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Abstract. A fundamental question in the treatment of cardiac disor-
ders, such as tachycardia and fibrillation, is under what circumstances
does such a disorder arise? To answer to this question, we develop a
multiaffine hybrid automaton (MHA) cardiac-cell model, and restate the
original question as one of identification of the parameter ranges under
which the MHA model accurately reproduces the disorder. The MHA
model is obtained from the minimal cardiac model of one of the authors
(Fenton) by first bringing it into the form of a canonical, genetic regula-
tory network, and then linearizing its sigmoidal switches, in an optimal
way. By leveraging the Rovergene tool for genetic regulatory networks,
we are then able to successfully identify the parameter ranges of interest.

1 Introduction

A fundamental question in the treatment of cardiac abnormalities, such as ven-
tricular tachycardia and fibrillation (see Fig. 1(a)), is under what conditions does
such a disorder arise? To answer this question, in vitro and in vivo experimenta-
tion is nowadays complemented with the mathematical modeling, analysis and
simulation of (networks of) cardiac cells. Among the existing models, differential-
equation models (DEMs) are arguably the most popular.

The past two decades have witnessed the development of increasingly sophis-
ticated DEMs, which unravel in great detail the underlying genomic and pro-
teomic processes [14, 18, 21, 11]. Such models are essential in the understanding
of molecular interactions, and in the development of novel treatment strategies.
However, they also have two significant drawbacks: 1) They often contain too
many parameters to be reliably and robustly identified from experimental data.
2) They are often too complex to render their formal analysis or even simulation
tractable. We refer to such models as detailed molecular models (DMMs).

Approximation (or abstraction) is a well-established technique in science and
engineering for dealing with complexity. In dynamical systems possessing very
fast transient regimes, compared to the rest of the system dynamics, one may
use approximation to systematically eliminate these regimes and compensate for
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Fig. 1. (a) Emergent behavior in cardiac-cell networks. Top: Electrocardiogram. Middle
and bottom: Simulation and experimental mappings of voltage waves occurring in a
small rectangular area on the surface of the heart. (b) Overview of our approach.

their elimination [5]. For example, in enzymatic reactions, a substrate reacts very
quickly with an enzyme to produce a compound, which subsequently, and much
more slowly, breaks down into a product of the reaction and the enzyme itself.
In this case, one can use the so-called quasi-steady-state assumption to eliminate
the fast reaction and derive a sigmoidal dependence of the product on the log of
the substrate, called the Michaelis-Menten equation [15, 19].

Similar to the step (or Heaviside) switches used in digital-computer models,
sigmoidal switches (dependencies) occur everywhere in biological models: from
molecular to cellular models, and from organ to population models [22, 12]. In
most cases, they result from the same kind of abstractions discussed above: elim-
inate fast, transitory components. Unlike in digital-computer models, however,
the switching speed of sigmoids plays an important role. Biology is sophisticated!

DEMs with state variables whose rate of change is controlled with sigmoidal
switches are still intractable from an analysis point of view. Research of quali-
tative properties in genetic regulatory networks overcomes this problem by ap-
proximating sigmoids with either steps or with ramps [9, 20, 3, 6]. This leads to
a piecewise-affine, or piecewise-multiaffine model, respectively. In such models,
the dynamics within a hyper-rectangular region is completely determined by the
dynamics of its corners, enabling model analysis through the use of powerful
discrete abstraction techniques coupled with model-checking techniques [3].

In prior work, one of the authors (Fenton) co-developed an extremely ver-
satile electrical model for cardiac cells involving just 4 state variables and 26
parameters [4]. For reasons to be made clear, we refer to this model as the
minimal resistor model (MRM). After its parameters are identified from either
experimental data or from DMM-based simulation results, the MRM is then
able to accurately reproduce the desired behavior. In fact, the MRM identified
from experimental data reproduces the experimentally observed behavior with
greater accuracy than any of the DMMs. Moreover, its simulation speed is orders
of magnitude faster than that of the DMM simulations.



The success of the MRM relies on an abstraction similar to the one above:
the large variety of currents traversing the cell membrane are lumped together
in only three currents: the fast input current, the slow input current, and the
slow output current. These currents are regulated by three gate variables, which
together with the voltage, define the MRM’s state variables [4]. The lumping
process is akin to removing and compensating for fast components [19, 5].

