
c om p u t e r s & s e c u r i t y x x x (2 0 1 0) 1e1 7
ava i lab le at www.sc ienced i rec t . com

journa l homepage : www.e lsev ie r . com/ loca te /cose
Symbolic reachability analysis for parameterized
administrative role-based access control5
Scott D. Stoller a,*, Ping Yang b, Mikhail I. Gofman b, C.R. Ramakrishnan a

aDept. of Computer Science, Stony Brook University, Stony Brook, NY 11794-4400, USA
bDept. of Computer Science, Binghamton University, Binghamton, NY 13902, USA
a r t i c l e i n f o

Article history:

Received 21 April 2010

Received in revised form

1 July 2010

Accepted 25 August 2010

Keywords:

Policy analysis

Policy administration

Role-based access control

RBAC
5 This work was supported in part by ONR u
0627447, CNS-0831298, and CNS-0855204, an
* Corresponding author.
E-mail address: stoller@cs.stonybrook.ed

Please cite this article in press as: Stoller
access control, Computers & Security (20

0167-4048/$ e see front matter ª 2010 Elsev
doi:10.1016/j.cose.2010.08.002
a b s t r a c t

Role-based access control (RBAC) is a widely used access control paradigm. In large orga-

nizations, the RBAC policy is managed by multiple administrators. An administrative role-

based access control (ARBAC) policy specifies how each administrator may change the

RBAC policy. It is often difficult to fully understand the effect of an ARBAC policy by simple

inspection, because sequences of changes by different administrators may interact in

unexpected ways. ARBAC policy analysis algorithms can help by answering questions,

such as user-role reachability, which asks whether a given user can be assigned to given

roles by given administrators.

Allowing roles and permissions to have parameters significantly enhances the scalability,

flexibility, and expressiveness of ARBAC policies. This paper defines PARBAC, which

extends the classic ARBAC97 model to support parameters, proves that user-role reach-

ability analysis for PARBAC is undecidable when parameters may range over infinite types,

and presents a semi-decision procedure for reachability analysis of PARBAC. To the best of

our knowledge, this is the first analysis algorithm specifically for parameterized ARBAC

policies. We evaluate its efficiency by analyzing its parameterized complexity and

benchmarking it on case studies and synthetic policies. We also experimentally evaluate

the effectiveness of several optimizations.

ª 2010 Elsevier Ltd. All rights reserved.
1. Introduction parameters, we would need to create a separate role and
Role-based access control (RBAC) (Sandhu et al., 1996) is

a widely used access control paradigm. In RBAC, users are

assigned to roles, and permissions are granted to roles.

Allowing roles and permissions to have parameters signifi-

cantly enhances scalability: the policies of most large orga-

nizations can be expressed more easily and compactly using

parameters. For example, consider a policy for a university. To

grant different permissions to users (e.g., faculty or students)

in different classes or departments, in an RBACmodel without
nder Grants N00014-07-1
d AFOSR under Grant FA

u (S.D. Stoller).

SD, et al., Symbolic reac
10), doi:10.1016/j.cose.20

ier Ltd. All rights reserved
corresponding permission assignment rules for each course

or department, leading to a large and unwieldy policy. In

a parameterized RBAC model, this policy can be expressed

using a few roles and permissions parameterized by the class

identifier or department name. Several parameterized RBAC

models have been proposed (e.g., Giuri and Iglio, 1997; Lupu

and Sloman, 1997; Bacon et al., 2002; Ge and Osborn, 2004; Li

and Mao, 2007).

Administrative role-based access control (ARBAC) refers to

administrative policies that specify how an RBAC policy may
-0928 and N00014-09-1-0651, NSF under Grants CCF-0613913, CNS-
0550-09-1-0481.

hability analysis for parameterized administrative role-based
10.08.002

.

mailto:stoller@cs.stonybrook.edu
http://www.sciencedirect.com
http://www.elsevier.com/locate/cose
http://dx.doi.org/10.1016/j.cose.2010.08.002
http://dx.doi.org/10.1016/j.cose.2010.08.002
http://dx.doi.org/10.1016/j.cose.2010.08.002

c om p u t e r s & s e c u r i t y x x x (2 0 1 0) 1e1 72
be changed by each administrator. In ARBAC97, the first

comprehensive ARBAC model (Sandhu et al., 1999), ARBAC

policies assign users (administrators) to administrative roles,

and grant permissions for administrative operationsdsuch as

assigningauser toa roledtoadministrative roles.This supports

decentralized policy administration, which is crucial for large

organizations, coalitions, etc. Several otherARBACmodelswere

subsequently proposed (e.g., Sandhu and Munawer, 1999; Kern

et al., 2003; Crampton and Loizou, 2003; Crampton, 2005; Oh

et al., 2006; Li and Mao, 2007).

Allowing administrative roles and administrative permis-

sions to haveparameters significantly enhances the scalability

and practical applicability of the administrative model. For

example, consider thepolicy that the chair of adepartment can

assign users to committees in that department. In a parame-

terized ARBAC model, this can be expressed by a single rule,

while ARBAC models without parameters would require

separate rules for each department and committee. In this

paper, we define parameterized RBAC and ARBAC models, by

extending theclassicARBAC97model (Sandhuet al., 1999)with

parameters in a fairly straightforward way. We call these

models PRBAC and PARBAC, respectively.

While flexible and expressive administrative models are

needed to handle the complex policies that can arise in real

organizations, they also make it more difficult to ensure that

administrative policies accurately capture the author’s

intentions. It is often difficult to understand the effect of an

administrative policy by simple inspection, largely because

(without help) people may fail to see the possible effects of

sequences of administrative operations by different admin-

istrators, and may fail to take into account how the adminis-

trative rules interact with role hierarchy. Policy analysis helps

system designers and administrators to understand policies,

including administrative policies.

This paper focuses on user-role reachability analysis, which

answers questions of the form: given an initial PRBAC policy

(“state”), a PARBAC policy, a set of administrators, a target user,

and a set of roles (called the “goal”), is it possible for those

administrators tomodify theRBACpolicy so that the target user

is a member of those roles? Other analysis problems including

permission-role reachability, user-permission reachability,

availability, role containment (Li and Tripunitara, 2006), and

weakest precondition (Stoller et al., 2007) can be solved in

a similar manner or by reduction to user-role reachability

analysis (Sasturkar et al., 2006; Stoller et al., 2007).

Why are new algorithms needed to solve this problem? If

all parameters range over finite types, existing finite-state

reachability algorithms for unparameterized ARBAC (e.g., Li

and Tripunitara, 2006; Sasturkar et al., 2006; Stoller et al.,

2007; Jha et al., 2008) can be used, by instantiating

each rule with all combinations of values of its parameters.

However, this approach is practical only if the types are

small. Realistic policies often involve large types (e.g., Stony

Brook University has over 2000 class sections each semester

and over 50 departments); symbolic analysis of such policies

is much more efficient. Another disadvantage of the finite-

state approach is that the analysis results are valid only for

the specific types used for instantiation. With symbolic

analysis, an infinite type can be used as an abstraction of

a finite type, to obtain more general results. This abstraction
Please cite this article in press as: Stoller SD, et al., Symbolic reac
access control, Computers & Security (2010), doi:10.1016/j.cose.2
is conservative in the sense that if the answer to a reach-

ability query (defined in Section 3) is true when the types of

some parameters are taken to be finite, then the answer is

still true if those types are taken to be infinite. Thus, if

symbolic analysis with infinite types says that a goal (of the

attackers, i.e., an unsafe state) is unreachable, then that goal

is unreachable when the parameters range over any finite

types.

This paper shows that user-role reachability analysis for

PARBAC is undecidable when parameters may range over

infinite types, and it presents the first (to the best of our

knowledge) semi-decision procedure for reachability analysis

for PARBAC. We define the semantics of PARBAC policies in

terms of a straightforward concrete transition relation. We then

introduce a more complicated symbolic transition relation that

captures the semantics compactly, efficiently, and exactly

using variables and constraints. Our algorithm for user-role

reachability has two stages. The first stage performs a goal-

directed approximate backward search. The second stage

performs an exact forward search limited to transitions

identified as useful by the first stage. We also developed se-

veral optimizations to the basic algorithm and experimentally

evaluated their effectiveness. Although our algorithm is

a semi-decision procedure (thus, it may diverge on some

problem instances), we show that it is guaranteed to termi-

nate under realistic assumptions about the policy.

We also explore the parameterized complexity (Downey

and Fellows, 1995) of user-role reachability for PARBAC and

give a fixed-parameter tractability result for it under realistic

assumptions about the policies. The idea of parameterized

complexity is to identify an aspect of the input that makes the

problem computationally difficult, introduce a parameter to

measure that aspect of the input, and develop a solution

algorithm that may have high complexity in terms of that

parameter, but has polynomial complexity in terms of the

overall input size when the value of that parameter is fixed.

This is called fixed-parameter tractability. Formally, a problem

is fixed-parameter tractable with respect to parameter k if there

exists an algorithm that solves it in O(f(k)� nc) time, where f is

an arbitrary function (depending only on its argument k), n is

the input size, and c is a constant.

Numerous algorithms have been proposed to verify

specific classes of infinite-state systems. As discussed in

Section 11, to the best of our knowledge, none is suitable for

efficient reachability analysis for PARBAC.

In summary, the main contributions of this paper are

� The definition of the symbolic transition graph, which

compactly captures the semantics of PARBAC policies and

provides the basis for our algorithm,

� A two-stage symbolic algorithm for user-role reachability

analysis of PARBAC that terminates under realistic

assumptions about the policy,

� A proof that user-role reachability analysis for PARBAC is

undecidable.

� A fixed-parameter tractability result for this reachability

problem under realistic assumptions about the policy, and

� Experimental results demonstrating the efficiency of our

algorithm compared to non-symbolic algorithms and eval-

uating the effectiveness of several optimizations
hability analysis for parameterized administrative role-based
010.08.002

http://dx.doi.org/10.1016/j.cose.2010.08.002
http://dx.doi.org/10.1016/j.cose.2010.08.002

c om p u t e r s & s e c u r i t y x x x (2 0 1 0) 1e1 7 3
We chose ARBAC97 as the basis for our PARBAC model

because it is relatively simple while still capturing essential

features of realistic administrative policies. We know of only

one other parameterized ARBACmodel, UARBACP (Li andMao,

2007). UARBACP is more sophisticated and flexible than PAR-

BAC, but we believe the work in this paper provides a good

foundation for developing practical analysis algorithms for

UARBACP and other parameterized security policy models.

The rest of this paper is organized as follows. Section 2

defines PRBAC and PARBAC. Section 3 defines user-role reach-

ability for PARBAC. Section 4 defines the symbolic state graph,

which provides a foundation for the symbolic analysis algo-

rithm in Section 5. Section 8 discusses extensions and other

analysis problems. Case studies and experiments are described

in Sections 9 and 10, respectively. Section 11 discusses related

work. Section 12 proposes future work and concludes.
2. Parameterized RBAC and parameterized
ARBAC

This section formally defines parameterized RBAC (PRBAC)

and parameterized ARBAC (PARBAC). The definitions are

based on a notion of role schema. Each role schema specifies

the name of a role and the names of that role’s parameters.

For brevity, we omit aspects of RBAC and ARBAC related to

the user-permission assignment and role hierarchy. Those

aspects can be extended with parameters in the same way as

aspects related to the user-role assignment. For analysis

purposes, hierarchical PRBAC policies can be transformed

into non-hierarchical PRBAC policies using an algorithm

similar to the one in Sasturkar et al. (2006). PARBAC policies

that control the user-permission assignment are structurally

similar to PARBAC policies that control the user-role assign-

ment and hence can be analyzed using the same techniques.

Analysis of PARBAC policies that control changes to the role

hierarchy requires different techniques.

2.1. Parameterized RBAC

The syntax of policies is parameterized by a set Var of vari-

ables, a set R of role names, a set O of object names, a set P of

parameter names, and a set Op of operation names.

A role schema is a term r(p1, p2,., pn), where n � 0, r ˛R is

a role name, and each pi ˛P is a distinct parameter name. In

our basic framework, each parameter ranges over an implicit

universal data type that contains an infinite number of data

values (constants). Introducing a type system in which each

parameter in a role schema ranges over a specified infinite

data type has no significant effect on our results, except to add

clutter. Allowing finite types requires only a change to the

algorithm for checking satisfiability of constraints, as described

in Section 4. We implicitly extend our framework with a type

systemwith finite types in some examples.

