
The Merkle-tree Lemma

Christopher Smith

Last Updated: January 8, 2024

A self-contained document on the statement and proof of the Merkle-tree lemma, as found in [1].

1 Definitions

Definition 1.1 (Merkle Tree). Denote by MTh,b(X) the Merkle tree over string X ∈ {0, 1}∗ with hash function h and
b-bit leaf values. For each node n ∈ MTh,b(X), denote by vn the value associated with node n. The value of a leaf is the
corresponding block of X, and the value of an intermediate node n is the hash vn = h(vl, vr), where vl and vr are the
values of the left and right children of n. MTh,b(X) is a completely balanced binary tree, as we can fill in missing nodes
with empty string valued nodes.

Definition 1.2 (Sibling Path). For a leaf node l ∈ MTh,b(X), the sibling path of l consists of the value vl, along with all
the values of all the siblings of nodes on the path from l to the root.

Definition 1.3 (Valid Path). An alleged sibling path (vl, vn0 , ..., vni) is valid with respect to MTh,b(X) if i is the height
of the tree, and the root value as computed on the sibling path agrees with the root value of MTh,b(X).

Note: In order to verify a given alleged sibling path, it suffices to know the hash h, the number of leaves, and the root
value of MTh,b(X).

Definition 1.4 (Merkle-tree Protocol). Denote by MTPh(v, s, u) the Merkle-tree Protocol with respect to hash function
h where the verifier knows the root value v and number of leaves s, and asks the prover to see q leaves of the tree along
with sibling paths. The verifier accepts if all the sibling paths are valid.

2 Lemma and Proof

Lemma 2.1 (Merkle-tree Lemma). There exists a black-box extractor K with oracle access to a Merkle-tree prover, that
has the following properties:

1. For every prover P and v ∈ {0, 1}∗, s, u ∈ N, and δ ∈ [0, 1], KP (v, s, u, δ) makes at most u2s(log(s) + 1)/δ calls to
its prover oracle P .

2. Fix any hash function h and string X ∈ {0, 1}sb, and let v be the root value of MTh,b(X). Also fix some u ∈ N, and
a prover P ∗ that may depend on h,X, u.
Then if P ∗ has probability at least (1− α)u + δ of convincing the verifier in the Merkle-tree protocol MTPh(v, s, u)
(for some α, δ ∈ (0, 1]), then with probability at least 1/4 (over its internal randomness) the extractor KP∗

(v, s, u, δ)
outputs values for at least (1− α)s of the leaves, together with valid sibling paths for all these leaves.

Proof. Let α, δ ∈ (0, 1], u ∈ N. Fix a hash function h, and a string X ∈ {0, 1}sb. Fix a prover P ∗ that possibly depends
on h,X, u, and suppose P ∗ convinces the verifier in MTPh(v, s, u) with probability at least (1− α)u + δ.

Consider the following extractor K:

procedure KP∗(v, s, u, δ)
for i = 1 to u do

for l = 1 to s do
for u(log(s) + 1)/δ times do

Choose at random l1, ..., lu ∈ [s]
Query P ∗(l1, ..., li−1, l, li+1, ..., lu)

end for
end for

1

end for
Output sibling paths for all the leaves for which P ∗ ever gave a valid sibling path.

end procedure

It is obvious that K makes at most u2s(log(s) + 1)/δ calls to its oracle, so property 1 of the lemma is satisfied. We must
now show that K outputs values for at least (1− α)s of the leaves with probability at least 1/4.

We say “P ∗(l1, ..., lu) is valid” if P ∗ responds with valid sibling paths for every leaf when queried on leaves l1, ..., lu.

For leaf index l ∈ [s] and query index i ∈ [u], we say “l is i-good” if Prl1,...,lu [P
∗(l1, ..., li−1, l, li+1, ..., lu) is valid] ≥ δ/u.

For i ∈ [u], let Goodi := {l ∈ [s] : l is i-good}.

A key claim is that there exists at least one query index î ∈ [u] such that |Goodî| ≥ (1−α)s. To prove the claim, assume
for contradiction that ∀i ∈ [u], |Goodi| < (1− α)s. Then we have:

Pr
l1,...,lu

[P ∗(l1, ..., lu) is valid]

= Pr [P ∗(l1, ..., lu) is valid AND li is i-good ∀i ∈ [u]]

+ Pr [P ∗(l1, ..., lu) is valid AND ∃i ∈ [u] : li is not i-good]

≤ Pr

 ⋂
i∈[u]

liis i-good

+ Pr

P ∗is valid AND
⋃
i∈[u]

liis not i-good

≤

u∏
i=1

|Goodi|
s

+

u∑
i=1

Pr [P ∗ is valid | liis not i-good]

< (1− α)u + u(δ/u) = (1− α)u + δ

But this is a contradiction since Prl1,...,lu [P ∗(l1, ..., lu)is valid] ≥ (1− α)u + δ by assumption. Thus the claim holds.

Now consider the inner loop of the extractor code with some i, l, where l is i-good. Let Xi,l be the binomial random
variable for the number of times P ∗(l1, ..., li−1, l, li+1, ..., lu) is valid in the inner loop. We have:

Pr [Xi,l = 0]

<

(
1− δ

u

)u(log(s)+1)/δ

< (e−δ/u)u(log(s)+1)/δ ((1 + x) ≤ ex)

< e− log(s)−1

=⇒ Pr [Xi,l ≥ 1] ≥ 1− e− log(s)−1 ≥ 1− 1

es

Let Xi be the binomial random variable for the number of times that P ∗ is valid at least once in the innermost loop
when l is i-good. When K reaches index î in the outer loop we get that:

Pr [Xî ≥ (1− α)s]

≥
(
1− 1

es

)(1−α)s

≥
(
1− 1/e

s

)s

≥
(
1− 1

e

)
> 1/4 ((1 + x/n)n ≥ 1 + x)

Note: If h is collision-resistant, then valid query responses are consistent with the original input string X.

2

References

[1] Shai Halevi, Danny Harnik, Benny Pinkas, and Alexandra Shulman-Peleg. Proofs of ownership in remote storage
systems. In Proceedings of the 18th ACM Conference on Computer and Communications Security, CCS ’11, page
491–500, New York, NY, USA, 2011. Association for Computing Machinery. https://eprint.iacr.org/2011/207.

3

https://eprint.iacr.org/2011/207

	Definitions
	Lemma and Proof