In the MRM context, one may restate the cardiac-disorder question as fol-
lows: what are the parameter ranges for which the MRM accurately reproduces
cardiac abnormalities? Once these ranges are identified, one may exploit the
correspondence between the MRM and DMM models to infer the corresponding
parameter ranges in DMMs, and the molecular relevance of the DMMs to target
treatment strategies to the components responsible for the disorder.

Despite its simplicity compared to DMM, the MRM is still intractable from
an analysis point of view. Its electrical formulation not only uses sigmoidal
switches to control the gating variables, but also uses them to model gated resis-
tors. As such, sigmoids occur both as numerators and denominators in the state
equations. As part of our effort to simplify the MRM, we prove that sigmoids
are closed under the reciprocal operation. This allows us to bring the MRM to a
canonical form, which we call the minimal conductance model (MCM). Intrigu-
ingly, the MCM is of the form of a genetic regulatory network model (GRM).
Hence, this transformation not only exposes the unity of biology, but also allows
us to leverage tools developed for GRMs for the analysis of cardiac models.

In GRMs, as well as in MCMs, slow (or shallow) sigmoidal switches can-
not be approximated with steps or ramps without considerably distorting the
original behavior. We therefore approximate such sigmoids with a succession of
ramps, the number of which depends on the desired accuracy. For analysis pur-
poses, it is critical to minimize the number of ramps used and to avoid arbitrary
choices. We therefore adapt and extend a dynamic programming technique [17],
originally intended for the optimal approximation of digital curves, to find the
optimal number of segments (typically of different length) that minimizes, for
all sigmoids simultaneously, a sigmoidal-linearization error. This results in a
hybrid-automaton model with multiaffine behavior in each mode (MHA).

By recasting the intractable parameter-range identification problem for MCMs
in terms of MHAs, we now have a tractable problem. Moreover, certain MHA
parameter-range identification problems can be seen as GRM parameter-range
identification problems: find the parameter ranges that lead to a robust behavior
satisfying a given temporal logic property [3]. Hence, for these disorders, we can
leverage tools already developed for GRMs to address the MHA problem.

The particular cardiac-disorder question addressed in this paper is under what
circumstances may cardiac-cell excitability be lost? A region of unexcitable cells
can be responsible for ventricular tachycardia or fibrillation: the region becomes
an obstacle to a propagating electrical wave, triggering a spiral rotation of the
wave (tachycardia); the spiral may then break up into a disordered collection
of spirals (fibrillation). Studying the parameter ranges for which cardiac cells
loose excitability, and identifying the responsible molecular processes, is thus



Fig. 2. (a) Threshold-based switching functions. (b) Action potential duration (APD),
diastolic interval (DI), and restitution at 10% of the maximum value of the AP.

an important question in the treatment of cardiac disorders. Excitability loss is
formulated as an LTL formula, for which the Rovergene tool [3], co-developed
by co-author Batt, can automatically infer nontrivial parameter ranges. To the
best of our knowledge, this is the first automated parameter-estimation result
for cardiac cells.

Our approach is summarized in Fig. 1(b), and the rest of the paper is or-
ganized accordingly. Section 2 introduces biological switches and their formal
description. Section 3 reviews the MRM. In Section 4, we transform the MRM
to an MCM, which is linearized in Section 5. Section 6 considers the parameter-
range-identification problem. Section 7 concludes and discusses future work.

2 Biological Switching

As discussed in Section 1, biological switching is sigmoidal. We are interested
in a particular class of on (+) and off (-) sigmoidal switches, namely the lo-
gistic functions. The sigmoidal on-switch is shown in Fig. 2(a). Equivalently,
S+(u,k,θ) = (1 + tanh(k(u− θ)))/2. The off-switch is the quantitative comple-
ment of the on-switch, and is defined as S−(u,k,θ) = 1−S+(u,k,θ).

We typically scale S so that it varies between a minimum value a and maxi-
mum value b, both positive:

S+(u,k,θ,a,b) = a+ (b− a)S+(u,k,θ), S−(u,k,θ,a,b) = S+(u,k,θ,b,a)

If an on-sigmoid is very steep, then it can be approximated with a Heaviside
(or step) switch, as shown in Fig. 2(a). The off-step is given by H−(u,θ) =
1−H+(u,θ). As with sigmoids, step-switches can be scaled between a and b.

If an on-sigmoid is steep but not too steep, it can be approximated with a
ramp, as shown in Fig. 2(a). The off-ramp is defined asR−(u,θ1,θ2) = 1−R+(u,θ1,
θ2). Ramps can also be scaled between between a and b. If the sigmoid is shallow,
then, as shown in Section 5, it can be approximated with a sequence of ramps.

