
Some Notes on Randomness Extraction

Christopher Smith

Last Updated: November 26, 2024

1 Defining Extractors

Informally, a (seeded) randomness extractor is an algorithm that takes as input a truly random
seed and some imperfect source of randomness, and outputs bits that are statistically close to uni-
form. Before formally presenting randomness extractors in Definition 3, we present the prerequisite
notions of statistical distance and min-entropy.

Definition 1 (Statistical Distance). Let X,Y be two random variables with common support U .
Then the statistical distance between X and Y is

SD(X,Y) =
1

2

∑
u∈U
|Pr[X = u]− Pr[Y = u]| (1)

Definition 2 (Min-Entropy). The min-entropy of a random variable W is defined as

H∞(W) = − log
(
max
w

Pr[W = w]
)

(2)

We may now formally define strong randomness extractors. Strong extractors are typically desirable
over weak extractors because as long as an initial seed is chosen uniformly at random, it can be
publicly exposed and used for all future invocations of the extractor.

Definition 3 (Strong Extractor). Let Ext : {0, 1}n × {0, 1}d → {0, 1}ℓ be a polynomial time com-
putable function. We say that Ext is an efficient (n,m, ℓ, ϵ)-strong extractor if, for any random
variable W on {0, 1}n satisfying H∞(W) ≥ m, we have

SD((Ext(W ;Ud), Ud) , (Ul, Ud)) ≤ ϵ (3)

where Ud is uniform on {0, 1}d.

Strong extractors as given in Definition 3 are also sometimes referred to as worst-case strong extrac-
tors to distinguish them from the average-case strong extractors of Definition 5. The motivation
for average-case extractors (as given in [DORS08]) is that an adversary hoping to learn information
about a random variable W may obtain some side information z (sampled from a random variable
Z) such that H∞(W |Z = z) is unacceptably low. If we assume, however, that the adversary has
no control over its side-information Z—as is often the case—then we can consider extractors based
on a weaker notion of min-entropy that averages over all possible z ← Z.

1

Definition 4 (Average Conditional Min-Entropy [DORS08]). Let (W,Z) be a pair of random
variables. The average conditional min-entropy of W given Z is:

H̃∞(W |Z) = − log

(
E

z←Z

[
max
w

Pr[W = w
∣∣∣ Z = z]

])
= − log

(
E

z←Z

[
2−H∞(W |Z=z)

])
(4)

Definition 5 (Average-Case Strong Extractor [DORS08]). Let Ext : {0, 1}n × {0, 1}d → {0, 1}ℓ be
a polynomial time computable function. We say that Ext is an efficient average-case (n,m, ℓ, ϵ)-
strong extractor if, for any pair of random variables (W,Z) such that W is a random variable over
{0, 1}n satisfying H̃∞(W |Z) ≥ m, we have

SD((Ext(W ;Ud), Ud, Z) , (Ul, Ud, Z)) ≤ ϵ (5)

2 Basic Results

Perhaps the most important—or at least the most well-known—result about extractors is that they
can be constructed from universal hash functions. This famous result is known as the Leftover Hash
Lemma. The term was coined by [IZ89], though the lemma originally appeared in [ILL89]. The
version provided here is taken from [DORS08].

Definition 6 (Universal Hash Function). A keyed hash function, or, equivalently, a family of hash

functions
{
Hs : {0, 1}n → {0, 1}ℓ

}
s∈S

is called universal if, for every x, y ∈ {0, 1}n with x ̸= y,

Pr
s←S

[Hs(x) = Hs(y)] ≤ 2−ℓ (6)

Lemma 7 (Leftover Hash Lemma [DORS08]). Assume a family of functions{
Hs : {0, 1}n → {0, 1}ℓ

}
is universal. Then, for any random variable W ,

SD((HS(W), S) , (Uℓ, S)) ≤
1

2

√
2−H∞(W)2ℓ (7)

In particular, universal hash functions are (n,m, ℓ, ϵ)-strong extractors whenever
ℓ ≤ m− 2 log(1/ϵ) + 2.

Lemma 8 (Relationship Between Worst-Case and Average-Case Strong Extractors [DORS08]).
For any δ > 0, if Ext is a (worst-case) (n,m − log(1/δ), ℓ, ϵ)-strong extractor, then Ext is also an
average-case (n,m, ℓ, ϵ+ δ)-strong extractor.

The upshot of Lemma 8 is that we can instantiate any average-case (n,m, ℓ, ϵ)-strong extractor
with a (n,m− log(1/δ), ℓ, ϵ− δ)-strong extractor, for any 0 < δ < ϵ. This is useful because we have
many constructions of strong extractors. In particular, the Leftover Hash Lemma (Lemma 7) states
that universal hash functions are strong extractors. As it turns out, however, we need not appeal
to Lemma 8 if we want average-case extractors from universal hash functions, since the following
generalized leftover hash lemma gives us this directly.

