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THESIS PROPOSAL

File System development is a diÆcult and time consuming task, the results of which are rarely
portable across operating systems. Several proposals to improve the vnode interface to allow for
more exible �le system design and implementation have been made in recent years, but none is
used in practice because they require costly fundamental changes to kernel interfaces, only operating
systems vendors can make those changes, are still non-portable, tend to degrade performance, and
do not appear to provide immediate return on such an investment.

This proposal advocates a language for describing �le systems, called FiST. The associated
translator can generate portable C code | kernel resident or not | that implements the described
�le system. No kernel source code is needed and no existing vnode interface must change. The
performance of the �le systems automatically generated by FiST can be within a few percent of
comparable hand-written �le systems. The main bene�ts to automation are that development and
maintenance costs are greatly reduced, and that it becomes practical to prototype, implement, test,
debug, and compose a vastly larger set of such �le systems with di�erent properties.

The proposed thesis will describe the language and its translator, use it to implement a few �le
systems on more than one platform, and evaluate the performance of the automatically generated
code.
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1 Introduction

A \vnode" is a data structure used within Unix-based operating systems to represent an open �le,
directory, device, or other entity (e.g., socket) that can appear in the �le system name-space. The
\vnode interface" is an interface within an operating system's �le system module. It allows higher level
operating system modules to perform operations on vnodes. The vnode interface was invented by Sun
Microsystems to facilitate the coexistence of multiple �le systems [Kleiman86], speci�cally the local
�le system that manages disk storage and the NFS [Sun89, Pawlowski94] remote �le system. When
a vnode represents storage (such as a �le or directory), it does not expose what type of physical �le
system implements the storage. This \virtual �le system" concept has proven very useful, and nearly
every version of Unix includes some version of vnodes and a vnode interface.

One notable improvement to the vnode concept is \vnode stack-

Cachefs

Cryptfs Gzipfs

Cryptfs

UFS

Replicfs

PCFSNFS

Gzipfs

UFS

Cache Source

Figure 1: A Complex Composed
File System

ing," [Rosenthal92, Heidemann94, Skinner93] a technique for mod-
ularizing �le system functions. The idea is to allow one vnode
interface to call another. Before stacking existed, there was only a
single vnode interface. Higher level operating systems code called
the vnode interface which in turn called code for a speci�c �le sys-
tem. With vnode stacking, several vnode interfaces may exist and
they may call each other in sequence: the code for a certain op-
eration at stack level N calls the corresponding operation at level
N + 1, and so on.

For an example of the utility of vnode stacking, consider the
complex caching �le system (Cachefs) shown in Figure 1. Here,
�les are accessed from a compressed (Gzipfs), replicated (Replicfs),
�le system and cached in an encrypted (Cryptfs), compressed, �le
system. One of the replicas of the source �le system is itself en-
crypted, presumably with a key di�erent from that of the encrypted
cache. The cache is stored in a UFS [LoVerso91] physical �le sys-
tem. Each of the three replicas is stored in a di�erent type of physical �le system, UFS, NFS, and
PCFS [Forin94].

One could design a single �le system that includes all of this functionality. However, the result
would probably be complex and diÆcult to debug and maintain. Alternatively, one could decompose
such a �le system into a set of components:

1. A caching �le system that copies from a source �le system and caches in a target �le system.

2. A cryptographic �le system that decrypts as it reads and encrypts as it writes.

3. A compressing �le system that decompresses as it reads and compresses as it writes.

4. A replicated �le system that provides consistency control among copies spread across three �le
systems.

These components can be combined in many ways provided that they are written to call and be
callable by other, unknown, components. Figure 1 shows how the cryptographic �le system can stack on
top of either a physical �le system (PCFS) or a non-physical one (Gzipfs). Vnode stacking facilitates



2 1 INTRODUCTION

this design concept by providing a convenient inter-component interface. The introduction of one
module on top of another in the stack is called \interposition."

Building �le systems by component interposition carries the expected advantages of greater mod-
ularity, easier debugging, scalability, etc. The primary disadvantage is performance. Crossing the
vnode interface is overhead. However, I claim that the overhead can be made so small that any loss in
performance is outweighed by the bene�ts. See Section 3.6.2.

The example in Figure 1 illustrates another property of vnode stacking: fanout. The implementation
of Replicfs calls three di�erent �le systems. Fan-in can exist, too. There is no reason to restrict the
stacking concept to a linear stack or chain of �le systems.

1.1 The Problem

Despite the promise of vnode stacking, not one of several proposed implementations [Rosenthal90,
Rosenthal92, Heidemann94, Skinner93] has made it into mainstream operating systems, even though
several of the proposals were made by an operating system vendor (Sun Microsystems).

All previous proposals for vnode stacking required substantial changes to the de�nitions of the
vnode and the vnode interface. These proposals did not meet with wide acceptance, for a few reasons:

� The need to modify operating system source code. Only vendors, not individual researchers,
could make the necessary changes to commercial operating systems.

� The large cost of installing a signi�cant change to an operating system, and the corresponding
concern about return on investment. It was not obvious to vendors that support for vnode
stacking would result in better short-term sales.

� The concern that generalization of the vnode interface might harm performance.

Additionally, the vnode stacking proposals have always been linked to a particular operating system,
and hence unportable. For more details see Section 2.3.2.

Although these objections to the vnode stacking concept are not technical, they are fundamental.
However, this thesis proposal will present another technical solution which avoids most of the above
problems.

1.2 My Solution

My thesis is that it is possible to implement vnode stacking in a fashion that is portable across operating
systems, without the need for kernel source code, without having to change the existing vnode interface,
and with only a negligible decrease in �le system performance.

In particular, I propose to demonstrate a language and compiler called FiST (for File System
Translator). New types of �le systems | such as the compressing or encrypting �le systems mentioned
above | are described as FiST programs. The FiST compiler then produces C code matched to the
internal interfaces of the target operating system. Besides ease of implementation and portability, a
further advantage of implementing �le systems in FiST is that the resulting C code can be tailored
for either in-kernel or out-of-kernel use, according to whether performance or exibility is the primary
goal.
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1.3 Advantages of My Solution

The advantages of a �le system compiler are:

1. It should be easier to implement a �le system in FiST than in C.

2. FiST adapts to the existing vnode de�nitions, so a single FiST program can be compiled to run
on di�erent operating systems that may have di�erent vnode de�nitions.

3. No kernel sources (usually proprietary and expensive) are required, meaning that anyone, not
just operating system vendors, can become a �le system implementer. Eliminating the need for
kernel code also saves time spent on browsing and modifying, and licensing costs for each �le
system and platform.

4. The same FiST program can be used to generate kernel-resident or user-level modules. User-level
�le systems are useful during development, as they are much easier to debug. Kernel-level �le
systems provide the best performance.

I expect that FiST will substantially increase the ease and speed with which researchers can pro-
totype new �le system ideas, thereby leading to a qualitative improvement in �le system innovation.