3 The Minimal Resistor Model

Based on previously published data [16], Fenton co-developed a minimal (re-
sistor) model (MRM) of the action potential produced by human ventricular



myocytes [4]. An action potential (AP) is a change in the cell’s transmembrane
potential u, as a response to an external stimulus (current) e. If the stimulus is
delivered from neighboring cells, then its value is ∇(D∇u), where D is the diffu-
sion coefficient and ∇ is the gradient operator. The shape of an AP, its duration
(APD), the diastolic interval (DI), and the AP restitution curve (dependence of
the APD on the DI) are depicted in Fig. 2(b). Intuitively, the membrane acts
like a capacitor, requiring time to recharge after it discharges. The more time it
has to recharge, the greater (and longer) the AP. Note that the AP value u is
scaled between 0 and 1.5 in the MRM model.

The MRM differs from more complex ionic models (DMMs) in that instead
of reproducing a wide range of ion channel currents, it considers the sum of these
currents partitioned into three main categories: fast inward Jfi (Na-like), slow
inward Jsi (Ca-like), and slow outward Jso (K-like). The flow of these total cur-
rents is controlled by a fast channel gate v and two slow gates w and s. Together,
they retain enough structure such that, with parameters fitted from either ex-
perimental data or from DMM simulations, the MRM accurately reproduces the
behavior in question.

Among fitted parameters are the voltage-controlled resistances τv, τw, and
τs, and the equilibrium values v∞ and w∞. The differential equations for the
state variables are as follows:

u̇ = e− (Jfi(u, v) + Jsi(u,w, s) + Jso(u))

v̇ =H−(u, θv) (v∞(u)− v)/τ−v (u) −H+(u, θv)v/τ
+
v

ẇ=H−(u, θw)(w∞(u)− w)/τ−w (u)−H+(u, θw)w/τ+w
ṡ = (S+(u, ks, us)− s)/τs(u)

where the three currents are given by the following equations:

Jfi(u, v) =−H+(u, θv)v(u− θv)(uu − u)/τfi

Jsi(u,w, s) =−H+(u, θw)ws/τsi

Jso(u) = +H−(u, θw)u/τo(u) +H+(u, θw)/τso(u)

The voltage-controlled resistances are defined as follows:

τ−v (u) =H+(u, θo, τ
−
v1 , τ

−
v2), τo(u) =H−(u, θo, τo2 , τo1), τs(u) =H+(u, θw, τs1 , τs2)

τ−w (u) =S−(u, k−w , u
−
w , τ

−
w2
, τ−w1

), τso(u) =S−(u, kso, uso, τso2 , τso1)

Finally, the steady state values for gates v and w are:

v∞(u) =H−(u, θo), w∞(u) =H−(u, θo)(1− u/τv∞) +H+(u, θ−v )w∗∞

The values of the parameters for the epicardial (surface) myocytes, as fitted
in [4], are given in Fig. 3(a).

4 The Minimal Conductance Model

While much simpler than DMMs, the MRM model is still intractable from an
analysis perspective. Its electrical formulation not only uses sigmoidal (and step)



Fig. 3. (a) Parameter values for the MRM and MCM. (b) Evolution of the MCM HA
state variables u, v, w and s in time and as a response to a superthreshold stimulus.

switches to control the state variables, but also uses them to control the value of
the resistances. Consequently, sigmoids occur both as numerators and denomi-
nators in the state equations.

In order to simplify the MRM model, we prove that scaled sigmoids (or
steps) are closed under division; that is, the reciprocal of a scaled sigmoid is also
a sigmoid. This result allows us to bring the MRM model to a canonical form,
which we call the minimal conductance model (MCM).

