
Checking Flight Rules with TRACECONTRACT

Application of a Scala DSL for Trace Analysis

Howard Barringer
University of Manchester, UK

howard.barringer@manchester.ac.uk

Klaus Havelund
Jet Propulsion Laboratory

California Inst. of Technology, USA
klaus.havelund@jpl.nasa.gov

Elif Kurklu Robert Morris
NASA Ames Research Center, USA
{elif.kurklu,robert.a.morris}@nasa.gov

Abstract
Typically during the design and development of a NASA
space mission, rules and constraints are identified to help re-
duce reasons for failure during operations. These flight rules
are usually captured in a set of indexed tables, containing
rule descriptions, rationales for the rules, and other infor-
mation. Flight rules can be part of manual operations pro-
cedures carried out by humans. However, they can also be
automated, and either implemented as on-board monitors,
or as ground based monitors that are part of a ground data
system. In the case of automated flight rules, one consider-
able expense to be addressed for any mission is the exten-
sive process by which system engineers express flight rules
in prose, software developers translate these requirements
into code, and then both experts verify that the resulting ap-
plication is correct. This paper explores the potential bene-
fits of using an internal Scala DSL for general trace analy-
sis, named TRACECONTRACT, to write executable specifi-
cations of flight rules. TRACECONTRACT can generally be
applied to analysis of for example log files or for monitoring
executing systems online.

Categories and Subject Descriptors D.2.1 [Software En-
gineering]: Requirements/Specifications; D.2.4 [Software
Engineering]: Software/Program Verification—Formal Meth-
ods, Programming by contract ; D.3.3 [Programming Lan-
guages]: Language Constructs and Features; D.2.5 [Soft-
ware Engineering]: Testing and Debugging—Monitors

General Terms Languages, Verification

Keywords Scala, domain specific language, state machines,
temporal logic, trace analysis, flight rules

1. Introduction
Flight rules capture constraints that arise during NASA mis-
sions. They help mission operations teams to execute proce-
dures correctly, thereby reducing the risk for failures. One
particular form of flight rules concern commands sent from
ground to a spacecraft or planetary rover during a mission.
Such commands are sent in groups, called sequences (lit-
erally a sequence of commands). Each such sequence must

be verified against a fixed set of flight rules before being
sent. Software is typically written in a rather ad-hoc man-
ner to perform this verification, and a considerable chal-
lenge is managing the process by which system engineers
express flight rules and constraints in prose, software devel-
opers translate these requirements into code, and both ex-
perts verify that the resulting application is correct. It would
be an advantage if command sequence flight rules can be ex-
pressed in a formal notation that is (i) high-level, so that it
can be understood by system engineers, and (ii) executable,
so that conformance of a command sequence can be verified.

We present an initial experiment on how to formalize
flight rules for command sequences with a SCALA DSL
(Domain Specific Language), called TRACECONTRACT [2],
originally designed for general analysis of systems execution
traces, that is: sequences of events, but here applied to se-
quences of commands (events and commands are technically
both just data objects). The experiment has led to TRACE-
CONTRACT, and SCALA, being chosen for command se-
quence verification for NASA’s LADEE (Lunar Atmosphere
And Dust Environment Explorer) mission [21], scheduled
for launch in 2012.

As stated above, TRACECONTRACT generally supports
analysis of traces, where a trace is defined as a sequence of
events, without traversing the trace multiple times. An event
in principle can be any form of data object, including for
example commands. The DSL supports a notation allowing
for a mixture of data parameterized state machines and tem-
poral logic. The DSL can generally be used to analyze for
example log files, or even monitor systems as they execute,
and can in that context be seen as an extension of the prin-
ciple of design by contract [24] (pre/post conditions and in-
variants) with trace predicates. The results presented in this
paper should therefore be generally applicable to any trace
analysis problem.

A DSL can be developed as an external DSL or as an
internal DSL. An external DSL is a stand-alone language,
associated with a parser, that parses programs in the DSL
and for example produces abstract syntax trees that can be
processed by a host language. An internal DSL is essentially
an extension of a host language, for example as an API. The

programming language SCALA [26] has convenient support
for the definition of internal DSLs. TRACECONTRACT is an
internal DSL.

An advantage of an internal DSL is that the full power
of the underlying host language is always available in case
the defined DSL is not strong enough to handle a partic-
ular situation. A second advantage is the ease with which
an internal DSL can be developed compared with develop-
ing an external DSL. Beyond not having to deal with pars-
ing, this is mainly because many of the host language’s lan-
guage features can be re-used as part of the DSL (exam-
ples are function definitions, parameterization, and pattern
matching). This makes it easy to adapt the DSL and add new
features. A third advantage is that one inherits all the tool
support available for the host language, such as program-
ming IDEs, debuggers, etc. Our previous studies have shown
the potential benefits of internal DSLs based on PYTHON
or SCALA to write executable specifications of monitor and
control applications [7, 19]. A disadvantage of an internal
DSL is the learning curve required by a user that is not nor-
mally programming in the host language.

A large number of logics have been proposed in the past
for analyzing execution traces. Most of these are external
DSLs [1, 9, 11, 12, 17, 18, 20, 29]. TRACECONTRACT has
evolved from our own previous attempts to develop external
DSLs for trace analysis. These previous external DSLs in-
clude EAGLE [3, 10], RULER [4, 6] and LOGSCOPE [4, 5].
The idea of embedding a trace analysis logic in a func-
tional programming language has been tried before. Stolz
and Huch describe in [30] an embedding of LTL (Linear
Temporal Logic) in HASKELL. Our framework differs in
three ways. First, we handle data parameterization by re-
using SCALA’s built-in notion of partial functions and pat-
tern matching, similar to the way the Actor receive func-
tion is implemented in SCALA. Second, we introduce a hy-
brid between state machines and temporal logic. Third, the
embedding in SCALA seems to provide notational advan-
tages due to SCALA’s support for DSL development. Even
ignoring the DSL for writing temporal properties, as a high
level programming language, SCALA can be seen as an al-
ternative to wide spectrum specification languages such as
VDM++ [13], RAISE [15], and ASML [16].

