
Finite Field Embeddings

Christopher Smith

Last Updated: July 1, 2025

1 Motivation

Recently, I have found myself working a lot with the MP-SPDZ engine for secure multi-party compu-
tation (MPC). In particular, I have been interested in understanding how a certain MPC script im-
plementing AES works: https://github.com/data61/MP-SPDZ/blob/master/Programs/Source/
aes.mpc. I naively expected the script to be a straightforward translation of the official FIPS 197
standard for AES, and was quite confused when I kept running into code referencing some kind
of “embedding” in nearly every part of the implementation. As it turns out, the “embedding” in
question was referring to field embeddings, that is, ring homomorphisms between fields. No such
embedding is ever referenced in FIPS 197, so why does it appear here?

I found my answer in the following GitHub issue: https://github.com/data61/MP-SPDZ/issues/
8. In the high-level Python interface exposed by MP-SPDZ for describing MPC circuits, developers
are given access to data types sgf2n and cgf2n for operating on elements in the finite field GF (2n).
This is great, since AES frequently uses the field on 256 elements GF (28). Unfortunately, according
to the above GitHub issue, the security of MPC protocols implemented in MP-SPDZ depends on
a large field, and GF (28) is simply too small for maliciously secure protocols. It is for this reason
that the AES script linked above assumes that the MPC protocols be configured for GF (240), and
uses an embedding of GF (28) into GF (240). This way, when we need to perform arithmetic over
elements GF (28), we can first map them into GF (240), perform the arithmetic in this larger field
using the sgf2n/cgf2n types, and translate the result back to GF (28) with the (left) inverse of the
embedding.

Because I found these embeddings to be fascinating in their own right, in what follows I take a
stab at exploring what embeddings are, when they exist, how to compute their descriptions, and
how to evaluate them. I am hoping a reader with a basic understanding of algebraic concepts like
groups, rings, fields, homomorphisms and their kernels, ideals, and quotient spaces finds this to be
a smooth read. I try to make sure anything I do not explicitly define is easily found on Wikipedia.

2 Defining Embeddings

As one may have deduced by now, an embedding - broadly speaking - is an injective structure-
preserving map between two mathematical structures [Wik25]. In an algebraic context, “structure-
preserving” maps are homomorphisms, so it makes sense to try and define a field embedding as an
injective field homomorphism. While there is nothing technically wrong with this definition, it is a
bit redundant. A field homomorphism is simply a ring homomorphism between fields, and ring ho-
momorphisms between fields are always injective, so a field embedding is typically just defined

1

https://github.com/data61/MP-SPDZ/blob/master/Programs/Source/aes.mpc
https://github.com/data61/MP-SPDZ/blob/master/Programs/Source/aes.mpc
https://github.com/data61/MP-SPDZ/issues/8
https://github.com/data61/MP-SPDZ/issues/8

as a ring homomorphism between fields. Because the injectivity of field homomorphisms was
not immediately obvious to me, let us take a moment to establish this fact.

Claim 1 (Field homomorphisms are injective [Wik25]). If ϕ : E → F is a ring homomorphism
between fields (i.e., a field homomorphism, or a field embedding), then ϕ is injective.

Proof. If ϕ were not injective, then ∃x ̸= y ∈ E : ϕ(x) = ϕ(y), so ϕ(x) − ϕ(y) = ϕ(x − y) =
0 =⇒ (x − y) ∈ ker(ϕ) ̸= {0E}. Thus, it suffices to show that ϕ is injective by showing
that its kernel is the zero ideal. Recall that the kernel of any ring homomorphism is an ideal
(0E ∈ ker(ϕ); ϕ(x + y) = 0F ∀x, y ∈ ker(ϕ); ϕ(−x) = ϕ(−1) · ϕ(x) = 0 ∀x ∈ ker(ϕ); and
∀a ∈ E,∀x ∈ ker(ϕ) : ϕ(ax) = ϕ(a) · ϕ(x) = 0). Further observe that an ideal of a field must either
be the zero ideal, or the field itself. This is because if there exists a non-zero element x in the ideal
of a field, then x−1x = 1 is also in this ideal, and it follows that every element of the field must
belong to this ideal. But clearly ker(ϕ) ̸= F , since ϕ(1E) = 1F ̸= 0F . Thus, ker(ϕ) = {0E}.

The connotation of the word “embedding” seems to imply that the smaller field “lives inside” the
larger field, in some sense. The following claim captures this sentiment precisely.

