
Some Notes on Randomness Extraction

Christopher Smith

Last Updated: October 19, 2025

1 Defining Extractors

Informally, a (seeded) randomness extractor is an algorithm that takes as input a truly random
seed and some imperfect source of randomness, and outputs bits that are statistically close to uni-
form. Before formally presenting randomness extractors in Definition 3, we present the prerequisite
notions of statistical distance and min-entropy.

Definition 1 (Statistical Distance). Let X,Y be two random variables with common support U .
Then the statistical distance between X and Y is

SD(X,Y) =
1

2

∑
u∈U
|Pr[X = u]− Pr[Y = u]| (1)

Definition 2 (Min-Entropy). The min-entropy of a random variable W is defined as

H∞(W) = − log
(
max
w

Pr[W = w]
)

(2)

We may now formally define strong randomness extractors. Strong extractors are typically desirable
over weak extractors because as long as an initial seed is chosen uniformly at random, it can be
publicly exposed and used for all future invocations of the extractor.

Definition 3 (Strong Extractor). Let Ext : {0, 1}n × {0, 1}d → {0, 1}ℓ be a polynomial time com-
putable function. We say that Ext is an efficient (n,m, ℓ, ϵ)-strong extractor if, for any random
variable W on {0, 1}n satisfying H∞(W) ≥ m, we have

SD((Ext(W ;Ud), Ud) , (Ul, Ud)) ≤ ϵ (3)

where Ud is uniform on {0, 1}d.

Strong extractors as given in Definition 3 are also sometimes referred to as worst-case strong extrac-
tors to distinguish them from the average-case strong extractors of Definition 5. The motivation
for average-case extractors (as given in [DORS08]) is that an adversary hoping to learn information
about a random variable W may obtain some side information z (sampled from a random variable
Z) such that H∞(W |Z = z) is unacceptably low. If we assume, however, that the adversary has
no control over its side-information Z—as is often the case—then we can consider extractors based
on a weaker notion of min-entropy that averages over all possible z ← Z.

1

Definition 4 (Average Conditional Min-Entropy [DORS08]). Let (W,Z) be a pair of random
variables. The average conditional min-entropy of W given Z is:

H̃∞(W |Z) = − log

(
E

z←Z

[
max
w

Pr[W = w
∣∣∣ Z = z]

])
= − log

(
E

z←Z

[
2−H∞(W |Z=z)

])
(4)

Definition 5 (Average-Case Strong Extractor [DORS08]). Let Ext : {0, 1}n × {0, 1}d → {0, 1}ℓ be
a polynomial time computable function. We say that Ext is an efficient average-case (n,m, ℓ, ϵ)-
strong extractor if, for any pair of random variables (W,Z) such that W is a random variable over
{0, 1}n satisfying H̃∞(W |Z) ≥ m, we have

SD((Ext(W ;Ud), Ud, Z) , (Ul, Ud, Z)) ≤ ϵ (5)

2 Basic Results

Perhaps the most important—or at least the most well-known—result about extractors is that they
can be constructed from universal hash functions. This famous result is known as the Leftover Hash
Lemma. The term was coined by [IZ89], though the lemma originally appeared in [ILL89]. The
version provided here is taken from [DORS08].

Definition 6 (Universal Hash Function [CW77]). A keyed hash function, or, equivalently, a family
of hash functions H = {Hs : A→ B | s ∈ S} is called universal if, for every x ̸= y ∈ A,

| {s ∈ S | Hs(x) = Hs(y)} | ≤
|H|
|B|

=
|S|
|B|

(6)

Or in other words,

Pr
s←S

[Hs(x) = Hs(y)] ≤
1

|B|
(7)

Lemma 7 (Leftover Hash Lemma [DORS08]). Assume a family of functions{
Hs : {0, 1}n → {0, 1}ℓ

}
is universal. Then, for any random variable W ,

SD((HS(W), S) , (Uℓ, S)) ≤
1

2

√
2−H∞(W)2ℓ (8)

In particular, universal hash functions are (n,m, ℓ, ϵ)-strong extractors whenever
ℓ ≤ m− 2 log(1/ϵ) + 2.