Theorem 1 (Sigmoid closure). For a, b> 0, scaled sigmoids are closed under
multiplicative inverses (division):

S+(u, k, θ, a, b)−1 = S−(u, k, θ+ ln(a/b)/2k, b−1, a−1)

Proof. The proof proceeds by successively transforming the inverse of a scaled
sigmoid to a scaled sigmoid. S+(u,k,θ,a,b)−1 =

1

a+ b− a
1+ e−2k(u− θ)

=
1 + e−2k(u− θ)

b+ ae−2k(u− θ)
=

1

a
× a− b+ b+ ae−2k(u− θ)

b+ ae−2k(u− θ)
=

1

a
−

1
a −

1
b

1 + a
b e
−2k(u− θ) =

1

a
−

1
a −

1
b

1 + e−2k(u− (θ+ ln a−ln b
2k ))

= S−(u,k,θ+
ln a

b

2k
,
1

b
,
1

a
)

Obviously, H+(u, θ, a, b)−1 =H−(u, θ, b−1, a−1). Revising the MRM model
by replacing each factor 1/τi with gi, and each MRM threshold ui with the
associated MCM threshold u′i, results in the differential equations for the MCM
model. Its parameters are given in Fig. 3(a). Note that sigmoids and steps appear
only in the numerator. An interesting feature of the MCM is that it has the
canonical form of a genetic regulatory network (GRN) model (GRM).

Definition 1 (GRM). The sigmoidal form of a GRM consists of a set of dif-
ferential equations in which the i-th equation has the following form [22, 12]:



Fig. 4. (a) Hybrid automaton for the MCM model. (b) The multiaffine automaton.

u̇i =

mi∑
j=1

aij

nj∏
k=1

S±(uk, kk, θk)−
m′i∑
j=1

bij

n′j∏
k=1

S±(uk, kk, θk)

where S± are either on- or off-sigmoidal switches, and ai and bi are the expres-
sion and inhibition coefficients, respectively.

The second summand is often a simple decay term. Approximating sigmoids
with steps (or sequences of ramps) in the GRM and MCM results in a set of
piecewise-affine [9, 20] (or piecewise-multiaffine [3]) differential equations.

The steps in the differential equations of the MCM indicate that the MCM
specifies a mixed discrete-continuous behavior. In fact, the MCM is equivalent
to the MCM hybrid automaton (HA) shown in Fig. 4(a). Consider the partition
of the u-axis by the thresholds occurring in step-switches. Each mode of the
HA corresponds to the u-interval defined by two successive thresholds, and each
transition corresponds to the discrete jump of one of the step-switches. Nonlinear
terms are shown in red and exponential degradation terms in blue. The currents
have been expanded and partitioned according to the modes.

The behavior of the MCM HA state variables in time and as a response to an
super-threshold stimulus is shown in Fig. 3(b). Voltage intervals are highlighted
with same color as the one used for corresponding modes in the HA.

Mode [0 θo) (orange) is a recovering resting mode. In this mode, gates v
and w open to their maximum value, and gate s remains closed. Slow sigmoids
S+(u, ks, us) and g−w (u) have essentially their minimum value. The only trans-
membrane current is the slow output current Jso(u), whose overall behavior
mimics the ionic (potassium) K-current. This current causes an exponential de-



cay of u. Conductances g−v1 and g−w1
control the recovery speed of v and w. Hence,

their values are important in properly reproducing AP restitution.
Mode [θv, uu) (green) is a successful AP initiation mode to a superthresh-

old stimulus. Factor (u− θv)(uu−u) in the fast-input current Jfi mimics the
fast opening of the (sodium) Na channel. This leads to a dramatic membrane
depolarization, during which u reaches its peak value uu. With a slight delay,
gate v, which mimics the closing of the Na channel, closes, thus blocking the Jfi

current. The closing-time of v is solely controlled by the rate constant g+v and
the initial value of v. The slow-input (calcium) Ca-like current, Jsi, is still flow-
ing, which prolongs the duration of the AP. This gives the cardiac muscle time
to contract. The value of Jsi is essentially controlled by gate s, which mimics,
through its slow sigmoid, the behavior of the Ca-channel opening-gates. Gate w,
which mimics the Ca-channel closing-gate, eventually blocks Jsi, at rate g+w . The
slow-output, K-like current, Jso, reaches its peak value when the slow sigmoid
gso switches on towards its maximum value gso2 (u>u′so).

In mode [θo , θw) (blue), gate v starts closing at rate g−v2 , while gate w is still
opening. The closing/opening of these gates does not affect the value of u, as
this still decays at rate go2 . It does, however, affect the initial values of v and w
for the next AP, which in turn affects the length of this AP. It also affects the
AP propagation speed, the so-called AP conduction velocity (CV).

In mode [θw , θv) (pink), gate v closes at the same rate as before, but now
gate w is also closing, at rate g+w . Current Jso changes from an exponential decay
to a sigmoid, and the slow-input current starts flowing proportional to ws. Gate
s adjusts the “expression” coefficient of its slow sigmoid to gs2 .