1.4 Organization of this Proposal

Can �le systems perform adequately and be source-portable at the same time? The answer is yes, and
is explored in the rest of this proposal. Section 2 provides background on vnode interfaces proposed
and used over the past decade. Section 3 explains the conceptual design of my system, including the
current implementation. Section 4 details the core of this proposal: the FiST language (with a few
extended examples in Appendix C). I map out the plan for evaluating my work in Section 5 and
describe related work in Section 6. I conclude with a summary in Section 7.

Several appendices follow, expanding on relevant material. These include a tutorial on vnodes for
readers not familiar with the details, a list of example �le systems that could be generated using FiST,
a set of extended examples using FiST and showing code that would be generated, actual working code
showing the actions that occur when a �le system is stacked on top of another, and the last appendix
describes facilities for promoting portability.
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2 Background

There are many operating systems, and many new �le systems have been proposed, but only a handful
of �le systems are in regular use. This section provides a brief history of the evolution of �le systems
in general and the vnode interface in particular, and attempts to explain why so few �le systems are
used in practice. To a large degree, the reasons overlap with the limitations that FiST is intended to
remove.

2.1 Types of File Systems

I classify �le systems into three categories, based on how they are accessed: device level, out of kernel,
and vnode level.

2.1.1 Device Level

The lowest level �le systems are part of the operating system and call device drivers directly. These �le
systems are usually aware of and often optimized for speci�c device characteristics, as shown in Figure
2.

NFS

Local Disk Local Network

ufs_read()

disk_dev_read()

UFS

net_dev_read()

read() U
se

r
K

er
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el

Process BProcess A

read()

nfs_read()

Figure 2: Data Path in a Device Level File System

Examples of such �le systems include

� The Berkeley Fast File System (FFS) [McKusick84] for physical disks.

� Sun Microsystem's UFS [LoVerso91], an optimized version of FFS.

� The LFS \log structured" �le system, optimized for sequential writes [Rosenblum91] on hard
disks.
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� NFS [Sandberg85, Pawlowski94], that uses the network as its �le system \device."1

� The High-Sierra �le system (HSFS, ISO9660) for CD-ROMs [Kao89].

� The FAT-based �le system originally developed for DOS [Tanenbaum92], and later adapted for
Unix machines to access a oppy as a native PC-based �le system (PCFS) [Forin94].

Such �le systems are diÆcult to port because they are coupled to the surrounding operating system:
system call handlers call the �le system code and the �le system code calls device drivers.

Because these �le systems are optimized for the common combination of hard disks and Unix
workloads, we �nd only a handful in use. Note that while many Unix vendors have their own version
of a disk-based local �le system, these are in most cases only small variations of the Berkeley FFS.

2.1.2 Out of Kernel

The highest level �le systems reside outside the kernel. They are implemented either as a process or
as a run-time library. Most such �le systems are accessed via the NFS protocol. That is, the process
that implements them registers with the kernel as an NFS server, although the �les it manages are not
necessarily remote.

The primary bene�ts of user-level �le
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Figure 3: Data Path in a User Level File System

systems are easier development, easier de-
bugging, and portability. However, user
level �le systems su�er from inherently poor
performance. Figure 3 shows how many
steps it takes the system to satisfy an ac-
cess request through a user-level �le server.
Each crossing of the dashed line requires
a context switch and, sometimes, a data
copy.

Additionally, user level implementation
raises the danger of deadlock, as the pro-
cess implementing the �le system must in-
teract with the operating system, some-
times regarding the very �le system it is
implementing. Finally, user level imple-
mentation creates new failure modes. If
there is a bug in a kernel-resident �le sys-
tem, the system will crash; though highly
undesirable, this is the familiar \fail-stop"

1While NFS does not use the network as a persistent storage medium, it uses it to communicate to servers that, in
turn, store the �les on local disks.

2For example our department uses the Amd automounter and has seen more than once the severe e�ects of its aborting.
Shells hang because of attempts to access auto-mounted paths in users' $PATH variables, so no new programs can be
started. Long-running programs such as emacs also hang because they often perform �le systems access for user �les,
auto-saves, auto-loading emacs-lisp �les, etc. Within a few minutes of Amd's abnormal exit, the machine becomes unusable
and needs a reboot.
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failure model. In contrast, when an out
of kernel �le system hangs or exits, processes that access the now-dead �le system live on, possibly
propagating erroneous results to other processes and machines.2

Examples of out-of-kernel �le systems are the Amd [Pendry91, Stewart93] and Automountd [Callaghan89]
automounters, Blaze's Cfsd encrypting �le system [Blaze93], and Amd derivatives including Hlfsd [Zadok93b],
AutoCacher [Minnich93], and Restore-o-Mounter [Moran93].

A few �le systems at the user level have been implemented as a user-level library. One such
example is Systas [Lord96], a �le system for Linux that adds an extra measure of exibility by allow-
ing users to write Scheme code to implement the �le system semantics. Another, also for Linux, is
Userfs [Fitzhardinge94]. For example, to write a new �le system using Userfs, the implementor �lls in
a set of C++ stub �le system calls | the �le system's version of open, close, lookup, read, write,
unlink, etc. Developers have all the exibility of user level C++ programs. Then, they compile their
code and link it with the provided Userfs run-time library. The library provides the �le system driver
engine and the necessary linkage to special kernel hooks. The result is a process that implements the
�le system. When run, the kernel will divert �le system calls to the custom-linked user-level program
they just linked with.

Such exibility is very appealing. Unfortunately, the two examples just mentioned are limited
to Linux and cannot be easily ported to other operating systems because they require special kernel
support. Also, they still require the user to write a full implementation of each �le system call.
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2.1.3 Vnode Level

As mentioned in the introduction, some �le systems are implemented as in-kernel modules that export
the vnode interface. They typically implement \meta" operations on �les or groups of �les, relying
on other device level �le systems for �le access. Examples include Solaris' Cachefs [SunSoft94], and
the Online Disk-Suite (OLDS) of �le systems (o�ering mirroring, striping, and device concatenation)
[SMCC93b].

For example, the mirroring �le system of the Online Disk-Suite is a module that stacks on top of
two or more physical �le systems. Each vnode operation in the mirroring �le system performs \meta"
operations on the native �le systems it stacked on top of. For example, the read call reads data from
either one of the replicas and returns the �rst one that replies; the write call writes data to all replicas
and will not return a success status until the data have been successfully written to all copies.

To access a particular �le system,

NFS

Local Disk Remote Network

disk_dev_read() net_dev_write()

UFS

ufs_read() nfs_write()

Process A Process B

write()

vn_write()

read()

vn_read()
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K
er

n
el

U
se

r

Figure 4: Data Path in a Vnode Level File System

processes make system calls that get trans-
lated into vnode interface calls, as de-
picted in Figure 4.

Vnode level �le systems exhibit the
same advantages and disadvantages as
device level �le systems, though to a
lesser degree. Kernel residence makes
writing such �le systems diÆcult, but
their performance is good.

The FiST compiler produces code
for either a vnode level �le system or
one running at user level. The �rst rea-
son for choosing the vnode level over
device and user levels is that most pro-
posals for new �le systems are proposals
for \meta" semantics rather than new
ways to organize bits on devices. The
second reason is the possibility of good
performance because a kernel-resident
implementation avoids costly context switches,
and runs in a higher privileged mode than user level. The third reason is the potential for portable
code because most brands of Unix implement some version of the vnode interface.