An instance of a role schema r(p1, p2, ., pn) has the form

r(p1 ¼ x1, p2 ¼ x2, ., pn ¼ xn), where each xi is a data value or

a variable. We use identifiers starting with lower-case letters

for data values, and identifiers startingwith upper-case letters

for variables (identifiers starting with upper-case letters are

also used for role names, etc.). An instance is concrete if it
Please cite this article in press as: Stoller SD, et al., Symbolic reac
access control, Computers & Security (2010), doi:10.1016/j.cose.20
contains no variables. We use r to denote an instance of a role

schema, and rc to denote a concrete instance.

For an instance r, let schema(r) denote the schema of which

r is an instance. Let args(r(e1,., en)) ¼ (e1,., en). For a set RS of

role schemas, inst(RS) denotes the set of all instances of RS,

and conc(RS) denotes the set of concrete instances of RS. For

example, in a policy for a university, the role schema Student

(dept, cid) is used for students registered for the course

numbered cid offered by department dept, and the role schema

Student(dept) is used for all students of a specific department.

Students taking cs101 are members of the instance Student

(dept ¼ cs, cid ¼ 101). We make parameter names explicit to

allow overloading; we sometimes omit them for role names

that are not overloaded.

A substitution is a mapping from variables to data values

and variables. We use q, s to denote substitutions. A substi-

tution q is ground, denoted ground(q), if it maps all variables to

data values. The application of a substitution q to an expres-

sion e is denoted eq.

Definition 1. A parameterized RBAC (PRBAC) policy is a tuple

hRS, U, UAi where

� RS is a finite set of role schemas. U is a finite set of users.

� UA 4 U � conc(RS) is the user-role assignment. (u, rc) ˛ UA

specifies that user u is a member of rc.

For example, (Alan, Student(dept ¼ cs)) ˛ UA specifies that

user Alan is a member of role Student(dept ¼ cs).

PRBAC policies, as defined above, use only concrete role

instances. We could allow variables in PRBAC policies; we do

not consider this extension, because our main focus is on

administrative policies, defined next.
2.2. Parameterized ARBAC

A PARBAC policy is a tuple hRS, U, URAi, where RS is a set of role

schemas,U is asetofusers,anddanalogouslytoARBAC97dURA

is the user-role administration policy. The PARBAC policy

defines the transition relation that describes allowed changes to

the PRBAC policy.

The user-role administration policy URA controls changes

to the user-role assignment. URA consists of two kinds of

rules: can_assign and can_revoke. A can_assign rule has the form

can_assign(ra, (P, N), r), where ra ˛ inst(RS) is the administra-

tor’s role, P4 inst(RS) is the positive precondition,N4 inst(RS) is

the negative precondition, and r ˛ inst(RS) is the target. The rule

means that an administrator in role ra can add a user to r if the

user is a member of all the roles in P and is not a member of

any roles in N. In examples, we usually write preconditions as

logical formulas; for example, the precondition ({r1, r2}, {r3})

would be written as r1^r2^:r3. For example, the rule can_assign

(Dean(school ¼ engg), Prof(dept ¼ cs), Chair(dept ¼ cs)) specifies

that the Dean of the Engineering School can assign a professor

of the CS Department to be the Chair of that Department. For

an example that uses variables, the rule can_assign(Chair

(dept ¼ D), Faculty(dept ¼ D), AdmissionsCommittee(dept ¼ D))

specifies that the Chair of department D can assign faculty of

that department to the department’s admissions committee.
hability analysis for parameterized administrative role-based
10.08.002

http://dx.doi.org/10.1016/j.cose.2010.08.002
http://dx.doi.org/10.1016/j.cose.2010.08.002

c om p u t e r s & s e c u r i t y x x x (2 0 1 0) 1e1 74
The identity of the administrator performing an action is

sometimes relevant, so we introduce a distinguished variable,

Self, whose value identifies that administrator. For example,

can_assign(Faculty, Student, RA(fac ¼ Self)) specifies that

a faculty member can assign a student to be his/her RA.

In negative preconditions, wildcards, denoted by under-

score (“_”), may be used as arguments to roles. For example,

consider the policy: a department chair can appoint a student

as a TA for a course in the same department if the student is

not already a TA for any course in any department. This is

expressed by the following rule, where the parameter cid

contains the course number:

caneassign ðChairðdept¼DÞ;:TAðdept¼e;cid¼eÞ;
TAðdept¼D;cid¼CIDÞÞ

Note that replacing wildcards with fresh variablesdfor

example, changing the negative precondition to :TA(dept¼ D0,

cid ¼ CID0)dproduces a rule with a much different meaning,

namely, that a student can be appointed to TA(dept ¼ D,

cid ¼ CID) if there is some instantiation of D0 and C0 such that

the student is not a member of TA(dept ¼ D0, cid ¼ CID0).

A can_revoke rule has the form can_revoke(ra, r). It means

that an administrator in role ra can remove users from role r.

We followARBAC97 in omitting preconditions from can_revoke

(Sandhu et al., 1999).

A role schema is an administrative role schema if it has an

administrative permission, i.e., it appears in the first compo-

nentof some can_assignor can_revoke rule.An administrative role

is an instance of an administrative role schema. The separate

administration restriction requires that administrative role

schemas do not appear in the precondition or target of can_-

assign rules or the target of can_revoke rules. We follow

ARBAC97 in adopting this restriction. Other work on ARBAC

policy analysis, such as Schaad and Moffett (2002), Sasturkar

et al. (2006), Li and Tripunitara (2006) also adopts this restric-

tion (or a similar one, in the case of the AAR model in Li and

Tripunitara, 2006), with the exception of analysis for the

AATU model in Li and Tripunitara (2006), which adopts two

other significant restrictions instead. Our analysis algorithm is

also applicable to many policies that satisfy a different but

related restriction, described in Section 8.
3. User-role reachability

This section defines user-role reachability for PARBAC. For

a PRBAC policy g, let U(g) and UA(g) be the set of users and the

user-role assignment in g, respectively.

Definition 2. A user-role reachability query has the form: Given

a user u0, an initial PRBAC policy g ¼ hRS, U, UAi, a PARBAC

user-role administration policy URA, a subset A of the user-

role assignment UA containing only administrative roles, and

a set g of role instances, can actions by administrators in A,

acting in the administrative roles to which they are assigned

in A, and using the administrative permissions granted to

those roles by URA, transform g to another PRBAC policy g0

such that, for some substitution q, u0 is amember of all roles in

the instantiated goal gq?
Please cite this article in press as: Stoller SD, et al., Symbolic reac
access control, Computers & Security (2010), doi:10.1016/j.cose.2
Under the separate administration restriction, the user-role

reachability problem can be simplified as in Sasturkar et al.

(2006). This restriction implies that the transitions allowed by

a PARBAC policy do not change the set of tuples containing

administrative roles in the user-role assignment UA. Hence we

can partition UA into administrative and non-administrative

subsets, corresponding to tuples containing administrative

roles and those containing non-administrative roles, respec-

tively. Since the administrative subset does not change, we

“factor it out”, i.e., we do not include it in the nodes of the

concrete state graph, defined below. Moreover, in ARBAC97,

each user’s role memberships are controlled completely inde-

pendently of other users’ rolememberships, sowe can perform

user-role reachability analysis by trackingonly tuples inUA that

contain the user u0 mentioned in the reachability query. Thus,

the answer to a user-role reachability query can be expressed in

terms of a graph whose vertices (states) correspond to sets of

non-administrative roles that u0 is a member of.

The concrete transition relation Tc(URA, A) expresses the

semantics of a user-role administration policy URA, restricted

to administrative actions performed by a user uA in adminis-

trative role rA such that (uA, rA) ˛ A. Tc(URA, A) contains (s, (4,

q), s0) if the rule 4 in URA, instantiated using substitution q,

allows an administrator uA acting in role rA with (uA, rA) ˛ A to

perform a role assignment or role revocation that changes the

user-role assignment for a user from s to s0. When URA and A

are clear from context, we sometimes write a triple (s, (4, q),

s0) ˛ Tc(URA, A) as s/
4;q

c s0.

Definition 3. The concrete transition relationTc(URA,A) forauser-

role administration policy URA and a user-role assignment

A containing only administrative roles is the smallest relation

such that:

� (s, (4, q), s0) ˛ Tc(URA, A) if 4 ¼ can_assign(ra, (P, N), r) and

4 ˛ URA and q is a ground substitution such that there exists

(uA, rA) ˛ A such that:

e rq ; s (the role being added is not present in state s),

e s0 ¼ s W {rq},

e Pq 4 s (the positive preconditions of 4 are satisfied in

state s),

e (crn ˛ N. cr ˛ s. rn swc r), where equality considering

wildcards is defined by: r(e1, ., en) ¼wc r0(e10, ., en0) if
r ¼ r0^(ci ˛ [1..n]. ei ¼ ei0 n ei ¼ _ n ei0 ¼ _) (the negative

preconditions of 4 are satisfied in state s),

e raq ¼ rA (instantiating ra yields the administrative role

in A used to perform this role assignment), and

e q(Self) ¼ uA (q maps the distinguished variable Self to

the identity uA of the administrator performing this

role assignment)

� (s, (4, q), s0) ˛ Tc(URA, A) if 4 ¼ can_revoke(ra, r) and 4 ˛ URA

and q is a ground substitution such that there exists (uA,

rA) ˛ A such that:

e rq ˛ s (the role being revoked is present in state s),

e s0 ¼ s � {rq},

e raq ¼ rA, and

e q(Self) ¼ uA

The concrete state graph for a user-role reachability query of

the form in Definition 2 is the graph created by starting from
hability analysis for parameterized administrative role-based
010.08.002

http://dx.doi.org/10.1016/j.cose.2010.08.002
http://dx.doi.org/10.1016/j.cose.2010.08.002

c om p u t e r s & s e c u r i t y x x x (2 0 1 0) 1e1 7 5
the initial user-role assignment for the target user u0 and

using the concrete transition relation to repeatedly add new

edges and nodes. For a labeled graph, we use a triple (v, [, v0) to
represent an edge from v to v0 labeled with [.

Definition 4. The concrete state graph for a user-role reach-

ability query of the form in Definition 2 is the smallest labeled

directed graph (V, E) with vertices V and labeled edges E such

that

� fr j (u0, r) ˛ UA (g)^:admin(r)} ˛ V, where admin(r) is true if r is

an administrative role (the initial state contains all non-

administrative roles assigned to the target user u0 in the

initial user-role assignment UA (g)).

� (s1, 4, s2) ˛ E and s2 ˛ V if s1 ˛ V and there exists a substitu-

tion q such that (s1, (4, q), s2) ˛ Tc(URA, A).

The answer to a user-role reachability query is true if there

exists a substitution q such that the concrete state graph for

the query contains a state s with gq 4 s.

Example 1. Consider the following PARBAC policy (for brevity,

we do not show the set of users, etc.).

RS ¼ fChairðdeptÞ;Studentðdept; cidÞ;TAðdept; cidÞg
4 ¼ can assignðChairðdept ¼ DÞ;

:Studentðdept ¼ D; cid ¼ CIDÞ;
TAðdept ¼ D; cid ¼ CIDÞ

The policy contains no can_revoke rules. Consider the

query: Can the chair of CS Department assign a user who is

initially a member of role Student(dept ¼ cs, cid ¼ 501) to both

roles TA(dept ¼ cs, cid ¼ 101) and TA(dept ¼ cs, cid ¼ 201)? The

answer is yes. For illustrative purposes, suppose the course

identifier parameter cid ranges over the set {101, 201, 301, 401,

501}; in this case, the concrete state graph for this query

contains 16 states and 32 transitions. If cid ranges over an

infinite data type, the concrete state graph is infinite.

These definitions define the semantics of PARBAC policies

but do not provide an effective algorithm for reachability

analysis: parameters take values from an infinite type, so the

concrete state graph is infinite, except for trivial policies. As

discussed in Section 1, even if parameters take values from

finite types, those types are often large, making construction

of the concrete state graph costly or impractical.
4. Symbolic state graph

This section defines symbolic states and symbolic transitions,

which are the basis of our symbolic analysis algorithm.