The rest of this paper is organized as follows. Section 2
provides an introduction to the design of a flight rule checker
and presents an example set of flight rules, abstracted from
three different NASA missions, that deal with the verifica-
tion of command sequences. Section 3 presents the TRACE-
CONTRACT DSL. Section 4 presents the formalization of the
flight rules using TRACECONTRACT. Section 5 concludes
with a discussion.

2. Mission Flight Rules
2.1 Principles of Flight Rule Verification
Ground mission software comprises all ground software nec-
essary to perform command and control of the spacecraft.
A Ground Data System (GDS) supports all phases of the
mission including development, test, and operations. Typi-
cal components of a GDS include those for telemetry and
control, an alert system, one or more simulators, a flight dy-
namics system for orbit determination and design, a com-
mand sequencer, and a file and data management system. A
GDS also consists of an engineering analysis suite of tools
for analyzing the state of the spacecraft, and for verifying the
GDS products that are uploaded to the spacecraft. One such
tool, the focus of this paper, is the Flight Rule Checker.

Flight rules comprise the primary operational document
for a mission flight director and the supporting team respon-
sible for conducting a space mission. Flight rules describe all
the decisions to take in different flight situations. Flight rules
are authored by system engineers and are usually assembled
into a spreadsheet or database. Rules can be organized along
many criteria, including:

• Class or severity (from “safety/mission critical” to “pre-
ferred procedure”).
• Subsystem to which rule is associated (for example, com-

munications, Guidance, Navigation and Control, Power
System.
• Mission phase of operation during which it is applicable.
• Rule implementation, i.e., how the rule is to be applied

during operations.

Different approaches to flight rule implementation include:

• As a spacecraft software routine, in which the checks
occur as part of on-board processing.
• As an operational procedure, implemented as checks or

warnings in command and flight procedures to ensure
operator awareness.
• Configured as limits or alerts into the mission command

and telemetry database.
• Built into the ground data system (GDS) software to

check for errors.

Some rules are implemented using more than one approach
for added assurance through redundancy.

For example, consider the following communications
flight rule, which imposes a constraint on the warm-up time
for a Traveling Wave Tube Amplifier (TWTA) prior to the
transmission of data using a Ka modulator (transmitter).

• Title: Ka-Band TWTA Turn-on.
• Description: The TWTA shall be turned on 300 seconds

before turning on the Ka modulator.
• Rationale: TWTA needs 300 seconds to warm-up.

• Implementation: Ops Procedures, Ground System Rule.
• System: Communications.
• Severity Class: B (Violation of this rule would result in

loss or degradation of measurement data required to meet
full mission success. Minimum mission success criteria
would still be met).
• Mission phase: all.

An entry into the database will also contain a rule identifier
for indexing and cross-referencing with other mission docu-
ments.

2.2 Command Sequence Verification
The focus here is on the verification of command sequences
prior to being uploaded to the spacecraft. A command se-
quence is a sequence of low-level commands that is executed
by the on-board controller. The command sequencer gener-
ates these sequences from high level tactical plans, produced
by human or automated planners, that describe a sequence
of science or engineering activities. The plans might be pro-
duced daily by the mission operations teams, or for multiple
days.

A command sequence is associated with a textual log that
lists all the commands that were generated. Each command
in the sequence log is a parameterized list of values describ-
ing the command. Among the fields are the type of com-
mand, the time at which the command is to start and its
duration, and other fields as required. For example, a com-
mand called ‘set waypoint’ for changing the orientation of
the spacecraft will include parameters describing the desired
spacecraft attitude.

The rule examples described below represent flight rules
pertaining to the ordering and duration of commands in the
command sequence log. Other kinds of rules might require
a more expressive DSL than the one proposed below. For
example, a flight rule such as “an instrument is never to be
pointed into the sun” does not directly pertain to ordering or
duration of commands, and may be better addressed through
the use of a simulator. These scoping issues will be consid-
ered in future work.

2.3 Command Sequence Flight Rule Examples
Automated command sequence verification ensures the
proper execution of commands by the on-board controller
immediately prior to their upload. Violation of these rules
would potentially put the spacecraft or its payload in dan-
ger, or inhibit the accomplishment of mission objectives.
This section offers examples of flight rules from three differ-
ent NASA missions (LCROSS [22], LRO [23] and LADEE
[21]) that describe constraints on command sequences.
Flight rules from multiple missions were examined in or-
der to find common patterns among missions with otherwise
different operations concepts and objectives. The selected
rules are as follows.

Rules R1 R2 restrict the number and duration of commands
in a sequence, which are imposed by the speed of the on
board CPU. The acronym ATS stands for “Absolute Time
Sequence”, referring to commands for which the time vari-
able is fully defined.

R1: Command Rate “Operations shall limit ATS
commands to no more than 5 commands per second.”.

R2: Command Granularity “No Stored Command
Sequence shall include commands or command se-
quences whose successful execution depends on com-
mand time granularity of less than one second”.

Rule R3 constrains a command to be executed only if a
precondition that requires telemetry data is true. It prohibits
an instrument to be powered on when the instrument is too
cold (based on its current sensor reading).

R3: Command Precondition “Instrument shall not
be powered on when any temperature sensor reads
less than -20 ◦C”.

R4 is a constraint on the duration between the onset of a
command to acquire a sun-pointing attitude (orientation in
space) to the point where the spacecraft is fixed on that
attitude.

R4: Command Minimum/Maximum Duration “The
spacecraft shall acquire and maintain a sun-pointing
attitude from an arbitrary attitude in no more than 30
minutes”.

R5 imposes a wait duration on an Attitude Control System
(ACS) command. It amounts to waiting for the ACS system
to stabilize in a new state (mode) before issuing commands
while in that mode.

R5: Duration-wait “ACS commands shall not be is-
sued within 1 second of an ACS mode command”.

R6 is the temporal ordering constraint explained in Sub-
section 2.1.

R6: Command Order timed sequence “The TWTA
shall be turned on 300 seconds before turning on the
Ka modulator”.

R7 imposes a temporal exclusion constraint on commands.
“Fine Point Mode” here refers to a state in which the space-
craft’s pointing control system is keeping the spacecraft pre-
cisely pointed and steady, for example in order to collect
science data; the rule therefore restricts any ∆V maneuvers
while in this state.

R7: Command Order concurrency/exclusion “No
firing of main thrusters while spacecraft is in fine
point mode”.