Debugging kernel resident �le systems is still diÆcult. For that reason, I decided that FiST will also
generate �le system modules to run in user level, where they can be inspected with greater ease using
standard debuggers. These modules will be generated to an API that is supported by Amd (NFS).
Amd will be able to dynamically load these �le systems and provide new semantics based on the FiST
descriptions thereof.

Supporting both user and kernel level �le systems from the same FiST description provides the best
of both worlds: you get (a) good performance when running in the kernel, and (b) easier development
when running modules in Amd.
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2.1.4 Compilation vs. Interpretation

Another dimension | beside in-kernel versus out-of-kernel | for categorizing �le systems is whether
the functionality is compiled or interpreted. Table 1 summarizes the advantages and disadvantages of
these four possibilities.

Location Language Advantages Disadvantages Examples FiST

Kernel Compiled Best performance. DiÆcult to write. NFS, UFS, and
most others.

Yes

User-level Compiled Easier to write. Bet-
ter performance than
interpreted.

Worse performance
than in kernel due to
context switching.

Amd and Sun's
Automounter.a

Yes

Kernel Interpreted Does not make much
sense, since perfor-
mance is the main rea-
son to move into the
kernel.

Interpreted language
would seriously de-
grade performance.
Kernel is still a \hos-
tile" environment.

None, possibly
Java based sys-
tems.b

No

User-level Interpreted Very easy to write and
modify. Easy to de-
bug in user-level.

Poorest performance
due to interpretation
and context switches.

Systas No

aThese automounters do not contain all of their �le system functionality in C code, only the base part. Additional
functionality is provided by static con�guration maps the administrator has to edit by hand.

bNote that Java is not a strictly interpreted language, but a byte-compiled one.

Table 1: The Four-Space of File Systems

FiST will be able to generate compiled code for either user-level or the kernel. This results in
both speed (compiled, in-kernel) and ease of development and debugging (user-level). Since FiST is a
higher-level language it would allow relatively easy changes to �le systems, the same way interpreted
languages do.

2.2 The Vnode Interface

2.2.1 The Original Vnode Interface

The vnode interface3 was invented over a decade ago to facilitate the implementation of multiple
�le systems in one operating system [Kleiman86], and it has been very successful at that. It is now
universally present in Unix operating systems. Readers not familiar with the vnode interface may refer
to Appendix A for a tutorial on the subject.

The designers of the original vnode interface envisioned \pluggable" �le systemmodules [Rodriguez86],
but this capability was not present at the beginning. Through the 1980s Sun made at least three revi-
sions of the interface designed to enhance plugability [Rosenthal90]. However, during the same period

3When I speak of the \vnode interface," it should be taken to include the vnode interface that provides operations on
�les and the VFS interface that provides operations on �le systems.
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Sun lost control of the vnode de�nition as other operating system vendors made slight, incompatible,
changes to their vnode interfaces.

2.2.2 A Stackable Vnode Interface

We recognize that one-size-�ts-all �le systems are insuÆcient in many cases. Specialized �le systems
are often proposed but rarely implemented. Four example domains include:

1. Multimedia: with the explosion of the Internet, Web content developers would like a �le system
that can store HTML, image, and audio �les more eÆciently so they can be retrieved faster with
HTTP servers, or be played back in real-time [Anderson92, Ramakrishnan93, Fall94, Mercer94,
Pasquale94].

2. Databases: researchers are looking for methods to improve the performance of Unix �le sys-
tems, and/or for �le systems that provide built-in support for concurrency [Stonebraker81,
Stonebraker86].

3. Mobility: replicated and distributed �le systems with disconnected and caching operations �gure
heavily in an environment where network latency and reliability is highly variable [Satyanarayanan90,
Kistler91, Tait91, Tait92, Kistler93, Zadok93a, Kuenning94, Marsh94, Mummert95].

4. Security: more secure �le systems are sought, especially ones that securely export �les over the
network [Steiner88, Haynes92, Glover93, Takahashi95]. An easy way to use encryption in �le
systems [Blaze93, Gutmann96, Boneh96] and the ability to provide special semantics via facilities
such as general purpose Access Control Lists (ACLs) [Kramer88, Pawlowski94] are also highly
desirable [Bishop88, Kardel90].

Researchers and developers have always needed an environment where they can quickly prototype
and test new �le system ideas. Several earlier works attempted to provide the necessary exibility.
Apollo's I/O system was extendible through user-level libraries that changed the behavior of the appli-
cation linking with them [Rees86]; now, modern support for shared libraries [Gingell87a] permits new
functionality to be loaded by the run-time linker. One of the �rst attempts to extend �le system func-
tionality was \watchdogs" [Bershad88], a mechanism for trapping �le system operations and running
user-written code as part of the operation.

Vnode stacking was �rst implemented by Rosenthal (in SunOS 4.1) around 1990 [Rosenthal90]. His
work was both the �rst implementation of the plugability concept and also a clean-up e�ort in response
to changes that had been required to support integration of SunOS and System V and to merge the �le
system's bu�er cache with the virtual memory system. Because it focused on the universally available
vnode interface, Rosenthal's stacking model was not ad hoc, unlike earlier e�orts, and held promise as
a \standard" �le system extension mechanism.

With vnode stacking, a vnode now represents a �le open in a particular �le system. If N �le systems
are stacked, a single �le is represented by N vnodes, one for each �le system. The vnodes are chained
together. A vnode interface operation proceeds from the head of the chain to the tail, operating on
each vnode, and aborting if an error occurs. This mechanism, which is similar to the way Stream I/O
modules [Ritchie84] operate, is depicted in Figure 5.
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Shared Vnode Chain State (lock variables)

Figure 5: Typical Propagation of a Vnode Operation in a Chained Architecture

This simple interface alone was capable of combining several instances of existing UFS or NFS �le
systems to provide replication, caching, and fall-back �le systems, among other services. Rosenthal
built a prototype of his proposed interface in the SunOS 4.1 kernel, but was not satis�ed with his design
and implementation for several reasons: locking techniques were inadequate, the VFS interface had
not been redesigned to �t the new model, multi-threading issues where not considered, and he wanted
to implement more �le system modules so as to get more experience with the interface. Rosenthal's
interface was never made public or incorporated into Sun's operating systems.

A few similar works followed Rosenthal, such as further prototypes for extended �le systems in
SunOS [Skinner93], and the Ficus layered �le system [Guy90, Heidemann91] at UCLA.

2.2.2.1 Interposition and Composition

Later works [Rosenthal92, Skinner93] established the current terminology for the �eld, discarding
\stacking" in favor of \interposition" and \composition." The term \stacking" was considered at once
to have too many implications, to be too vague, and to imply only a linear LIFO structure with no
fan-in or fan-out.