A symbolic state is a pair (R, C) where R is a set of role

instances (not necessarily concrete), and C is a constraint over

variables that appear in R. A constraint is the constant true or

a conjunction of tuple disequalities. A tuple disequality has the

form (e1,., en)s (f1,., fn), where each ei and fi is a constant or

a variable. We elide angle brackets around singleton tuples.

Note that a conjunction of tuple disequalities is just a more

compact notation for a logical combination of single (as

opposed to tuple) inequalities, in conjunctive normal form.
Please cite this article in press as: Stoller SD, et al., Symbolic reac
access control, Computers & Security (2010), doi:10.1016/j.cose.20
For a constraint C, satisfiable(C) is false if C contains a tuple

disequality whose left side and right side are the same, and is

true otherwise. For example, if C0 denotes X s cs, then satis-

fiable(C0) is true, and satisfiable(C0[X 1 cs]) is false, where

[X 1 e] denotes the substitution that replaces X with e. As

another example, if C1 denotes (X, Y) s (Z, cs) then satisfiable

(C1) and satisfiable(C1[X 1 Z]) are true. This satisfiability test is

correct when all variables range over infinite data types.

Support for finite data types is discussed below.

A symbolic state (R, C) represents the concrete states

obtained by instantiating R consistent with C; formally, the

meaning of (R, C) is E(R, C)F ¼ {Rq j ground(q) ^ satisfiable(Cq)}.

For example, ({Student(dept ¼ D)}, D s cs) represents states

containing a single instance of Student instantiated with any

constant other than cs.

For a constraint C, simplify(C) returns a new constraint

obtained by removing tuple disequalities in which the two

tuples have distinct constants in some component (such dis-

equalities are equivalent to true, e.g., (X, cs) s (Y, ee)) and

removing components of tuple disequalities that are equal in

the two tuples (this yields a logically equivalent disequality,

e.g., (X, Y) s (X, Z) is replaced with Y s Z). More formally,

simplify(C) is obtained from C as follows:

1. Delete all tuple disequalities (e1,., en)s (f1,., fn) such that

for some i, ei and fi are distinct constants. If C becomes

empty (i.e., all tuple disequalities in it are deleted), then C

simplifies to true.

2. For each tuple disequality (e1, ., en) s (f1, ., fn) in C, for

each i such that ei is the same as fi, or ei or fi is a wildcard,

delete component i of the tuple disequality. If any tuple

disequality becomes empty (i.e., it becomes () s (), which is

false), then C simplifies to false.

For a constraint C and a set Vars of variables, the projection

of C onVars, denoted project(C,Vars), is the constraint obtained

from C by discarding disequalities that do not affect the satis-

fying values of variables in Vars. Specifically, project(C, Vars)

constructs an undirected graph with a vertex for each tuple

disequality inC, andwith an edge betweendisequalities d1 and

d2 if they share a variable (i.e., vars(d1) X vars(d2) s Ø, where

vars(e) is the set of variables that appear in expression e), and

discards disequalities that are not reachable in the graph from

any vertex d that mentions a variable in Vars. For example,

project(Xs Y ^ Y s Z ^ Us V, {Z}) equals X s Y ^ Ys Z.

A substitution q1 is more general than a substitution q2,

denoted q2 6g q1, if there exists a substitution q such that

q2 ¼ q1 B q, where B denotes composition.

The symbolic transition relation needs to replace some

variables with locally fresh variables, i.e., variables not ap-

pearing in the source state of the transition that introduces

them. Let freshSubst(vars1, vars2) denote a substitution q that

maps variables in vars1 to distinct variables that are not in

vars2. Any deterministic method for choosing the fresh vari-

ables is fine, e.g., choose the lexicographically smallest vari-

ables not in vars2. To simplify the semantics of the graph, after

the initial construction, we apply a straightforward, linear-

time transformationmkGloballyFresh that renames introduced

variables so they are globally fresh, i.e., each variable is

introduced in at most one state in the graph. For example,
hability analysis for parameterized administrative role-based
10.08.002

http://dx.doi.org/10.1016/j.cose.2010.08.002
http://dx.doi.org/10.1016/j.cose.2010.08.002

c om p u t e r s & s e c u r i t y x x x (2 0 1 0) 1e1 76
suppose a can_assign rule that introduces a locally fresh vari-

able is executed from two states s1 and s2, and the variable C is

used as a locally fresh variable in the resulting states s10 and
s20; then themkGloballyFresh transformationmight rename the

occurrence of C in s10 to C1 (of course, corresponding occur-

rences of C in states reachable from s1 are also renamed), and

the occurrence of C in s20 to C2.

Definition 5. The symbolic transition relation T(URA, A) for

a user-role administration policy URA and an assignment A of

users to administrative roles contains a tuple ((R, C), (4, qf, q),

(R0, C0)) if execution of rule 4 in URA, instantiated with the

substitution qB qf, leads from symbolic state (R, C) to symbolic

state (R0, C0), where qf replaces variables in 4 with fresh vari-

ables, and q unifies the positive preconditions in 4 with roles

in R and unifies ra with an administrative role inA. Formally, T

(URA, A) is the least relation such that:
� ((R,C), (4, qf, q), (R0,C0))˛T(URA,A) if4˛URAand4¼ can_assign

(ra, (P, N), rt) and there exist Rp 4 R, (uA, rA) ˛ A such that

e qf ¼ freshSubst(vars(4), vars((R, C)))

e q is 6g-maximal among substitutions such that

* Pqfq 4 Rpq (the roles in Rp satisfy the positive

preconditions of 4)

* range(q)4 vars(Rp)WConstants (q instantiatesvariables

in the rule 4 with constants and with variables in the

roles in R used to satisfy the positive preconditions).

* raqfq ¼ rA (instantiating ra yields the administrative

role in A used to perform this role assignment)

* q(Self)¼ uA (qmaps the distinguished variable Self to

the identity uA of the administrator performing this

role assignment)

e rtqfq ; R (the role being added is not already in the

state)

e R0 ¼ Rq W {rtqfq}

e neg ¼ ^rn˛N

^r˛R such that schemaðrÞ¼schemaðrnÞargsðrqÞsargs
�
rnqf q

�

(the negative preconditions of 4 are satisfied)

e C0 ¼ simplify(Cq ^ neg)

e satisfiable(C0) ¼ true

� ((R, C), (4, qf, q), (R0, C0)) ˛ T(URA, A) if 4 ˛ URA and 4 ¼
can_revoke(ra, rt) and there exist r ˛ R, qf ˛ Subst, q ˛ Subst,

(uA, rA) ˛ A such that

e qf ¼ freshSubst(vars(4), vars((R, C)))

e q is 6g-maximal among substitutions such that

* rq ¼ rtqfq (the role being revoked is in the current

state)

* range(q) 4 vars(r) W Constants

* raqfq ¼ rA (instantiating ra yields the administrative

role in A used to perform this role assignment)

* q(Self) ¼ uA (q maps the distinguished variable Self to

the identity uA of the administrator performing this

role revocation)

e R0 ¼ Rq \ {rq}

e C1 ¼ simplify(Cq)

e satisfiable(C1) ¼ true

e C0 ¼ project(C1, vars(R0))
Please cite this article in press as: Stoller SD, et al., Symbolic reac
access control, Computers & Security (2010), doi:10.1016/j.cose.2
It might seem surprising, at first glance, that in the condi-

tion R0 ¼ Rq W {rtqfq}, the substitution q is applied to the entire

state R, not only to the role being added. This reflects the fact

that the transition might be possible for only some instances

of the symbolic state. For example, consider execution of the

rule can_assign(Dean, Faculty(dept ¼ cs), ComputingCommittee)

from the symbolic state ({Faculty(dept ¼ D)}, true). This leads to

the symbolic state ({Faculty(dept ¼ cs), ComputingCommittee},

true), reflecting that the transition is possible only if the target

user is a member of Faculty(dept ¼ cs).

In the condition R0 ¼ Rq\{rq} for can_revoke, the substitution q

is applied to the entire state for similar reasons. This is

necessary even though can_revoke roles lack preconditions.

For example, consider execution of the rule can_revoke(Chair

(dept ¼ D), GradAdvisor(dept ¼ D)) from symbolic state ({Faculty

(dept ¼ D), GradAdvisor(dept ¼ D)}, true) with A ¼ {(charles, Chair

(dept ¼ cs))}. This leads to the symbolic state ({Faculty

(dept ¼ cs)}, true), reflecting that the transition is possible only

if the target user is a member of Faculty(dept ¼ cs).

The condition range(q) 4 vars(Rp) W Constants provides

directionality to the unification of the rule’s preconditions with

roles in thecurrent state: variables inPmaybe instantiatedwith

variables inRp, butnotviceversa. This isstilla formofunification,

not simply matching of P with Rp, because q may instantiate

variables in Rp with constants in P, as in the above example.

Note that satisfiable(C0) is checked separately from the selec-

tion of the most-general substitutions q. This is safe because

making q less general cannot changeC0 frombeing unsatisfiable

to being satisfiable. Structuring the definition this way (instead

of including satisfiable(C0) in the inner-most list of conditions

checked before selecting the most-general substitution) allows

a simpler algorithm to be used to compute the substitution.

Definition 6. The symbolic state graph for a user-role reach-

ability query of the form in Definition 2 is a labeled directed

graph mkGloballyFresh(V, E), where the set V of vertices and

the set E of edges are the smallest sets such that:

� ({r j (u0, r) ˛ UA(g)^:admin(r)}, true) ˛ V.

� ((R,C), 4, (R0,C0))˛ E and (R0,C0)˛V if (R,C)˛V and there exist

qf ˛ Subst, q ˛ Subst, and ((R, C), (4, qf, q), (R0, C0)) ˛ T(URA, A).
Example 2. Consider the construction of the symbolic state

graph for the query in Example 1. The initial state is S1 ¼ (R1,

C1) ¼ ({Student(dept ¼ cs, cid ¼ 501)}, true). From S1, the can_as-

sign rule 4 is applied (renaming D and CID to fresh variables D0

and CID0 respectively and then substituting D0 with cs). This

adds TA(dept ¼ cs, cid ¼ CID0) to the state under the constraint

CID0 s 501, resulting in a symbolic state S2¼ (R2, C2)¼ (R1W {TA

(dept ¼ cs, cid ¼ CID0)}, (CID0 s 501)). S2 represents the four

concrete states {Student(dept ¼ cs, cid ¼ 501), TA(dept ¼ cs,

cid ¼ X)} for X ˛ {101, 201, 301, 401}. Similarly, from S2, rule 4

can be applied again (renamingD and CID to fresh variablesD1
0

and CID1
0 respectively and then substituting D1

0 with cs). This

leads to the state S3 ¼ (R3, C3)¼ (R2 W {TA(dept¼ cs, cid¼ CID1
0)},

C2^(CID1
0 s 501)^(CID1

0 s CID0)). Repeating this process results

in a symbolic state graph containing 5 states: S1, S2, S3, S4¼ (R4,

C4) ¼ (R3 W {TA(dept ¼ cs, cid ¼ CID2
0)}, C3^(CID2

0 s 501)^
(CID2

0 s CID0)^(CID2
0 s CID1

0)) and S5 ¼ (R4 W {TA(dept ¼ cs,
hability analysis for parameterized administrative role-based
010.08.002

http://dx.doi.org/10.1016/j.cose.2010.08.002
http://dx.doi.org/10.1016/j.cose.2010.08.002

c om p u t e r s & s e c u r i t y x x x (2 0 1 0) 1e1 7 7
cid ¼ CID3
0)}, C4^(CID3

0 s 501)^(CID3
0 s CID0)^(CID3

0 s CID1
0)^

(CID3
0 s CID2

0)), and 4 transitions: S1 /
4
S2 /

4
S3 /

4
S4 /

4
S5. If

the course identifier parameter cid ranges over the set {101,

201, 301, 401, 501}, this is the complete symbolic state graph:

no more symbolic states can be added, because in symbolic

states with additional instances of TA, the satisfiability check

for the disequality constraint fails, because the answer to the

generated graph coloring problem is false. If cid ranges over an

infinite data types, then the symbolic state graph is infinite,

because an infinite number of instances of TA(dept ¼ cs,

cid ¼ CID) can be added to the state.

