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Abstract We present the INTERASPECT instrumentation framework for GCC, a widely
used compiler infrastructure. The addition of plug-in support in the latest release of GCC
makes it an attractive platform for runtime instrumentation, as GCC plug-ins can directly
add instrumentation by transforming the compiler’s intermediate representation. Such trans-
formations, however, require expert knowledge of GCC internals. INTERASPECTaddresses
this situation by allowing instrumentation plug-ins to be developed using the familiar vo-
cabulary of Aspect-Oriented Programming: pointcuts, joinpoints, and advice functions.
Moreover, INTERASPECTuses specific information about each join point in a pointcut,
possibly including results of static analysis, to support powerful customized instrumenta-
tion. We describe the INTERASPECTAPI and present several examples that illustrate its
practical utility as a runtime-verification platform. We also introduce a tracecut system that
uses INTERASPECT to construct program monitors that are formally specified asregular
expressions.

Keywords program instrumentation, aspect-oriented programming, GCC, monitoring,
tracecut

1 Introduction

GCC is a widely used compiler infrastructure that supports avariety of input languages,
e.g., C, C++, Fortran, Java, and Ada, and over 30 different target machine architectures.
GCC translates each of its front-end languages into a language-independent intermediate
representation called GIMPLE, which then gets translated to machine code for one of GCC’s
many target architectures. GCC is a large software system with more than 100 developers
contributing over the years and a steering committee consisting of 13 experts who strive to
maintain its architectural integrity.

In earlier work [7], we extended GCC to supportplug-ins, allowing users to add their
own custom passes to GCC in a modular way without patching andrecompiling the GCC
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source code. Released in April 2010, GCC 4.5 [16] includes plug-in support that is largely
based on our design.

GCC’s support for plug-ins presents an exciting opportunity for the development of prac-
tical, widely-applicable program transformation tools, including program-instrumentation
tools for runtime verification. Because plug-ins operate atthe level of GIMPLE, a plug-in is
applicable to all of GCC’s front-end languages. Transformation systems that manipulate ma-
chine code may also work for multiple programming languages, but low-level machine code
is harder to analyze and lacks the detailed type informationthat is available in GIMPLE.

Implementing instrumentation tools as GCC plug-ins provides significant benefits but
also presents a significant challenge: despite the fact thatit is an intermediate representa-
tion, GIMPLE is in fact a low-level language, requiring the writing of low-level GIMPLE
Abstract Syntax Tree (AST) traversal functions in order to transform one GIMPLE expres-
sion into another. Therefore, as GCC is currently configured, the writing of plug-ins is not
trivial but for those intimately familiar with GIMPLE’s peculiarities.

To address this challenge, we developed the INTERASPECTprogram-instrumentation
framework, which allows instrumentation plug-ins to be developed using the familiar vo-
cabulary of Aspect-Oriented Programming (AOP). INTERASPECTis itself implemented us-
ing the GCC plug-in API for manipulating GIMPLE, but it hidesthe complexity of this API
from its users, presenting instead an aspect-oriented API in which instrumentation is accom-
plished by definingpointcuts. A pointcut denotes a set of program points, calledjoin points,
where calls toadvice functionscan be inserted by a process calledweaving.

INTERASPECT’s API allows users to customize the weaving process by defining call-
back functionsthat get invoked for each join point. Callback functions have access to spe-
cific information about each join point; the callbacks can use this to customize the inserted
instrumentation, and to leverage static-analysis resultsfor their customization.

We also present the INTERASPECTTracecut extensionto generate program monitors
directly from formally specified tracecuts. A tracecut [32]matchessequences of pointcuts
specified as a regular expression. Given a tracecut specification T , INTERASPECTTracecut
instruments a target program so that it communicates program events and event parameters
directly to a monitoring engine forT . The tracecut extension adds the necessary monitoring
instrumentation exclusively with the INTERASPECTAPI presented here.

In summary, INTERASPECToffers the following novel combination of features:

– INTERASPECTbuilds on top of GCC, a widely used compiler infrastructure.
– INTERASPECTexposes an API that encourages and simplifies open-source collabora-

tion.
– INTERASPECT is versatile enough to provide instrumentation for many purposes, in-

cluding monitoring a tracecut specification.
– INTERASPECThas access to GCC internals, which allows one to exploit static analysis

and meta-programming during the weaving process.

The full source of the INTERASPECTframework is available from the INTERASPECTweb-
site under the GPLv3 license [19].

To illustrate INTERASPECT’s practical utility, we have developed a number of program-
instrumentation plug-ins that use INTERASPECTfor custom instrumentation. These include
aheap visualizationplug-in designed for the analysis of JPL Mars Science Laboratory soft-
ware; aninteger range analysisplug-in that finds bugs by tracking the range of values for
each integer variable; and acode coverageplug-in that, given a pointcut and test suite, mea-
sures the percentage of join points in the pointcut that are executed by the test suite.
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Fig. 1 A simplified view of the GCC compilation process.

The rest of the article is structured as follows. Section 2 provides an overview of GCC
and the INTERASPECTframework. Section 3 introduces the INTERASPECTAPI. Section 4
presents the three case studies: heap visualization, integer range analysis, and code cover-
age. Section 5 describes how we extended INTERASPECTwith a tracecut system. Section 6
summarizes related work, and Section 7 concludes the article. A preliminary version of this
article, which did not consider the tracecut extension, appeared last year [29].

2 Overview of GCC and the INTERASPECT Architecture

Overview of GCC.As Figure 1 illustrates, GCC translates all of its front-endlanguages
into the GIMPLE intermediate representation for analysis and optimization. Each transfor-
mation on GIMPLE code is split into its ownpass. These passes, some of which may be
implemented asplug-ins, make up GCC’smiddle-end. Moreover, a plug-in pass may be IN-
TERASPECT-based, enabling the plug-in to add instrumentation directly into the GIMPLE
code. The final middle-end passes convert the optimized and instrumented GIMPLE to the
Register Transfer Language (RTL), which theback-endtranslates to assembly.

GIMPLE is a C-like three-address (3A) code. Complex expressions (possibly with side
effects) are broken into simple3A statements by introducing new, temporary variables. Simi-
larly, complex control statements are broken into simple3A (conditional)goto s by introduc-
ing new labels. Type information is preserved for every operand in each GIMPLE statement.

Figure 2 shows a C program and its corresponding GIMPLE code,which preserves
source-level information such as data types and procedure calls. Although not shown in the
example, GIMPLE types also include pointers and structures.

A disadvantage of working purely at the GIMPLE level is that some language-specific
constructs are not visible in GIMPLE code. For example, targeting a specific kind of loop
as a pointcut is not currently possible because all loops look the same in GIMPLE. IN-
TERASPECTcan be extended with language-specific pointcuts, whose implementation could
hook into one of the language-specific front-end modules instead of the middle-end.

INTERASPECTarchitecture. INTERASPECTworks by inserting a pass that first traverses
the GIMPLE code to identify program points that are join points in a specified pointcut.
For each such join point, it then calls a user-provided weaving callback function, which
can insert calls to advice functions. Advice functions can be written in any language that
will link with the target program, and they can access or modify the target program’s state,
including its global variables. Advice that needs to maintain additional state can declare
static variables and global variables.
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int main() { 1. int main {
int a, b, c; 2. int a, b, c;
a = 5; 3. int T1, T2, T3, T4;
b = a + 10; 4. a = 5;
c = b + foo(a, b); => 5. b = a + 10;
if (a > b + c) 6. T1 = foo(a, b);

c = b++ / a + (b * a); 7. c = b + T1;
bar(a, b, c); 8. T2 = b + c;

} 9. if (a <= T2) goto fi;
10. T3 = b / a;
11. T4 = b * a;
12. c = T3 + T4;
13. b = b + 1;
14. fi:
15. bar (a, b, c);
16. }

Fig. 2 Sample C program (left) and corresponding GIMPLE representation (right)
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Fig. 3 Architecture of the INTERASPECTinstrumentation framework with its tracecut extension. The tracecut
specification is a simple C program. The tracecut extension translates events in the specification to pointcuts,
and the INTERASPECTframework directly instruments the pointcuts using GCC’s GIMPLE API. The instru-
mented binary sends events to the tracecut monitoring engine, and monitors signal matches by calling advice
functions, which are compiled alongside the target program. It is also possible to specify just pointcuts, in
which case the tracecut extension and monitoring engine arenot necessary.