Interposition is the new term for stacking. The de�ning papers [Rosenthal92, Skinner93] explain a
particular implementation of interposition based on a new de�nition of vnode. The new vnode contains
only the public �elds of the old vnode and a new data structure called a pvnode contains the private
�elds of the old vnode. A \vnode chain" now becomes a single vnode (providing a unique identity for
the �le) plus a \chain"4 of linked pvnodes. Interposed functionality is represented by one pvnode per
open �le.

Pvnodes may contain pointers to other vnodes, with the e�ect that all the linked vnodes may need
to be regarded as a single object. This e�ect is called composition. Composition, in particular, requires
the following two capabilities [Rosenthal92]:

1. The ability to lock a complete interposition chain with one operation.

4Actually a DAG, to provide fan-in and fan-out.
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2. Treating an interposition chain as an atomic unit. An operation that failed midway should result
in undoing anything that was done when the operation began at the head of the chain.

Figure 6 shows this structure for a compressing, encrypting �le system, that uses UFS as its
persistent storage. For each of the three �le system layers in the stack, there is one pvnode. Each
pvnode contains a pointer back to the �le system that it represents, so that the correct operations
vector is used. The three pvnodes are linked together in the order of the stack from the top to the
bottom. The head of the stack is referenced from a single vnode structure. The purpose of this
restructuring that Skinner & Wong had proposed was so that the three pvnodes could be used as
one composed entity (shown here as a dashed enclosing box) that could be locked using a single lock
variable in the new vnode structure.

Gzipfs

Cryptfs

UFS pvnode

pvnode

pvnode

vnode

Figure 6: Composition Using Pvnodes

The linked data structures created by interpo-
sition and the corresponding complex semantics
arising from composition complicate concurrency
control and failure recovery.

One concurrency control problem is how to
lock an arbitrarily long interposition chain as cheaply
as possible. Another, harder, problem is how to
lock more than one chain for multi-vnode opera-
tions.

The failure recovery problem arises from com-
position. If a multi-vnode operation fails mid-
way, it is vital to rollback the operations that have
succeeded. Both Rosenthal and Skinner & Wong
discuss adapting the database concept of atomic
transactions. Speci�cally, each pvnode would con-
tain routines to abort, commit, and \prepare"5

the e�ects of operations on it. However, probably because of the complexity involved, no one has yet
implemented transactions in support of composition. Consequently, \stacks" of interposed �le systems
may have failure behavior that is di�erent from single �le systems.

2.3 Barriers to File System Experimentation

2.3.1 Inertia

An interesting observation, seen in Table 2, is that each device level �le system listed in Section 2.1.1
has only a handful, generally no more than two, dominant implementations in use for each storage
medium.

One might wonder why this is the case. Is it pure luck that these were the �rst �le systems ever
implemented on these media, and now they are the de-facto standards for their media? I think there
are several reasons for their dominance. They are dominant because they are good and they satisfy the
needs of the majority of users. They have been adapted to observed workload and improved quite a
bit over the years, to a point where anyone thinking of writing a new one at that level has to come

5In transaction terminology, \prepare" means to stop processing and prepare to either commit or abort.
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Media Dominant Avg. Code Size Other

Type File System (C lines) File Systems

Hard Disks UFS (FFS) 20,000 LFS

Network NFS 30,000 Amd, AFS

CD-ROM HSFS (ISO-9660) 6,000 UFS, CD-I, CD-V

Floppy PCFS (DOS) 6,000 UFS

Table 2: Dominant File Systems and Code Sizes for Each Medium

up with something substantially better to get a sizable share of the market. In short, reasons to write
new �le systems at the device level are rarely compelling, or surely they would have been written.

Every �le system (or kernel) developer would agree that writing a new �le system takes a long time,
is diÆcult to test and debug, and has to be constantly maintained as operating systems evolve and
change. Every small change takes a long edit-compile-run-debug cycle, with kernel crashes and lack
of debugging tools [Golub90, Stallman94, SMCC94a] making the task frustrating. Worse, �le system
code developed for one operating system is almost never portable to another. After a long period of
development for one operating system, the whole process has to be repeated if the �le system is to be
ported to a new operating system. It should come as no surprise, given the sheer size of �le system
code, that vendors and independent software vendors (ISVs) are reluctant to develop new �le systems,
at least at the device level.

2.3.2 Commercial Concerns

Given the history of the vnode interface I �nd it curious why the chief advocate of vnode interposition
(judging by the number of papers on the subject), Sun Microsystems, has not included any fundamen-
tally new vnode interface in their operating systems. Sun has released over half a dozen new versions
of their Solaris operating system in the past few years, so they certainly had the opportunity to include
a new interface had they wanted to.

I've had several personal communications with experts in the �eld: Brent Callaghan, Glenn Skinner6

and a few others who chose to remain anonymous. Unanimously, they told me that while they thought
that vnode interposition is desirable, more pressing projects were given higher priority. They cited
management concerns over the commerciability of stackable �le systems, the overall cost of making such
radical changes to the operating system, and the perceived lack of short-term bene�t from making such
changes. In addition, management did not want to incorporate any changes that degraded performance
even slightly in the then-edgling Solaris 2.x operating system.

2.3.3 High Development Costs

I have had seven years of personal experience in writing, porting, maintaining, and modifying �le
systems | including NFS, Amd, Hlfsd, and LFS | and ranging across several operating systems. From
this experience, I know that while there is a \nearly standard" vnode interface, writing or porting a �le
system to that interface is a substantial task. In addition, �le system code is usually tightly coupled
internally; many operations depend on others within the same �le system. The work cannot be easily

6Both currently working at Sun Microsystems.
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parallelized to a large group, and one often �nds that a single �le system is written by one person.
For example, most of the �le systems written for Linux have been initially written by individuals. It
is often the same small set of developers that develop all the di�erent �le systems for an operating
system. This is further corroborated from inspection of sources for many public and commercial �le
systems; I have frequently noted the coding style to be di�erent from one �le system to another, while
RCS tags and \Change Log" entries within the same �le system repeatedly made by the same person.

I concluded that, of all possible reasons for the limited diversity of �le systems, the most compelling
one is the complexity and time involved in overhauling an operating system and all its �le systems to
a new, albeit better, vnode interface.

Therefore I decided to try to provide vnode interposition and composition capabilities, in a portable
way, without requiring kernel sources, and more importantly, without changing existing vnode interfaces.
The next section explains my approach, FiST, as the next logical step in the evolution of extensible
�le systems.

2.4 FiST

The e�ort to change the vnode interface was driven by the need to simplify the model, and allow new
�le systems to be written faster. This was partially done by removing old vnode calls such as vn bread

and adding new ones such as vn map [Rosenthal90]. Changing the vnode interface was akin to changing
the \language" with which a �le system implementor \spoke" with the kernel. Several past works |
such as Skinner and Wong's \Interposer Toolkit" | began to address the issue of describing �le systems
using a higher-level language. The most successful of all is the simple (albeit limited) language used
by Amd [Pendry91, Stewart93] to describe map entries, their types, semantics, etc. Recent work on
�le system simulators [Bosch96] also moves in this direction, but unfortunately requires a radically
di�erent (object oriented) �le system interface.