Finally, R8 describes a set of spacecraft modes or states
and the allowable transitions between them. For example,

consider the three modes: SPM (Sun Point Mode), DB3
(Stellar Inertial Mode, deadband 3) and DB2 (Stellar Inertial
Mode, deadband 2). These are all modes of the Attitude
Control System. In LCROSS, SPM was a mode in which
the solar arrays were pointed towards the sun. DB2 and DB3
enabled spacecraft ‘slew’ maneuvers of different precision,
defined by an acceptable error bound called the ‘deadband’,
which can be viewed as an imaginary box in space within
which the spacecraft must be pointing (DB2 is more precise
than DB3). Thus, the mode transition diagram restricts a
transition from SPM to DB2, forcing a mode change to DB3
first.

R8: Mode Transition “Mode and submode transi-
tions shall be restricted to the set represented in the
state transition diagram in Figure 1 under nominal
flight operations”.

Figure 1. Requirement R8: allowed mode transitions.

2.4 The use of MATLAB to Formalize Flight Rules
Figure 2 shows a MATLAB formulation of requirement 7.
MATLAB has been used for command sequence verification
in past missions. The code consists of initializing a text
verification report summarizing the result of applying the
rule to an input consisting of the sequence log. The body
of the code consists of checking for any occurrence of a set
mode command that puts the spacecraft into fine point mode.
If such a command is observed, then the remainder of the
code checks to insure that no fire main thruster command
occurs before the spacecraft transitions out of fine point
mode. If a violation of this constraint occurs, an error report
is generated.

Many flight rules pertaining to command sequences have
similar patterns, namely, the requirement that certain pre-
conditions be true prior to the execution of the commands.
The existence of these patterns suggest that flight rule veri-
fication can be formalized using a domain specific language
(DSL). The remainder of this paper proposes the use of a
general trace analysis DSL for this purpose.

function vreport = ChkNoBurnDuringPtMode(inputs)
vreport = strcat(10, 10, ’Report Summary for

Flight Rule ChkNoBurnDuringPtMode’);
vreport = strcat(10,
’This rule checks to ensure that no main thruster

firings occur during fine point mode’);
vreport = strcat(vreport, 10, ’************’);
i = 1;
sum = 0;
mode = 0;
s = size(inputs.log);
c = s(2);
while i < c
if strcmp(inputs.log(i).cmd, ’SET_MODE’)
mode = inputs.log(i).acs_mode;
set = i;

else
if strcmp(inputs.log(i).cmd, ...
’FIRE_MAIN_THRUSTER’) && mode ==2
sum = sum +1;
vreport = strcat(vreport, 10, ’Check fails’);
vreport = strcat(vreport, 10,
’Reason: FIRE_MAIN_THURSTER at line ’,
num2str(i),
’ was attempted while in Fine Point Mode’);

end
end
i = i+1;

end
vreport = strcat(vreport, 10, ’************’);
vreport = strcat(vreport, 10, ’Summary Report:’);
if sum == 0
vreport = strcat(vreport, 10,
’All tests on input log file passed’);

else
vreport = strcat(vreport, 10,
’Input log violates the flight rule test ’,
num2str(sum), ’ times.’);

end
end

Figure 2. Requirement 7 in MATLAB: No firing of main
thrusters while spacecraft is in fine point mode.

3. The TRACECONTRACT DSL
3.1 Motivation and Context for TRACECONTRACT

TRACECONTRACT is a SCALA package for analyzing traces.
A trace is a sequence of events, for example emitted from a
running system that we want to monitor. TRACECONTRACT
is a solution to the following problem:

“Develop a DSL in which one can specify and moni-
tor requirements about sequences of events. The DSL
should be as succinct as possible, while at the same
time being as expressive as possible”.

An important design goal has been to produce a very expres-
sive DSL, able to handle realistic real-life properties, while
incorporating useful notations such as state machines and
temporal logic. We observe that we would want to be able to
monitor the events as they are produced. Hence, we do not
assume that we have all the events available. However, when
processing a log, we do have all the events available. Our
solution should be flexible to support both these scenarios.

Our solution is a generalization of state machines adding
the following concepts:

• states can be parameterized with data.
• there are different kinds of states inspired by temporal

logic operators. The operators differ wrt:

how they react to events that do not trigger transitions.

how they behave at the end of the trace. That is,
whether they evaluate to True or False.

whether they remain active after a transition is taken.
• un-named (anonymous) states are allowed, thereby re-

lieving the user from naming intermediate states in a pro-
gression of transitions.
• the target of a transition can be a conjunction (AND) of

states as well as a disjunction (OR), corresponding to
alternating automata.

These characteristics makes the DSL appear as a combi-
nation of state machines and temporal logic, making it a
well suited notation for specifying requirements. The fact
that they can be mixed with SCALA code, with side effects,
means that TRACECONTRACT is a very succinct and expres-
sive specification DSL.

3.2 A Complete Self-Contained Example
We shall illustrate TRACECONTRACT with a complete, self-
contained example. Figure 3 shows what a user of TRACE-
CONTRACT might write to monitor telemetry between a con-
trol center and a spacecraft. Note that although monitoring
telemetry is not exactly the same as monitoring command
sequences, the similarities are sufficient to justify using the
former as an example here. The first task to perform is to de-
termine what the events are to be monitored. TRACECON-
TRACT allows for events to be of any SCALA type, but the
usual way is to define event kinds as parameterized case
classes (to allow for pattern matching), all subclassing an
abstract Event class. The example shows the definition of 3
kinds of events representing: (i) sending a named command
to the spacecraft, and observing (ii) its success or (iii) its
failure.

Next, we define a monitor, which defines the two proper-
ties. A monitor is a class that extends the Monitor class,
which itself is parameterized with the event type. The
Monitor class offers all the classes and functions provided
for writing trace contracts. The monitor defines two proper-
ties, named ’CS and ’SS, corresponding to the requirements:

import tracecontract.Monitor

// Define events:

abstract class Event
case class COMMAND(name: String) extends Event
case class SUCCESS(name: String) extends Event
case class FAIL(name: String) extends Event

// Define monitor:

class CommandRequirements extends Monitor[Event] {
property(’CS) {
always {
case COMMAND(name) =>
hot {
case FAIL(‘name‘) => error
case SUCCESS(‘name‘) => ok

}
}

}

property(’SS) {
always {
case SUCCESS(name) =>
state {
case SUCCESS(‘name‘) => error
case COMMAND(‘name‘) => ok

}
}

}
}

// Use monitor:

object TraceAnalysis {
def main(args: Array[String]) {
val trace: List[Event] =
List(
COMMAND("STOP_DRIVING"),
COMMAND("TAKE_PICTURE"),
SUCCESS("STOP_DRIVING"),
SUCCESS("STOP_DRIVING"))

val monitor = new CommandRequirements
monitor.verify(trace)

}
}

Figure 3. A complete example.

