The Merkle-tree Lemma

Christopher Smith

Last Updated: January 8, 2024

A self-contained document on the statement and proof of the Merkle-tree lemma, as found in [1].

1 Definitions

Definition 1.1 (Merkle Tree). Denote by $MT_{h,b}(X)$ the Merkle tree over string $X \in \{0,1\}^*$ with hash function h and b-bit leaf values. For each node $n \in MT_{h,b}(X)$, denote by v_n the value associated with node n. The value of a leaf is the corresponding block of X, and the value of an intermediate node n is the hash $v_n = h(v_l, v_r)$, where v_l and v_r are the values of the left and right children of n. $MT_{h,b}(X)$ is a completely balanced binary tree, as we can fill in missing nodes with empty string valued nodes.

Definition 1.2 (Sibling Path). For a leaf node $l \in MT_{h,b}(X)$, the sibling path of l consists of the value v_l , along with all the values of all the siblings of nodes on the path from l to the root.

Definition 1.3 (Valid Path). An alleged sibling path $(v_l, v_{n_0}, ..., v_{n_i})$ is valid with respect to $MT_{h,b}(X)$ if i is the height of the tree, and the root value as computed on the sibling path agrees with the root value of $MT_{h,b}(X)$.

Note: In order to verify a given alleged sibling path, it suffices to know the hash h, the number of leaves, and the root value of $MT_{h,b}(X)$.

Definition 1.4 (Merkle-tree Protocol). Denote by $MTP_h(v, s, u)$ the Merkle-tree Protocol with respect to hash function h where the verifier knows the root value v and number of leaves s, and asks the prover to see q leaves of the tree along with sibling paths. The verifier accepts if all the sibling paths are valid.

2 Lemma and Proof

Lemma 2.1 (Merkle-tree Lemma). There exists a black-box extractor K with oracle access to a Merkle-tree prover, that has the following properties:

- 1. For every prover P and $v \in \{0,1\}^*$, $s, u \in \mathbb{N}$, and $\delta \in [0,1]$, $K^P(v, s, u, \delta)$ makes at most $u^2 s(\log(s) + 1)/\delta$ calls to its prover oracle P.
- 2. Fix any hash function h and string $X \in \{0,1\}^{sb}$, and let v be the root value of $MT_{h,b}(X)$. Also fix some $u \in \mathbb{N}$, and a prover P^* that may depend on h, X, u.

Then if P^* has probability at least $(1 - \alpha)^u + \delta$ of convincing the verifier in the Merkle-tree protocol $MTP_h(v, s, u)$ (for some $\alpha, \delta \in (0, 1]$), then with probability at least 1/4 (over its internal randomness) the extractor $K^{P^*}(v, s, u, \delta)$ outputs values for at least $(1 - \alpha)s$ of the leaves, together with valid sibling paths for all these leaves.

Proof. Let $\alpha, \delta \in (0, 1]$, $u \in \mathbb{N}$. Fix a hash function h, and a string $X \in \{0, 1\}^{sb}$. Fix a prover P^* that possibly depends on h, X, u, and suppose P^* convinces the verifier in $MTP_h(v, s, u)$ with probability at least $(1 - \alpha)^u + \delta$.

Consider the following extractor K:

```
procedure K^{P*}(v, s, u, \delta)
for i = 1 to u do
for l = 1 to s do
for u(\log(s) + 1)/\delta times do
Choose at random l_1, ..., l_u \in [s]
Query P^*(l_1, ..., l_{i-1}, l, l_{i+1}, ..., l_u)
end for
end for
```

end for

Output sibling paths for all the leaves for which P^* ever gave a valid sibling path. end procedure

It is obvious that K makes at most $u^2 s(\log(s) + 1)/\delta$ calls to its oracle, so property 1 of the lemma is satisfied. We must now show that K outputs values for at least $(1 - \alpha)s$ of the leaves with probability at least 1/4.