It was natural then to try to �nd a better language that can describe �le systems at a high level,
for the following reasons:

� There is a lot of repetition in �le system code. Much of the code for �le systems in the same
operating systems share the same structure, calling conventions, error handling, and more. A
translator could reuse code, or generate similar code from templates.

� There are many tedious details that must be maintained, which �le system implementors may
forget or neglect. For example there are many calls in the vnode interface that are rarely used,
yet need to be implemented. A language translator is perfect for o�ering default actions for any
vnode operation that need not be implemented, taking care of basic error handling, and other
mundane tasks.

� Generated code will be bug-free. This can reduce debugging and maintenance time greatly. A
bug in a kernel resident module often results in system panics, corrupt �le systems, and a lengthy
reboot.

� If suÆciently abstract, a single �le system description can be used to generate either kernel-
resident or user-level code. This lets developers maintain and debug a new �le system at user
level, then move the code into kernel level only when they feel that it is stable enough. Meanwhile
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applications and utilities can be designed, developed, and tested using the user-level version of
the new �le system.

� An interposeable �le system module typically cannot be binary or source portable because of
the di�erent facilities o�ered by di�erent operating systems. A higher level description can o�er
portability.

� Maintaining �le systems through a higher level language becomes easier. Changes to features can
be localized into a few places in a description, whereas when writing �le system code directly,
the same changes have to be updated and veri�ed in numerous places.
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3 Mechanisms for Interposition and Composition

I have conducted a feasibility study by implementing, by hand, in Solaris 2.4, much of the code that
FiST will have to produce automatically. This section explains the operation of that code, which will
be used as templates by the FiST compiler. Section 4 describes the FiST language.

3.1 Interposition API

The mount system call is used to interpose one �le system on top
of another. Likewise, umount unmounts and hence de-interposes

X

Y

Z

Fan-In

X

Y Z

Fan-Out

Figure 7: Interposition Resulting in Fan-
in or Fan-out

a �le system. Mounting can be relative to any �le system
above or below, so that �le systems can be \stacked" into a
DAG. As an example, suppose that �le system X is inter-
posed on �le system Y . To create fan-in, �le system Z can
be mounted above Y . To create fan-out, Z can be mounted
below X .

Figure 7 shows what mounts result in a fan-in vs. a fan-
out. The information of how many �le systems are mounted
at a mount point is stored in a private VFS data structure,
and is described in Section 3.5.

3.2 Creating Links Among Vnodes

For each open �le or directory, a vnode is allocated for each level of interposition. If there have been
N interpositions, then an open �le will have N + 1 associated vnodes, one for the \base" �le system
and one for each �le system that has been interposed.

Each vnode of an interposing �le system must have access to the vnode(s) that it interposes upon,
and this must be accomplished without changing the vnode de�nition. Fortunately, the vnode contains
a pointer (called v data) to an opaque private area. For each type of �le system (e.g., NFS, UFS) this
pointer may point to a structure that includes extra information needed by that type of �le system.

typedef struct fist_wrapnode {

vnode_t * fwn_vnodep[]; /* pointers to interposed-on vnodes */

int count; /* # of pointers; >1 indicates fanout */

/* additional per-vnode data here */

} fist_wrapnode_t;

Figure 8: Private Data of an Interposing Vnode

I have created a new \wrap" vnode type for interposing vnodes. For this type of vnode, v data

points to the private fist wrapnode t data structure shown in Figure 8. This structure contains
pointers to the vnodes it interposes upon. Pointers link vnodes from the top down, representing the
DAG of interposed �le systems for each open �le. Figure 9 shows an example of a caching �le system,
and the relationship between the vnodes in use and their respective private data, especially that of the
interposing �le system.
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Figure 9: Data Structures Set for a Caching File System

These pointers are established when a vnode is created. There are only �ve vnode-creating oper-
ations, one of which is \create." I have altered the code for each operation as suggested by Figures
10 and 11. (The other functions that create new vnodes, and therefore use the interposition code in
Figure 11 are lookup, mkdir, open, and the utility routine realvp. The VFS function vfs mount also
creates a new vnode, the root vnode of the �le system.)

Figure 10 is a skeleton of the actual code for the vnode operation create in Wrapfs.7 It shows what
happens when creating an entry called name in the directory represented by the vnode *dvp, assuming
that there is no fanout. The �rst line obtains a pointer to the vnode that *dvp interposes upon. The
second line calls the VOP CREATE macro. (Solaris and most VFS implementations have VOP * macros
whose purpose is to hide the type of underlying �le system that is performing the operation.) The
macro expands to invoke the create operation in the operations vector for whatever type of vnode
*hidden vp is. If it is another interposing vnode of the Wrapfs �le system, then fist wrap create

will be called recursively; otherwise, the create operation for the appropriate type of �le system will
be called. The third line calls fist wrap interpose(), which sets up three important pointer �elds.
This logic can be extended simply when there is fanout.

Vnode destruction is handled similarly. Vnodes are deallocated when their reference count reaches
zero; then, the inactive operation is called. The interposing �le system simply calls the inactive
operation on the interposed �le system and then deallocates the current vnode.

7I do not change system call interface functions such as create(2); the kernel is responsible for calling a particular
�le systems' vnode operations, and those I may modify.
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static int fist_wrap_create(vnode_t *dvp, char *name, vattr_t *vap,

vcexcl_t excl, int mode, vnode_t **vpp,

cred_t *cr)

{

int error = 0;

vnode_t *hidden_vp;

/* get interposed-on vnode */

hidden_vp = vntofwn(dvp)->fwn_vnodep[0];

/* pass operation down to interposed-on file system */

error = VOP_CREATE(hidden_vp, name, vap, excl, mode, vpp, cr);

/* if no error, interpose vnode */

if (!error)

*vpp = fist_wrap_interpose(*vpp, (*vpp)->v_vfsp);

return(error);

}

Figure 10: Skeleton Create Operation for the \Wrap" File System Type

The three pointer �elds set up by fist wrap interpose() are:

1. The interposing vnode's pointer to its private area.

2. The private area's pointer to the vnode that is being interposed upon.

3. The interposing vnode's operation vector.

Just as there are specialized operation vectors for vnodes of types NFS and UFS (nfs vnodeops

and ufs vnodeops, respectively), there is also a specialized vector for interposing vnodes. As shown
in Figure 11, an interposing vnode has its operations vector �eld (v op) set to &fist wrap vnodeops,
a set of pointers to functions that provide \wrapping" implementations of vnode interface functions.
These functions de�ne a �le system that I call Wrapfs.