Claim 2 (Image of field embedding is a subfield). Let ϕ : E → F be a field embedding. Then the
image of ϕ, denoted Im(ϕ), is a subfield of F .

Proof. Because ϕ is a ring homomorphism, we already know Im(ϕ) is a subring of F , so it remains
to show that every non-zero element in Im(ϕ) has a multiplicative inverse. Let y ∈ Im(ϕ) be non-
zero. Then y = ϕ(x) for some non-zero x ∈ E. See that ϕ(x−1) · ϕ(x) = ϕ(x−1 · x) = ϕ(1E) = 1F ,
so y−1 = ϕ(x−1) ∈ Im(ϕ).

3 Existence of Field Embeddings

A natural question to ask is whether given two fields E and F , an embedding E ↪→ F exists. From
here on we will only concern ourselves with the case of finite fields. We present a few helper lemmas
before the main result of Theorem 5.

Lemma 3 (Characteristic of codomain divides characteristic of domain for a ring homomorphism).
Let ϕ : R → S be a ring homomorphism. Then the characteristic of S divides the characteristic of
R.

Proof. Let n = char(R) and m = char(S). Viewing R and S as additive groups, n = ord(1R) and
m = ord(1S). Observe that 0S = ϕ(0R) = ϕ(n · 1R) = n · 1S . Now assume for contradiction that
m ∤ n. By Euclidean division, we have n = mq+ r for unique integers q, r, where 0 < r < m. Then
we have that n · 1S = (mq + r) · 1S = r · 1S . But r · 1S ̸= 0S , since r < m and m = ord(1S) is by
definition the smallest such integer with this property. Thus, m|n.

Lemma 4 (Subfield exists iff extension degrees divide). A field of order pr contains a field of order
pk if and only if k|r.

Proof. See the proof of Theorem 15.7.3(e) in [Art11].

2

Theorem 5 (Existence of (Finite) Field Embeddings). Let E and F be finite fields. There exists
an embedding ϕ : E → F if and only if E and F have the same characteristic, and the extension
degree of E divides the extension degree of F .

Proof. Suppose ϕ : E → F is a field embedding. Because ϕ is a ring homomorphism, by Lemma 3,
char(F)| char(E). But E and F are finite fields, so their characteristics are prime, and so it must be
the case that char(E) = char(F) = p for some prime p. Furthermore, we now have that ord(E) = pk

and ord(F) = pr for some positive integers k, r. By Claim 2, we know that Im(ϕ) is a subfield, and
the injectivity of ϕ tells us that the size of this subfield is pk. Thus, by Lemma 4, we have k|r.

In the other direction, we know char(E) = char(F) = p for some prime p, and we know k|r, so by
Lemma 4, F contains a subfield E′ of order pk. It is a well-known fact that fields of the same size
are isomorphic, so there exists an isomorphism ϕ : E → E′. But since E′ ⊆ F , we can instead view
ϕ as a ring homomorphism from E to F with image E′. In other words, ϕ is an embedding of E
into F .

4 Computing Descriptions of Field Embeddings

Applying Theorem 5 to the case of GF (28) and GF (240), we can see that there must exist an
embedding of the former into the latter. But can we succinctly describe this embedding. And even
if the embedding has a succinct description, can we compute the description efficiently. The answer
to the first question is yes: embeddings can be described essentially by a pair of elements - one in
the smaller field and one in the larger field. The answer to the second question is also yes, but due to
the variety of approaches and the technical detail involved [BFD+17], we settle for instructions on
how to use a computer algebra system like SageMath for computing these descriptions. Note that,
according to [BFD+17], computing embeddings is a natural task for computer algebra systems.

4.1 Describing Field Embeddings

Suppose ϕ : E → F is a field embedding. By Theorem 5, we know there exists a prime p, and
positive integers k, r such that ord(E) = pk, ord(F) = pr (and k|r). Since fields are uniquely
characterized by their order up to isomorphism, we can give E and F explicit descriptions via the
canonical construction of extension fields as quotient rings. Specifically, let Zp[x] be the polynomial
ring with coefficients in Zp (a prime field), and let f(x) ∈ Zp[x] be a degree k irreducible polynomial.
Then E is isomorphic to the quotient ring Zp[x]/(f(x)). Similarly, F is isomorphic to Zp[y]/(g(y))
for g(y) ∈ Zp[y] a degree r irreducible polynomial.