5 The Piecewise-Multiaffine Model

Although the MCM is simpler than the MRM and considerably simpler than the
DMMs, its analysis is still intractable due to the presence of sigmoidal switches.
Qualitative GRMs overcome this problem by assuming that every sigmoid is
steep enough to be accurately approximated with one step or one ramp. This
assumption is generally not appropriate for quantitative GRMs, and therefore
not appropriate for the MCM as well: its sigmoids are too shallow to be approx-
imated by either a single step or a single ramp without seriously distorting the
original MCM behavior.

A shallow sigmoid can be accurately approximated with a sequence of ramps.
This, however, raises a new question: how can one choose as few ramps as pos-
sible, while still maintaining a desired approximation error? Additionally, since
each ramp introduces a new mode in the HA, how can the ramp-thresholds across
sigmoids be chosen such that the number of modes is minimized?

In the following, we show that all of these goals are achievable; i.e., there is
an optimal solution to the shallow-sigmoid approximation problem, which min-
imizes a given approximation error in a global way (i.e. simultaneously over a
number of sigmoids). Our approach is based on and extends a dynamic program-
ming algorithm developed in the computer graphics community for approximat-
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Fig. 5. The optimal linear approximation algorithm. Its main function optimalLinear-
Approximation uses dynamic programming to compute the optimal segmentation. For
each segment, it calls function segmentError to compute the associated error. Function
ExtractAnswer is called to extract the answer from the dynamic programming tables.

ing digitized polygonal curves [17] with minimal error. The pseudo MATLAB-
code for the main function, optimalLinearApproximation, is shown in Fig. 5, where,
for readability, comments are displayed in green.1

The function’s input is a set of curves (digitized with the same number of
points), and a number S of segments to be used by the polylines optimally
interpolating the curves. The curves are given as a vector x of P x-coordinates,
and a matrix y of C rows, each consisting of P y-coordinates.

The function’s output consists of matrices e, a, b and of vector xb. Each entry
e(c,s,i), a(c,s,i) and b(c,s,i) gives the error, slope, and y-intercept, respectively,
of the i-th segment, in the optimal interpolation polyline of curve c, using s

segments. Each entry xb(s,i) is the x-coordinate of breaking point i of the optimal
interpolation polylines, using s segments.

1 All MATLAB code and experimental results presented in this paper are available at
http://cmacs4heart.pbworks.com/w/page/35180610/CAV2011



Fig. 6. Linearization of the MCM HA modes with the optimal approximation algo-
rithm. Vertical dashed lines separate the global approximation segments. Each segment
corresponds to a mode of the multiaffine hybrid automaton (MHA).

The function first determines the number of points P in each curve, and
the number of curves C. It then initializes the dynamic programming storage
tables cost(P,S) and father(P,S). Each entry cost(p,s) stores the cost from point 1
to point p of the optimal interpolation polyline consisting of s segments. Each
entry father(p,s) stores the predecessor of point p on the optimal-cost polyline
consisting of s segments. To speed up the search, we use an error matrix err(P,P),
such that each entry err(p,q) caches the maximum error of the segment (p,q)

with respect to all of the given curves. Then, in a classic dynamic programming
fashion, optimalLinearApproximation fills its solution tables bottom up. First, for
all points in the curve (except 1), it computes the cost and father of the 1-
segment polyline starting from point 1. Then, knowing the optimal cost of all
s-segment polylines from point 1 to any point i that is less than or equal to p,
it computes the optimal cost of an s+1-segment polyline from point 1 to point
p+1, by choosing the s-segment polyline, whose cost is minimal when increased
with err(i,p+1).

The value stored in err(p,q) is computed with the (nested) function segmentEr-

ror. Its input consists of vectors x and y, defining a curve segment. Its output
consists of error e, and coefficients a and b of the line y(x) = ax+ b passing
through the first and the last points of the curve segment. Error e is computed
by summing up, for each point p on the curve, the square of the perpendicular
distance from (x(p),y(p)) to y.

Once the solution tables are completely filled, optimalLinearApproximation calls
nested function extractAnswer to traverse table father in reverse order, and produce
matrices e, a, b, and xb. These matrices have the same format as the output of
the caller function, optimalLinearApproximation.