• CS: An issued command must eventually succeed without
a fail occurring first.
• SS: A command cannot succeed more than once before a

new with the same name is issued.

Property ’CS reads as follows: it is always the case that,
if a COMMAND(name) is observed, then we enter a new (un-

named) state (which is hot, meaning we need to exit it even-
tually), where if we see a FAIL(‘name‘) it is an error, un-
til we see a SUCCESS(‘name‘). The quotes around ‘name‘
means: “match the value of name”. Property ’SS reads as
follows: it is always the case that, if a SUCCESS(name) is
observed, then we enter a new state, where if we see an-
other SUCCESS(‘name‘) it is an error, unless we see a new
COMMAND(‘name‘).

The TraceAnalysis class shows how the monitor is
used. First we create a trace, which is a list of events of the
Event type. Such a trace will of course typically come from
somewhere outside the monitoring program, for example as
a result of reading a log file. Then we create an instance
of the CommandRequirements monitor, and finally call the
verify method on the monitor, with the trace as argument.
The result of running this program is shown below:

*** Safety error:
Monitor: CommandRequirements
Property ’SS violated
Violating event number 4:

SUCCESS(STOP_DRIVING)
Error trace:

3=SUCCESS(STOP_DRIVING)
4=SUCCESS(STOP_DRIVING)

*** Liveness error:
Monitor: CommandRequirements
Property ’CS violated - missing event
Error trace:

2=COMMAND(TAKE_PICTURE)

Two errors are shown, one showing that requirement SS is vi-
olated due to two successes of the STOP_DRIVING command
(a so-called safety error) and one showing that requirement
CS is violated due to a missing success of TAKE_PICTURE
(a so-called liveness error). For each error an error trace
is printed showing the events involved in causing the error
(missing events are not shown in these error traces).

3.3 Under the Hood of TRACECONTRACT

3.3.1 Fundamentals
In this section the implementation of TRACECONTRACT
will be outlined. For the explanation we shall assume a type
of events (in the above example in Figure 3 the abstract class
Event):

type Event

A monitor consists of a collection of properties. A property
is a named formula, defined with the method:

def property(name: Symbol)(formula: Formula): Unit

The type Formula represents our formulas, and is modeled
as an abstract class of which various formulas will form
subclasses (as when defining an abstract syntax):

abstract class Formula {
def apply(event: Event): Formula

def reduce(): Formula = this

def and(that: Formula): Formula =
And(this, that).reduce()

def or(that: Formula): Formula =
Or(this, that).reduce()

...
}

The apply function allows one to apply a formula f to an
event e as follows: f (e), resulting in a new formula. The
core idea is the following: for each new event, each formula
is evaluated by applying it to each new event, to become a
new formula.This new formula may be one of the formulas
False or True, or some derivation of the original formula.
The function is defined as abstract and is overridden by the
different subclasses of Formula corresponding to the various
kinds of formulas available.

The reduce function will rewrite the formula according
to the classical reduction axioms of propositional logic (for
example true ∧ f = f for any formula f). It will be overrid-
den in subclasses of Formula. Methods like ‘and’ and ‘or’
allow us to construct conjunction and disjunction of formu-
las using infix notation. That is, given two formulas f1, f2,
the function ‘and’ allows us to write: f1 and f2, a syntax
supported by SCALA instead of the more classical (also al-
lowed): f1.and(f2). In the case of f1 and f2, the result is an
object of class And, which is a subclass of Formula:

case class And(formula1: Formula,
formula2: Formula)

extends Formula {
override def apply(event: Event): Formula =
And(formula1(event), formula2(event)).reduce()

override def reduce(): Formula = {
(formula1, formula2) match {
case (False, _) => False
case (_, False) => False
case (True, _) => formula2
case (_, True) => formula1
case (f1, f2) if f1 == f2 => f1
case _ => this

}
}

}

A term such as And(f1, f2) is evaluated by evaluating its
subformulas, and subsequently calling reduce to perform
propositional logic reduction.

The atomic formulas are True, False, and Now(e), for
some event e. The latter formula is true if the current event
is equal to e:

case object True extends Formula {
override def apply(event: Event): Formula =
this

}

case object False extends Formula {
override def apply(event: Event): Formula =
this

}

case class Now(expectation: Event)
extends Formula {
override def apply(event: Event): Formula =
if (expectation == event) True else False

}

An event can occur in a position requiring a formula due to
the following implicit conversion function:

implicit
def convEvent2Formula(event: Event): Formula =
Now(event)

There are other conversion functions, for example convert-
ing Boolean values and the Unit value to Formulas, the latter
being useful for allowing code with side effects as part of
state machines:

implicit
def convBoolean2Formula(cond: Boolean): Formula =
if (cond) True else False

implicit
def convUnitToFormula(unit: Unit): Formula =
True

3.3.2 States
In the specification above, property CS, as an example, con-
sists of the formula:

always {
case COMMAND(name) =>
hot {
case FAIL(‘name‘) => error
case SUCCESS(‘name‘) => ok

}
}

This formula, and the formula for SS, are constructed using
the following five functions from the DSL:

def error = False
def ok = True

type Block = PartialFunction[Event, Formula]

def always(block: Block): Formula = Always(block)
def state(block: Block): Formula = State(block)
def hot(block:Block): Formula = Hot(block)

The functions error and ok are with a simplified view just
representing False and True (they are actually functions
that in the case of error, for example, produces an error
message). Versions also exist that take user defined messages
as arguments, which get printed.