Lemma 8 (Relationship Between Worst-Case and Average-Case Strong Extractors [DORS08]).
For any δ > 0, if Ext is a (worst-case) (n,m − log(1/δ), ℓ, ϵ)-strong extractor, then Ext is also an
average-case (n,m, ℓ, ϵ+ δ)-strong extractor.

The upshot of Lemma 8 is that we can instantiate any average-case (n,m, ℓ, ϵ)-strong extractor
with a (n,m− log(1/δ), ℓ, ϵ− δ)-strong extractor, for any 0 < δ < ϵ. This is useful because we have
many constructions of strong extractors. In particular, the Leftover Hash Lemma (Lemma 7) states
that universal hash functions are strong extractors. As it turns out, however, we need not appeal
to Lemma 8 if we want average-case extractors from universal hash functions, since the following
generalized leftover hash lemma gives us this directly.

2

Lemma 9 (Generalized Leftover Hash Lemma [DORS08]). Assume a family of functions{
Hs : {0, 1}n → {0, 1}ℓ

}
is universal. Then for any pair of random variables W,Z,

SD((HS(W), S, Z) , (Uℓ, S, Z)) ≤ 1

2

√
2−H̃∞(W |Z)2ℓ (9)

In particular, universal hash functions are average-case (n,m, ℓ, ϵ)-strong extractors whenever
ℓ ≤ m− 2 log(1/ϵ) + 2.

Potentially the simplest and most widely known example of a randomness extractor is the “inner
product extractor”, which is obtained via application of the leftover hash lemma to a hash family
that hashes its input by taking the dot product of the input and the key. The following claim shows
how the inner product hash family is universal.

Claim 10 (Inner Product Hashing is Universal). Let F be a finite field, and n ∈ N. The “inner
product” hash family H = {Hs : Fn → F | s ∈ Fn} given by Hs(x) =

∑
i sixi is universal.

Proof. Let x ̸= y ∈ Fn, so ∃i∗ s.t. xi∗ ̸= yi∗ We have:

Pr
s

$←Fn

[Hs(x) = Hs(y)] = Pr

si∗ = −
∑
i ̸=i∗

si(xi − yi)/(xi∗ − yi∗)

 =
1

|F|

3 Linear Extractors are Invertible

It is sometimes desirable in certain applications—such as wiretap protocols [CDS11] and leakage-
resilient secret sharing [CKOS22]—to have extractors that are invertible. The work of [CKOS22]
tells us that any linear extractor is invertible. An extractor Ext : {0, 1}n × {0, 1}d → {0, 1}ℓ is
linear if for any seed s ∈ {0, 1}d, Ext(·, s) is a linear function. That is, Ext(·, s) is a linear map
between {0, 1}n and {0, 1}ℓ viewed as vector spaces. The following lemma due to [CKOS22] gives
us a generic polynomial time procedure for finding preimages of any linear extractor. The lemma
additionally requires that the linear extractor be “efficient”, but we have already assumed this as
Definitions 3 and 5 require extractors to be computable in polynomial time.

Lemma 11 (Linear Extractors are Invertible (Lemma 2, [CKOS22])). For every efficient linear
extractor Ext, there exists an efficient randomized function InvExt : {0, 1}ℓ×{0, 1}d → {0, 1}n∪{⊥}
such that

1. Un, Ud,Ext(Un;Ud) = InvExt(Ext(Un;Ud), Ud), Ud,Ext(Un;Ud)

2. For each (y, s) ∈ {0, 1}ℓ × {0, 1}d,

(a) Pr[InvExt(y, s) = ⊥] = 1 iff ∄w ∈ {0, 1}n such that Ext(w; s) = y.

(b) Pr[Ext(InvExt(y, s); s) = y] = 1 iff ∃w ∈ {0, 1}n such that Ext(w; s) = y.