Our implementation of segmentError also allows the use of linear regression
instead of linear interpolation. This leads to an optimal approximation that, for
the same error, has fewer segments. However, linear regression also introduces
discontinuities at the breaking points of the optimal polylines, as the line segment
resulting from regression does not typically start and end on the curve. When
approximating a single curve, one can use instead the points where the polyline
segments intersect. Unfortunately, it is not clear how to generalize this approach
to a set of curves, without introducing unnecessary breaking points.

As in GRMs, we assume that the thresholds and slopes of switches (steps
and sigmoids) are known and fixed. We can thus linearize the MCM HA one
mode at a time. The result is a multiaffine hybrid automaton (MHA).



Fig. 7. (a) Comparison of the action potential (AP) shape (the inset figure) and the
restitution (dependence of the AP duration (APD) on the diastolic interval (DI)), for
the original MRM and the 26 segment MHA, in a cable. (b) Simulation results for
the MEM with the values of the conductances go1 , go2 , gsi and gso taken from the
parameter ranges where the MEM robustly satisfies the LTL formula G (u<θv).

Fig. 6 presents our linearization of the MCM modes. Mode [0 θo) (orange)
has three nonlinear functions: sigmoids g−w (u) and S+(u, us, ks), and product
(1−ugw∞)g−w . The last is treated separately, as the linearization of g−w (u) mul-
tiplied by (1−ugw∞) results in a u2 term. A two-segment linearization (two
modes in the MHA) results in a very small error.

Mode [θo , θw) (blue) has two nonlinear functions: sigmoids S+(u, us, ks) and
g−w (u). In this case, we needed a six-segment linearization (six modes in the
MHA) to achieve a small approximation error. Note that the sensitivity of the
MCM behavior to the linearization error is also very important.

Mode [θw , θv) (pink) has two nonlinear functions: sigmoids S+(u, us, ks) and
gso(u). A four-segment linearization (four modes in the MHA) achieves a small
enough approximation error and good overall behavior.

Finally, mode [θv, uu) (green) has three nonlinear functions: sigmoids gso(u)
and S+(u, us, ks) and the parabolic term (u− θv)(uu−u)gfi. This is the most
sophisticated mode. Although gate v closes very rapidly, nullifying the parabolic
term in Jfi , voltage u traverses in the meantime the entire interval [θv, uu). Hence,
one needs to linearize the parabolic term over this entire interval. This leads to
a costly, but inevitable, linearization via 14 segments (modes in the MHA). In
our experiments, fewer segments have lead to an unacceptable approximation.

To asses the accuracy of the MHA, we performed extensive 1D and 2D simu-
lations in a cable of 100 cells and a grid of 800× 800 cells, respectively. Although
the 1D simulation was used to determine the behavior of a single cell only—for
example, cell number 50—the use of a cable is necessary, as it is known that cells
behave differently when interacting with neighboring cells. Many cardiac mod-
els, for example [14], accurately reproduce the AP when simulated in isolation,
but fail to reproduce the desired behavior in a cable.

Fig. 7(a) shows the restitution curves of the MRM and MHA models. Each
point APD(d) on these curves was obtained by first pacing the MRM and the
MHA models at the largest DI value, and then abruptly changing the pacing to
DI d. For each value of d, we also compared the AP shapes AP(d). Two such
comparison are given as an inset in Fig. 7(a). In both cases (restitution and AP
shape), the MHA approximated the MCM with sufficient accuracy.



Original MRM Multi Affine (26 ramps) (a) (b) 

Fig. 8. Snapshot from the simulation of a spiral wave on an 800× 800 grid, with
isotropic diffusion. (a) The result of the original MRM simulation. (b) The result of
the 26-segment MAM simulation. In each figure, we also show the movement over time
of the tip of the spiral: dark line for the MAM, and dashed dark line for the MRM.

In Fig. 8, we compare the behavior of the MRM and MHA models on a 2D
grid of 800× 800 cells. The comparison uses a well-established protocol for the
initiation of a spiral wave in cardiac ventricular tissue. We have also tracked the
movement of the tip of the spiral over time, which is shown as a dark-blue curve.
The 2D simulation confirms the very good accuracy of the MHA model.

Simulations were implemented using CUDA, NVIDIA’s parallel computing
architecture for GPUs (graphics processing units), and were conducted on a
workstation with an Intel Core i7 with 12 Gb RAM, and an NVIDIA Tesla
C1060 processor with a 240 GPU processor core and 4GB GDDR3. In this
setting, we observed a 1.43 speedup in MHA simulation time compared to MCM
simulation time. Note that it is possible to table sigmoid and parabola values to
speedup MCM simulation time [7]. This strategy, however, considerably increases
the memory demand for the same accuracy and speed, and renders analysis
intractable. Our linearization approach can be viewed as an optimal tabling.