3.3 Using Links Among Vnodes

Most other vnode/VFS operations in Wrapfs are very simple: they call the operation on the interposed
vnode and return the status code. Figure 12 sketches the wrapping implementation of the \Get File
Attributes" operation, getattr. The pattern is similar to that shown in Figure 10 but di�ers in that
fist wrap interpose() is not called. In the case of getattr, all that happens is that VOP GETATTR

expands into the getattr operation appropriate for the type of vnode that is interposed upon. Before
and after invoking the vnode operation on the interposed vnode, it is possible to manipulate the
arguments passed or results returned.
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/* interpose on an old vnode and return new one */

static vnode_t *fist_wrap_interpose(vnode_t *old_vp, vfs_t *old_vfsp)

{

vnode_t *new_vp;

fist_wrapnode_t *wp; /* private area for vnode_vp */

fist_wrapinfo_t *ip; /* private area for vfs */

/* allocate new vnode */

new_vp = kmem_alloc(sizeof(vnode_t), KM_SLEEP);

if (!new_vp)

return(NULL);

/* VN_INIT2 is like VN_INIT but reuses v_lock field of interposed vnode */

VN_INIT2(vp, old_vfsp, old_vp->v_type, (dev_t) NULL, old_vp->v_lock);

/* allocate vnode's private area */

wp = (fist_wrapnode_t *) kmem_alloc(sizeof(fist_wrapnode_t), KM_SLEEP);

if (!wp)

return(NULL);

/* set pointers and operations vector */

new_vp->v_data = (caddr_t) wp;

wp->fwn_vnodep[0] = old_vp;

new_vp->v_op = &fist_wrap_vnodeops;

/* see "Private VFS State" Section for explanation */

ip = vfstofwi(old_vfsp);

ip->fwi_num_vnodes++;

/* return new vnode */

return(new_vp);

}

Figure 11: Wrapfs Vnode Interposition and Composition Code
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static int fist_wrap_getattr(vnode_t *vp, vattr_t *vap,

int flags, cred_t *cr)

{

int error = 0;

vnode_t *hidden_vp;

/* get interposed-on vnode */

hidden_vp = vntofwn(vp)->fwn_vnodep[0];

/* Note: can manipulate passed arguments here */

/* pass operation to interposed-on file system and return status */

error = VOP_GETATTR(hidden_vp, vap, flags, cr);

/* Note: can manipulate returning results here */

return (error);

}

Figure 12: Skeleton Getattr Operation for the \Wrap" File System Type

3.4 Composition

As mentioned in Section 2.2.2.1, composition is the term for concurrency control and failure atomicity
for an operation that is performed on all the vnodes in an interposition DAG.

My work provides only concurrency control. Pre-existing �le system code sets a lock (on a single
vnode) at the start of each operation and drops it at the end of the operation. The composition problem
is how to extend the control of this lock over all the vnodes in the interposition DAG, without making
any changes to existing data structures. Fortunately, the v lock �eld within a vnode is a pointer to a
reference-counted \lock variable" structure. Each time a new vnode is interposed upon an existing one,
the interposer's lock �eld is made another pointer to the lock variable of the interposed vnode. (This
code is in macro VN INIT2, which is referenced but not shown in Figure 11.) This technique ensures
that all vnodes in a DAG are working with the same lock variable. When the lock is set or dropped,
every vnode in the DAG is a�ected simultaneously. See Sections 3.6.2 and 5.2 for evaluation of the
impact of locking on performance.

3.5 Private VFS State

Added state must be attached to each vfs structure (the structure that describes whole �le systems)
just as for vnodes. The vfs structure also contains a pointer to an opaque private area, so I use the
same technique as for vnodes.

An auxiliary fist wrapinfo t structure, shown in Figure 13, houses a pointer to the vfs structure
of the interposed-upon �le system and a pointer to the root vnode of the interposing �le system. Also,
while not strictly necessary, for debugging purposes I added a counter that tracks the number of vnodes
in use in the �le system.
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typedef struct fist_wrapinfo {

struct vfs *fwi_mountvfs; /* vfs interposed upon */

struct vnode fwi_rootvnode; /* root vnode */

int fwi_num_vnodes; /* # of interposed vnodes */

} fist_wrapinfo_t;

Figure 13: Private Data Held for Each Interposing VFS

This background makes it possible to understand the actions taken when an interposing �le system
is mounted on an interposed-upon �le system:

1. Initialize basic �elds and assert arguments' validity. One of the important assertions veri�ed is
that there are no open �les on the mount point and �le system being mounted. If there were any,
an interposing mount could not ensure that it interposed upon every vnode in the interposed �le
system.

2. Prepare the private information stored by the interposing VFS.

3. Prepare the private information stored by the interposing vnode. This vnode would become the
root vnode for Wrapfs.

4. Fill in the information for the VFS structure. Especially important are the private data held by
it (vfs data), the operations vector (vfs op), and the vnode it covers (vfs vnodecovered). See
Figure 21 for details of all VFS �elds.

5. Allocate a vnode to be used as the root vnode for Wrapfs. Fill in important �elds such as the
vnode operations vector (v op), the private data �eld (v data) which stores the interposed vnode,
and turn on the VROOT ag for that vnode in the v flag �eld, indicating that this vnode is a root
of its �le system. See Figure 25 for details of all vnode �elds.

6. This root vnode just created is then stored in the private data �eld of the vfs we are mounting.
The VFS operation vfs root is called automatically on a vfs in order to retrieve its root vnode.
Storing it in the private data �eld makes it trivial to return.

7. Indicate in the vnode that is the mount point, that we are mounting this vfs on. This �lls in the
v vfsmountedhere �eld of the mount point vnode.

8. Return success or error code.

Appendix D includes the code used to interpose a wrapping module on top of another �le system.

3.6 Status of Current Implementation

3.6.1 Portability

One of the reasons for working at the vnode level is to achieve portability that, hopefully, would ap-
proach that of user level �le systems such as Amd. As of this writing, theWrapfs code is source-portable
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across Solaris 2.3, 2.4, and 2.5 on both the SPARC and x86 architectures. It is also binary compatible
across Solaris 2.4 and 2.5 (SPARC architecture). Loadable kernel modules are rarely binary compatible
across operating system revisions, as was mentioned in Skinner and Wong's work [Skinner93].

I started this work with proprietary Solaris kernel sources. I extracted from these sources the
minimum requirements for building �le system modules, and then rewrote the code. At this point, I
no longer require any access to proprietary sources.

In addition, I was able to move away from using proprietary build tools. Rather than using Sun's
commercial \SPARCcompiler" suite of build tools, I now exclusively use freely available GNU tools
such as gcc, gmake, and the GNU linker and assembler. I was surprised and pleased to �nd that the
latest GNU tools were able to properly build and link Solaris kernel modules.

For more details on how I will achieve portability using GNUAutoconf [MacKenzie95], see Appendix
E.

3.6.2 Performance

The tests I ran included 24 hours of continuous application of common user programs: ls, du, find,
mkdir and rm. These programs were invoked from a simple driver shell script that ran each one of them
in turn. First I ran the script on an unmounted /usr/local �le system. Then I mountedWrapfs (once)
on top of /usr/local, and reran the script. I used the time utility to measure how much system time
was consumed by each run.

Preliminary performance measurements showed that interposing the Wrapfs �le system once on top
of UFS resulted in degradation ranging from 3.5% (using Solaris 2.4 x86 on a P90 with 24MB RAM
and an IDE disk) to 6.4% (using Solaris 2.4 SPARC on an SS2 with 64MB RAM and a SCSI disk) in
reported \system" time.

Therefore, the overhead of the �rst version ofWrapfs is comparable to the mechanisms implemented
by Skinner and Wong [Skinner93] (up to 10%) and the UCLA stackable layers project [Heidemann94]
(3%).