Proof. We only restate the construction of InvExt. For the rest of the proof, consult Lemma 2
of [CKOS22]. Recall that Ext(·, s) is a linear map between vector spaces {0, 1}n and {0, 1}ℓ. Let
Is and Ks be the image and kernel of Ext(·, s). We now define InvExt as follows:
InvExt(y ∈ {0, 1}ℓ , s ∈ {0, 1}d)→ {0, 1}n ∪ {⊥}:

3

• If y ∈ Is:

– Let w be such that Ext(w; s) = y

– Sample z uniformly from Ks

– Output w + z

• Else output ⊥.

InvExt is efficient because the bases for the linear subspaces Ks, Is, and the preimage space on y
can all be determined in polynomial time (e.g., via Gaussian elimination). To be slightly more
concrete, we could represent Ext(·, s) as a matrix M , compute the LUP decomposition of M , use
this decomposition to solve for an arbitrary w s.t. Mw = y (or output ⊥ if no solution exists) and
a random z s.t. Mz = 0, then output w + z.

4 Towards Optimal Extraction

In Sec. 2 we saw the cute example of the inner product extractor. Assuming F = {0, 1}, observe this
extractor has a seed length of d = n bits but an output length of only ℓ = 1 bit. Informally, short
seed length is a desirable property because it represents a “thriftier” extractor that, all else fixed,
extracts the same amount of randomness for the price of fewer truly random bits. Thus, given an
(n,m, ℓ, ϵ)-strong extractor, it is natural to ask for lower bounds on the seed length d in terms of
n,m, ℓ, ϵ. Of course, we also want to make sure our extractors still extract as much min-entropy
from the source as possible. So, in addition to short seeds, we are interested in extractors where ℓ
is close to m 1. In short, to prove a “lower bound” on the “quality” of any extractor, one can lower
bound d and upper bound ℓ.

Chris: TODO: lower bound on d and upper bound on ℓ from NZ93 randomness linear in space.

Chris: TODO: nonconstructive existence result Trevisan pseudorandomness chapter 6 extractors. These
aren’t efficient are they? Chris: rrv99 cites Tight bounds for depth-two superconcentrators for... both
TODOs?

5 The Trevisan Extractor

The Trevisan extractor is an efficient, near-optimal construction in terms of its seed length and
entropy loss. The original construction was given by Luca Trevisan [Tre99], and the extractor
quality was subsequently improved to near-optimal factors by Raz, Reingold, and Vadhan [RRV99].
We focus on the improved version [RRV99] given by the following result, and adapt notation to
match our extractor notation.

Theorem 12 (Theorem 4 [RRV99]). For every n,m ∈ N and ϵ > 0 such that m ≤ n, there exist
(efficient) (n,m,m−∆, ϵ)-strong extractors, where the entropy loss ∆ = 2 log(1/ϵ)+O(1) is optimal
up to additive constants, and

1. d = O(log2(n/ϵ) · logm), or

2. d = O(log2(n) · log(1/ϵ) · logm)

1Note m − ℓ > 0 since we consider strong extractors where the seed can be public. The quantity ∆ := m − ℓ is
called the entropy loss.

4

We are interested in the second extractor of Theorem 12, because the seed length does not have
a quadratic dependence on log(1/ϵ). Towards the goal of obtaining a concrete description of this
extractor amenable to implementation, we unpack the relevant portion of the proof of Theorem 12,
which says that this second extractor is obtained by applying Lemma 13 to the second (strong)
extractor of Theorem 14.