6 Cardiac Disorder Parameter-Range Identification

In this section, we show how the MCM HA model can be put into a form suitable
for analysis by the Rovergene tool for GRNs [3], thereby allowing us to auto-
matically identify the parameter ranges for a significant cardiac disorder. The
linearization algorithm presented in Section 5 returns, for each mode [θ1, θ2),
parameter sequences ai and bi, and threshold sequence xi, where subscript i
ranges over the segments chosen in order to fulfil a desired approximation error
e. For each i, the returned values define a line segment y(x) = ax+ b within the
interval [xi, xi+1).

For the first segment, x1 = θ1, and for the last segment, xn = θ2. Now consider
segment [xi, xi+1). The minimum value of y(x) is yi = aixi + bi and the maximum
value of y(x) is yi+1 = aixi+1 + bi. Together with the threshold values, they define
the scaled ramp R±(x, xi, xi+1, yi, yi+1). This is an on (+) ramp, if yi≤ yi+1 and
an off (-) ramp if yi≥ yi+1.



Since the ramps must be summed up, for each i> 1, we must adjust the
y-coordinate by subtracting the maximum value of the previous ramp. Hence,
these ramps become R±(x, xi, xi+1, yi− yi−1, yi+1− yi−1).

Once the scaled ramps are computed and summed up, for each mode of
the MCM HA, one obtains a multiaffine hybrid automaton (MHA), as shown in
Fig. 4(b). The remaining parameters of the MHA are now highlighted in red. The
MHA modes have become super-modes, each consisting of as many sub-modes
as there are distinct indices in the sums.

The MHA is not suitable as input to the Rovergene GRN analysis tool for
two reasons: 1) Rovergene expression terms must be scaled ramps; 2) Rovergene
does not support steps. The first problem is overcome by replacing variables with
ramps. For example, variable v occurring on the right-hand side of u̇ in the green
mode, is replaced with the ramp R+(v, 0, 1). The second problem is overcome
by replacing steps with very steep ramps. This amounts to introducing, for each
threshold θi, separating modes [θi−1, θi) and [θi, θi+1), a just-before θi threshold
θ−i . The equations in mode [θi−1, θi) are now multiplied with R−(u, θ−i , θi) and
the ones in mode [θi , θi+1) are now multiplied with R+(u, θ−i , θi). The MHA
now becomes:

u̇ = e−R−(u, θ−o , θo)R
+(u,0,θ−o ,0,θ

−
o ) go1

−R+(u,θ−o ,θo)R
−(u,θ−w ,θw)R+(u,θo,θ

−
w ,θo,θ

−
w ) go2

+R+(u,θ−w ,θw)R+(s,0,1)R+(w,0,1) gsi

−R+(u,θ−w ,θw)
∑25
i=8R(u,θi,θi+1,usoi ,usoi+1)

+R+(u,θo,θv)R
+(v, 0, 1)

∑25
i=12R(u,θi,θi+1,ufii ,ufii+1

) gfi

v̇ =R−(u,θ−o ,θo)R
−(v,0,1) g−v1

−R+(u, θ−o ,θo)R
−(u,θo,θv)R

+(v,0,1) g−v2

−R+(u,θo,θv)
∑25
i=12R

+(v,0,1) g+v

ẇ=R−(u,θ−o ,θo)
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i=0(R(u,θi,θi+1,u

+
wi ,u

+
wi+1

)−R(w,0,1)R(u,θi,θi+1,u
−
wi ,u

−
wi+1

))gwa

+R+(u,θ−o ,θo)R
−(u,θ−w ,θw)(w∗∞−R(w,0,1))

∑7
i=2R(u,θi,θi+1,u

+
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ṡ = (R−(u,θ−w ,θw)gs1+R+(u,θ−w ,θw)gs2)
∑25
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where the thresholds (except for the new just-before thresholds θ−i ), voltages,
and conductances match the ones in the MHA. We call this system a piecewise-
multiaffine differential equations model (MEM).

As discussed in Section 1, a biologically relevant question that we want to an-
swer is, under what circumstances may a cell lose excitability? At the molecular
level, this is due to an improper functioning of the cardiac-cell ionic channels.