The following theorem says that the symbolic transition

relation isanexactabstractionof theconcretetransitionrelation.

Theorem 1. Let A be a user-role assignment containing only

administrative roles. Let URA be a user-role administration

policy.

1. Every concrete instance of a symbolic transition in T(URA,

A) is a concrete transition in Tc(URA, A); more precisely, for

all ((R, C), (4, qf, q), (R0, C0)) ˛ T(URA, A), for all ground

substitutions qc such that qc 6g q and such that Cqc ^ C0qc
holds, (Rqc, (4, qc B q B qf), R0qc) ˛ Tc(URA, A).

2. Every concrete transition between instances of two

symbolic states is represented by a symbolic transition;

more precisely, for all symbolic states (R, C) and (R0, C0), if
there exist Rc ˛ E(R, C)F, Rc

0 ˛ E(R0, C0)F, and a ground

substitution qc such that (Rc, (4, qc), Rc
0) ˛ Tc(URA, A), then

there exist substitutions qf and q such that qc 6g q and ((R,

C), (4, qf, q), (R0, C0)) ˛ T(URA, A).

In the first item in Theorem 1, the condition qc 6g q reflects

the fact that the symbolic transition requires R1 to be instan-

tiated consistently with q.

Onemight expect a simpler and tighter relationship to hold

between the concrete and symbolic transition relations. For

example, one might hope to replace both items in Theorem 1

with the biconditional: ((R, C), (4, qf, q), (R0, C0)) ˛ T(URA, A) iff

for all ground substitutions qc such that qc 6g q and such that

Cqc ^ C0qc holds, (Rqc, (4, qc B q B qf), R0qc) ˛ Tc(URA, A). However,

this relationship does not hold, because of the6g-maximality

condition on q in the definition of the symbolic transition

relation. To see this, note that this biconditional would imply

that the symbolic transition relation contains all concrete

transitions. The 6g-maximality condition on q exists specifi-

cally to avoid this. Including concrete transitions in the

symbolic transition relation would be sound, but it would be

disastrous for efficiency of symbolic analysis.

The following theorem says that the symbolic state graph

is an exact abstraction of the concrete state graph. Define the

meaning of an edge in the symbolic state graph by

E(s, 4, s0)F ¼ {(sc, 4, sc0) j sc ˛ EsF, sc ˛ Es0F}

Theorem2. Let (Vc, Ec) and (V, E) be the concrete and symbolic

state graphs, respectively, for a user-role reachability query of

the form in Definition 2.
Please cite this article in press as: Stoller SD, et al., Symbolic reac
access control, Computers & Security (2010), doi:10.1016/j.cose.20
1. Vc ¼ Ws ˛ V EsF

2. Ec ¼ We ˛ E EeF
4.1. Finite data types

Our framework can easily be extended to support a type

system for parameters of role schemas. If the types may be

finite, then we modify the symbolic transition relation to

generate disequality constraints that ensure every element of

R represents a distinct role instance, and we modify the

algorithm for satisfiable(C) to check whether there are suffi-

ciently many values of each type to satisfy the disequality

constraint. This prevents transitions that introduce unnec-

essarily many instances of a role schema. For example, if

parameter cid of role schema TA(cid) ranges over {101, 201,

301, 401, 501}, then these constraints prevent symbolic tran-

sitions to states containing more than 5 instances of TA(cid).

Specifically, in the definition of the symbolic transition

relation, the item rtqfq ; R is deleted, the item

e distinct¼ ^r ˛ R such that schema(r) ¼ schema(rt)args(rq)s args(rtqfq)

(the role being added is not already in the state; note that

a conjunction with no conjuncts is true)

is added, and the definition of C0 is changed to

e C0 ¼ simplify(Cq ^ neg ^ distinct)

satisfiable(C) is false if (1) C contains a tuple disequality whose

left side and right side are the same, or (2) one of the following

checks fails: for each finite type T, construct a disequality graph

Gd with a vertex for each constant and variable of type T in C,

and with an edge between two vertices if C contains a dis-

equality requiring them to be unequal, and check that the

chromatic number of Gd (i.e., the least number of colors

needed for a proper vertex coloring of Gd) is less than or equal

to the number of values of type T. This is a well-studied NP-

complete problem. Many exact algorithms, heuristics, and

approximation algorithms have been proposed. Gd is typically

small enough that exact algorithms can be used. In the case

studies described in Section 10, the abstraction of infinite

types is preferable to the use of finite types, but if finite types

were used, then for our sample queries, the disequality graph

for each symbolic state would contain 3 or fewer nodes.
5. Analysis algorithm

This section presents a symbolic algorithm for user-role

reachability analysis of PARBAC policies. The algorithm has

two stages. The first stage performs a backward search from

thegoal toward the initial state.However, someof the enabling

conditions of the administrative actions are not checked

during the backward search. In other words, this stage

constructs anover-approximationof a backward slice (starting

from the goal) of the symbolic state graph. The second stage

determines which states in that graph are actually reachable,

by running an exact forward search from the initial state, but

limiting the searchbasedon the results of stage 1. Compared to
hability analysis for parameterized administrative role-based
10.08.002

http://dx.doi.org/10.1016/j.cose.2010.08.002
http://dx.doi.org/10.1016/j.cose.2010.08.002

Fig. 1 e Backward symbolic graph for Example 3. An edge

from R to R0 labeled with 4means (R0, 4, R) ˛ Eb. The roles all

have one parameter, p, whose name is elided, to improve

readability; for example, r1(p [Y) is shown as r1(Y).

c om p u t e r s & s e c u r i t y x x x (2 0 1 0) 1e1 78
a purely forward algorithm, the backward stage improves the

algorithm’s efficiency by pruning the search space, and

improves the algorithm’s termination behavior. The overall

strategy of using an approximate backward search followed by

a forward search is reminiscent of Graphplan (Blum and Furst,

1997), although the details are quite different.

5.1. First stage

The graph constructed by the first stage of the algorithm is an

over-approximation for two reasons: negative preconditions

are ignored, and disequality constraints are ignored. Negative

preconditions could, at best, be only partially checked during

the first stage, because the symbolic states constructed during

the first stage might be subsets of the symbolic states that are

actually reachable. This is because those statesmight actually

contain additional roles that were needed to satisfy positive

preconditions of earlier transitions (i.e., transitions between

a state and the initial state); although some of those roles

could perhaps be revoked, some of them might not be revo-

cable by the administrative roles in A.

Since negative preconditions cannot be checked completely

during the first stage, for simplicity, we do not check them at all

during that stage; they are enforced during the second stage.

Since disequality constraints are used primarily to enforce

negative preconditions,wedonot keep track of themduring the

first stage. Thus, each symbolic state in the backward symbolic

state graph is simply a set of roles (i.e., role instances). Edges are

determinedby the backward symbolic transition relationTb. A tuple

(R0, (4, qf, q), R) is in that relation if a backward step from R0 to R

(i.e., R0 is closer to the goal, and R is closer to the initial state) is

possibledignoring negative preconditionsdusing rule 4 with

the given substitutions, which are analogous to the substitu-

tions in the forward symbolic transition relation introduced in

Section 4. The backward symbolic transition relation considers

only role assignment actions; it does not consider revocation,

which cannot help satisfy positive preconditions.

Definition 7. The backward symbolic transition relation Tb(URA, A)

for a user-role administration policy URA and an assignment A

of users to administrative roles is the least relation such that:

� (R0, (4, qf, q), R) ˛ Tb(URA, A) if 4 ˛ URA and 4 ¼ can_assign(ra,

(P, N), rt) and there exist rt0 ˛ R0, P1 4 P, Rp 4 R0\{rt0}, (uA,
rA) ˛ A such that

e qf ¼ freshSubst(vars(4), vars(R0))
e q is 6g-maximal among substitutions such that

* P1qfq 4 Rpq (the positive preconditions in P1 are

satisfied by the roles in Rp; the other preconditions

of 4 will be added to R, acting as new sub-goals)

* q does not map variables in vars(R0) to locally fresh

variables.

* raqfq ¼ rA (instantiating ra yields the administrative

role in A used to perform this role assignment)

* q(Self) ¼ uA (q maps the distinguished variable Self

to the identity uA of the administrator performing

this role assignment)

* rt0q ¼ rtqfq (the role rt0 in R0 is the role added by this

transition)
Please cite this article in press as: Stoller SD, et al., Symbolic reac
access control, Computers & Security (2010), doi:10.1016/j.cose.2
e R ¼ R0qyfr0tqgW
S

r˛PyP1
frqf qg (the earlier state R

contains the roles in R0, minus the role added by this

transition, plus roles used to satisfy the remaining

positive preconditions of 4)

e rt0q ; R (the role being added is not present in the

earlier state R)
Definition 8. The backward symbolic state graph for a user-

role reachability query of the form in Definition 2 is a labeled

directed graph mkGloballyFresh(V, E), where the sets V of

vertices and E of edges are the smallest sets such that:

� g ˛ V.

� (R0, 4, R) ˛ E and R ˛ V if R0 ˛ V and there exist qf ˛ Subst and

q ˛ Subst such that (R0, (4, qf, q), R) ˛ Tb(URA, A).
Example 3. The backward symbolic state graph for the

following policy and query is shown in Fig. 1.

RS ¼ fra; r1ðpÞ; r2ðpÞ; r3ðpÞg
41 ¼ can assignðra; true; r1ðp ¼ XÞÞ
42 ¼ can assignðra; r1ðp ¼ XÞ; r2ðp ¼ XÞÞ
43 ¼ can assignðra; r2ðp ¼ XÞ^:r1ðp ¼ XÞ; r3ðp ¼ XÞÞ
44 ¼ can revokeðra; r1ðp ¼ XÞÞ
45 ¼ can revokeðra; r3ðp ¼ XÞÞ
UAðgÞ ¼ fðua; raÞg
A ¼ fðua; raÞg
g ¼ fr1ðp ¼ YÞ; r3ðp ¼ ZÞg

The definition of the backward symbolic transition relation

does not require 4-maximality of P1, so when a backward

symbolic transition is possible with a non-empty value of

P1, then backward symbolic transitions corresponding to

subsets of P1 are also possible. This allows positive

preconditions to be satisfied using either new role instances

or role instances already in the state. For example, for the

transition labeled 42 from {r1(Y), r2(Z)} to {r1(Z)}, P1
contains the positive precondition of 42 (this is why the size

of the symbolic state decreases), while P1 is empty for the

other transition labeled 42 from the same source state to

{r1(Y), r1(Z)}.
5.2. Second stage

The second stage performs a forward search and maintains

a correspondence between states explored by the forward

search, called forward states, and states explored during the
hability analysis for parameterized administrative role-based
010.08.002

http://dx.doi.org/10.1016/j.cose.2010.08.002
http://dx.doi.org/10.1016/j.cose.2010.08.002

c om p u t e r s & s e c u r i t y x x x (2 0 1 0) 1e1 7 9
first stage, called backward states. The correspondence is used

to limit the forward search to explore only transitions that

might be useful for reaching the goal. Specifically, from each

forward state (R, C) and each backward state Rb corresponding

to it, the (unoptimized) forward algorithm explores (1) all

enabled can_assign rules 4 such that one of the backward

states Rb corresponding to (R, C) is the target of an edge

labeled with 4 in the backward symbolic state graph, and (2)

all enabled can_revoke rules. The resulting graph is called

a goal-directed forward symbolic state graph. Its nodes are pairs

((R, C), Rb) of a forward state (R, C) and a corresponding

backward state Rb.

Definition 9. The goal-directed forward symbolic state graph for

a user-role reachability query of the form in Definition 2 is

a labeled directed graph mkGloballyFresh(V, E), where V and E

are the smallest sets satisfying the following conditions, where

(Vb, Eb) is the backward symbolic state graph for the query.

� ((UA0, true), Rb) ˛ V for each Rb ˛ Vb such that (dq ˛ Subst.