Lemma 9 (Generalized Leftover Hash Lemma [DORS08]). Assume a family of functions{
Hs : {0, 1}n → {0, 1}ℓ

}
is universal. Then for any pair of random variables W,Z,

SD((HS(W), S, Z) , (Uℓ, S, Z)) ≤ 1

2

√
2−H̃∞(W |Z)2ℓ (8)

In particular, universal hash functions are average-case (n,m, ℓ, ϵ)-strong extractors whenever
ℓ ≤ m− 2 log(1/ϵ) + 2.

2

3 Two Matrix Constructions of Universal Hash Functions

Claim 10 (Matrix hashing is universal). Interpret the set M = {0, 1}ℓ×n as the set of all ℓ by n

matrices over F2. Define a hash family
{
HM : {0, 1}n → {0, 1}ℓ

}
M∈M

by HM (x) = Mx, where x

is interpreted as a length n vector over F2. This hash family is universal.

Proof. Let x ̸= y ∈ {0, 1}n. We wish to show that PrM [Mx = My] ≤ 2−ℓ. See that the event
Mx = My implies M(x − y) = 0. Because (x − y) ̸= 0, there exists an index j∗ such that
(x− y)j∗ = 1. Let Mi = (mi,j)j∈[n] denote the i-th row of M . We have

Pr
M←M

[M(x− y) = 0] = Pr
M←M

[Mi(x− y) = 0 ∀i ∈ [ℓ]]

=
∏
i∈[ℓ]

Pr
Mi←{0,1}n

[Mi(x− y) = 0] (Mi chosen independently)

=
∏
i∈[ℓ]

Pr
Mi←{0,1}n

mi,j∗ =
∑
j ̸=j∗

mi,j(x− y)j

 ((x− y)j∗ = 1)

=
∏
i∈[ℓ]

Pr
mi,j∗←{0,1}

[mi,j∗ = arbitrary bit] (mi,j∗ uniform and independent of all mi,j ̸=j∗)

= 2−ℓ

Notice that the key/seed for matrix hashing is the description of the matrix M , which requires n · ℓ
bits. As observed in [HILL99], we can reduce this requirement to n + l − 1 bits by using Toeplitz
matrices. A matrix M = (mi,j) ∈ Fℓ×n

2 is Toeplitz if it is constant on its diagonals: for all i, j,
mi,j = mi+1,j+1 = αi−j , where α1−n, α2−n, . . . , α0, α1, . . . , αℓ−1 are the n+ ℓ− 1 constants.

Claim 11 (Toeplitz matrix hashing is universal). Consider the same matrix hash family as in
Claim 10, except we now requireM to be the set of all Toeplitz matrices over F2. This hash family
is universal.

Proof. Let x ̸= y ∈ {0, 1}n. We wish to show that PrM [Mx = My] ≤ 2−ℓ. See that the event
Mx = My implies M(x − y) = 0. Because (x − y) ̸= 0, there exists an index j∗ such that
(x− y)j∗ = 1. Let Mi = (mi,j)j∈[n] denote the i-th row of M . We have

Pr
M←M

[M(x− y) = 0] = Pr
M←M

[Mi(x− y) = 0 ∀i ∈ [ℓ]]

= Pr
M←M

mi,j∗ =
∑
j ̸=j∗

mi,j(x− y)j ∀i ∈ [ℓ]

 ((x− y)j∗ = 1)

= Pr
(m1,j∗ ,...,mℓ,j∗)

[mi,j∗ = arbitrary bit ∀i ∈ [ℓ]] (mi,j∗ uniform and independent of all mi,j ̸=j∗)

=
∏
i∈[ℓ]

Pr
mi,j∗←{0,1}

[mi,j∗ = arbitrary bit] (mi,j∗ independent of mi′ ̸=i,j∗)

= 2ℓ

3

Remark 12. Notice the proof of Claim 11 is almost the same as that of Claim 10, except we
just had to be more careful about how we invoke independence. In Claim 10 we first appealed to
independence between rows of a random matrix, and then to independence of elements within a
row. In Claim 11 we cannot appeal to independence between rows since the rows of a random
Toeplitz matrix are not independent. Instead, we first appealed to independence of elements within
a row of a random Toeplitz matrix, and then we appealed to independence of elements within a
column of a random Toeplitz matrix.