Each of the three functions always, state, and hot pro-
duces a formula, which at some level behaves like a state in
a state machine, although with additional twists. Each of the
functions take as argument a partial function from events to
formulas, also called a block. A block can be thought of as
representing the transitions leading out of the state. SCALA
allows us to write a partial function as a sequence of case
statements, as in:

{
case FAIL(‘name‘) => error
case SUCCESS(‘name‘) => ok

}

As already mentioned, different states behave differently
wrt. how they react to events that do not trigger transitions,
whether they remain active after a transition is taken or not,
and how they behave at the end of the trace. The semantics
of the different states Always, State and Hot, plus for some
other states not mentioned so far, are shown below. Each
kind of state forms a subclass of class Formula:

case class Always(block: Block)
extends Formula {
override def apply(event: Event): Formula =
if (block.isDefinedAt(event))
And(block(event),this) else this

}

case class State(block: Block)
extends Formula {
override def apply(event: Event): Formula =
if (block.isDefinedAt(event))
block(event) else this

}

case class Hot(block: Block)
extends Formula {
override def apply(event: Event): Formula =
if (block.isDefinedAt(event))
block(event) else this

}

case class Step(block: Block)
extends Formula {
override def apply(event: Event): Formula =
if (block.isDefinedAt(event))
block(event) else True

}

case class Strong(block:Block)
extends Formula{
override def apply(event: Event): Formula =

if (block.isDefinedAt(event))
block(event) else False

}

case class Weak(block: Block)
extends Formula {
override def apply(event: Event): Formula =
if (block.isDefinedAt(event))
block(event) else False

}

Consider the Always class. The apply method returns “it-
self” (this) in case the body block of transitions is not de-
fined for the event (no transition matches). This represents
the semantics that we stay in the state in this case. On the
other hand, if the block is defined for the event, the block
is applied (a transition is taken), resulting in a new formula.
This resulting formula is now monitored together with the
original always state by anding them together (And).

The other states are left once a transition is taken, as in
traditional state machines. These states differ in how they
treat the case where a current event does not trigger a tran-
sition, and in how they behave at the end of the trace. Some
of the states behave identically wrt. how they handle non-
triggering events (State behaves as Hot and Strong be-
haves as Weak), but these states are then distinguished by
how they evaluate at the end of the trace. The following func-
tion (only partially shown) is called at the end of the trace
and evaluates each formula at that point to either false or
true (false if something should have happened but did not):

def end(formula: Formula): Boolean =
formula match {
case True => true
case False => true
case Now(_) => false
case And(formula1, formula2) =>
end(formula1) && end(formula2)

case Or(formula1, formula2) =>
end(formula1) || end(formula2)

case Always(_) => true
case State(_) => true
case Hot(_) => false
case Step(_) => true
case Strong(_) => false
case Weak(_) => true
...

}

3.3.3 The Verify Methods
The example in Figure 3 illustrates the application of a
verify function that takes a trace as argument:

def verify(trace: List[Event]): MonitorResult[Event]

The following set of alternative functions are furthermore
provided for verifying events one by one, for example when
monitoring a system online:

def verify(event: Event): Unit
def end(): Unit

The end function must be called at the end of the event
sequence.

A monitor can define one or more properties, and mon-
itors can be composed. It is a matter of taste whether one
or more properties should be defined in a monitor. For our
examples we shall define each monitor to contain one prop-
erty. As an abbreviation, properties can be defined with the
following function (calling a version of property that only
takes a formula as argument, no name):

def require(block: Block): Formula =
property(always(block))

3.3.4 Other Forms of Specification
The DSL also supports writing Linear Temporal Logic (LTL)
formulas [25], such as:

globally {
COMMAND("STOP_DRIVING") implies
eventually(SUCCESS("STOP_DRIVING"))

}

and even a mixture of states and LTL, which allows pattern
matching on events to capture data:

always {
case COMMAND(x) => eventually(SUCCESS(x))

}

The framework also supports a rule-based framework for
recording facts, useful for checking past time properties.

4. Formalizing Flight Rules
This section presents the formalization in TRACECON-
TRACT of the requirements informally described in Section
2. First we need to formalize what events are. Subsequently
each requirement is formalized.

4.1 Events
Two kinds of events are considered: commands submitted
to the spacecraft, and status updates from the spacecraft1.
The type Event of events and the two different kinds of
events are defined in Figure 4. Each event has a time stamp.
A command has a name, a value, a time stamp (when the
command is issued), and a deadline by which it should be
executed. A status update has a name (what kind of status

1 Even though the intended application in the LADEE project is a command
sequence checker, we have performed experiments with analyzing telemetry
such as status updates.

update is it), an identity (for example the id of a sensor), a
value, and a time stamp.

abstract class Event {
val time: Int

}

case class COMMAND(
name: String,
value: Any,
time: Int,
deadline: Int) extends Event

case class STATUS (
name: String,
which: String,
value: Int,
time: Int) extends Event

Figure 4. The type of events.

4.2 Requirement 1
Requirement R1 is formalized in Figure 5. The formal-
ization states that whenever (recall that require(f) =
property(always(f))) we observe a command whose
name starts with ATS, we enter a state returned by the count
function, which for the next 1 second counts the number of
ATS commands. When an ATS command is observed with
a time stamp beyond 1 second, we stop monitoring this par-
ticular sequence (ok). If this number, however, before that
exceeds 5, an error is issued. The technique of using a func-
tion (here count) to represent a named state is also used to
represent more traditional state machines, see requirements
R6 in Figure 10, and R8 in Figure 12. The “machinery” be-
hind the expression:

(time,time2) beyond (1 second)

is the following implicit conversion functions and classes2:

implicit
def convIntPair2IntPairOps(pair: (Int, Int)) =
new IntPairOps(pair._1, pair._2)

class IntPairOps(x: Int, y: Int) {
def within(z: Int) = (y - x) <= z
def beyond(z: Int) = (y - x) > z

}

implicit
def convInt2IntOps(x: Int) = new IntOps(x)

class IntOps(x: Int) {
def second : Int = x * 1000

2 This is not a crucial part of the TRACECONTRACT DSL. If nothing else,
it illustrates how implicit functions can be used to define a DSL.

def seconds : Int = second
def minute : Int = x * 60 * 1000
def minutes : Int = minute
def hour : Int = x * 60 * 60 * 1000
def hours : Int = hour

}

class R1 extends Monitor[Event] {
require {
case COMMAND(name, _, time, _)
if name startsWith "ATS" => count(time)

}

def count(time: Int, nr: Int = 1): Formula =
state {
case COMMAND(name, _, time2, _)
if name startsWith "ATS" =>
if ((time,time2) beyond (1 second))
ok

else if (nr == 5)
error

else
count(time, nr + 1)

}
}

Figure 5. Requirement 1: Operations shall limit ATS com-
mands to no more than 5 commands per second.