3.7 User Level Operation

The FiST compiler can easily generate either kernel-resident or user-level code from the same input.
Kernel code implements the vnode interface. User level code implements the NFS interface.

The vnode interface was designed to accommodate version 2 of the NFS protocol. Therefore, there
is a straightforward mapping of vnode operations to NFS operations, as shown in Table 3. Accordingly,
the same \engine" can easily generate both kernel vnode-layer code and NFS code. See the examples
in Appendix C.

Automatically generating code for the latest NFS protocol (version 3) [Pawlowski94] is only marginally
more diÆcult, as can be seen in Table 4. There are several new calls that exist only in version 3 of
NFS, but they can be safely ignored because there is no direct mapping from a vnode operation to
them.

It would be useful to handle NFS V3 as well, and that would mean:

� Modifying Amd to understand the V3 protocol as well as V2. (This e�ort is already under way.)
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No. NFS V2 Vnode/VFS No. NFS V2 Vnode/VFS

Call Name Function Call Name Function

0 NULL null (trivial) 9 CREATE vn create

1 GETATTR vn getattr 10 REMOVE vn remove

2 SETATTR vn setattr 11 RENAME vn rename

3 ROOT vfs root 12 LINK vn link

4 LOOKUP vn lookup 13 SYMLINK vn symlink

5 READLINK vn readlink 14 MKDIR vn mkdir

6 READ vn read 15 RMDIR vn rmdir

7 WRITECACHE N/A (rarely used) 16 READDIR vn readdir

8 WRITE vn write 17 STATFS vfs statvfs

Table 3: NFS V2 Equivalent Vnode Operations

� Modifying the FiST language to generate empty stubs for those NFS V3 calls that are being
ignored. While not strictly used, they must be implemented, even as calls that will return an
error code such as \invalid operation."

Therefore, I plan support NFS V3.

3.7.1 Amd as a User-Level File System Driver

User level code will be linked with Amd, which can serve as a driver for the NFS module in the same
way that the kernel serves as one for a stackable vnode module. I will augment Amd with the GNU
libdl package, a library of calls for using user-level dynamic linking. FiST-produced modules will be
automatically and dynamically loaded and unloaded.

There are two major bene�ts to using Amd.

� Most importantly, I can use normal tools like GDB to debug FiST generated languages as I
develop the system. Fixing out-of-kernel bugs is much easier than �xing in-kernel bugs.

� Second, many people know and like Amd, and might be more willing to accept FiST because it
is tied to Amd.

As of this writing, much work on Amd was done to prepare it for FiST. I have converted Amd to
using GNU Autoconf, and in the process learned much and wrote many useful M4 tests [MacKenzie95].
Amd is near ready to handle FiST generated �le system modules.
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No. NFS V3 Call Name Vnode/VFS Function

0 NULL null (trivial)

1 GETATTR vn getattr

2 SETATTR vn setattr

3 LOOKUP vn lookup

4 ACCESS vn access

5 READLINK vn readlink

6 READ vn read

7 WRITE vn write

8 CREATE vn create

9 MKDIR vn mkdir

10 SYMLINK vn symlink

11 MKNOD a special version of vn create

12 REMOVE vn remove

13 RMDIR vn rmdir

14 RENAME vn rename

15 LINK vn link

16 READDIR vn readdir

17 READDIRPLUS slightly di�erent version of vn readdir

18 FSSTAT vfs statvfs

19 FSINFO special version of vfs statvfs+vn pathconf

20 PATHCONF vn pathconf

21 COMMIT must be completely written

Table 4: NFS V3 Equivalent Vnode Operations
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4 The FiST Language

In this section I detail the motivation, concepts, design, and syntax of the FiST language.

4.1 Motivations for the FiST Language

The motivations for creating the FiST language are as follows:

� Much �le system code is repetitive. A language is ideally suited to condense such code into short
declarations.

� A language may de�ne defaults for many actions, further reducing the need to hand-write code.

� A translator can ensure that generated code is compilable and bug-free.

� Error testing and reporting can be automated.

� Interfacing to the interposed or interposing �le system can be automated.

� Interfacing user level and kernel level code can be automated.

The C preprocessor (cpp), in comparison, is not able to conditionally generate sophisticated code.
It is more suitable for code expansion from small, static templates.

4.2 Language Requirements

I set forth the following requirements for the FiST language:

� The language should be portable across di�erent operating systems o�ering the vnode interface,
and accommodate small di�erences in vnode interface implementations.

� The language should have a familiar \look and feel." A model like that used by yacc is desirable.

� No tedious or repetitive tasks should be required. Every option that can be automated or de-
faulted should be.

� There should be keywords that can alter the overall behavior of the generated code. Hopefully,
this would make it easy to write a FiST program by altering a working FiST program for a
di�erent type of �le system.

� On the other hand, the advanced \hacker" should not be left out. There should be facilities to
modify or augment the behavior of every vnode operation, from simple keywords all the way to
hand-writing C code.

� The language should be as high a level as possible while retaining exibility to adjust small details
and ease of parsing.

� An empty input �le should result in a usable �le system, in particular the wrapper �le system,
described in Appendix B.2.1.
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4.3 Translator Requirements

I set forth the following requirements for the translator:

� The goal of portability e�ectively requires that the translator output ANSI C code. In particular,
the output should compile with strong error checking such as produced by gcc -ansi -Wall

-Werror.

� The generated code should not require modi�cations to existing interfaces and kernel facilities,
nor should it attempt to modify existing interfaces or �le systems at run time.

� The translator should generate runnable kernel-resident code as described in Section 4.3.1.

� The translator should also be able to generate runnable user-level �le system code as described
in Section 4.10.

� The translator should generate kernel modules that can be dynamically loaded into a running
kernel using facilities such as modload [SMCC93a], or linked with other kernel objects to produce
a static image of a new kernel [SMCC91]. The latter can then be copied over to the root directory
and run when the machine is next rebooted.

� The translator should take the worst-case approach. Any minor problem with the input �le or
the code generation phase should result in fatal errors. No kernel module should be produced if
there is any known chance that it will not run properly.

� Every e�ort should be made to generate fast code.

� The translator itself should be written using tools and languages that make it easily portable to
other environments.

4.3.1 Linkage Requirements for Kernel Modules

Kernel modules do not get fully linked when built because some of the symbols they refer to do not
exist anywhere but in a running kernel. Despite this complication, the FiST translator should check
for any possible unresolved symbols and warn the user.

The naive way to �nd out if a kernel module is referring to nonexistent symbols is to load it and
link it with the running kernel. If any problems arise, the system may hang or panic and crash.

The standard way to avoid this problem is to link the module at user level with a library that
includes a main() procedure and dummy de�nitions for all the symbols that a kernel might export.

To write such a library it is necessary to know all the symbols a kernel exports. Older operating
systems (such as SunOS 4.x) allow for kernel memory access through a device called /dev/kmem.
Through this device a privileged process can \browse" the memory of a running kernel to �nd symbols.
The build procedure for newer operating systems (such as FreeBSD 2.1.x) produces a \kernel library"
(e.g., libkern.a) and header �les that include all the symbols one needs.