Rbq 4 UA0), where UA0, the initial role assignment for u0, is

UA0 ¼ {r j (u0, r) ˛ UA (g) ^ :admin(r)} (the initial forward state

(UA0, true) is related to backward states that represent

subsets of UA0; intuitively, we use subset, instead of

equality, because a backward state is a set of sub-goals, and

we just require that the sub-goals are satisfied in the initial

state)

� (((R, C), Rb), 4, ((R0, C0), R0
b)) ˛ E and ((R0, C0), R0

b) ˛ V if ((R, C),

Rb)˛V and there exist substitutions qf and q such that ((R, C),

(4, qf, q), (R0, C0)) ˛ T(URA, A) and either (1) 4 is a can_revoke

rule and Rb
0 ¼ Rb, or (2) 4 is a can_assign rule and (Rb

0, 4,
Rb) ˛ Eb.

A forward state (R, C) satisfies goal g with substitution q if

Rq J gq and satisfiable(Cq). Let subst((R, C), g) be the set of

substitutions q such that (R, C) satisfies goal g with substitu-

tion q.

The symbolic analysis algorithm can provide a symbolic

representation of all reachable instances of the goal: for each

reachable forward state (R, C), for each substitution q in subst

((R, C), g) that is6g-maximal in subst((R, C), g), add ((R, C), q) to

the result.

To improve termination and efficiency, the second stage

uses a depth-first search limited to explore paths whose

projection onto the backward graph is acyclic, except that, as

a special case, the self-loops (i.e., an edge from a node to itself)

due to can_revoke transitions are allowed. In other words,

a can_assign transition leading to a state ((R, C), Rb) is not taken

if Rb is the second component of some state already on the

search stack. To see that limiting the search in thisway is safe,

note that a segment of a forward path that projects to a cycle

in the backward graph does not help satisfy any positive

preconditions, because that is exactly what the backward

graph is keeping track of. Thus, the can_assign transitions in

such a path segment are useless. The path segmentmight also

contain can_revoke transitions, which might help satisfy some

negative precondition. Since revocation is unconditional,

those can_revoke transitions do not depend on the can_assign

transitions and therefore will be explored along another path

that does not contain useless can_assign transitions.
Please cite this article in press as: Stoller SD, et al., Symbolic reac
access control, Computers & Security (2010), doi:10.1016/j.cose.20
Example 4. Consider the goal-directed forward symbolic

graph for the policy and query in Example 3. The backward

state Ø corresponds to the initial forward state ({}, true).

Consider the following path in the backward graph in Fig. 1

(the roles all have one parameter p, whose name is elided to

improve readability, as in Fig. 1):

fr1ðZÞ; r3ðZÞg/
41 fr3ðZÞg/

43 fr2ðZÞg/
42 fr1ðZÞg/

41
�:

Corresponding to this path in the backward graph, the second

stage of the algorithm, without optimizations, constructs the

following path in the goal-directed forward graph (space is

inserted between the two components of each state to align

the second components, which are backward states):

ðð�; trueÞ; �Þ
/
41 ððfr1ðZÞg; trueÞ; fr1ðZÞgÞ
/
42 ððfr1ðZÞ; r2ðZÞg; trueÞ; fr2ðZÞgÞ
/
44 ððfr2ðZÞg; trueÞ; fr2ðZÞ Þg
/
43 ððfr2ðZÞ; r3ðZÞg; trueÞ fr3ðZÞgÞ
/
41 ððfr1ðYÞ; r2ðZÞ; r3ðZÞg; trueÞ; fr1ðYÞ; r3ðZÞgÞ:

The last of these states satisfies the goal.

This example illustrates the observation in Section 5.1 that

states in the backward graph represent subsets of reachable

states: the backward graph contains the state {r1(Z), r3(Z)},

but all reachable states containing an instance of r3 also

contain an instance of r2, because r2 is a positive precondition

in the rule 43 for adding r3, and r2 cannot be revoked.

5.3. Termination

Termination is an issue, because the symbolic state graph

may be infinite. For example, each use of the rule can_assign

(Chair(dept ¼ D), Faculty(dept ¼ D), Instructor(dept ¼ D, cid ¼ C))

introduces a fresh variable for the course identifier, so a purely

forward symbolic algorithm may add an unbounded number

of distinct instances of the Instructor role schema. The back-

ward stage prevents divergence inmany cases, but not all. Our

algorithm is guaranteed to terminate if either (T1) the policy’s

positive-precondition dependency graph is acyclic, or (T2) all

can_assign rules in the policy have at most one positive

precondition. The positive-precondition dependency graph for

a PARBAC policy is a directed graph that contains a vertex for

each role schema and contains an edge from r1 to r2 if the

policy contains a can_assign rule with r1 in the positive

precondition and r2 in the target.

Condition (T1) ensures termination of the backward stage,

because it implies the diameter of the backward symbolic state

graph is finite; the outdegree of every node in the backward

symbolic state graph is also finite, so the graph is finite. Condi-

tion (T2) ensures termination of the backward stage, because it

implies thateverystateconstructedduring thebackwardsearch

contains at most jgj roles, and there are only a finite number of

such states (this is true even though transitions can introduce

freshvariables, because twostatesareequal if theydifferonly in

the names of variables introduced during the search).

Termination of the backward stage ensures termination of

the forward stage, because the forward search is limited to

exploring paths whose projection onto the backward graph is

acyclic.
hability analysis for parameterized administrative role-based
10.08.002

http://dx.doi.org/10.1016/j.cose.2010.08.002
http://dx.doi.org/10.1016/j.cose.2010.08.002

c om p u t e r s & s e c u r i t y x x x (2 0 1 0) 1e1 710
The policies for both of our case studies satisfy both (T1)

and (T2). We expect that most real policies satisfy at least one

of them. The positive-precondition dependency graph is often

acyclic, because roles in the positive precondition in a can_as-

sign rule are often junior in the organizational hierarchy to the

target role, and organizational hierarchies are acyclic.
5.4. Optimizations

5.4.1. Slicing
A two-stage policy slicing transformation is applied before

analysis. The first stage of slicing computes a simple over-

approximation of the set of reachable roles. The second stage

of slicing uses this information to eliminate can_assign and

can_revoke rules that are either unreachable, i.e., cannot be

executed from any state reachable from the given initial state,

or useless, i.e., do not truthify any positive preconditions that

help reach the given goal. Slicing can be done in linear time in

the size of the problem instance, assuming the arity of roles is

bounded by a constant.

The first stage of slicing computes a set QRR of quasi-

reachable roles. QRR is the least set satisfying the following

recursive definition: (1) if r is in the initial state, then r is in

QRR; (2) if r is the target of a can_assign rule all of whose

positive preconditions are unifiable with elements of QRR,

then r is in QRR. QRR has the property: every role instance in

every reachable concrete state is an instance of (i.e., can be

obtained by instantiating) some role in QRR.

The second stage of slicing computes sets CAu and CRu of

can_assign and can_revoke rules, respectively, that over-

approximate the sets of policy rules that are possibly useful

(and reachable), and then discards all rules not in these sets.

The set CAu of useful can_assign rules is defined simulta-

neously with the set Ru of useful roles (i.e., adding these roles

to the state might be useful for reaching the goal). A role r is in

Ru if r appears in the goal or occurs as a positive precondition

of a rule in CAu. A can_assign rule is in CAu if its target is

unifiable with a role in Ru and all of its preconditions are

unifiable with roles in QRR. A can_revoke rule is in CRu if its

target is unifiablewith a negative precondition of a rule in CAu.

5.4.2. Eager revocation of useless roles
During the second stage of the algorithm, “useless” roles, i.e.,

roles that will not be needed to satisfy any positive precon-

ditions, are eagerly revoked; this is a kind of partial-order

reduction. Specifically, a can_assign transition corresponding

to a backward transition (Rb
0, 4, Rb) ˛ Eb is augmented so that,

after the role assignment, it also revokes (i.e., removes from

the forward state) every revocable role r in the forward state

that does not match any element of Rb. We call these roles

useless in that state, because these roles will not be needed to

satisfy any preconditions in the rest of the path to the goal. A

role r is revocablewith respect to a user-role reachability query

of the form in Definition 2 if A contains an administrative role

with permission to revoke r. A role r1 matches a role r2 if r1 and

r2 are instances of the same role schema and, for each

parameter p of the schema, either (a) r1 or r2 has a variable as

the value of p or (b) r1 and r2 contain the same constant as the

value of p.
Please cite this article in press as: Stoller SD, et al., Symbolic reac
access control, Computers & Security (2010), doi:10.1016/j.cose.2
Example 5. Consider the same reachability query as in

Example 4. With eager revocation of useless roles, the can_re-

voke transition using rule 44 would be combined with the

preceding can_assign transition using 42, and if the policy were

extended with a can_revoke rule for r2, then the transition that

uses 43 to add r3(Z) would be extended to revoke r2(Z).
5.4.3. Remove a-equivalent useless roles
This optimization detects “redundant” useless roles and

removes some of them to eliminate the redundancy. The local

variables of a role r in a forward state (R, C) are the variables

that appear in r and do not appear anywhere else in the

forward state. Two roles r1 and r2 in a forward state (R, C) are

a-equivalent if they can be obtained from each other

by renaming local variables. If a forward state contains two a-

equivalent useless roles, then one of them is removed. This is

sound because useless roles are used only to evaluate negative

preconditions, and this removal does not affect which nega-

tive preconditions are satisfied by the state.

5.4.4. Prune subsumed states
Thisoptimizationavoidsexploringsymbolicstates thatcanonly

lead toasubsetof thestates reachable fromsomesymbolic state

thathasalreadybeenexplored.WesaythatasetR0 ofroles inthe

forwardpartofasymbolicstateS0 is subsumedbyasetRofroles in

the forward part of a symbolic state S if jR0j ¼ jRj and every

concrete instance of R0 is also a concrete instance of R. We

conservatively check subsumption by attempting to construct

a 1e1 correspondence between elements of R0 and R, and

a substitution q satisfying the disequality constraints, such that

for each role r0 in R0 and the corresponding role r in R, r0 ¼ rq.

During the second stage of the algorithm, let S be a previ-

ously explored state, and let S0 bea candidate state to explore. If

S0 agreeswith Son thebackward stateand theuseful part of the

forward state, anda subset of theuselesspart of S0 is subsumed

by the useless part of S, then this optimization suppresses

exploration of S0. The subsumption and subset checks both

ensure that S0 satisfies fewer negative preconditions than S,

and the two states satisfy the same positive preconditions, so

any goal reachable from S0 is also reachable from S.

Note that this is a form of forward subsumption, which

explores a state only if it is not subsumed by a previously

encountered state. We do not consider backward subsump-

tion, which prevents further exploration from a previously

encountered state if it is subsumed by a later state.

5.4.5. Early stopping
If the user wants only one reachable instance of the goal, then

the forward search halts as soon as a state satisfying the goal

is encountered; we call this early stopping.

5.4.6. No revocation of non-negative roles
A role schema r is non-negative with respect to a backward

state Rb if, for all transitions 4 on edges between Rb and g in the

backward graph, r does not appear in a negative precondition

of 4. After the first stage of the algorithm, we compute the

non-negative role schemas for each backward state. During

the second stage of the algorithm, from a state ((R, C), Rb),

can_revoke transitions are not explored for roles that are
hability analysis for parameterized administrative role-based
010.08.002

http://dx.doi.org/10.1016/j.cose.2010.08.002
http://dx.doi.org/10.1016/j.cose.2010.08.002

c om p u t e r s & s e c u r i t y x x x (2 0 1 0) 1e1 7 11
instances of role schemas that are non-negative with respect

to Rb, with the exception that useless roles are still eagerly

revoked. Suppressing revocation of non-negative roles is safe

because revocation of those roles would not enable any

transition on the rest of the path to the goal. Note that useless

non-negative roles are still eagerly revoked. This has low cost,

because eager revocations are combined with a preceding

can_assign transition and hence do not add nodes or edges to

the graph, and it helps reduce the number of useless roles in

the state and thereby reduce the cost of subsumption checks.
Fig. 2 e Translation to replace amulti-target can_assign rule

40 with a single-target can_assign rule.
6. Undecidability

We show undecidabilitydmore specifically, (strict) semi-

decidabilitydof user-role reachability for PARBAC, based on

a semidecidability result for the plan existence problem for

STRIPS-style planning. Specifically, we use Theorem 3.10 in

Erol et al. (1991a), a technical report containing details of the

complexity results summarized in the journal article (Erol

et al., 1991b).