Unlike traditional AOP systems which implement a special AOP language to define
pointcuts, INTERASPECTprovides a C API for this purpose. We believe that this approach
is well suited to open collaboration. Extending INTERASPECTwith new features, such as
new kinds of pointcuts, does not require agreement on new language syntax or modification
to parser code. Most of the time, collaborators will only need to add new API functions.

The INTERASPECTTracecut extension API uses INTERASPECTto generate program
monitors from formally specified tracecuts. Tracecuts match sequences of pointcuts, speci-
fied as regular expressions. The instrumentation componentof the extension, which is im-
plemented in C, benefits from INTERASPECT’s design as an API: it need only call API
functions to define and instrument the pointcuts that are necessary to monitor the tracecut.
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struct aop pointcut * aop match function entry(void);

Creates pointcut denoting every function entry point.
struct aop pointcut * aop match function exit(void);

Creates pointcut denoting every function return point.
struct aop pointcut * aop match function call(void);

Creates pointcut denoting every function call.
struct aop pointcut * aop match assignment by type(struct aop type * type);

Creates pointcut denoting every assignment to a variable ormemory location that matches a type.

Fig. 4 Match functionsfor creating pointcuts.

Figure 3 shows the architecture of a monitor implemented with INTERASPECTTracecut.
The tracecut itself is defined in a short C program that calls the INTERASPECTTracecut API
to specify tracecut properties. Linking the compiledtracecut programwith INTERASPECT

and the tracecut extension produces a plug-in that instruments events relevant to the trace-
cut. A target program compiled with this plug-in will send events and event parameters to
the tracecut monitoring engine, which then determines if any sequence of events matches
the tracecut rule. The target program can include tracecut-handling functions so that the
monitoring engine can report matches directly back to the program.

3 The INTERASPECT API

This section describes the functions in the INTERASPECTAPI, most of which fall naturally
into one of two categories: (1) functions for creating and filtering pointcuts, and (2) functions
for examining and instrumenting join points. Note that users of our framework can write
plug-ins solely with calls to these API functions; it is not necessary to include any GCC
header files or manipulate any GCC data structures directly.

Creating and filtering pointcuts.The first step for adding instrumentation in INTERASPECT

is to create a pointcut using amatchfunction. Our current implementation supports the four
match functions given in Figure 4, allowing one to create four kinds of pointcuts.

Using a function entry or exit pointcut makes it possible to add instrumentation that
runs with every execution of a function. These pointcuts provide a natural way to insert
instrumentation at the beginning and end of a function the way one would with before-
execution and an after-returning advices in a traditional AOP language. A call pointcut can
instead target calls to a function. Call pointcuts can instrument calls to library functions
without recompiling them. For example, in Section 4.1, a call pointcut is used to intercept
all calls tomalloc .

The assignment pointcut is useful for monitoring changes toprogram values. For ex-
ample, we use it in Section 4.1 to track pointer values so thatwe can construct the heap
graph. We plan to add several new pointcut types, including pointcuts for conditionals and
loops. These new pointcuts will make it possible to trace thecomplete path of execution as
a program runs, which is potentially useful for coverage analysis, profiling, and symbolic
execution.

After creating a match function, a plug-in can refine it usingfilter functions. Filter func-
tions add additional constraints to a pointcut, removing join points that do not satisfy those
constraints. For example, it is possible to filter a call pointcut to include only calls that return
a specific type or only calls to a certain function. Figure 5 summarizes filter functions for
call pointcuts.
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void aop filter call pc by name(struct aop pointcut * pc, const char * name);

Filter function calls with a given name.
void aop filter call pc by param type(struct aop pointcut * pc, int n,

struct aop type * type);
Filter function calls that have annth parameter that matches a type.

void aop filter call pc by return type(struct aop pointcut * pc,

struct aop type * type);

Filter function calls with a matching return type.

Fig. 5 Filter functionsfor refining function-call pointcuts.

void aop join on(struct aop pointcut * pc, join callback callback,

void * callback param);
Call callback on each join point in the pointcutpc , passingcallback param each time.

Fig. 6 Join functionfor iterating over a pointcut.

const char * aop capture function name(aop joinpoint * jp);

Captures the name of the function called in the given join point.
struct aop dynval * aop capture param(aop joinpoint * jp, int n);

Captures the value of thenth parameter passed in the given function join point.
struct aop dynval * aop capture return value(aop joinpoint * jp);

Captures the value returned by the function in a given call join point.

Fig. 7 Capture functionsfor function-call join points.

Instrumenting join points.INTERASPECTplug-ins iterate over the join points of a point-
cut by providing an iterator callback to thejoin function, shown in Figure 6. For an IN-
TERASPECTplug-in to instrument some or all of the join points in a pointcut, it should
join on the pointcut, providing an iterator callback that inserts a call to anadvicefunction.
INTERASPECTthen invokes that callback for each join point.

Callback functions usecapturefunctions to examine values associated with a join point.
For example, given an assignment join point, a callback can examine the name of the variable
being assigned. This type of information is available statically, during the weaving process,
so the callback can read it directly with a capture function like aop capture lhs name.
Callbacks can also capture dynamic values, such as the valueon the right-hand side of the
assignment, but dynamic values are not available at weave time. Instead, when the callback
callsaop capture assigned value , it gets anaop dynval , which serves as a weave-time
placeholder for the runtime value. The callback cannot reada value from the placeholder, but
it can specify it as a parameter to an inserted advice function. When the join point executes
(at runtime), the value assigned also gets passed to the advice function. Sections 4.1 and 4.2
give more examples of capturing values from assignment joinpoints.

Capture functions are specific to the kinds of join points they operate on. Figures 7
and 8 summarize the capture functions for function-call join points and assignment join
points, respectively.

AOP systems like AspectJ [21] provide Boolean operators such asand andor to refine
pointcuts. The INTERASPECTAPI could be extended with corresponding operators. Even in
their absence, a similar result can be achieved in INTERASPECTby including the appropriate
logic in the callback. For example, a plug-in can instrumentcalls tomalloc andcalls tofree

by joining on a pointcut with all function calls and using theaop capture function name

facility to add advice calls only tomalloc and free . Simple cases like this can further-
more be handled by using regular expressions to match function names, which would be a
straightforward addition to the framework.
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const char * aop capture lhs name(aop joinpoint * jp);

Captures the name of a variable assigned to in a given assignment join point, or returns NULL if the join point does
not assign to a named variable.

enum aop scope aop capture lhs var scope(aop joinpoint * jp);
Captures the scope of a variable assigned to in a given assignment join point. Variables can have global, file-local,
and function-local scope. If the join point does not assign to a variable, this function returnsAOPMEMORYSCOPE.

struct aop dynval * aop capture lhs addr(aop joinpoint * jp);

Captures the memory address assigned to in a given assignment join point.
struct aop dynval * aop capture assigned value(aop joinpoint * jp);

Captures the assigned value in a given assignment join point.

Fig. 8 Capture functionsfor assignment join points.

void aop insert advice(struct aop joinpoint * jp, const char * advice func name,

enum aop insert location location, ...);

Insert an advice call, before or after a join point (depending on the value oflocation ), passing any number of
parameters. A plug-in obtains a join point by iterating overa pointcut withaop join on .

Fig. 9 Insert functionfor instrumenting a join point with a call to an advice function.

After capturing, a callback can add an advice-function callbefore or after the join point
using theinsert function of Figure 9. Theaop insert advice function takes any number
of parameters to be passed to the advice function at runtime,including values captured from
the join point and values computed during instrumentation by the plug-in itself.