We say " $P^*(l_1, ..., l_u)$ is valid" if P^* responds with valid sibling paths for every leaf when queried on leaves $l_1, ..., l_u$.

For leaf index $l \in [s]$ and query index $i \in [u]$, we say "l is *i-good*" if $\operatorname{Pr}_{l_1,\ldots,l_u}[P^*(l_1,\ldots,l_{i-1},l,l_{i+1},\ldots,l_u)$ is valid] $\geq \delta/u$. For $i \in [u]$, let $\operatorname{Good}_i := \{l \in [s] : l \text{ is } i\text{-good}\}.$

A key claim is that there exists at least one query index $\hat{i} \in [u]$ such that $|\text{Good}_{\hat{i}}| \ge (1 - \alpha)s$. To prove the claim, assume for contradiction that $\forall i \in [u]$, $|\text{Good}_i| < (1 - \alpha)s$. Then we have:

$$\begin{aligned} \Pr_{l_1,\dots,l_u} & \left[P^*(l_1,\dots,l_u) \text{ is valid} \right] \\ &= \Pr\left[P^*(l_1,\dots,l_u) \text{ is valid AND } l_i \text{ is } i\text{-good } \forall i \in [u] \right] \\ &+ \Pr\left[P^*(l_1,\dots,l_u) \text{ is valid AND } \exists i \in [u] : l_i \text{ is not } i\text{-good} \right] \\ &\leq \Pr\left[\bigcap_{i \in [u]} l_i \text{ is } i\text{-good} \right] + \Pr\left[P^* \text{ is valid AND } \bigcup_{i \in [u]} l_i \text{ is not } i\text{-good} \right] \\ &\leq \prod_{i=1}^u \frac{|\text{Good}_i|}{s} + \sum_{i=1}^u \Pr\left[P^* \text{ is valid } | l_i \text{ is not } i\text{-good} \right] \\ &< (1-\alpha)^u + u(\delta/u) = (1-\alpha)^u + \delta \end{aligned}$$

But this is a contradiction since $\Pr_{l_1,...,l_u}[P^*(l_1,...,l_u)$ is valid] $\geq (1-\alpha)^u + \delta$ by assumption. Thus the claim holds.

Now consider the inner loop of the extractor code with some i, l, where l is *i*-good. Let $X_{i,l}$ be the binomial random variable for the number of times $P^*(l_1, ..., l_{i-1}, l, l_{i+1}, ..., l_u)$ is valid in the inner loop. We have:

$$\begin{aligned} \Pr\left[X_{i,l} = 0\right] \\ &< \left(1 - \frac{\delta}{u}\right)^{u(\log(s)+1)/\delta} \\ &< (e^{-\delta/u})^{u(\log(s)+1)/\delta} \\ &< e^{-\log(s)-1} \end{aligned} \tag{(1+x)} \leq e^x) \\ &\implies \Pr\left[X_{i,l} \geq 1\right] \geq 1 - e^{-\log(s)-1} \geq 1 - \frac{1}{es} \end{aligned}$$

Let X_i be the binomial random variable for the number of times that P^* is valid at least once in the innermost loop when l is *i*-good. When K reaches index \hat{i} in the outer loop we get that:

$$\Pr\left[X_{\hat{i}} \ge (1-\alpha)s\right]$$

$$\ge \left(1 - \frac{1}{es}\right)^{(1-\alpha)s}$$

$$\ge \left(1 - \frac{1/e}{s}\right)^{s}$$

$$\ge \left(1 - \frac{1}{e}\right) > 1/4 \qquad ((1+x/n)^n \ge 1+x)$$

Note: If h is collision-resistant, then valid query responses are consistent with the original input string X.

References

 Shai Halevi, Danny Harnik, Benny Pinkas, and Alexandra Shulman-Peleg. Proofs of ownership in remote storage systems. In *Proceedings of the 18th ACM Conference on Computer and Communications Security*, CCS '11, page 491–500, New York, NY, USA, 2011. Association for Computing Machinery. https://eprint.iacr.org/2011/207.