The plan existence problem is: given a language (of constants,

predicate symbols, and function symbols) an initial state, a set

of operators, and a goal, determinewhether there exists a plan

from the initial state to the goal. An operator is characterized

by a set of positive preconditions, a set of negative precondi-

tions, an add set (a set of atoms representing facts that the

operator adds to the state), and a delete set (a set of atoms

representing facts that the operator removes from the state).

A problem instance is function-free if the language contains no

function symbols. A problem instance is deletion-free if every

operators has an empty delete set.

Theorem 3.10 in Erol et al. (1991a) states that the plan

existence problem is semi-decidable if the language is allowed

to contain infinitely many constants, even if problem in-

stances are restricted to be deletion-free and function-free

(and the initial state is restricted to be finite). The proof in Erol

et al. (1991a; Appendix A.4) is by reduction from the halting

problem.

To reduce a function-free, deletion-free planning problem

to the reachability problem for PARBAC, the main step is to

show how the operators in the planning problem can be

expressed using can_assign. The main difficulty is that an

operator may addmultiple facts, while a single can_assign rule

adds only one fact. To separate this aspect from the rest of the

reduction, we factor the reduction into two steps: a translation

from the planning problem to an extension of PARBAC, called

multi-target PARBAC, in which can_assign rules may contain

multiple target roles, and a translation from multi-target

PARBAC to PARBAC. The former translation is completely

straightforward. The latter translation introduces new roles

that, intuitively, represent sets of simultaneously added roles

of the original policy. Preconditions in can_assign rules are

transformed to take thesenewroles into account. For example,

suppose the policy contains amulti-target can_assign rule with

target {r1(p ¼ X), r2(q ¼ Y)}. The translation replaces this rule

witha can_assign rulewith targetr1,2(p¼X,q¼Y),wherer1,2(p,

q) is a new role schema. Every can_assign rule with r1(p¼ X) in

the positive precondition P is replacedwith two rules: onewith

r1(p ¼ X) in P (i.e., no change), and one with r1,2(p ¼ X, q ¼ Y0)
Please cite this article in press as: Stoller SD, et al., Symbolic reac
access control, Computers & Security (2010), doi:10.1016/j.cose.20
replacing r1(p ¼ X) in P, where Y0 is a fresh variable (i.e.,

a variable that does not yet appear in the rule). Each negative

preconditionN containing r1(p¼X) is extended toalso include

r1,2(p ¼ X, q ¼ _), where _ is a wildcard.

More generally, we define a translation that, given

a multi-target PARBAC reachability problem instance of the

form in Definition 2, and a multi-target rule 40 ¼
can assignðr0; ðP0;N0Þ; fr1ð e!1Þ; .; rnð e!nÞ Þg in URA, where e!i

is a vector of arguments, produces a set of reachability

problem instances (differing only in their goals) in which 40

has been replaced with single-target can_assign rules, and

with the property that the original problem instance is

satisfiable (i.e., the goal is reachable) iff one of the gener-

ated problem instances is satisfiable. The result of the

translation is the problem instance in Fig. 2, where r0 is

a fresh role name, fp transforms roles used as positive

preconditions or goals, fn transforms roles used as negative

preconditions, and fR transforms can_assign rules (the dele-

tion-free restriction implies that there are no can_revoke

roles). Disjunction in a positive precondition of a rule is

a shorthand that is easily expanded by replacing the rule

with multiple rules (one for each disjunct). Similarly, dis-

junction in a goal is a shorthand for multiple goals (hence

multiple problem instances).

Repeatedly applying this translation, once for each rule

with multiple target roles, reduces a multi-target PARBAC

reachability problem instance to a set of PARBAC problem

instances.

Harrison et al.’s (1976) classic proof of undecidability of the

safety analysis problem for their access control model cannot

easily be adapted to our setting for a variety of reasons, e.g.,

their model allows creation of subjects and objects, while our

result applies to reachability analysis for user-role adminis-

tration (URA) policies, which do not support creation of users

or roles. Crampton (2002) defines an administrative model for

RBAC (without role parameters) and shows that reachability

analysis for it is undecidable. There are several differences

between the URA policies considered here and the adminis-

trative model considered in Section 5.2 of Crampton (2002),
hability analysis for parameterized administrative role-based
10.08.002

http://dx.doi.org/10.1016/j.cose.2010.08.002
http://dx.doi.org/10.1016/j.cose.2010.08.002

c om p u t e r s & s e c u r i t y x x x (2 0 1 0) 1e1 712
e.g., the former supports role parameters, and the latter

supports creation of roles. Becker’s (2009) semidecidability

result for the reachability problem for DynPAL is also based on

Theorem 3.10 in Erol et al. (1991a). The main difference from

our result is that DynPAL rulesmay performmultiple updates,

so there is no need for an analogue of our reduction from

multi-target PARBAC to PARBAC.
7. Fixed-parameter tractability

Expressing the complexity of the optimized backward algo-

rithm as a function of the overall problem size alone is

unsatisfactory, because the worst-case complexity with re-

spect to this parameter is exponential, while we expect the

typical complexity to be much better. To provide some insight

into when andwhy this is the case, we express the complexity

in terms of several metrics that characterize the “difficulty” of

the policy. This complexity result applies to policies that

satisfy conditions (T1) and (T2) in Section 5.3.

Let Gb denote the backward symbolic state graph for

a query. Each backward state Rb in Gb satisfies jRbj � jgj,
because each backward transition replaces the target role

with the positive precondition of the selected can_assign rule.

Let dp denote the diameter of the positive-precondition de-

pendency graph. Typically dp is much smaller than jRSj,
because it measures the height, not the total size, of an

organization’s administrative structure. The length of paths in

Gb is bounded by jgjdp, because each backward transition

decreases the sum of the heights (in the positive-precondition

dependency graph) of the schemas of the roles in the back-

ward state.

Let dt denote the maximum number of can_assign rules

with the same role schema as a target. The outdegree of

a vertex in the backward state graph is bounded by jgjdtdq,
where dq bounds the number of different successor states that

can be reached from a given backward state using a given

can_assign rule and different substitutions, i.e., it is the

maximum, over backward states R0
b in Gb and can_assign rules

4 in the policy, of j{Rb j dqf, q. (R0
b, (4, qf, q), Rb) ˛ Tb(URA, A)}j.

Note that dq is bounded by jRb
0j hence by jgj, because differ-

ences in q that lead to differences in Rb come from matching

the target of 4 with different elements of R0
b. Thus, the out-

degree of a vertex in the backward state graph is bounded by

jgj2dt. The number of nodes in a graph with maximum path

length [and maximum outdegree d is O(d[). Therefore, the

number of backward states is Oððjgj2dtÞjgjdp Þ.
Let Gf denote the goal-directed forward symbolic state

graph for the query. Every node in Gf is reachable by a simple

path in Gf. Every simple path in Gf corresponds, by projection

onto the second component of each node, to a distinct path in

Gb, because (1) every transition in the goal-directed forward

symbolic graph corresponds to execution of a backward

symbolic transition that changes the second component (i.e.,

the backward state) in the node, and (2) distinct outgoing

transitions from a state in the goal-directed forward symbolic

graph must correspond to execution of different can_assign

transitions hence to execution of different backward symbolic

transitions. Furthermore, these paths in Gb contain at most

one occurrence of each cycle in Gb, because transitions that go
Please cite this article in press as: Stoller SD, et al., Symbolic reac
access control, Computers & Security (2010), doi:10.1016/j.cose.2
around a cycle in Gb a second time would not add more

irrevocable roles or constraints to the corresponding forward

states, hence the corresponding fragment of the path in Gf

would be a cycle, contradicting the assumption that the path

in Gf is simple. Therefore, the number of states in Gf is boun-

ded by the number of paths in Gb that go around each cycle at

most once. This is bounded by some function 4 of the number

of backward states. The time complexity of standard state-

graph construction algorithms is polynomial in the size of the

input and linear in the size of the output (i.e., the generated

state graph). Therefore, the worst-case time complexity of the

overall backward algorithm is OðjIjcfððjgj2dtÞjgjdp ÞÞ, for some

constant c and some function 4, where jIj is the size of the

problem instance (the query). This implies that user-

role reachability for queries satisfying (T1) and (T2) is fixed-

parameter tractable with respect to max(jgj, dt, dp). For the

queries in our case studies, we found jgj � 2, dt� 10, and dp� 3.
8. Beyond separate administration

Recall that the preceding algorithms assume separate

administration. In Stoller et al. (2007), we presented two

approaches to analysis of policies that do not satisfy separate

administration. The first approach extends the algorithms to

keep track of the user-role assignment for each administrator

as well as the target user u0; this is straightforward butmay be

computationally expensive. The second approach allows

more efficient analysis of policies that satisfy an alternative

assumption called hierarchical role assignment, which says,

roughly, that each administrative role has authority to assign

users only to selected roles that are junior to it in the role

hierarchy. Both approaches can be adapted for analysis of

PARBAC.
9. Case studies

We used PARBAC policies for a university and a health-care

facility as case studies. Unparameterized versions of these

policies were used as case studies in Stoller et al. (2007); those

versions are unrealistic in the sense that they accommodate

only one department, one course, one faculty, etc. The

parameterized versions accurately handle multiple depart-

ments, multiple courses, multiple faculty, etc. Both policies

have the following characteristics: (1) the positive-precondi-

tion dependency graph is acyclic; (2) every can_assign rule has

at most one positive precondition; (3) for almost all can_assign

rules, there is a corresponding can_revoke rule, so almost all

roles are revocable; and (4) the policy does not satisfy separate

administration, but hierarchical role assignment is satisfied

for most sets of administrative roles. The policies contain

about 3 dozen and 1 dozen can_assign rules, respectively.

9.1. University

Our PARBAC policy for a university controls assignment of

users to student roles and employee roles. It contains 60 role

schemas and 35 can_assign rules; expanding role hierarchy

increases it to 625 rules. Role schemas for students
hability analysis for parameterized administrative role-based
010.08.002

http://dx.doi.org/10.1016/j.cose.2010.08.002
http://dx.doi.org/10.1016/j.cose.2010.08.002

c om p u t e r s & s e c u r i t y x x x (2 0 1 0) 1e1 7 13
include Student, Undergrad, Undergrad(dept), Undergrad(dept,

cid), and RA(fac). Role schemas for employees include

Employee, Faculty, Faculty(dept), Instructor(dept, cid), DeptChair

(dept), and Provost. Role hierarchy relationships include

President c Provost c DeanOfAdmissions c AdmissionsOfficer c

Staff.

A sample user-role reachability query is: Can an admin-

istrative user initially in DeptChair(dept ¼ cs) add a user

initially in Faculty(dept ¼ ee) to QualExamCommittee(dept ¼ cs)?

The answer is no, because the policy states that members of

DeptChair(dept ¼ D) can assign only members of Faculty

(dept ¼ D) to QualExamCommittee(dept ¼ D). Another sample

reachability query is: Can administrative users in Gra-

dAdmissionOfficer and RegistrarOfficer add a user initially in no

roles to Grad(dept ¼ cs, cid ¼ 501)? Yes, because a Gra-

dAdmissionOfficer can first assign the user to Grad, and

a RegistrarOfficer can then assign the user to Grad(dept ¼ cs,

cid ¼ 501).

9.2. Health-care facility

Our second case study is a PARBAC policy for a health-care

facility, based on policies in Evered and Bögeholz (2004),

Becker (2005). The policy contains 14 can_assign rules. Role

schemas include Doctor, Doctor(patient), Nurse, ReferredDoctor

(patient), PrimaryDoctor(patient), Receptionist, Manager, Medical-

Manager, and ThirdParty. Hierarchical role assignment is

satisfied for most sets of administrative roles, but not as high

a percentage of them as for the university policy.
10. Experimental results

We implemented the symbolic algorithm described in this

paper and the forward and backward algorithms for analysis

of unparameterized ARBAC in Stoller et al. (2007) using the

XSB tabled logic programming system, version 3.1. We refer to

the algorithms in Stoller et al. (2007) as concrete algorithms. All

reported data were obtained on a 2.5 GHz Pentium machine

with 4 GB RAM running Linux 2.6.28. The policies used in our

experiments are available at http://www.cs.stonybrook.

edu/stoller/parbac/.

10.1. Case studies

We applied the symbolic algorithm to 5 user-role reachability

queries for the university policy and 2 such queries for the

health care policy (details are at the above URL). Each query is

answered in less than 0.01 s.