4 Linear Extractors are Invertible

It is sometimes desirable in certain applications—such as wiretap protocols [CDS11] and leakage-
resilient secret sharing [CKOS22]—to have extractors that are invertible. The work of [CKOS22]
tells us that any linear extractor is invertible. An extractor Ext : {0, 1}n × {0, 1}d → {0, 1}ℓ is
linear if for any seed s ∈ {0, 1}d, Ext(·, s) is a linear function. That is, Ext(·, s) is a linear map
between {0, 1}n and {0, 1}ℓ viewed as vector spaces. The following lemma due to [CKOS22] gives
us a generic polynomial time procedure for finding preimages of any linear extractor. The lemma
additionally requires that the linear extractor be “efficient”, but we have already assumed this as
Definitions 3 and 5 require extractors to be computable in polynomial time.

Lemma 13 (Linear Extractors are Invertible (Lemma 2, [CKOS22])). For every efficient linear
extractor Ext, there exists an efficient randomized function InvExt : {0, 1}ℓ×{0, 1}d → {0, 1}n∪{⊥}
such that

1. Un, Ud,Ext(Un;Ud) = InvExt(Ext(Un;Ud), Ud), Ud,Ext(Un;Ud)

2. For each (y, s) ∈ {0, 1}ℓ × {0, 1}d,

(a) Pr[InvExt(y, s) = ⊥] = 1 iff ∄w ∈ {0, 1}n such that Ext(w; s) = y.

(b) Pr[Ext(InvExt(y, s); s) = y] = 1 iff ∃w ∈ {0, 1}n such that Ext(w; s) = y.

Proof. We only restate the construction of InvExt. For the rest of the proof, consult Lemma 2
of [CKOS22]. Recall that Ext(·, s) is a linear map between vector spaces {0, 1}n and {0, 1}ℓ. Let
Is and Ks be the image and kernel of Ext(·, s). We now define InvExt as follows:
InvExt(y ∈ {0, 1}ℓ , s ∈ {0, 1}d)→ {0, 1}n ∪ {⊥}:

• If y ∈ Is:

– Let w be such that Ext(w; s) = y

– Sample z uniformly from Ks

– Output w + z

• Else output ⊥.

InvExt is efficient because the bases for the linear subspaces Ks, Is, and the preimage space on y
can all be determined in polynomial time.

A more concrete description of InvExt. Because Ext(·, s) is a linear map, we may assume that
the seed s describes a matrix M such that Ext(w, s) = Mw. For simplicity we additionally assume
M ∈ Fℓ×n

2 . Below we provide an equivalent but more concrete description of InvExt more amenable

4

to implementation.

InvExt(y ∈ {0, 1}ℓ , s ∈ {0, 1}d)→ {0, 1}n ∪ {⊥}:

• Recover the matrix M ∈ Fℓ×n
2 from s

• Let [E|y′] ∈ Fℓ×(n+1)
2 be the matrix obtained by performing row reduction on the augmented

matrix [M |y].

• If E has a zero row, say row i, but the element in the i-th row of y′ is non-zero, then Mx = y
has no solutions, so y /∈ Is, and we output ⊥

• Else (y ∈ Is):

– Use [E|y′] to back-solve for (arbitrary) w such that Mw = y

– Use [E|y′] to uniformly sample from Ks.

– Output w + z

References

[CDS11] Mahdi Cheraghchi, Fredric Didier, and Amin Shokrollahi. Invertible extractors and
wiretap protocols. IEEE Transactions on Information Theory, 58(2):1254–1274, 2011.

[CKOS22] Nishanth Chandran, Bhavana Kanukurthi, Sai Lakshmi Bhavana Obbattu, and Sruthi
Sekar. Short leakage resilient and non-malleable secret sharing schemes. In Annual
International Cryptology Conference, pages 178–207. Springer, 2022. https://eprint.
iacr.org/2022/216.pdf.

[DORS08] Yevgeniy Dodis, Rafail Ostrovsky, Leonid Reyzin, and Adam Smith. Fuzzy extractors:
How to generate strong keys from biometrics and other noisy data. SIAM journal on
computing, 38(1):97–139, 2008.

[HILL99] Johan H̊astad, Russell Impagliazzo, Leonid A Levin, and Michael Luby. A pseudoran-
dom generator from any one-way function. SIAM Journal on Computing, 28(4):1364–
1396, 1999.

[ILL89] R. Impagliazzo, L. A. Levin, and M. Luby. Pseudo-random generation from one-way
functions. In Proceedings of the Twenty-First Annual ACM Symposium on Theory
of Computing, STOC ’89, page 12–24, New York, NY, USA, 1989. Association for
Computing Machinery.

[IZ89] R. Impagliazzo and D. Zuckerman. How to recycle random bits. In 30th Annual Sym-
posium on Foundations of Computer Science, pages 248–253, 1989.

5

https://eprint.iacr.org/2022/216.pdf
https://eprint.iacr.org/2022/216.pdf

	Defining Extractors
	Basic Results
	Two Matrix Constructions of Universal Hash Functions
	Linear Extractors are Invertible