Lemma 13 (Lemma 28 [RRV99]). Let Ext1 : {0, 1}n × {0, 1}d1 → {0, 1}m−∆1 be any (n,m,m −
∆1, ϵ/4)-strong extractor with entropy loss ∆1. Then there exists a (n,m,m−∆, ϵ)-strong extractor
Ext : {0, 1}n × {0, 1}d1+d2 → {0, 1}m−∆ such that

1. Ext has entropy loss ∆ = 2⌈log(1/ϵ)⌉+ 5 Chris: notice this is optimal up to additive constants

2. d2 = O(∆1 + log n)

3. Ext is poly-time computable with one oracle query to Ext1.

Theorem 14 (Theorem 2 [RRV99]). For every n,m, ℓ ∈ N and ϵ > 0 such that ℓ ≤ m ≤ n, there
exist (efficient) (n,m, ℓ, ϵ)-extractors with

1. d = O(log
2 n·log(1/ϵ)
log(m/ℓ)), or

2. d = O(log2 n · log(1/γ) · log(1/ϵ)), where 1 + γ = m/(ℓ− 1), and γ < 1/2.

Our task is now split in two parts: (a) understand the transformation of Lemma 13, and (b)
understand the second extractor of Theorem 14.

5.1 Transformation of Lemma 13

Chris: Ext(x, (y1, y2)) = Ext1(x, y1) ◦ Ext2(x, y2)

5.2 Second Extractor of Theorem 14

Before presenting the construction of the extractor, we introduce the following prerequisite no-
tions: weak designs, multilinear error-correcting codes, the Nisan-Wigderson PRG, and pairwise-
independent hash functions.

5.2.1 Weak Designs

In combinatorics, a design is a collection of sets with small pairwise intersections. We focus specif-
ically on so-called weak designs, adapting notation to clarify the relationship between design pa-
rameters and extractor parameters.

Definition 15 (Weak (ℓ, t, p, d)-Design [RRV99,HR03]). A family of sets S1, . . . , Sℓ ⊆ [d] is a weak
(ℓ, t, p, d)-design if

1. For all i, |Si| = t

2. For all i,
∑

j<i 2
Si∩Sj ≤ p · (t− 1)

Constructing explicit weak designs is a non-trivial task. Indeed, the original weak designs used by
Raz et al. [RRV99] were obtained by derandomizing a nonconstructive existence proof via Method
of Conditional Expectations [Wik24]. While this construction is efficient in the sense that it runs
in polynomial time and space, we will focus on the improved weak design constructions given by

5

the subsequent work of Hartman and Raz [HR03]. These constructions satisfy the following notion
of “explicitness”.

Definition 16 (Explicit Weak Design [HR03]). A weak (ℓ, t, p, d)-design S = S1, . . . , Sℓ ⊂ [d] is
explicit if there exists an algorithm that, given an index 1 ≤ i ≤ ℓ, outputs the subset Si in time
T = poly(log ℓ, t) and space S = O(log ℓ+ log t).

Theorem 17 Chris: TODO: think we need theorem 4 as well guarantees explicit weak designs for
general choices of parameters. The proof of this theorem relies on application of a certain transfor-
mation to the explicit weak designs guaranteed by Theorem 18, which fixes parameters d = t2 and
p = e2. The transformation can be found in Lemma 5.1 of Hartman and Raz [HR03]. We focus
instead on the construction underlying Theorem 18.

Theorem 17 (Theorem 3 [HR03]).

1. For every ℓ, t ∈ N, such that ℓ = Ω(tlog t), and constant p > 1 there exists an explicit weak
(ℓ, t, p, d)-design, where d = O(t2).

2. For every ℓ, t ∈ N and p > 1, such that for some constant α ≥ 1, 2t < αℓ, there exists an
explicit weak (ℓ, t, p, d)-design, where d = O(t2/ ln p).

Theorem 18 (Theorem 1 [HR03]). Let ℓ, t ∈ N and assume for simplicity that t is prime (if t is
not prime, pick the smallest prime greater than t), and ℓ is a power of t. Then there exists an
explicit weak (ℓ, t, p, d)-design, with d = t2 and p = e2 (where e denotes the base of the natural
logarithm).