4.3 Requirement 2
Requirement R2 is formalized in Figure 6. It is a check on
arguments to individual commands. The partial function ar-
gument to the function require returns the Boolean ex-
pression: “(time,deadline) beyond (1 second)”. This
Boolean expression, occurring as the “target of a transition”
(using state machine terminology), is lifted to a formula by
the implicit definition:

implicit
def convBoolean2Formula(cond: Boolean): Formula =
if (cond) True else False

class R2 extends Monitor[Event] {
require {
case COMMAND(_, _, time, deadline) =>
(time,deadline) beyond (1 second)

}
}

Figure 6. Requirement 2: No Stored Command Sequence
shall include commands or command sequences whose suc-
cessful execution depends on command time granularity of
less than one second.

4.4 Requirement 3
Requirement R3 is formalized in Figure 7. The property
states that if a temperature reading (STATUS("TEMP",...))
is observed, with a temperature less than −20 ◦C, then we
enter a state in which a POWERON command results in an er-
ror. However, if in this state a reading of the same sensor
yields a temperature bigger than or equal to −20 ◦C, the ob-
servation of this sensor stops (ok). Note that several temper-
ature sensors could go below −20 ◦C. They would all have
to go back ≥−20 ◦C before a POWERON is safe. The formal-
ization keeps track of all sensors.

class R3 extends Monitor[Event] {
require {
case STATUS("TEMP", sensor, value, _)
if value < -20 =>
state {
case COMMAND("POWERON", _, _, _) => error
case STATUS("TEMP", ‘sensor‘, value2, _)
if value2 >= -20 => ok

}
}

}

Figure 7. Requirement 3: Instrument shall not be powered
on when any temperature sensor reads less than −20 ◦C.

4.5 Requirement 4
Requirement R4 is formalized in Figure 8. The formalization
illustrates the use of a hot state: when a command is issued
to point to the sun, then a hot state is entered. This means
that eventually a status update must be observed that the
spacecraft is sun pointing. Furthermore, the only release of
this obligation (result: ok) is if a status update arrives within
30 minutes.

class R4 extends Monitor[Event] {
require {
case COMMAND("SUN_POINTING", _, time1, _) =>
hot {
case STATUS("SUN_POINTING", _, _, time2)
if (time1,time2) within (30 minutes) => ok

}
}

}

Figure 8. Requirement 4: The spacecraft shall acquire and
maintain a sun-pointing attitude from an arbitrary attitude in
no more than 30 minutes.

4.6 Requirement 5
Requirement R5 is formalized in Figure 9. This is another
example illustrating how real-time constraints can be ex-
pressed.

class R5 extends Monitor[Event] {
require {
case COMMAND("ACS_MODE", _, time1, _) =>
state {
case COMMAND("ACS", _, time2, _)
if (time1,time2) within (1 second) => error

}
}

}

Figure 9. Requirement 5: ACS commands shall not be is-
sued within 1 second of an ACS mode command.

4.7 Requirement 6
Requirement R6 is formalized in Figure 10. This requirement
is formalized as a state machine with two states: the initial
Init state, and the On state parameterized with the time
at which a “turn on TWTA” command occurs. The state
machine transitions to the On(time) state if TWTA is turned
on at time. In the On state we have to wait at least 300
seconds before a command turning on KA is allowed. Note
that we provide the return type Formula explicitly for the
functions Init and On. Explicit mentioning of return types
for mutually recursive functions is required by SCALA’s type
system (although not for all functions involved).

class R6 extends Monitor[Event] {
property { Init }

def Init: Formula =
state {
case COMMAND("TURNON", "TWTA", time, _) =>
On(time)

case COMMAND("TURNON", "KA", _, _) => error
}

def On(twtaTime: Int): Formula =
state {
case COMMAND("TURNOFF", "TWTA", _, _) => Init
case COMMAND("TURNON", "KA", kaTime, _)
if (twtaTime,kaTime) within (300 seconds) =>
error

}
}

Figure 10. Requirement 6: The TWTA shall be turned on
300 seconds before turning on the Ka modulator.

4.8 Requirement 7
Requirement R7 is formalized in Figure 11. The formal-
ization states that if mode is set to 2 (fine point mode),
with a SET_MODE command, then we enter a state where a
FIRE_MAIN_THRUSTER command is not allowed. We leave
that state again as soon as the mode is set to a value dif-

ferent from 2. The reader may compare this formalization
with the MATLAB formalization in Figure 2. The compari-
son is not quite fair due to the fact that the MATLAB program
contains several lines concerned with counting and printing.
However, our DSL does all this automatically for us.

class R7 extends Monitor[Event] {
require {
case COMMAND("SET_MODE", 2, _, _) =>
state {
case COMMAND("SET_MODE", x, _, _)
if x != 2 => ok

case COMMAND("FIRE_MAIN_THRUSTER", _, _, _)
=> error

}
}

}

Figure 11. Requirement 7: No firing of main thrusters while
spacecraft is in fine point mode.

4.9 Requirement 8
Requirement R8 is formalized in Figure 12. The formaliza-
tion faithfully models the state machine shown in Figure 1.
Each state is represented by a function (SPM, DB1, etc). Note,
however, that in contrast to the previous state machines, in
particular the one for requirement R7 in Figure 11, the states
in this state machine are weak. Recall that the semantics of
a weak state is the following: the next event has to match
one of the transitions, otherwise it is an error. However, if
there is no next event, a weak state evaluates to True. In
other words: if there is a next event, it has to match one of
the transitions in the current state. If we monitored a com-
mand sequence against this state machine we would likely
get a violation since not all events are likely to be MOVETO
commands. However, the select function (called in the
first line of the monitor) ensures that only events matching
COMMAND("MOVETO",_,_,_) are processed by this monitor.
The select function has the following signature:

def select(filter: PartialFunction[Event, Boolean])
: Unit

The filter provided as argument to the function is used to
select events to be processed by the monitor. That is, only
events e for which:

filter.isDefinedAt(e) && filter(e)

are submitted to the monitor for analysis. Note that without
such a selection, we would have to use for example the
state function and provide error transitions. For example,
the SPM state would become:

def SPM: Formula =
state {
case COMMAND("MOVETO", "DB3", _, _) => DB3
case COMMAND("MOVETO", _, _, _) => error

