The Merkle-tree Lemma

Christopher Smith

Last Updated: January 8, 2024
A self-contained document on the statement and proof of the Merkle-tree lemma, as found in [I].

1 Definitions

Definition 1.1 (Merkle Tree). Denote by MTj, ,(X) the Merkle tree over string X € {0,1}* with hash function h and
b-bit leaf values. For each node n € MT}, ,(X), denote by v,, the value associated with node n. The value of a leaf is the
corresponding block of X, and the value of an intermediate node n is the hash v,, = h(v;,v,), where v; and v, are the
values of the left and right children of n. MT}, ;(X) is a completely balanced binary tree, as we can fill in missing nodes
with empty string valued nodes.

Definition 1.2 (Sibling Path). For a leaf node | € M T}, ,(X), the sibling path of | consists of the value v;, along with all
the values of all the siblings of nodes on the path from [to the root.

Definition 1.3 (Valid Path). An alleged sibling path (v, vng, ..., Un;) is valid with respect to MTy, 5(X) if i is the height
of the tree, and the root value as computed on the sibling path agrees with the root value of MT}, ,(X).

Note: In order to verify a given alleged sibling path, it suffices to know the hash h, the number of leaves, and the root
value of M T}, ,(X).

Definition 1.4 (Merkle-tree Protocol). Denote by MT Py (v, s,u) the Merkle-tree Protocol with respect to hash function
h where the verifier knows the root value v and number of leaves s, and asks the prover to see ¢ leaves of the tree along
with sibling paths. The verifier accepts if all the sibling paths are valid.

2 Lemma and Proof

Lemma 2.1 (Merkle-tree Lemma). There exists a black-box extractor K with oracle access to a Merkle-tree prover, that
has the following properties:

1. For every prover P and v € {0,1}*, s,u € N, and § € [0,1], KF (v, s,u,8) makes at most u?s(log(s) +1)/5 calls to
its prover oracle P.

2. Fir any hash function h and string X € {0,1}*%, and let v be the root value of MTy, ,(X). Also fix some u € N, and
a prover P* that may depend on h, X, u.
Then if P* has probability at least (1 — a)* + & of convincing the verifier in the Merkle-tree protocol MT Py (v, s, u)
(for some , 6 € (0,1]), then with probability at least 1/4 (over its internal randomness) the extractor K (v, s,u, 8)
outputs values for at least (1 — «)s of the leaves, together with valid sibling paths for all these leaves.

Proof. Let a,6 € (0,1], u € N. Fix a hash function A, and a string X € {0,1}**. Fix a prover P* that possibly depends
on h, X, u, and suppose P* convinces the verifier in MT Py, (v, s, u) with probability at least (1 — a)" + 4.

Consider the following extractor K:
procedure K*(v,s,u,0)
for i =1 tou do
for /=1 to s do
for u(log(s) +1)/6 times do
Choose at random [y, ..., 1, € [s]
Query P*(ll, ceey li—17 l, li+1a cery lu)
end for
end for

end for
Output sibling paths for all the leaves for which P* ever gave a valid sibling path.
end procedure

It is obvious that K makes at most u%s(log(s) + 1)/d calls to its oracle, so property 1 of the lemma is satisfied. We must
now show that K outputs values for at least (1 — «)s of the leaves with probability at least 1/4.

We say “P*(ly,...,1,) is valid” if P* responds with valid sibling paths for every leaf when queried on leaves Iy, ..., .
For leaf index [€ [s] and query index i € [u], we say “l is i-good” if Pry, . 1 [P*(I1, .., liz1, 1, lit1, oy 1) s valid] > 6 /u.
For i € [u], let Good; := {l € [s] : | is i-good}.

A key claim is that there exists at least one query index 7 € [u] such that |Good;| > (1 — a)s. To prove the claim, assume
for contradiction that Vi € [u], |Good;| < (1 — «)s. Then we have:

Prl [P*(I1,...,Ly) is valid]

1yeeerlu

= Pr[P*(l1,...,1,) is valid AND I; is i-good Vi € [u]]
+ Pr[P*(ly,...,1,) is valid AND Fi € [u] : I; is not i-good]

<Pr ﬂ l;is i-good | + Pr | P*is valid AND U l;is not i-good

i€[u] i€fu]

IN

S

H |Good;]| N Zpr [P* is valid | I;is not i-good]
i=1 i=1
<(l—a)+uld/u)y=1-a)"+0

But this is a contradiction since Pry, ;. [P*(l1,..., 1,)is valid] > (1 — «)* + 0 by assumption. Thus the claim holds.

Now consider the inner loop of the extractor code with some %,l, where [is i-good. Let X;; be the binomial random
variable for the number of times P*(ly,...,l;_1,1,l;11, ..., 1) is valid in the inner loop. We have:

Pr[X,,; = 0]
5 llos(s)+1)/5
<(-3)
u
< (efé/u)u(log(s)Jrl)/& ((1 +$) < em)
< e—log(s)—l
1
— PrX;; >1]>1—¢ 81 >1_ —
eS

Let X; be the binomial random variable for the number of times that P* is valid at least once in the innermost loop
when [is i-good. When K reaches index ¢ in the outer loop we get that:

Pr(X; > (1—a)s]

(-2
> (1-1) > (L4 a/m)r > 1+44)

Note: If h is collision-resistant, then valid query responses are consistent with the original input string X.

References

[1] Shai Halevi, Danny Harnik, Benny Pinkas, and Alexandra Shulman-Peleg. Proofs of ownership in remote storage
systems. In Proceedings of the 18th ACM Conference on Computer and Communications Security, CCS 11, page
491-500, New York, NY, USA, 2011. Association for Computing Machinery. https://eprint.iacr.org/2011/207.

https://eprint.iacr.org/2011/207

	Definitions
	Lemma and Proof

