there exists at least one query index î ∈ [u] such that |Goodî| ≥ (1−α)s. To prove the claim, assume
for contradiction that ∀i ∈ [u], |Goodi| < (1− α)s. Then we have:

Pr
l1,...,lu

[P ∗(l1, ..., lu) is valid]

= Pr [P ∗(l1, ..., lu) is valid AND li is i-good ∀i ∈ [u]]

+ Pr [P ∗(l1, ..., lu) is valid AND ∃i ∈ [u] : li is not i-good]

≤ Pr

 ⋂
i∈[u]

liis i-good

+ Pr

P ∗is valid AND
⋃
i∈[u]

liis not i-good


≤

u∏
i=1

|Goodi|
s

+

u∑
i=1

Pr [P ∗ is valid | liis not i-good]

< (1− α)u + u(δ/u) = (1− α)u + δ

But this is a contradiction since Prl1,...,lu [P ∗(l1, ..., lu)is valid] ≥ (1− α)u + δ by assumption. Thus the claim holds.

Now consider the inner loop of the extractor code with some i, l, where l is i-good. Let Xi,l be the binomial random
variable for the number of times P ∗(l1, ..., li−1, l, li+1, ..., lu) is valid in the inner loop. We have:

Pr [Xi,l = 0]

<

(
1− δ

u

)u(log(s)+1)/δ

< (e−δ/u)u(log(s)+1)/δ ((1 + x) ≤ ex)

< e− log(s)−1

=⇒ Pr [Xi,l ≥ 1] ≥ 1− e− log(s)−1 ≥ 1− 1

es

Let Xi be the binomial random variable for the number of times that P ∗ is valid at least once in the innermost loop
when l is i-good. When K reaches index î in the outer loop we get that:

Pr [Xî ≥ (1− α)s]

≥
(
1− 1

es

)(1−α)s

≥
(
1− 1/e

s

)s

≥
(
1− 1

e

)
> 1/4 ((1 + x/n)n ≥ 1 + x)

Note: If h is collision-resistant, then valid query responses are consistent with the original input string X.
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