Using a callback to iterate over individual join points makes it possible to customize
instrumentation at each instrumentation site. A plug-in can capture values about the join
point to decide which advice function to call, which parameters to pass to it, or even whether
to add advice at all. In Section 4.2, this feature is exploited to uniquely index named variables
during compilation. Custom instrumentation code in Section 4.3 separately records each
instrumented join point in order to track coverage information.

Function body duplication.INTERASPECTprovides afunction body duplicationfacility
that makes it possible to toggle instrumentation at the function level. Although inserting
advice at the GIMPLE level creates very efficient instrumentation, users may still wish to
switch between instrumented and uninstrumented code for high-performance applications.
Duplication creates two or more copies of a function body (which can later be instrumented
differently) and redefines the function to call a special advice function that runs at function
entry and decides which copy of the function body to execute.

When joining on a pointcut for a function with a duplicated body, the caller specifies
which copy the join should apply to. By only adding instrumentation to one copy of the
function body, the plug-in can create a function whose instrumentation can be turned on
and off at runtime. Alternatively, a plug-in can create a function that can toggle between
different kinds of instrumentation. Section 4.2 presents an example of using function body
duplication to reduce overhead by sampling.

4 Applications

In this section, we present several example applications ofthe INTERASPECTAPI. The
plug-ins we designed for these examples provide instrumentation that is tailored to specific
problems (memory visualization, integer range analysis, code coverage). Though custom-
made, the plug-ins themselves are simple to write, requiring only a small amount of code.
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Fig. 10 Visualization of the heap during a bubble-sort operation ona linked list. Boxes represent heap-
allocatedstruct s: linked list nodes in this example. Eachstruct is labeled with is size, its address
in memory, and the addresses of its field. Within astruct , ovals represent fields that point to other heap
objects. Ovals that are not in astruct are global and stack variables. Each field and variable has anoutgoing
edge to thestruct that it points to, which is labeled with 1) the line number of the assignment that created
the edge and 2) the number of assignments to the source variable that have occurred so far. Fields and variables
that do not point to valid memory (such as aNULLpointer) have dashed borders.

4.1 Heap Visualization

The heap visualizer uses the INTERASPECTAPI to expose memory events that can be used
to generate a graphical representation of the heap in real time during program execution.
Allocated objects are represented by rectangular nodes, pointer variables and fields by oval
nodes, and edges show where pointer variables and fields point.

In order to draw the graph, the heap visualizer needs to intercept object allocations and
deallocations and pointer assignments that change edges inthe graph. Figure 10 shows a
prototype of the visualizer using Graphviz [4], an open-source graph layout tool, to draw
its output. The graph shows three nodes in a linked list during a bubble-sort operation. The
list variable is the list’s head pointer, and thecurr andnext variables are used to traverse
the list during each pass of the sorting algorithm. (Thepn variable is used as temporary
storage for swap operations.)

The INTERASPECTcode for the heap visualizer instruments each allocation (call to
malloc ) with a call to theheap allocation advice function, and it instruments each pointer
assignment with a call to thepointer assign advice function. These advice functions
update the graph. Instrumentation of other allocation and deallocation functions, such as
calloc andfree , is handled similarly.

The INTERASPECTcode in Figure 11 instruments calls tomalloc . The API function
instrument malloc calls constructs a pointcut for all calls tomalloc and then calls
aop join on to iterate over all the calls in the pointcut. Only a short main function (not
shown) is needed to set GCC to invokeinstrument malloc calls during compilation.

Theaop match function call function constructs an initial pointcut that includes ev-
ery function call. Thefilter functions narrows the pointcut to include only calls tomalloc .
First,aop filter call pc by name filters out calls to functions that are not namedmalloc .
Then,aop filter pc by param type andaop filter pc by return type filter out calls
to functions that do not match the standardmalloc prototype, which takes an unsigned inte-
ger as the first parameter and returns a pointer value. This filtering step is necessary because
a program could define its own function with the namemalloc but a different prototype.

For each join point in the pointcut (in this case, a call tomalloc ), aop join on calls
malloc callback . The twocapture calls in the callback function returnaop dynval ob-
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static void instrument_malloc_calls(void)
{

/ * Construct a pointcut that matches calls to: void * malloc(unsigned int). * /
struct aop_pointcut * pc = aop_match_function_call();
aop_filter_call_pc_by_name(pc, "malloc");
aop_filter_call_pc_by_param_type(pc, 0, aop_t_all_uns igned());
aop_filter_call_pc_by_return_type(pc, aop_t_all_poin ter());

/ * Visit every statement in the pointcut. * /
aop_join_on(pc, malloc_callback, NULL);

}

/ * The malloc_callback() function executes once for each call to malloc() in the
target program. It instruments each call it sees with a call t o
heap_allocation(). * /

static void malloc_callback(struct aop_joinpoint * jp, void * arg)
{

struct aop_dynval * object_size;
struct aop_dynval * object_addr;

/ * Capture the size of the allocated object and the address it is
allocated to. * /

object_size = aop_capture_param(jp, 0);
object_addr = aop_capture_return_value(jp);

/ * Add a call to the advice function, passing the size and addres s as
parameters. (AOP_TERM_ARG is necessary to terminate the li st of arguments
because of the way C varargs functions work.) * /

aop_insert_advice(jp, "heap_allocation", AOP_INSERT_A FTER,
AOP_DYNVAL(object_size), AOP_DYNVAL(object_addr),
AOP_TERM_ARG);

}

Fig. 11 Instrumenting all memory-allocation events.

jects for the call’s first parameter and return value: the size of the allocated region and its ad-
dress, respectively. Recall from Section 3 that anaop dynval serves as a placeholder during
compilation for a value that will not be known until runtime.Finally, aop insert advice

adds the call to the advice function, passing the two captured values. Note that INTERASPECT

chooses types for these values based on how they were filtered. The filters used here restrict
object size to be an unsigned integer andobject addr to be some kind of pointer, so
INTERASPECTassumes that the advice functionheap allocation has the prototype:

void heap_allocation(unsigned long long, void * );

To support this, INTERASPECTcode must generally filter runtime values by type in order to
capture and use them.

The INTERASPECTcode in Figure 12 tracks pointer assignments, such as

list_node->next = new_node;

Theaop match assignment by type function creates a pointcut that matches assignments,
which is additionally filtered by the type of assignment. Forthis application, we are only
interested in assignments to pointer variables.

For each assignment join point,assignment callback capturesaddress , the address
assigned to, andpointer , the pointer value that was assigned. In the above examples,these
would be the values of&list node->next andnew node , respectively. The visualizer uses
address to determine the source of a new graph edge andpointer to determine its desti-
nation.

The function that capturesaddress , aop capture lhs addr , does not require explicit
filtering to restrict the type of the captured value because an address always has a pointer
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static void instrument_pointer_assignments(void)
{

/ * Construct a pointcut that matches all assignments to a point er. * /
struct aop_pointcut * pc = aop_match_assignment_by_type(aop_t_all_pointer() );

/ * Visit every statement in the pointcut. * /
aop_join_on(pc, assignment_callback, NULL);

}

/ * The assignment_callback function executes once for each po inter assignment.
It instruments each assignment it sees with a call to pointer _assign(). * /

static void assignment_callback(struct aop_joinpoint * jp, void * arg)
{

struct aop_dynval * address;
struct aop_dynval * pointer;

/ * Capture the address the pointer is assigned to, as well as the pointer
address itself. * /

address = aop_capture_lhs_addr(jp);
pointer = aop_capture_assigned_value(jp);

aop_insert_advice(jp, "pointer_assign", AOP_INSERT_AF TER,
AOP_DYNVAL(address), AOP_DYNVAL(pointer),
AOP_TERM_ARG);

}

Fig. 12 Instrumenting all pointer assignments.

type. The value captured byaop capture assigned value and stored inpointer has a
void pointer type because we filtered the pointcut to includeonly pointer assignments. As a
result, INTERASPECTassumes that thepointer assign advice function has the prototype:

void pointer_assign(void * , void * );

4.2 Integer Range Analysis

Integer range analysis is a runtime tool for finding anomalies in program behavior by track-
ing the range of values for each integer variable [15]. A range analyzer can learn normal
ranges from training runs over known good inputs. Values that fall outside of normal ranges
in future runs are reported as anomalies, which can indicateerrors. For example, an out-of-
range value for a variable used as an array index may cause an array-bounds violation.