10.2. Performance comparison for parameterized policies

These experiments evaluate the performance benefit of using

symbolic analysis for parameterized policies in which all

parameters range over finite types. These experiments

compare the performance of the symbolic algorithm applied

to a parameterized policy with the performance of the

concrete algorithm applied to each unparameterized policy

obtained by instantiating the parameterized policy using

values from a single finite type, for varying sizes of the type.
Please cite this article in press as: Stoller SD, et al., Symbolic reac
access control, Computers & Security (2010), doi:10.1016/j.cose.20
To do this for a variety of “realistic” policies, we generate

synthetic policies that are structurally similar to our univer-

sity policy after expansion of role hierarchy and that contain

about the same number of can_assign rules (namely, 625). The

policies contain the same role schemas as the university

policy. The number of can_assign rules per (target) role sch-

ema is chosen randomly following the distribution of rules

per role schema in the university policy. The numbers of

positive and negative preconditions per rule are chosen in an

analogous way. For each rule, role schemas for the positive

and negative preconditions are randomly selected and then

instantiated based on the following observation about the

university policy: in each rule, parameters (in different role

schemas) are instantiated with same variable if the param-

eters have the same name. “Easy” problem instances, for

which policy slicing yields an empty policy, are discarded and

replaced during policy generation. To generate problem

instances with goal size 1, one role is randomly selected as

the goal; to generate problem instances with goal size 2, each

goal of size 1 is augmented with a randomly selected role;

and so on.

Table 1 gives performance data for the algorithms with all

optimizations enabled. For the concrete backward algorithm,

we report only numbers of nodes and edges in stage 1, because

the nodes and edges in stage 2 are a subset of those in stage 1.

Each data point is an average over 32 synthetic problem

instances. We varied the size jgj of the goal and the size jTj of
the finite type. Running time is rounded to the nearest 0.01 s.

The running time and memory consumption of the concrete

backward algorithm grow quickly as a function of jTj. For

jgj ¼ 1, the symbolic algorithm and the concrete algorithm

have similar running times for jTj � 3, and the symbolic

algorithm is faster for jTj > 3. For jgj > 1, the symbolic algo-

rithm is faster than concrete backward algorithmwhen jTj> 1.

For jgj ¼ 3, we do not include performance results for the

concrete backward algorithm for jTj ¼ 3 (or higher), because

the concrete algorithm did not terminate within 4 h for some

policies. Data for the concrete forward algorithm is omitted

from Table 1 because that algorithm runs significantly slower

than the other two algorithms when jTj ¼ 1 and runs out of

memory when jTj > 1, because (1) that algorithm is expo-

nential in the number of mixed roles (roles that appear posi-

tively in some preconditions and negatively in others) and the

number of mixed roles is large (namely, 18), and (2) that

algorithm tends to generate states containing unnecessarily

many distinct instances of some role schemas.

To illustrate the distribution of running times, Fig. 3 shows

the normalized running times of the symbolic algorithm on all

the problem instances used for Table 1. For each goal size, the

running times are normalized by dividing by the longest

running time for that goal size. Observe that the running times

do not follow a normal (Gaussian) distribution, and the

distribution tends to have outliers on the right side, especially

for larger goal sizes.

10.3. Performance comparison for unparameterized
policies

These experiments evaluate the performance penalty of

unnecessarily using symbolic analysis on unparameterized
hability analysis for parameterized administrative role-based
10.08.002

http://www.cs.stonybrook.edu/stoller/parbac/
http://www.cs.stonybrook.edu/stoller/parbac/
http://dx.doi.org/10.1016/j.cose.2010.08.002
http://dx.doi.org/10.1016/j.cose.2010.08.002

Table 1 e Running time (s) andmemory consumption (MB) on parameterized policies. Node-i/Edge-i: number of nodes and
edges generated in Stage i. K and M represent 103 and 106, respectively.

jgj Symbolic jTj Concrete Backward

Time Mem Node-1/Edge-1 Time Mem Node-1/Edge-1

Node-2/Edge-2

1 0.01 5.92 27/291 1 0.00 5.45 27/291

21/70 2 0.00 5.73 49/950

3 0.01 7.06 75/2.2K

4 0.03 9.10 109/4.4K

5 0.11 12.4 149/7.7K

6 0.12 17.2 194/12.5K

7 0.39 23.9 246/19.1K

2 0.20 14.26 384/8385 1 0.05 5.45 370/7.9K

362/1337 2 0.41 5.96 1.2K/47K

3 1.96 7.07 3.0K/178K

4 8.33 9.10 6.3K/512K

3 7.74 135 826/32K 1 1.79 5.45 3.4K/108.6K

2 62.94 5.97 20.4K/1.2M

c om p u t e r s & s e c u r i t y x x x (2 0 1 0) 1e1 714
policies, by comparing the performance of the symbolic and

concrete algorithms applied to the same unparameterized

policies. We used the synthetic unparameterized policies used

for Tables 2(a) in Stoller et al. (2007) which vary goal size

(running times in Stoller et al., 2007 were obtained with

a different implementation of the concrete algorithms, inCþþ).

Table 2 shows the time and space requirements of the three

algorithms on the unparameterized policies used for Table 2(a)

in Stoller et al. (2007), which contain 32 roles, including 8mixed

roles. The performance of the symbolic algorithmand concrete

backward algorithm is similar for these policies. As expected,

the time and memory consumption of these algorithms

increasesquicklywith jgj,while the cost of the concrete forward

algorithm increases slowly with jgj.
10.4. Evaluation of optimizations

The performance data in Table 3 demonstrates the effect of

some of the optimizations for synthetic problem instances

with goal size 1. For the first row (“Baseline”), only slicing and

early stopping are enabled. We included these two optimiza-

tions in the baseline, because without them, the running time

is very high (e.g., several hours) for some problem instances.

For each of the next four rows, the one specified optimization

is also enabled (in addition to slicing and early stopping). For

the last row (“Best”), all optimizations are enabled. These

experiments use the same synthetic problem instances as in
0

1

2

3

4

0 0.2 0.4 0.6 0.8 1
Normalized running time

|
g

|

Fig. 3 e Normalized running times for symbolic algorithm.

Please cite this article in press as: Stoller SD, et al., Symbolic reac
access control, Computers & Security (2010), doi:10.1016/j.cose.2
Table 1, except that we omitted one problem instance for

which the baseline does not terminate in a reasonable amount

of time. The optimizations evaluated in this table affect only

stage 2, so the numbers of nodes and edges from stage 1 are

not shown.

Observe from the table that all four of the evaluated opti-

mizations reduce the size of the graph generated in stage 2.

Eager revocation provides the most dramatic reduction in

graph size and running time. The “Eager revocation”, “Prune

subsumed”, “Remove subsumed”, and “No revocation of non-

negative roles” optimizations reduce the execution time by

99.7%, 94%, 76%, and 75%, respectively.

We draw the following conclusions from our experiments.

(1) Slicing and early stopping are very effective in many cases

and have low cost. (2) Eager revocation provides a very effec-

tive partial-order style reduction, dramatically running time

and graph size. It has low per-transition overhead (linear in

the size of a state representation). (3) Pruning subsumed states

is also effective, but comes at a cost: subsumption checks are

expensive. The algorithm we use is O(N!), where N is the

number of useless roles in a forward state. Pruning subsumed

states works best when combined with removal of a-equiva-

lent useless roles, which helps keep N small. For example, for

some problem instances, we saw values of N as high as 13

when “Remove a-equivalent useless roles” was disabled;

when it was enabled, we did not see values larger than 3.

(4) “No revocation of non-negative roles” eliminates some

transitions and hence reduces the size of the graph, but it
Table 2 e Running time (s) and memory consumption
(MB) on unparameterized policies.

jgj Symbolic Concrete Backward Concrete Forward

Time Mem Time Mem Time Mem

1 0.00 0.52 0.00 5.12 0.08 12.24

2 0.02 0.93 0.00 5.57 0.09 12.56

3 0.26 17.7 0.15 13.84 0.10 12.71

4 7.06 137.26 4.19 64.60 0.10 12.71

5 119.4 294.78 70.58 236.96 0.10 12.71

hability analysis for parameterized administrative role-based
010.08.002

http://dx.doi.org/10.1016/j.cose.2010.08.002
http://dx.doi.org/10.1016/j.cose.2010.08.002

Table 3 e Evaluation of optimizations on synthetic
problem instances with goal size 1.

Optimization Time Mem Node-2 Edge-2

Baseline 36.49 20.3 4521 6407

Eager revocation 0.12 5.71 18 59

No revoc. nonneg. 8.98 12.92 2234 3520

Prune subsumed 2.17 14.11 2588 3284

Remove subsumed 8.80 10.17 1544 2544

Best 0.01 5.92 21 27

c om p u t e r s & s e c u r i t y x x x (2 0 1 0) 1e1 7 15
increases the number of roles in the state, potentially making

various operations, especially subsumption checks, more

expensive. Also, the overhead of computing the set of non-

negative roles for each backward state may be significant in

some cases.
11. Related work

11.1. Analysis of unparameterized ARBAC policies

A significant difference between this paper and prior papers

on reachability analysis for ARBAC, including Li and

Tripunitara (2006), Sasturkar et al. (2006), Stoller et al. (2007),

Jha et al. (2008), is that they consider only policies without

parameters, so they are inapplicable to policies with param-

eters that range over infinite types, and they are inefficient

when applied to policies with parameters over finite types

that have been eliminated by exhaustive instantiation. Some

general ideas in our prior work in Stoller et al. (2007) are also

used here (e.g., backward search followed by forward search),

but analysis of parameterized policies is significantly more

difficult, requiring new algorithms and complexity results: the

symbolic transition relations defined here are much more

complicated than the concrete ones used in Stoller et al.

(2007), the relationship between the two stages of the back-

ward algorithm is different, new optimizations are needed for

stage 2, different complexity parameters are used in the fixed-

parameter tractability result, etc. Section 10 empirically

compares our current work with Stoller et al. (2007).
11.2. Analysis of other kinds of parameterized systems

In general, parameterized systems have infinite-state spaces,

and the reachability problem for them is undecidable. Many

specialized techniques have been developed for verification of

various kinds of parameterized systems. There are two broad,

overlapping classes of parameterized systems. In the first

class, parameters represent the number of components (e.g.,

processes) in a system. There are numerous sound but incom-

plete reachability algorithms for such parameterized systems

(e.g., Clarke et al., 1997; Emerson and Namjoshi, 1995). In the

second class, parameters represent data values that range over

infiniteorunboundeddomains.Therearenumeroustechniques

thatanalyzeabstractionsofsuchparameterizedsystems, giving

up either soundness or completeness. In some restricted cases,

such as data-independent systems and timed automata, sound

andcompletealgorithms for reachabilityareknown (e.g., Sarna-

Starosta and Ramakrishnan, 2003; Alur and Dill, 1994).
Please cite this article in press as: Stoller SD, et al., Symbolic reac
access control, Computers & Security (2010), doi:10.1016/j.cose.20
We are not aware of an existing symbolic reachability

framework that can directly be applied for analysis of PARBAC,

becauseof the followingcombinationof featuresof theproblem:

(1) states are described by potentially unbounded sets of para-

meterized boolean variables corresponding to rolemembership

facts (in other words, the number of roles in a state, hence the

number of state variables, is unbounded, as in the first category

of parameterized systems described above), (2) the parameter-

ized boolean variables may be used both positively and nega-

tively in preconditions of transitions, (3) the parameters of the

boolean variables range over an infinite data type (as in the

second category of parameterized systems above), and (4)

transitions may introduce an unbounded number of these

parameters (i.e., fresh variables) in the symbolic state graph (cf.

thediscussionoftermination inSection5).Forexample,workon

verification of unbounded networks of processes, such as

EmersonandKahlon (2000), isnotapplicablebecause itassumes

that each process’s state ranges over a fixed finite set. Work on

verification of data-independent systems, such as Sarna-

Starosta and Ramakrishnan (2003), is not applicable because it

assumes that fresh variables are not introduced during the

search.Work on verification of cryptographic protocols, such as

Blanchet and Podelski (2005), allows unbounded numbers of

nonces (represented by variables that range over anunbounded

domain) but is not applicable because it does not allow these

variables to be used in negative preconditions of transitions.