With these field descriptions, we can now view ϕ as a function sending some element of E, which
we can represent as a polynomial

∑k−1
i=0 aix

i with ai ∈ Zp, to an element of F , which we can
represent as another polynomial

∑r−1
i=0 biy

i with bi ∈ Zp. At this point, we technically have enough
information to describe ϕ by its function table, but obviously this description is potentially huge:
pk−1 rows with r− 1 · log(p) bits in each entry. To obtain a succinct description we need additional
insight into the structure of ϕ.

The key insight is that E and F are both vector spaces over the same base field Zp, so ϕ is a
homomorphism between vector spaces, i.e., a linear transformation. This means if we pick a basis
E, in order to describe ϕ it suffices to list the image of the basis under ϕ. Because E is a k-
dimensional vector space, it appears we only need k · (r− 1) · log(p) bits to describe ϕ. Actually, we
can do even better. Let us pick the so-called “primitive element” basis

{
1, x, x2, ..., xk−1

}
of E, and

3

{
1, y, y2, ..., yr−1

}
for F . As a quick aside, notice we already implicitly assumed these bases in the

previous paragraph when we stated elements of E and F could be represented as polynomials in x
and y. We have also abused notation slightly in that we have also been using x as the free variable in
the polynomial ring Zp[x], but the x appearing in the primitive element basis is technically different
as it is a root of f(x), and so it is usually renamed to something like α. These are unnecessary
details for our purposes, since the point is that we can represent elements of E as polynomials in
some variable x, and hence the set

{
1, x, x2, ..., xk−1

}
constitutes a basis for E. Of course, the

same goes for y, g, and F . Back to the task at hand, how should ϕ map each element of this
basis? Clearly we must have ϕ(1) = 1 since ϕ is a ring homomorphism. Now suppose ϕ(x) = z for
some z ∈ F . Then ϕ(x2) = z2, ϕ(x3) = z3, ..., ϕ(xk−1) = zk−1. In other words, ϕ is completely
described by where we choose to send x. This is indeed a succinct description, as it requires
only (r − 1) · log(p) bits.

As a concrete example, the embedding of GF (28) into GF (240) used by MP-SPDZ is given by
x = y5+1, whereGF (28) = Z2[x]/(x

8+x4+x3+x+1), andGF (240) = Z2[y]/(y
40+y20+y15+y10+1).

4.2 Computing Descriptions

Now that we know a field embedding ϕ : E → F can be described solely by where it sends the
primitive element x ∈ E, it remains to be seen how to compute this description for a given E and
F . That is, how can we find z ∈ F such that ϕ(x) = z describes a valid field embedding? To
provide some intuition, notice that x is a root of the polynomial modulus f for E, so in order for
ϕ to “preserve structure”, z should also be a root of f . More precisely, x and z should share the
same minimal polynomial. Clearly, we could find such a root z with a brute force approach, but
this would take exponential time.

As previously mentioned, we sidestep the details on how to compute this description more efficiently
and instead provide an example with SageMath (which if you have never used Sage before it is a
wonderful tool: a free open source wrapper over various fast numerical computing libraries, and the
language itself is literally just Python with a small handful of syntactic sugar additions to make
your life easier).

1 # set up fields

2 E.<a> = GF(2^8, name=’a’, modulus=x^8 + x^4 + x^3 + x + 1)

3 F. = GF(2^40 , name=’b’, modulus=x^40 + x^20 + x^15 + x^10 + 1)

4

5 # an_embedding () computes one embedding. embeddings () computes all embeddings.

6 f = E.an_embedding(F)

7 assert(f(a) == b^5 + 1)

8

9 # to go back and forth between fields , we need the left inverse of f.

10 g = f.section ()

11 el = F.random_element ()

12 assert(g(f(a)) == a)

Listing 1: Embedding GF (28) ↪→ GF (240) in Sage

4

References

[Art11] M. Artin. Algebra. Pearson Prentice Hall, 2011.

[BFD+17] Ludovic Brieulle, Luca De Feo, Javad Doliskani, Jean-Pierre Flori, and Éric Schost.
Computing isomorphisms and embeddings of finite fields. CoRR, abs/1705.01221, 2017.

[Wik25] Wikipedia contributors. Embedding — Wikipedia, the free encyclopedia. https://

en.wikipedia.org/w/index.php?title=Embedding&oldid=1281481383, 2025. [On-
line; accessed 15-June-2025].

5

https://en.wikipedia.org/w/index.php?title=Embedding&oldid=1281481383
https://en.wikipedia.org/w/index.php?title=Embedding&oldid=1281481383

	Motivation
	Defining Embeddings
	Existence of Field Embeddings
	Computing Descriptions of Field Embeddings
	Describing Field Embeddings
	Computing Descriptions