Our integer range analyzer uses sampling to reduce runtime overhead. Missed updates
because of sampling can result in underestimating a variable’s range, but this trade-off is
reasonable in many cases. Sampling can be done randomly or byusing a technique like
Software Monitoring with Controllable Overhead [17].

INTERASPECTprovides function body duplication as a means to add instrumentation
that can be toggled on and off. Duplicating a function splitsits body into two copies. Adis-
tributor blockat the beginning of the function decides which copy to run. AnINTERASPECT

plug-in can add advice to just one of the copies, so that the distributor chooses between en-
abling or disabling instrumentation.

Figure 13 shows how we use INTERASPECTto instrument integer variable updates. The
call toaop duplicate makes a copy of each function body. The first argument specifies that
there should be two copies of the function body, and the second specifies the name of a func-
tion that the distributor will call to decide which copy to execute. When the duplicated func-
tion runs, the distributor callsdistributor func , which must be a function that returns an
integer. The duplicated function bodies are indexed from zero, and thedistributor func

return value determines which one the distributor transfers control to.
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static void instrument_integer_assignments(void)
{

struct aop_pointcut * pc;

/ * Duplicate the function body so there are two copies. * /
aop_duplicate(2, "distributor_func", AOP_TERM_ARG);

/ * Construct a pointcut that matches all assignments to an inte ger. * /
pc = aop_match_assignment_by_type(aop_t_all_signed_in teger());

/ * Visit every statement in the pointcut. * /
aop_join_on_copy(pc, 1, assignment_callback, NULL);

}

/ * The assignment_callback function executes once for each in teger assignment.
It instruments each assignment it sees with a call to int_ass ign(). * /

static void assignment_callback(struct aop_joinpoint * jp, void * arg)
{

const char * variable_name;
int variable_index;
struct aop_dynval * value;
enum aop_scope scope;

variable_name = aop_capture_lhs_name(jp);

if (variable_name != NULL) {
/ * Choose an index number for this variable. * /
scope = aop_capture_lhs_var_scope(jp);
variable_index = get_index_from_name(variable_name, sc ope);

aop_insert_advice(jp, "int_assign", AOP_INSERT_AFTER,
AOP_INT_CST(variable_index), AOP_DYNVAL(value),
AOP_TERM_ARG);

}
}

Fig. 13 Instrumenting integer variable updates.

Usingaop join on copy instead of the usualaop join on iterates only over join points
in the specified copy of duplicate code. As a result, only one copy is instrumented; the other
copy remains unmodified.

The callback function itself is similar to the callbacks we used in Section 4.1. The main
difference is the call toget index from name that converts the variable name to an integer
index. Theget index from name function (not shown for brevity) also takes the variable’s
scope so that it can assign different indices to local variables in different functions. It would
be possible to directly pass the name itself (as a string) to the advice function, but the advice
function would then incur the cost of looking up the variableby its name at runtime. This
optimization illustrates the benefits of INTERASPECT’s callback-based approach to custom
instrumentation.

The aop capture lhs name function returns a string instead of anaop dynval object
because variable names are known at compile time. It is necessary to check for aNULLreturn
value because not all assignments are to named variables.

To better understand InterAspect’s performance impact, webenchmarked this plug-in on
the compute-intensivebzip2 compression utility using trivial advice functions. Thebzip2

package is a popular tool included in most Linux distributions. It has 110 functions in about
8,000 lines of code. Our test plug-in, based on the code in Figure 13, duplicates each func-
tion body, adding an advice call to every integer assignmentin one copy of the function
body. Depending on the test, the distributor either returns0 immediately, choosing the unin-
strumented path, or returns 1 immediately, for the instrumented path. The integer assignment
advice function only increments a counter, allowing us to measure the overhead from call-
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Fig. 14 Execution time forbzip2 instrumented, using INTERASPECTor CIL, to increment a counter at
every integer assignment. The programs for the three INTERASPECTconfigurations are instrumented with
the same plug-in, which duplicates function bodies and inserts advice at every integer assignment. In the
“enabled” and “inline” runs, the distributor always chooses the instrumented path; in the “disabled” run, it
always chooses the uninstrumented path. For the “inline” run, the advice function was marked as inline,
allowing GCC to inline it. We ran all performance tests 10 times, and the 90% confidence interval had a half
width of less than 0.15 seconds for all measurements shown.

ing advice functions independently from actual monitoringoverhead. All in all, the plug-in
instrumented 957 assignment join points. We also compared our INTERASPECTplug-in to
a similar transformation written in CIL [24] that adds an advice call to every integer assign-
ment but does not perform function body duplication.

Figure 14 shows our results forbzip2 with five different instrumentation configurations.
We benchmarked each of these configurations with three different input files: a 161MB
HTML file, a 161MB file containing random bytes, and a 1.6GB filecontaining zeros. The
HTML file consists of a novel taken from the Project Gutenbergweb site and duplicated to
create a larger file.

With a distributor that maximizes overhead by always choosing the instrumented func-
tion body (“InterAspect (Enabled)”), we measured 78.7% runtime overhead in the worst
case: the zero file. Function body duplication by itself contributes relatively little to this
overhead; with a distributor that always chooses the uninstrumented path (“InterAspect (Dis-
abled)”), we measured only 3.00% overhead in the worst case:the HTML file.

High overhead is expected for the integer assignment pointcut becausebzip2 performs
integer assignments very frequently. To compress the HTML file, bzip2 executed 5.34 bil-
lion join points, more than 249 million integer assignmentsper second. The CIL integer
assignment transformation we tested (“CIL” in Figure 14) added 74.0% overhead when
compressing the zero file.

Much of the overhead in our test comes from the time it takes toenter and exit advice
functions. When an advice function includes only a small amount of code, as in this example,
it makes sense to insert that code directly at each join pointto avoid function call overhead.
GCC can automatically perform this transformation, because INTERASPECT’s instrumen-
tation passes occur before GCC’s function inlining pass. Marking the integer assignment
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advice function with GCC’salways inline attribute reduced overhead to just 25.0% in the
worst case: compressing the random file. We computed an overall time for each configura-
tion by summing the average times for each of the three files. We then computed an overall
overhead for each instrumented configuration. The overall overhead for the “InterAspect
(Inline)” configuration was 13.4%, the lowest of all the configurations we tested.

The only memory overhead from our range analysis tool comes from duplicating every
function body, which roughly doubles the size of the text segment. The instrumentedbzip2

execution image was 69KB larger, as reported by thesize utility, an increase of 96%. Image
size is small, however, compared to the total 7.2MB of heap allocations when compressing
the HTML file with or without instrumentation, as reported byValgrind.

We disabled GCC’s function inlining for all configurations,because it interfered with
comparisons betweenbzip2 configurations with function body duplication and configura-
tions without it. When compiling without instrumentation,GCC inlined too aggresively,
actually hurting performance. But with function body duplication, GCC was more reluc-
tant to inline functions that were now twice as large, makingit appear as if function body
duplicationimprovedperformance and unfairly masking some of the overhead in ourbench-
marks. Note that disabling function inlining did not prevent GCC from inlining the advice
function in the “InterAspect (Inline)” configuration, because we marked the advice function
with thealways inline attribute.