To identify the molecular processes responsible for this disorder, we first
reformulate the question as one of parameter-range identification: What are the
parameter ranges for which the MEM fails to generate an AP?

This property may be specified in linear temporal logic (LTL) as G (u<θv),
where G is the LTL globally (always) temporal operator. The property states
that in all executions of the MEM and in all moments of time along a single
execution, the voltage value is below θv. (Note that in an LTL formula, there
is an implicit quantification over all executions.) We would like this property to
hold for all stimulus durations. In terms of the MHA of Fig. 4(b), this property
is true due to the interplay of the ranges of conductances go1 , go2 , gsi and gso.

To identify these ranges in an automated fashion, we use the Rovergene tool,
with the MEM and LTL formula given above as input, and with the following
initial region:

u∈ [0, θ1], v ∈ [0.95, 1], w∈ [0.95, 1], s∈ [0, 0.01]

The u-thresholds and the initial region impose the following partition on the
ranges of state variables (for u we have added the just-before thresholds):

u : [0,. . .,θ29], v, w : [0, 0.95, 1], s : [0, 0.01, 1]

Parameter ranges with biological significance for the conductances were taken
as below. They include known values for normal and abnormal cell behavior.

go1 ∈ [1, 180], go2 ∈ [0, 10], gsi ∈ [0.1, 100], gso ∈ [0.9, 50]

The behavior of the MEM in each hypercube of the state-space partition
is completely determined by its corners, so the existence of transitions from
one hypercube to its neighbors can be computed by evaluating the MEM in
the corners. In each corner, the MEM becomes an affine system in the MEM
parameters. Solving these systems, one obtains the separating hyperplanes of
positive and negative sign of the derivatives in the MEM. Finally, taking into
account the desired LTL property, one obtains the parameter ranges for which
the property is satisfied. In our case the ranges returned are:

166.9494≤ go1 ≤ 180, 7.6982≤ go2 ≤ 10

−0.24784 gsi + 0.9688 gso ≤ 26.0888

They have the following meaning. If go1 ≥ 166.9494, then, regardless of the
duration of the magnitude-1 stimulus applied, the voltage u never leaves the or-
ange interval (mode) [0, θo]. If, on the other hand, go1 < 166.9494, then u reaches
the blue interval (mode) [θo, θw). Since we are considering stimuli of any width
(time is abstracted away by Rovergene), once u enters the blue range, its behav-
ior is completely determined by this mode. If go2 ≥ 7.6982, then u can never leave
the mode. If go2 < 7.6982, then u will enter the pink interval (mode) [θw, θv). In
this mode, the behavior of u is determined by the interplay between gso and gsi.
If the above linear combination is satisfied, one can never leave this mode.



The corresponding simulation, for a sample of values in the above parameter
ranges, is shown in Fig. 7(b). To ensure that we run the same model as Rovergene,
we also developed a Rovergene simulation tool that, given a Rovergene model as
input, simulates its dynamic behavior in MATLAB. This tool proved to be an
invaluable debugging tool during model encoding in Rovergene.

7 Conclusions and Future Work

Although formal techniques were used before to analyze cardiac-cell properties
(see e.g. our work in [23, 10]), this paper presents, to the best of our knowl-
edge, the first approach for automatically identifying parameter ranges of a
biologically-relevant cardiac model, guaranteeing that the model accurately re-
produces a particular cardiac disorder.

Our approach takes the nonlinear cardiac model of [4], brings it first into a
genetic regulatory network sigmoidal form, and then linearizes and transforms it
into a piecewise-multiaffine set of differential equations. It then leverages tools
previously developed for automatic parameter-range identification in genetic reg-
ulatory networks [3] to automatically and robustly check a cardiac disorder ex-
pressed as a linear temporal logic (LTL) formula.

The particular property we considered in this paper is lack of cardiac-cell
excitability. This is an invariant property, where time is abstracted away. In
future work, we plan to investigate more sophisticated LTL properties of single
cells, as well as reachability properties of cell networks (e.g. spirals).

Many abnormalities responsible for cardiac disorders are time- or rate-dependent
properties that cannot be checked with the Rovergene tool, due to its underly-
ing finite-automata abstraction. Action potential duration and spiral breakup
(fibrillation) are examples of such properties. We therefore plan to investigate
new parameter-range identification approaches that, in contrast, use abstractions
based on timed-automata[2, 13] or even linear-automata[1, 8].
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