}

This state will wait for a MOVETO command to appear, in
which case one of the two transitions will be taken.

class R8 extends Monitor[Event] {
select{case COMMAND("MOVETO", _, _, _) => true}

property { SPM }

def SPM: Formula =
weak {
case COMMAND("MOVETO", "DB3", _, _) => DB3

}

def DB1: Formula =
weak {
case COMMAND("MOVETO", "SLM", _, _) => SLM
case COMMAND("MOVETO", "DB2", _, _) => DB2
case COMMAND("MOVETO", "DB3", _, _) => DB3
case COMMAND("MOVETO", "DVM", _, _) => DVM

}

def DB2: Formula =
weak {
case COMMAND("MOVETO", "SLM", _, _) => SLM
case COMMAND("MOVETO", "DB1", _, _) => DB1
case COMMAND("MOVETO", "DB3", _, _) => DB3

}

def DB3: Formula =
weak {
case COMMAND("MOVETO", "DB2", _, _) => DB2

}

def SLM: Formula =
weak {
case COMMAND("MOVETO", "DB2", _, _) => DB2
case COMMAND("MOVETO", "DB3", _, _) => DB3

}

def DVM: Formula =
weak {
case COMMAND("MOVETO", "DB3", _, _) => DB3

}
}

Figure 12. Requirement 8: Mode and submode transitions
shall be restricted to the set represented in the state transition
diagram in Figure 1 under nominal flight operations.

4.10 Monitoring the Requirements
TRACECONTRACT allows us to construct monitor hierar-
chies, useful for composing monitors. The requirements de-
fined above can be composed into the monitor Requirements
shown in Figure 13.

class Requirements extends Monitor[Event] {
monitor (
new R1, new R2, new R3, new R4,
new R5, new R6, new R7, new R8

)
}

Figure 13. Requirement composition.

This monitor can now be applied to analyze a trace. Figure
14 shows a concrete analysis. The Requirements monitor
is first instantiated to an object with the name monitor. An
example trace is then provided as argument to the monitor’s
verify method. Normally the trace would likely get read in
from a log file for example.

object Analysis {
def main(args: Array[String]) {
val monitor = new Requirements
val log = List(// example log
COMMAND("MOVETO", "DB3", 1000 , 3000),
COMMAND("MOVETO", "DB2", 5000 , 7000),
COMMAND("MOVETO", "DVM", 10000, 12000),
COMMAND("MOVETO", "DB3", 15000, 17000))

monitor.verify(log)
}

}

Figure 14. Requirement Analysis.

5. Discussion
We have presented TRACECONTRACT, an internal SCALA
DSL for trace analysis, and demonstrated its application
for writing flight rules. TRACECONTRACT, as well as the
conclusions from this work, are applicable to general forms
of trace analysis, including, for example, analysis of log
files or monitoring of running systems. The technology and
lessons learned are not specific to flight rules.

A main question is whether a trace analysis DSL should
be an external or an internal DSL. An internal DSL has the
following advantages: expressive power due to the fact that
the host language, in this case SCALA, is part of the DSL;
ease of implementation, and thereby ease of adaptation to
user requests; and inheritance of tool support for the host
language. Furthermore, SCALA is a high level programming
language, and in itself seems very suited for writing exe-
cutable specifications.

An internal DSL is usually associated with the follow-
ing disadvantages: the notation may not be optimal for the
specific problem; complexity of DSL since it includes a pro-
gramming language; and lack of analyzability. Lack of an-
alyzability means that it is difficult to analyze a specifica-
tion from within the host language (in this case SCALA) - it
may require compiler plugins. This can have consequences
for performance and reporting to users. This is specifically
the case where the DSL is a shallow embedding in the host
language SCALA. This means that we re-use as many of
SCALA’s language constructs, including for example func-
tions, case classes and pattern matching. This is in contrast
to a deep embedding where the host language’s constructs
are not part of the DSL. A discussion of advantages and dis-
advantages of these two approaches is presented in [14].

It is too early from our experience on the LADEE mission
to determine whether flight rule specification and checking
provide a good application of an internal DSL using SCALA
and TRACECONTRACT. However, we have in the past made
experiments with external (as well as internal) DSLs for
trace analysis, and can at this point make some observations.
One such external DSL is LOGSCOPE [4, 5], which grew
out of the RULER external DSL for trace analysis [4, 6].
RULER and TRACECONTRACT have the same formal ex-
pressiveness, and are both more expressive than LOGSCOPE.
LOGSCOPE was developed to help JPL engineers analyze
log files. LOGSCOPE is simple compared to TRACECON-
TRACT, and therefore easy to learn.

We consider the advantages of an internal DSL for trace
analysis to outweigh the disadvantages. We consider expres-
sive power (and availability of a high level programming
language) and ease of implementation to be the most impor-
tant aspects. Ease of implementation means that it is not cru-
cial whether the DSL is perfect from the start. It can evolve
easily as experience is gained. Although the SCALA DSL
in some cases does not become as succinct as an external
DSL (for example, in an external DSL one would probably
omit the case keyword in transitions), it seems to come suf-
ficiently close to the ideal. The main potential disadvantage
is the complexity of the DSL, that a user has to be a SCALA
programmer. It is difficult to make a general statement here,
but we believe that for writing effective trace analyzers, one
needs a powerful formalism, extending a high level pro-
gramming language, such as TRACECONTRACT. The real
remaining issue is that of analyzability, possibly impacting
the performance of the solution. One possible solution to this
problem is language virtualization [8].

The future application in the LADEE mission will lead
to improvements of the DSL. Other work related to this ef-
fort includes development of a GUI interface to the DSL to
be used by non-programmers. Experimental work will fur-
thermore include addition of new specification constructs as
well as optimization of performance. On a different tangent,
it will be investigated how TRACECONTRACT can be inte-

grated with the principles of design by contract, as presented
in [24]. A related line of work would be an integration with a
SCALA test framework such as SCALATEST [27] or SPECS
[28], for example for testing concurrently executing actors
with non-deterministic behavior.