4.3 Code Coverage

A straightforward way to measure code coverage is to choose apointcut and measure the
percentage of its join points that are executed during testing. INTERASPECT’s ability to iter-
ate over each join point makes it simple to label join points and then track them at runtime.

static void instrument_function_entry_exit(void)
{

struct aop_pointcut * entry_pc;
struct aop_pointcut * exit_pc;

/ * Construct two pointcuts: one for function entry and one for f unction exit. * /
entry_pc = aop_match_function_entry();
exit_pc = aop_match_function_exit();

aop_join_on(entry_pc, entry_exit_callback, NULL);
aop_join_on(exit_pc, entry_exit_callback, NULL);

}

/ * The entry_exit_callback function assigns an index to every join
point it sees and saves that index to disk. * /

static void entry_exit_callback(struct aop_joinpoint * jp, void * arg)
{

int index, line_number;
const char * filename;

index = choose_unique_index();
filename = aop_capture_filename(jp);
line_number = aop_capture_lineno(jp);

save_index_to_disk(index, filename, line_number);

aop_insert_advice(jp, "mark_as_covered", AOP_INSERT_B EFORE,
AOP_INT_CST(index), AOP_TERM_ARG);

}

Fig. 15 Instrumenting function entry and exit for code coverage.
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The example in Figure 15 adds instrumentation to track coverage of function entry and
exit points. To reduce runtime overhead, thechoose unique index function assigns an in-
teger index to each tracked join point, similar to the indexing of integer variables in Sec-
tion 4.2. Each index is saved along with its corresponding source filename and line number
by thesave index to disk function. The runtime advice needs to output only the set of
covered index numbers; an offline tool uses that output to compute the percentage of join
points covered or to list the filenames and line numbers of covered join points. For brevity
we omit the actual implementations ofchoose unique index andsave index to disk .

5 Tracecuts

In this section, we present the API for the INTERASPECTTracecut extension, and discuss
the implementation of the associated tracecut monitoring engine. We also present two il-
lustrative examples of the Tracecut extension: runtime verification of file access and GCC
vectors. The architecture diagram in Figure 3 shows how thisextension and its associated
monitoring engine fit into the overall INTERASPECTarchitecture.

Our INTERASPECTTracecut extension showcases the flexibility of INTERASPECT’s
API. Since one of our goals for this extension is to serve as a more powerful example of how
to use INTERASPECT, its instrumentation component is built modularly on INTERASPECT:
all of its access to GCC are through the published INTERASPECTinterface.

Whereas pointcut advice is triggered by individual events,tracecut advice can be trig-
gered by sequences of events matching a pattern [32]. A tracecut in our system is defined
by a set symbols, each representing a possibly parameterized runtime event, and one or
more rules expressed as regular expressions over these symbols. For example, a tracecut
that matches a call toexit or execve after a fork would specify symbols forfork , exit ,
andexecve function calls and the rulefork (exit | execve ), where juxtaposition denotes
sequencing, parentheses are used for grouping, and the vertical bar “|” separates alternatives.

Each symbol is translated to a function-call pointcut, which is instrumented with ad-
vice that sends the symbol’s corresponding event to the monitoring engine. The monitoring
engine signals a match whenever some suffix of the string of events matches one of the
regular-expression rules.

Parameterization allows a tracecut to separately monitor multiple objects [2,8]. For ex-
ample, the rulefclose fread , designed to catch an illegal read from a closed file, should
not match anfclose followed by anfread to a different file. When these events are param-
eterized by the file they operate on, the monitoring engine creates a unique monitor instance
for each file.

A tracecut with multiple parameters can monitor propertieson sets of objects. A classic
example monitors data sources that have multiple iteratorsassociated with them. When a
data source is updated, its existing iterators become invalid, and any future access to them is
an error. Parameterizing events by both data source and iterator creates a monitor instance
for each pair of data source and iterator.

The monitoring engine is implemented as a runtime library that creates monitor in-
stances and forwards events to their matching monitor instances. Because rules are specified
as regular expressions, each monitor instance stores a state in the equivalent finite-state ma-
chine. The user only has to link the monitoring library with the instrumented binary, and the
tracecut instrumentation calls directly into the library.
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struct tc tracecut * tc create tracecut(void);

Create an empty tracecut.
enum tc error tc add param(struct tc tracecut * tc, const char * name,

const struct aop type * type);
Add a named parameter to a tracecut.

Fig. 16 Function for initializing tracecuts.

enum tc error tc add call symbol(struct tc tracecut * tc, const char * name,
const char * func name,

enum aop insert location location);

Define a named event corresponding to calls to the function named byfunc name.
enum tc error tc bind to call param(struct tc tracecut * tc,

const char * param name,
const char * symbol name, int call param index);

Bind a function call parameter from an event to one of the tracecut’s named parameters.
enum tc error tc bind to return value(struct tc tracecut * tc,

const char * param name,

const char * symbol name);
Bind the return value of an event to one of the tracecut’s named parameters.

enum tc error tc declare call symbol(struct tc tracecut * tc, const char * name,

const char * declaration,

enum aop insert location location);

Define a named event along with all its parameter bindings with one declaration string.

Fig. 17 Functions for specifying symbols.

5.1 Tracecut API

A tracecut is specified by a C program that calls tracecut API functions. This design keeps
the tracecut extension simple, eliminating the need for a custom parser but still allowing
concise definitions. A tracecut specification can define any number of tracecuts, each with
its own parameters, events, and rules.

Defining Parameters.The functions in Figure 16 create a new tracecut and define itspa-
rameters. Each parameter has a name and a type. The type is necessary because parameters
are used to capture runtime values.

Defining Symbols.The tc add call symbol function adds a new symbol that corresponds
to an event at every call to a specified function. Thetc bind functions bind a tracecut
parameter to one of the function call’s parameters or to its return value. Figure 17 shows
tc add call symbol and thetc bind functions.

The tracecut API uses the symbol and its bindings to define a pointcut. Figure 18 shows
an example symbol along with the INTERASPECTAPI calls that Tracecut makes to create
the pointcut. In a later step, Tracecut makes calls needed tocapture the bound return value
and pass it to an advice function.

As a convenience, the API also provides thetc declare call symbol function (also
in Figure 17), which can define a symbol and its parameter bindings with one call using a
simple text declaration. The declaration is syntacticallysimilar to the C prototype for the
function that will trigger the symbol, but the function’s formal parameters are replaced with
tracecut parameter names or with a question mark “?” to indicate that a parameter should
remain unbound. The code in Figure 18(c) defines the same symbol as in Figure 18(a).
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struct tracecut * tc = tc create tracecut()
tc add param(tc, "object", aop all pointer());
tc add call symbol(tc, "create", "create object", AOP INSERT AFTER);
tc bind to return value(tc, "object", "create");

(a) Code to define a tracecut symbol.

pc = aop match function call();
aop filter call pc by name(pc, "create object");
aop filter call pc by return type(pc, aop all pointer());

(b) The values that the tracecut API will pass to INTERASPECTfunctions to create a
corresponding pointcut.

struct tracecut * tc = tc create tracecut()
tc add param(tc, "object", aop all pointer());
tc declare call symbol(tc, "create", "(object)create object()",

AOPINSERT AFTER);
(c) A more compact way to define the event in Figure 18(a).

Fig. 18 An example of how the tracecut API translates a tracecut symbol into a pointcut. Because the
create symbol’s return value is bound to theobject param, the resulting pointcut is filtered to ensure
that its return value matches the type ofobject .

enum tc error tc add rule(struct tc tracecut * tc, const char * specification);

Define a tracecut rule. The specification is a regular expression using symbol names as its alphabet.

Fig. 19 Function for defining tracecut rule.

Defining Rules.After symbols and their parameter bindings are defined, rules are expressed
as strings containing symbol names and standard regular expression operators:( , ) , * , +,
and|. The function for adding a rule to a tracecut is shown in Figure 19.

5.2 Monitor Implementation

The monitoring engine maintains a list of monitor instancesfor each tracecut. Each instance
has a value for each tracecut parameter and a monitor state. Instrumented events pass the
values of their parameters to the monitoring engine, which then determines which monitor
instances to update. This monitor design is based on the way properties are monitored in
Tracematches [2] and MOP [8].