Work on verification using inductive assertions, such as Arons

et al. (2001), heuristically constructs a candidate inductive

invariant f and calls a theorem prover to check whether f is

inductive and stronger than the property of interest, but is not

applicable for a variety of reasons: the method can prove

formulas containing universal but not existential quantifiers, so

it can try to prove that a goal is unreachable butnot that a goal is

reachable (which would require existential quantification over

the substitution, as in Definition 2), and if the heuristic method

fails to prove that a goal is unreachable, we can draw no

conclusions (in particular, we cannot conclude the goal is

reachable); also, the heuristic cannot generate invariants that

contain existential quantifiers, which are sometimes needed to

accurately capture the effects of feature (4) above. Even if some

existingparameterizedverificationframeworkcouldbeapplied,

we would still need to define a symbolic transition relation for

PARBAC, similar to Definition 5. Also, we are not aware of any

fine-grained complexity results or fixed-parameter tractability

results for such algorithms.

This paper extends our conference paper Stoller et al.

(2009) in several ways. On the theory side, we extended

the policy language to allow wildcards in negative precon-

ditions, simplified the statement of Theorem 2, and proved

undecidability of user-role reachability analysis for PAR-

BAC. On the algorithm side, we developed three new optimi-

zations: “remove a-equivalent useless roles”, “prune

subsumed states”, and “no revocation of non-negative roles”.

On the implementation side, we implemented the search

stack check, eager revocation, and the three new optimiza-

tions, re-ran the previous experiments, and added new

experiments that measure the effectiveness of the optimiza-

tions. In the experiments reported in Table 3, the new opti-

mizations together reduce the running time by an order of

magnitude.
hability analysis for parameterized administrative role-based
10.08.002

http://dx.doi.org/10.1016/j.cose.2010.08.002
http://dx.doi.org/10.1016/j.cose.2010.08.002

c om p u t e r s & s e c u r i t y x x x (2 0 1 0) 1e1 716
12. Conclusion

Thispaper shows thatuser-role reachability analysis forARBAC

with parameters is undecidable, and presents a semi-decision

procedure for this problem. The algorithm is symbolic and does

not need to consider all instantiations of the parameters. It

exploits the structure of PARBAC policies, constructing a back-

wards graph to prune the search space. We show that the

algorithm terminates under realistic assumptions about the

policy, and we present a fixed-parameter tractability result.We

also developed and evaluated several optimizations. Future

workonanalysis for PARBAC includes algorithmsguaranteed to

terminate inmorecases, efficientanalysisofpolicies thatdonot

satisfy separate administration orhierarchical role assignment,

and analysis of policies that control changes to the role hier-

archy. Future work beyond PARBAC includes analysis for trust

management frameworks, such as SecPAL (Becker et al., 2007).
Acknowledgment

The authors thank Jason Crampton and the anonymous

SACMAT 2009 reviewers for valuable comments and sugges-

tions, and Yogesh Upadhyay for implementing the conversion

from hierarchical to non-hierarchical policies.
r e f e r e n c e s

Alur R, Dill DL. A theory of timed automata. Theoretical Computer
Science 1994;126(2):183e235.

Arons T, Pnueli A, Ruah S, Xu J, Zuck LD. Parameterized
verification with automatically computed inductive
assertions. In: Proceedings of the 13th international
conference on computer aided verification (CAV). Lecture
notes in computer science, vol. 2102. Springer; 2001. p. 221e34.

Bacon J, Moody K, Yao W. A model of OASIS role-based access
control and its support for active security. ACM Transactions
on Information and System Security (TISSEC) 2002;5(4):
492e540.

Becker MY. Cassandra: flexible trust management and its
application to electronic health records. Ph.D. thesis.
University of Cambridge; 2005.

Becker MY. Specification and analysis of dynamic authorisation
policies. In: Proc. 22nd IEEE computer security foundations
symposium (CSF). IEEE Computer Society Press; 2009. p. 203e17.

Becker MY, Fournet C, Gordon AD. Design and semantics of
a decentralized authorization language. In: Proc. 20th IEEE
computer security foundations symposium (CSF). IEEE
Computer Society Press; 2007. p. 3e15.

Blanchet B, Podelski A. Verification of cryptographic protocols:
tagging enforces termination. Theoretical Computer Science
2005;333:67e90.

Blum A, Furst M. Fast planning through planning graph analysis.
Artificial Intelligence 1997;90(1e2):281e300.

Clarke E, Grumberg O, Jha S. Verifying parameterized networks.
ACM Transactions on Programming Languages and Systems
1997;19(5):726e50.

Crampton J. Authorizations and antichains. Ph.D. thesis. Birbeck
College, University of London; 2002.
Please cite this article in press as: Stoller SD, et al., Symbolic reac
access control, Computers & Security (2010), doi:10.1016/j.cose.2
Crampton J. Understanding and developing role-based
administrative models. In: Proc. 12th ACM conference on
computer and communications security (CCS). ACM Press;
2005. p. 158e67.

Crampton J, Loizou G. Administrative scope: a foundation for
role-based administrative models. ACM Transactions on
Information and System Security (TISSEC) 2003;6(2):201e31.

Downey RG, Fellows MR. Fixed-parameter tractability and
completeness I: basic results. SIAM Journal on Computing
1995;24(4):873e921.

Emerson EA, Kahlon V. Reducing model checking of the many to
the few. In: International conference on automated deduction;
2000. p. 236e54.

Emerson EA, Namjoshi KS. Reasoning about rings. In: Proceedings
of the 22nd ACM symposium on principles of programming
languages (POPL). ACM Press; 1995. p. 85e94.

Erol K, Nau DS, Subrahmanian VS. Complexity, decidability and
undecidability results for domain-independent planning:
a detailed analysis. Technical Report CS-TR-2797, UMIACS-
TR-91-154, SRC-TR-91-96. Computer Science Department and
Institute for Systems Research, University of Maryland;
1991a.

Erol K, Nau DS, Subrahmanian VS. Complexity, decidability and
undecidability results for domain-independent planning:
a detailed analysis. Artificial Intelligence 1991b;76:75e88.

Evered M, Bögeholz S. A case study in access control
requirements for a health information system. In: Second
Australasian information security workshop (AISW), vol. 32.
Australian Computer Society; 2004. p. 53e61.

Ge M, Osborn S. A design for parameterized roles. Data and
applications security XVIII. Status and Prospects; 2004.

Giuri L, Iglio P. Role templates for content-based access control.
In: Proc. 2nd ACM workshop on role based access control
(RBAC’97). ACM; 1997. p. 153e9.

Harrison MA, Ruzzo WL, Ullman JD. Protection in operating
systems. Communications of the ACM 1976;19(8):461e71.

Jha S, Li N, Tripunitara M, Wang Q, Winsborough W. Towards
formal verification of role-based access control policies. IEEE
Transactions on Dependable and Secure Computing 2008;5(4):
242e55.

Kern A, Schaad A, Moffett J. An administration concept for the
enterprise role-based access control model. In: Proc. 8th ACM
symposium on access control models and technologies
(SACMAT). ACM Press; 2003. p. 3e11.

Li N, Mao Z. Administration in role based access control. In: Proc.
ACM symposium on information, computer and
communications security (ASIACCS); 2007. p. 127e38.

Li N, Tripunitara MV. Security analysis in role-based access
control. ACM Transactions on Information and System
Security (TISSEC) 2006;9(4):391e420.

Lupu E., Sloman M. Reconciling role based management and role
based access control. In: Proc. 2nd ACM workshop on role
based access control; 1997. p. 135e41.

Oh S, Sandhu R, Zhang X. An effective role administration model
using organization structure. ACM Transactions on
Information and System Security (TISSEC) 2006;9(2):113e37.

Sandhu R, Bhamidipati V, Munawer Q. The ARBAC97 model for
role-based administration of roles. ACM Transactions on
Information and System Security (TISSEC) 1999;2(1):105e35.

Sandhu R, Coyne E, Feinstein H, Youman C. Role-based access
control models. IEEE Computer 1996;29(2):38e47.

Sandhu R, Munawer Q. The ARBAC99 model for administration of
roles. In: Proceedings of the 18th annual computer security
applications conference; 1999. p. 229e38.

Sarna-Starosta B, Ramakrishnan CR. Constraint-based model
checking of data-independent systems. In: Proceedings of the
5th international conference on formal engineering methods
hability analysis for parameterized administrative role-based
010.08.002

http://dx.doi.org/10.1016/j.cose.2010.08.002
http://dx.doi.org/10.1016/j.cose.2010.08.002

c om p u t e r s & s e c u r i t y x x x (2 0 1 0) 1e1 7 17
(ICFEM). Lecture notes in computer science, vol. 2885.
Springer; 2003. p. 579e98.

Sasturkar A, Yang P, Stoller SD, Ramakrishnan CR. Policy analysis
for administrative role based access control. In: Proceedings of
the 19th IEEE computer security foundations workshop
(CSFW). IEEE Computer Society Press; 2006. p. 124e38.

Schaad A, Moffett JD. A lightweight approach to specification and
analysis of role-based access control extensions. In: Proc. 7th
ACM symposium on access control models and technologies
(SACMAT). ACM Press; 2002. p. 13e22.

Stoller SD, Yang P, Gofman M, Ramakrishnan CR. Symbolic
reachability analysis for parameterized administrative role
based access control. In: Proc. 14th ACM symposium on access
control models and technologies (SACMAT). ACM Press; 2009.
p. 165e74.

Stoller SD, Yang P, Ramakrishnan CR, Gofman MI. Efficient
policy analysis for administrative role based access control.
In: Proceedings of the 2007 ACM conference on computer
and communication security (CCS). ACM Press; 2007. p.
445e55.

Scott D. Stoller is a professor in the Computer Science Department
at Stony Brook University. He received his Bachelor’s degree in
Physics, summa cum laude, from Princeton University in 1990 and
his Ph.D. degree in Computer Science from Cornell University in
1997. He received an NSF CAREER Award in 1999, an ONR Young
Please cite this article in press as: Stoller SD, et al., Symbolic reac
access control, Computers & Security (2010), doi:10.1016/j.cose.20
Investigator Award in 2002, and (with two of his students) the 2005
Haifa Verification Conference Best Paper Award. He is a member
of the team that won the NASA Turning Goals Into Reality Award
for Engineering Innovation in 2003. He is the author or co-author
of over 80 refereed research publications.

Ping Yang is an assistant professor in Computer Science Depart-
ment at State University of NewYork at Binghamton. Her research
areas are information and systems security, formal methods, and
privacy. She holds a Ph.D. from Stony Brook University, an M.E
from Chinese Academy of Sciences, and a B.S. from Sun Yat-Sen
University.

Mikhail I. Gofman is a Ph.D. student at State University of New
York at Binghamton.

C.R. Ramakrishnan is an associate professor in the Computer
Science Department at Stony Brook University. He received his
Ph.D. in Computer Science from Stony Brook in 1995. He holds
M.Sc (Tech.) in Computer Science and M.Sc. (Hons.) in Physics
from BITS, Pilani, India. He has been on the faculty in the CS
Department at Stony Brook since 1997. His areas of interest
include Formal Methods, Logic Programming, Programming
Languages, and Security. He is the author or co-author of over 80
refereed research publications.
hability analysis for parameterized administrative role-based
10.08.002

http://dx.doi.org/10.1016/j.cose.2010.08.002
http://dx.doi.org/10.1016/j.cose.2010.08.002

	Symbolic reachability analysis for parameterized administrative role-based access control
	Introduction
	Parameterized RBAC and parameterized ARBAC
	Parameterized RBAC
	Parameterized ARBAC

	User-role reachability
	Symbolic state graph
	Finite data types

	Analysis algorithm
	First stage
	Second stage
	Termination
	Optimizations
	Slicing
	Eager revocation of useless roles
	Remove α-equivalent useless roles
	Prune subsumed states
	Early stopping
	No revocation of non-negative roles

	Undecidability
	Fixed-parameter tractability
	Beyond separate administration
	Case studies
	University
	Health-care facility

	Experimental results
	Case studies
	Performance comparison for parameterized policies
	Performance comparison for unparameterized policies
	Evaluation of optimizations

	Related work
	Analysis of unparameterized ARBAC policies
	Analysis of other kinds of parameterized systems

	Conclusion
	Acknowledgment
	References