Acknowledgments
We would like to thank the reviewers for their useful com-
ments. Part of the research described in this publication was
carried out at the Jet Propulsion Laboratory, California Insti-
tute of Technology, under a contract with the National Aero-
nautics and Space Administration.

References
[1] C. Allan, P. Avgustinov, A. S. Christensen, L. Hendren,

S. Kuzins, O. Lhoták, O. de Moor, D. Sereni, G. Sittamplan,
and J. Tibble. Adding trace matching with free variables to
AspectJ. In OOPSLA’05. ACM Press, 2005.

[2] H. Barringer and K. Havelund. TraceContract: A Scala DSL
for trace analysis. In 17th International Symposium on For-
mal Methods (FM’11), Limerick, Ireland, June 20-24, 2011.
Proceedings, volume 6664 of LNCS. Springer, 2010.

[3] H. Barringer, A. Goldberg, K. Havelund, and K. Sen. Rule-
based runtime verification. In VMCAI, volume 2937 of LNCS,
pages 44–57. Springer, 2004. ISBN 3-540-20803-8.

[4] H. Barringer, K. Havelund, D. Rydeheard, and A. Groce. Rule
systems for runtime verification: A short tutorial. In Proc.
of the 9th Int. Workshop on Runtime Verification (RV’09),
volume 5779 of LNCS, pages 1–24. Springer, 2009.

[5] H. Barringer, A. Groce, K. Havelund, and M. Smith. Formal
analysis of log files. Journal of Aerospace Computing, Infor-
mation, and Communication, 7(11):365–390, 2010.

[6] H. Barringer, D. E. Rydeheard, and K. Havelund. Rule sys-
tems for run-time monitoring: from EAGLE to RULER (ex-
tended version). J. Log. Comput., 20(3):675–706, 2010.

[7] M. Bennett, R. Borgen, K. Havelund, M. Ingham, and D. Wag-
ner. Prototyping a domain-specific language for monitor and
control systems. Journal of Aerospace Computing, Informa-
tion, and Communication, 7(11):338–364, 2010.

[8] H. Chafi, Z. DeVito, A. Moors, T. Rompf, A. K. Sujeeth,
P. Hanrahan, M. Odersky, and K. Olukotun. Language virtu-
alization for heterogeneous parallel computing. In OOPSLA
’10, pages 835–847. ACM, 2010.

[9] F. Chen and G. Roşu. MOP: An efficient and generic runtime
verification framework. In OOPSLA’07, 2007.

[10] M. D’Amorim and K. Havelund. Event-based runtime verifi-
cation of Java programs. In Workshop on Dynamic Program
Analysis (WODA’05), volume 30(4) of ACM Sigsoft Software
Engineering Notes, pages 1–7, 2005.

[11] D. Drusinsky. The temporal rover and the ATG rover. In SPIN
Model Checking and Software Verification, volume 1885 of
LNCS, pages 323–330. Springer, 2000.

[12] B. Finkbeiner, S. Sankaranarayanan, and H. Sipma. Collecting
statistics over runtime executions. Formal Methods in System
Design, 27(3):253–274, 2005.

[13] J. Fitzgerald, P. G. Larsen, P. Mukherjee, N. Plat, and
M. Verhoef. Validated Designs For Object-oriented Systems.
Springer-Verlag TELOS, Santa Clara, CA, USA, 2005.

[14] F. Garillot and B. Werner. Simple types in type theory: Deep
and shallow encodings. In 20th Int. Conference on Theo-
rem Proving in Higher Order Logics (TPHOLs’07), Kaiser-
slautern, Germany., volume 4732 of LNCS, pages 368–382.
Springer, 2007.

[15] C. George, P. Haff, K. Havelund, A. Haxthausen, R. Milne,
C. B. Nielsen, S. Prehn, and K. R. Wagner. The RAISE Specifi-
cation Language. The BCS Practitioner Series, Prentice-Hall,
Hemel Hampstead, England, 1992.

[16] Y. Gurevich, B. Rossman, and W. Schulte. Semantic essence
of AsmL. Theoretical Computer Science, 343(3):370–412,
2005.

[17] K. Havelund and G. Roşu. Efficient monitoring of safety
properties. Software Tools for Technology Transfer, 6(2):158–
173, 2004.

[18] K. Havelund and G. Rosu. Monitoring programs using rewrit-
ing. In 16th ASE conference, San Diego, CA, USA, pages 135–
143, 2001.

[19] K. Havelund, M. Ingham, and D. Wagner. A case study in
DSL development - an experiment with Python and Scala. In
Scala Days 2010, Lausanne, Switzerland, 2010.

[20] I. Lee, S. Kannan, M. Kim, O. Sokolsky, and M. Viswanathan.
Runtime assurance based on formal specifications. In PDPTA,
pages 279–287. CSREA Press, 1999. ISBN 1-892512-15-7.

[21] Lunar Atmosphere Dust Environment Explorer.
http://www.nasa.gov/mission pages/LADEE/main.

[22] Lunar Crater Observation and Sensing Satellite.
http://lcross.arc.nasa.gov.

[23] Lunar Reconnaissance Orbiter.
http://lunar.gsfc.nasa.gov.

[24] M. Odersky. Contracts for Scala. In Runtime Verification -
First Int. Conference, RV 2010, St. Julians, Malta, November
1-4, 2010. Proceedings, volume 6418 of LNCS, pages 51–57.
Springer, 2010.

[25] A. Pnueli. The temporal logic of programs. In 18th Annual
Symposium on Foundations of Computer Science, pages 46–
57. IEEE Computer Society, 1977.

[26] Scala. http://www.scala-lang.org.

[27] ScalaTest. http://www.scalatest.org.

[28] Specs. http://code.google.com/p/specs.

[29] V. Stolz and E. Bodden. Temporal assertions using AspectJ.
In Proc. of the 5th Int. Workshop on Runtime Verification
(RV’05), volume 144(4) of ENTCS, pages 109–124. Elsevier,
2006.

[30] V. Stolz and F. Huch. Runtime verification of concurrent
Haskell programs. In Proc. of the 4th Int. Workshop on
Runtime Verification (RV’04), volume 113 of ENTCS, pages
201–216. Elsevier, 2005.