When a symbol is fully parameterized—it has a binding for every parameter defined
in the tracecut specification—the monitoring engine updates exactly one instance. If no in-
stance exists with matching parameter values, one is created.

For partially parameterized symbols, likepush in Figure 23, the monitoring engine only
requires the specified parameters to match. As a result, events corresponding to these sym-
bols can update multiple monitor instances. For example, apush event updates one monitor
for every element pointer associated with the updated vector. As in the original MOP
implementation, partially parameterized symbols cannot create a new monitor instance [8].
(MOP has since defined semantics for partially parameterized monitors [22].)

When any monitor instance reaches an accepting state, the monitoring engine reports
a match. The default match function prints the monitor parameters tostderr . Developers
can implement their own tracecut advice by overriding the default match function. Function
overriding is possible in C using a linker feature calledweak linkage. Placing a debugger
breakpoint at the match function makes it possible to examine program state when a match
occurs.
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Monitoring instances get destroyed when they can no long reach an accepting state. The
tracecut engine does not attempt to free instances parameterized by freed objects because it
is not always possible to learn when an object is freed in C andbecause parameters are not
required to be pointers to heap-allocated objects.

A developer can ensure that stale monitor instances do not waste memory by designing
the rule to discard them. The easiest way to do this is to definea symbol for the function
that deallocates an object but not to include the symbol anywhere in the tracecut’s rule.
Deallocating the object then generates an event that makes it impossible for the tracecut
rules to match.

Figure 20 is a pseudocode representation of the monitoring logic described in this sec-
tion. Note that it uses a linear search to find monitors that need to be updated. This approach
makes sense when the number of monitor instances remains small throughout execution, as
in the examples we discuss below. When the number of monitor instances is large, it would
be more efficient to maintain a hash table index for each possible parameterization. Updat-
ing these indexes would add a constant cost to creating a new monitor instance, but events
would no longer trigger an expensiveO(n) lookup.

receive_event(tracecut, monitors, event_name, param_na mes[], param_values[],
num_params):

matching_monitors := {}

; Find monitor instances with parameters matching this even t.
for each monitor in monitors:

matches := true
for i in 1 to num_params:

; Check that all params in the event match params in the monito r instance.
if not monitor.get_param(param_names[i]) = param_values [i] then:

matches := false
break

if matches then:
matching_monitors.insert(monitor)

; Create a new monitor if necessary.
if is_empty(matching_monitors) and is_fully_parameteri zed(tracecut, num_params):

new_monitor := create_monitor(param_names, param_value s)
monitors.insert(new_monitor)
matching_monitors.insert(new_monitor)

; Update the finite-state machine for each matching monitor .
for each monitor in matching_monitors:

monitor.update_state(event_name)

; Trigger advice on reaching an accepting state.
if is_in_accepting_state(monitor)

monitor.call_advice_function()

; Destroy any monitor that can no longer reach an accepting st ate.
if is_in_trap_state(monitor) then:

monitors.remove(monitor)
destroy(monitor)

is_fully_parameterized(tracecut, num_params)
if get_num_params(tracecut) = num_params then:

return true
else

return false

Fig. 20 Pseudocode implementation of the INTERASPECTTracecut monitoring logic.
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5.3 Verifying File Access

As a first example of the tracecut API, we consider the runtimeverification of file access.
Like most resources in C, theFILE objects used for file I/O must be managed manually. Any
access to aFILE object after the file has been closed is a memory error which, though dan-
gerous, might not manifest itself as incorrect behavior during testing. Designing a tracecut
to detect these errors is straightforward.

tc = tc_create_tracecut();

tc_add_param(tc, "file", aop_t_all_pointer());

tc_declare_call_symbol(tc, "open", "(file)fopen()", AO P_INSERT_AFTER);
tc_declare_call_symbol(tc, "read", "fread(?, ?, ?, file) ", AOP_INSERT_BEFORE);
tc_declare_call_symbol(tc, "read_char", "fgetc(file)" , AOP_INSERT_BEFORE);
tc_declare_call_symbol(tc, "close", "fclose(file)", AO P_INSERT_BEFORE);

tc_add_rule(tc, "open (read | read_char) * close (read | read_char)");

Fig. 21 A tracecut for catching accesses to closed files. For brevity, the tracecut only checks read operations.

The tracecut in Figure 21 defines symbols for fourFILE operations: open, close, and
two kinds of reads. The rule matches any sequence of these symbols that opens a file, closes
it, and then tries to read it.

The rule matches as soon as any read is performed on a closedFILE object, immediately
identifying the offending read. We tested this tracecut onbzip2 (which we also use for
evaluation in Section 4.2); it caught an error we planted without reporting any false positives.

5.4 Verifying GCC Vectors

We designed a tracecut to monitor a property on a vector data structure used within GCC
to store an ordered list of GIMPLE statements. The list is stored in a dynamically resized
array. The vector API provides an iterator function to iterate over the GIMPLE statements
in a vector. Figure 22 shows how the iterator function is used. At each execution of the loop,
theelement variable points to the next statement in the vector.

int i;
gimple element;

/ * Iterate over each element in a vector of GIMPLE statements. * /
for (i = 0; VEC_gimple_base_iterate(vector1, i, &element) ; i++) {

/ * If condition holds, copy this element into vector2. * /
if (condition(element))

VEC_gimple_base_quick_push(vector2, element);
}

Fig. 22 The standard pattern for iterating over the elements in a GCCvector of GIMPLE statements. This ex-
ample copies elements matching some condition fromvector1 to vector2 . If vector1 andvector2
happen to point to the same vector, this code may modify that vector while iterating over its elements.
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tc = tc_create_tracecut();

tc_add_param(tc, "vector", aop_t_all_pointer ());
tc_add_param(tc, "element_pointer", aop_t_all_pointer ());

tc_declare_call_symbol(tc, "iterate",
"VEC_gimple_base_iterate(vector, ?, element_pointer)" ,
AOP_INSERT_BEFORE);

tc_declare_call_symbol(tc, "push", "VEC_gimple_base_q uick_push(vector, ?)",
AOP_INSERT_BEFORE);

tc_add_rule(tc, "iterate push iterate");

Fig. 23 A tracecut to monitor vectors of GIMPLE objects in GCC.

A common tracecut property for data structures with iterators checks that the data struc-
ture is not modified while it is being iterated, as can occur inFigure 22. Figure 23 specifies
a tracecut that detects violations of this property.

The tracecut monitors two important vector operations: theVECgimple base iterate

function, which is used in the guard of a for loop to advance tothe next element in the list,
and theVECgimple base quick push function, which inserts a new element at the end of
a vector. With the symbols defined, the rule itself is simple:iterate push iterate . Any
push in between twoiterate operations indicates that the vector was updated within the
iterator loop.

Parameterizing theiterate symbol on both the vector and theelement pointer used
to iterate makes it possible to distinguish different iterator loops over the same vector.
This distinction is necessary so that a program that finishesiterating over a vector, updates
that vector, and then iterates over it again does not triggera match. Though, the tracecut
monitor will observe events for the symbolsiterate push iterate , the first and last
iterate events (which are from different loops) will normally have different values for
their element pointer parameter.

When monitoring this same property in Java, usually aniterator objectserves the pur-
pose of parameterizing an iterator loop. In Figure 22, theelement variable is analogous to
an iterator, as it provides access to the current list element at each iteration of the loop. The
element pointer identifies the iterator-like variable by its address.

Keeping specifications simple is especially important in C because the language does
not provide any standard data structures. A tracecut written for one program’s vector type is
not likely to be useful for monitoring any other program.

We applied the tracecut in Figure 23 to GCC itself, verifyingthat, in our tests, GCC
did not update any vectors while they were being iterated. The tracecut did match a call to
VECgimple base quick push that we deliberately placed in an iterator loop.

Because monitored events in our INTERASPECTTracecut examples execute less fre-
quently than the integer assignment join points in our integer range analysis example (Sec-
tion 4.2), we found overhead to be less of an issue. We measured overhead for both the file
access tracecut we tested in Section 5.3 and the tracecut in this section to be less than 1%.