Construction. Let Ft be the finite field of size t. Since d = t2, we can identify each number in
[d] with an ordered pair of elements in Ft (e.g, Ft × Ft → [d] by (a, b) 7→ ta+ b, interpreting a and
b as integers). Thus, constructing the design is equivalent to constructing subsets of F2

t . The weak
design S is defined as follows:

S :=
{
Sp

∣∣∣ p ∈ F≤(log ℓ/ log t)−1t [x]
}

Sp := {(a, p(a)) | a ∈ Ft}

Given a subset index 1 ≤ i ≤ ℓ, we can output the set Si in time T = poly(log ℓ, t) and space
S = O(log ℓ). View i as its length log ℓ bit-wise representation, and divide this bitstring into
log ℓ/ log t parts. The k-th part represents the coefficient of the i-th polynomial p. Then, for every
a ∈ Ft, map (a, p(a)) to [d]. The collection of these mappings is Si. For the argument that the
above construction is a weak design, see the original proof [HR03].

6

References

[CDS11] Mahdi Cheraghchi, Fredric Didier, and Amin Shokrollahi. Invertible extractors and wire-
tap protocols. IEEE Transactions on Information Theory, 58(2):1254–1274, 2011.

[CKOS22] Nishanth Chandran, Bhavana Kanukurthi, Sai Lakshmi Bhavana Obbattu, and Sruthi
Sekar. Short leakage resilient and non-malleable secret sharing schemes. In Annual Inter-
national Cryptology Conference, pages 178–207. Springer, 2022. https://eprint.iacr.

org/2022/216.pdf.

[CW77] J Lawrence Carter and Mark N Wegman. Universal classes of hash functions. In Pro-
ceedings of the ninth annual ACM symposium on Theory of computing, pages 106–112,
1977.

[DORS08] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. Fuzzy extractors:
How to generate strong keys from biometrics and other noisy data. SIAM journal on
computing, 38(1):97–139, 2008.

[HR03] Tzvika Hartman and Ran Raz. On the distribution of the number of roots of polynomials
and explicit weak designs. Random Struct. Algorithms, 23(3):235–263, 2003.

[ILL89] R. Impagliazzo, L. A. Levin, and M. Luby. Pseudo-random generation from one-way
functions. In Proceedings of the Twenty-First Annual ACM Symposium on Theory of
Computing, STOC ’89, page 12–24, New York, NY, USA, 1989. Association for Computing
Machinery.

[IZ89] R. Impagliazzo and D. Zuckerman. How to recycle random bits. In 30th Annual Symposium
on Foundations of Computer Science, pages 248–253, 1989.

[RRV99] Ran Raz, Omer Reingold, and Salil P. Vadhan. Extracting all the randomness and reduc-
ing the error in trevisan’s extractors. Electron. Colloquium Comput. Complex., TR99-046,
1999.

[Tre99] Luca Trevisan. Construction of extractors using pseudo-random generators (extended
abstract). In Jeffrey Scott Vitter, Lawrence L. Larmore, and Frank Thomson Leighton,
editors, Proceedings of the Thirty-First Annual ACM Symposium on Theory of Computing,
May 1-4, 1999, Atlanta, Georgia, USA, pages 141–148. ACM, 1999.

[Wik24] Wikipedia contributors. Method of conditional probabilities — Wikipedia, the free ency-
clopedia. https://en.wikipedia.org/w/index.php?title=Method_of_conditional_

probabilities&oldid=1214641630, 2024. [Online; accessed 5-January-2025].

7

https://eprint.iacr.org/2022/216.pdf
https://eprint.iacr.org/2022/216.pdf
https://en.wikipedia.org/w/index.php?title=Method_of_conditional_probabilities&oldid=1214641630
https://en.wikipedia.org/w/index.php?title=Method_of_conditional_probabilities&oldid=1214641630

	Defining Extractors
	Basic Results
	Linear Extractors are Invertible
	Towards Optimal Extraction
	The Trevisan Extractor
	Transformation of lem:rrv99-lem28
	Second Extractor of thm:rrv99-thm2
	Weak Designs