5.5 Verifying lighttpd Connections

We also used INTERASPECTTracecut to check a property of connections in the lighttpd
(pronouncedlighty) HTTP server [20]. Lighttpd creates many connections, allowing us
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to evaluate the performance of INTERASPECTTracecut with many monitors. The lighttpd
server maintains aconnection object for each open connection from a client. Eachconnection

object stores a TCP network socket and all state informationfor the client’s HTTP session.

tc = tc_create_tracecut();

tc_add_param(tc, "connection", aop_t_all_pointer());

tc_declare_call_symbol(tc, "init", "(connection)conne ctions_get_new_connection()",
AOP_INSERT_AFTER);

tc_declare_call_symbol(tc, "state", "connection_state _machine(?, connection)",
AOP_INSERT_BEFORE);

tc_declare_call_symbol(tc, "close", "connection_close (?, connection)",
AOP_INSERT_BEFORE);

tc_add_rule(tc, "init state * close state");

Fig. 24 A tracecut for catching accesses to connections after they have been closed by the server.

The property we checked, shown in Figure 24, is that the server does not try to update the
state of a connection after the connection has been closed; this is similar to the file property
presented in Section 5.3. Afterconnection close is called on aconnection object, any
updates to that object viaconnection state machine will trigger a match, unless a call to
connections get new connection re-initializes the object first.

We found that lighttpd sometimes closes connections while they are on its list ofconnection

objects that are pending a state update. The service routinefor this list then updates the state
of the closed connection, but this usage does not cause an error. To avoid error reports for
this correct usage, we overrode the tracecut match functionto ignore matches on objects in
the pending connection list. The custom match function still reports other state updates on
closed connections. These state updates would likely indicate an error. Our test runs did not
find any such updates in the version of lighttpd we tested.

To test performance, we stressed lighttpd with thehttp load tool, which loads an HTTP
server with a large number of parallel requests and measuresresponse times [26]. The ver-
sion we used includes a patch from the lighttpd authors [20] to report errors more accurately
and additional modifications to report standard deviationsof response time samples, which
we needed to make conclusions about statistical significance. We configuredhttp load to
open HTTP requests in groups of 100 at a time, the most that lighttpd could handle on
our test hardware without dropping connections. With this test workload, INTERASPECT

Tracecut had to maintain at least 100 monitor instances throughout the course of the test.
Monitoring did not cause a statistically significant increase in response time, because

lighttpd’s operation is largely I/O-bound. The average response time was 21.9ms for the
two million requests in the unmonitored and monitored runs.Monitoring did increase the
server’s CPU load. Running lighttpd with the connection tracecut raised CPU utilization by
the lighttpd process from 36.4% to 39.7%.

5.6 Verifying Hash Table Entries

We designed a simple hash table benchmark in order to better quantify INTERASPECT

Tracecut’s scalability, as well as to provide another example of a useful data structure prop-
erty. The benchmark performs 10M operations, either randomly inserting an element into
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one of the hash tables or, with much lower probability, randomly modifying the key of an
element in one of the hash tables.

Modifying an element simulates an error. Altering the element’s key can change its
hash value, leaving the element in the wrong bucket and violating the hash table’s invariant.
Figure 25 shows a tracecut designed to catch this error by matching any call tomodify obj

that immediately followsinsert obj . Thehtab empty function removes all elements from
a table, and the tracecut expression is designed so that a call to htab empty after inserting
an object withinsert obj prevents a match for a subsequent call tomodify obj (thereby
destroying the object’s monitor instance). Though it was not necessary for this example, it
would also be straightforward to include a symbol for a function that removes an individual
object from a hash table.

tc = tc_create_tracecut();

tc_add_param(tc, "table", aop_t_struct_ptr("htab"));
tc_add_param(tc, "obj", aop_t_struct_ptr("obj"));

tc_declare_call_symbol(tc, "insert", "insert_obj(tabl e, obj)", AOP_INSERT_BEFORE);
tc_declare_call_symbol(tc, "modify", "modify_obj(obj) ", AOP_INSERT_BEFORE);
tc_declare_call_symbol(tc, "empty", "htab_empty(table )", AOP_INSERT_BEFORE);

tc_add_rule(tc, "insert modify");

Fig. 25 A tracecut for catching modifications to objects in hash tables.

We designed the hash table benchmark so that the tracecut monitoring framework would
have to store a large number of monitor instances. The benchmark maintains 10 hash tables,
which each have a maximum size. Whenever a table exceeds its maximum, the benchmark
removes all its elements with thehtab empty function. We varied the maximum table size
from 50 to 250 in increments of 25 to show how performance scales as the number of
monitored objects increases.

Because the list of monitor instances is much larger than in our other benchmarks and
because the hash table benchmark executes monitored operations in a tight loop, we ex-
pected the performance cost of monitoring to be high. With the maximum size set to 250,
we measured 113× overhead and found that each INTERASPECTTracecut had to search a
list of 1,244 monitor instances on average for each event it monitored. Figure 26 shows these
results, overhead and average number of monitor instances,for each of the maximum table
sizes we tested.

In a profiled run of the benchmark, we found that the tracecut library spent more than
98% of its time in monitor instance lookup routines. The trend in Figure 26 of overhead
increasing linearly with the number of monitor instances isconsistent with our conclusion
that these lookup routines dominate monitoring overhead. As mentioned in Section 5.2, IN-
TERASPECTTracecut’s overhead for target programs that involve a large number of moni-
tor instances can be greatly reduced by using an index (e.g.,a hash table), instead of linear
search, to find monitor instances that need to be updated. This more efficient approach is
used in the MOP system [8], discussed in Section 6.
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Fig. 26 Monitoring overhead for the hash table benchmark with nine different values for the maximum
table size. We calculate the number of monitor instances, shown on thex-axis, as the average number of
instances that exist when a tracecut event is monitored. As with our bzip2 benchmark in Section 4.2, we
obtained performance numbers by comparing the average execution time of the benchmark with and without
monitoring, using ten runs for each.

6 Related Work

INTERASPECTis a framework for the aspect-oriented instrumentation of programming lan-
guages supported by GCC. Whereas the current focus has been on C, the framework should
be applicable to any GCC-supported language. INTERASPECThas been extended in this
paper with the Tracecut plug-in for the runtime monitoring of regular expressions. IN-
TERASPECTTracecut illustrates how INTERASPECTallows for such an extension. In what
follows, we discuss related work in terms of instrumentation frameworks and tracecut facil-
ities.

Concerning instrumentation frameworks, there is a great variety of them for popular
programming languages, including aspect-oriented programming environments, reflection
systems, and compiler frameworks. Instrumentation frameworks can be classified along four
dimensions:

1. Target language: the language being instrumented (e.g. C, C++, and Java).
2. Instruction language: the language used to express instrumentation instructions. The

instrumentation language can be a Domain-Specific Language(DSL) or an API.
3. Target view: the type of view offered by the instrumentation framework of the target

language: source-code view, bytecode view, abstract syntax, etc.
4. Infrastructure: the prevalence of the compiler framework that the instrumentation frame-

work is based on.
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Fig. 27 A breakdown of the frameworks discussed in this section by the first three of our four classification
dimensions,target language, instruction language, andtarget view. Not included in this hierarchy are CIL
and Valgrind, which both provide general-purpose frameworks that are not aspect oriented.

We argue that INTERASPECToffers a unique combination of these dimensions with the
target language being C (and other languages supported by GCC), the instrumentation lan-
guage being an API, the target view being source code, and finally being based on the well-
adopted GCC infrastructure. It is this combination of features that makes INTERASPECT

unique. Being based on GCC means that INTERASPECThas a greater chance of adoption by
the GCC user community and of long-term survival, because, if an instrumentation frame-
work is part of a compiler you are already using, the barrier for usage of that instrumentation
framework is significantly diminished. Being API-based means that it is flexible and permits
open-source collaboration. Furthermore, the focus on C is much needed since the focus of
existing instrumentation frameworks has been primarily onJava. Figure 27 shows all of the
aspect-oriented frameworks that we compare INTERASPECTto in this section and organizes
them according the dimensions introduced above.

In addition to filling a new role in the spectrum of instrumentation frameworks, IN-
TERASPECToffers two novel features to the field of aspect-oriented programming. First,
INTERASPECTsupports the notion of callback functions, which can be applied during in-
strumentation. Such functions can perform customized instrumentation at each join point, a
capability other AOP approaches lack. Second, function body duplication makes it possible
to efficiently toggle instrumentation on and off at runtime or to switch between two different
instrumentation profiles.

Aspect-oriented programming was first popularized for Javawith AspectJ [13,21]. There,
weaving takes place at the bytecode level. The user is provided with a source-code view and
writes instrumentation instructions in a specialized DSL supporting pointcut definitions and
advice definitions. The AspectBench Compiler (abc) [5] is a more recent extensible research
version of AspectJ that makes it possible to add new languageconstructs [6]. Similarly to
INTERASPECT, it manipulates a3A intermediate representation (Jimple) specialized to Java.

Other frameworks for Java, including Javaassist [10] and PROSE [25], offer, in a man-
ner similar to INTERASPECT, an API for instrumenting and modifying code, and hence do
not require the use of a special language. Javaassist is a class library for editing bytecode.
A source-level API can be used to edit class files without knowledge of the bytecode for-
mat. PROSE has similar goals. The BCEL [3] tool provides an API for manipulating Java
bytecode.
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AOP for other languages such as C and C++ has had a slower uptake. AspectC [11] was
one of the first AOP systems for C, based on the language constructs of AspectJ. ACC [23]
is a more recent AOP system for C, also based on the language constructs of AspectJ. Both
systems offer specialized DSLs for writing pointcuts and advice, just like AspectJ, providing
the user with a source-code view of the code to be instrumented. They transform source code
and offer their own internal compiler framework for parsingC. These are closed systems in
the sense that one cannot augment them with new pointcuts or access the internal structure
of a C program in order to perform static analysis.

The XWeaver system [28], with its language AspectX, represents a program in XML,
making it independent of the programming language. It supports Java and C++. The choice
of an XML-based representation of the base code has the advantage of partially decou-
pling the aspect weaver and the aspect language from the language of the base code. As-
picere [27] is an aspect language for C based on LLVM bytecode. Its pointcut language is
inspired by logic programming. Adding new pointcuts amounts to defining new logic predi-
cates. Arachne [12,14] is a dynamic aspect language for C that uses assembler manipulation
techniques to instrument a running system without pausing it.

AspectC++ [30] is targeted towards C++. It can handle C to some extent, but this does
not seem to be a high priority for its developers. For example, it only handles ANSI C and
not other dialects. AspectC++ operates at the source-code level and generates C++ code,
which can be problematic in contexts where only C code is permitted, such as in certain
embedded applications. OpenC++ [9] is a front-end library for C++ that developers can use
to implement various kinds of translations in order to definenew syntax and object behavior.
In this sense, it attempts to provide an open compiler framework. An OpenC++ user writes
a meta-program, in the form of a small number of C++ classes, which is then compiled
by the OpenC++ compiler and (dynamically or statically) linked to the compiler itself as a
compiler plug-in.

CIL [24] (C Intermediate Language) is an OCaml [18] API for writing source-code
transformations of its own3A code representation of C programs. CIL requires a user to be
familiar with the OCaml programming language. Valgrind [31] works directly with executa-
bles and consequently targets multiple programming languages.

With respect to the INTERASPECTTracecut plug-in, the field of runtime verification has
offered many such systems, and we do not claim that our plug-in outperforms the better of
these. Rather, the plug-in is an illustration of INTERASPECT, demonstrating how such an
extension can be defined. Using the INTERASPECTAPI for our tracecut monitoring facility
greatly simplified its design, which we believe makes a case for the extensibility of the
INTERASPECTAPI.

The INTERASPECTTracecut is informed by several tracecut systems for Java, includ-
ing Declarative Event Patterns [32], which introduced the term tracecut, Tracematches [2],
and MOP [8], the last two supporting monitoring of regular expressions. Our handling of
monitor parameterization is based on the implementations in Tracematches and MOP, most
specifically MOP. More concretely, in INTERASPECTTracecut, an index is created from pa-
rameters of events to propositional state machines resulting from translation of the regular
expressions. Each monitor has a set of parameters, and each event sends a value for each of
those parameters. When none of the values are empty, we say that the event is “fully param-
eterized” and look up the (at most) one monitor instance thathas matching values for all the
parameters. If no monitor instance is found, we create a new one. For a partially parame-
terized event (some values are empty), we look for all monitor instances whose parameter
values match all the non-empty parameters of the event. If there are no such instances, the
event is ignored. This basically means that the first event must carry all the parameters to
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create a new monitor instance. This is how initial versions of MOP worked. Subsequently,
MOP has been modified so that this restriction is no longer necessary [22].

As discussed in Section 5, for a given event, an index is created from the event’s param-
eters and used to locate the monitor instances to update by a linear search, which identifies
those instances whose parameters contain the index as a subset. As also previously stated,
this approach is not efficient when the number of instances isbig. An efficient solution for
managing a large number of monitor instances would be to (abstractly viewed) maintain a
map from indexes to monitor instances. This is in fact the approach taken in the MOP sys-
tem, in which each index is mapped to a monitor state. In MOP, when a monitor receives an
event, it combines the events parameters with the formal parameter names associated with
that event to construct the index (itself a map from parameter names to concrete values),
looks up the appropriate propositional monitor state for that binding, and then applies the
propositional event in that monitor state to obtain a new state. More specifically, a monitor
state is updated if it is mapped to by an index that includes the index produced by the event.
The complete algorithm for MOP is more sophisticated than just described here. Note, how-
ever, that the tracecut solution is not an attempt to improveon existing monitoring solutions,
but rather to illustrate how such a solution can easily be built on top of InterAspcect.

Another difference between INTERASPECTTracecut and MOP is in their approaches to
destroying monitor instances. MOP destroys an instance when the garbage collector reaps
the objects assigned to the instance’s parameters. BecauseC programs are not garbage col-
lected and because INTERASPECTTracecut can use parameters that are not allocated objects
(such as integer file handles), instances in INTERASPECTTracecut are destroyed when they
can no longer reach an accepting state.

For C, Arachne and Aspicere provide tracecut-style monitoring. Arachne can moni-
tor pointcutsequenceswhich have similar semantics to INTERASPECT Tracecut’s regu-
lar expressions [12]. The cHALO extension to Aspicere adds predicates for defining se-
quences [1]. These predicates are designed to give developers better control over the amount
of memory used to track monitor instances.

7 Conclusions

We have presented INTERASPECT, a framework for developing powerful instrumentation
plug-ins for the GCC suite of production compilers. INTERASPECT-based plug-ins instru-
ment programs compiled with GCC by modifying GCC’s intermediate language, GIMPLE.
The INTERASPECTAPI simplifies this process by offering an AOP-based interface. Plug-
in developers can easily specify pointcuts to target specific program join points and then
add customized instrumentation at those join points. We presented several example plug-ins
that demonstrate the framework’s ability to customize runtime instrumentation for specific
applications. Finally, we developed a more full-featured application of our API: the IN-
TERASPECTTracecut extension, which monitors formally defined runtime properties. The
API and the tracecut extension are available under an open-source license [19].

As future work, we plan to add pointcuts for all control flow constructs, thereby allowing
instrumentation to trace a program run’s exact path of execution. We also plan to investigate
API support for pointcuts that depend on dynamic information, such as AspectJ’scflow .
Dynamic pointcuts can already be implemented in INTERASPECTwith advice functions
that maintain and use appropriate state, or even with tracecut advice, but API support would
eliminate the need to write such advice functions.
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