Following this method, FiST will include an auto-con�guration procedure that must be run only
once for each operating system version. This procedure will search for all needed kernel symbols and
create code to link with �le system modules.
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4.4 FiST Vnode Attributes

Each vnode has a set of attributes that apply to it. FiST refers to vnode attributes by pre�xing their
standard names with a % character. Table 5 lists these common attributes.

Attribute Meaning

%type regular �les, directories, block devices, character devices, symbolic links, Unix pipes,
etc. Operations in FiST could apply to one or more of these vnode types (de�ned in
system headers).

%mode a �le has several mode bits that determine if that �le can be read, written, or executed
by the owner, members of the group, or all others. Also includes \set" bits (setuid,
setgid, etc).

%owner The user ID who owns the �le.

%group The group ID that owns the �le.

%size The size of the �le in bytes or blocks.

%time \Creation," modi�cation, and last access times of the �le | referred to as %ctime,
%mtime, and %atime, respectively. Defaults to modi�cation time.

%data The actual data blocks of the �le.

%name The (path) name of the �le. This is the �rst name that a vnode was opened with (in
case a �le has multiple names). Since usually Unix does not keep �le names stored in
the kernel, FiST will arrange for them to be stored in the private data of a vnode if
this attribute is used.

%�d The \File ID" of the �le (as computed by vn fid).

%misc Miscellaneous information about a �le that would rarely need to be modi�ed.

Table 5: FiST Vnode Primary Attributes

FiST also includes attributes for certain universal Unix kernel concepts that might be useful in
specifying �le system operations. These are shown in Table 6.

Attribute Meaning

%cur uid The user ID of the currently accessing process.

%cur gid The group ID of the currently accessing process.

%cur pid The process ID currently running.

%cur time The current time in seconds since the Unix epoch.

%from host The IP address of the host from where access to this vnode has been initiated. Use
127.0.0.1 for the local host, and 0.0.0.0 if the address could not be found.

Table 6: FiST Kernel Global State Attributes

4.5 FiST Vnode Functions

Each vnode or VFS has a set of operations that can be applied to it. The most obvious are %vn op and
%vfs op. Here, op refers to the respective Vnode and VFS operations as described in Appendices A.4
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and A.2. For example, %vn getattr refers to the vnode operation \get attributes," and %vfs statvfs

refers to the VFS operation \get �le system statistics."

It is often useful to refer to a group of vnode operations as a whole. Generally, a user who wants
to perform an operation on one type of data will want that operation to be applied everywhere the
same type of data object is used. For example, in Envfs (Appendix B.2.2) environment variables in
pathnames should be expanded everywhere pathnames are used, not just, say, in the vn open function.
FiST provides meta-function operators that start with %vn op and %vfs op. These meta-functions are
listed in Table 7.

Vnode Meta-Function VFS Meta-Function Meaning

%vn op all %vfs op all all operations

%vn op construct %vfs op construct operations that create new vnodes

%vn op destroy %vfs op destroy operations that delete existing ones

%vn op read %vfs op read operations that read values

%vn op write %vfs op write operations that write values

%vn op pathname %vfs op pathname operations that manipulate path names

%vn op this %vfs op this The current operation being executed

Table 7: FiST Meta Functions

4.5.1 Errors

I chose to treat error codes as just another type of data. Error codes are usually a short integer: zero
indicates no error, and a positive integer indicates one of many possible errno numbers. The directive
%error returns the error code for the last function executed.

FiST can be instructed to return any error code which exists in <sys/errno.h> or even new error
codes. New error codes would be suitable for new types of failure modes. For example, an encryption
�le system might have a new error code \invalid key;" a compression �le system might have a code
indicating \�le already compressed;" a caching �le system might have a code for \cached �le is too
old," and so on.

4.5.2 State Functions

A persistent �le system (see Section 4.9.3) needs to store state in an auxiliary �le system. The informa-
tion stored needs to be formatted to �t o�-line storage. For example, it must not contain pointers that
may be valid in memory at the moment, but are certainly invalid after a reboot. In addition, facilities
are needed for describing what information is stored in the state �le system, and in what format it is
stored.

State is de�ned by assigning a key and optional value to the FiST %state function. FiST knows
when state needs to be actually ushed to permanent storage. It knows when you are assigning to it
(writing state), or reading from it. The syntax for setting a state is as follows:

�

�

�

�
%state op, keylist, valuelist

where op is an operation to perform on the state. It can be one of add, del, overwrite, addunique,
etc. I.e., normal data structure lookup table operations one might expect. The parameter keylist is a
list of one or more keys and valuelist includes zero or more values.
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The overall key is stored using a concatenation of the values of the keys; since no pointers are
allowed, if any are speci�ed, they would have to �rst be followed until their value is reached. No e�ort
will be attempted to follow arbitrarily complex pointers.

The overall value stored is the list of concatenated values. Each value is preceded by the number
of bytes stored. A valueless key has a zero byte count. The whole sequence is preceded by the number
of items stored. If no values are speci�ed, the number of items stored is set to zero.

The syntax for reading values from Statefs is as follows:
�

�

�

�
%state op, keylist where op is get, and

keylist is the same as when writing state. If the entry does not exist, the operation will return the
error code ENOENT (\no such entry"). If it is empty, a non-zero integer will be returned. Otherwise,
the list of values will be returned into the same type variables as were assigned to when the state was
written.

4.6 Variables

FiST variables begin with the $ character. The variable $$ refers to the �le system being de�ned; i.e.,
the one that interposes. If this �le system interposes on top of more than one other �le system, then
those �le systems may be referred to using the positional variables $1, $2, $3, etc. If only one �le
system is being interposed upon, then $1 may be omitted.

The order for which a positional variable is assigned depends on the mounting options and the
implementation. For example, when writing FiST code, using $1 will refer to the �rst mounted �le
system on the command line, $2 will refer to the second, etc. Changing which �le system refers to
which positional variable is as simple as mounting the �le system with a di�erent order of options.

To refer to a particular attribute of a vnode, the attribute keyword is appended to the positional
parameter, separated by a period. For example:

� $$.%type refers to the type of vnode in this �le system.

� $2.%data refers to data blocks of the second interposed �le system.

� $3.%error refers to the error code returned from the third interposed �le system.

� $1.%mode refers to mode bits of the �rst interposed �le system.

4.7 Filters

A key idea in FiST is the use of �lters. Filters are functions that act much like Unix �lters | programs
that may be concatenated with the shell pipe symbol | (a vertical bar). A �lter accepts data as input,
manipulates it, and then passes it on.

A �lter is de�ned as follows:
�

�

�

�
%filter �ltername fsindex attr [ f conditions g ] where �ltername

is the name of the �lter; e.g., \gzip," \compress," \crypt," \DES," and \rot13." fsindex refers to the
positional parameter of the �le system such as $$, $1, and so on. attr refers to the attribute of the
vnode, e.g. %name, %owner, %mode, or the vnode operation name such as vn read, vn open, etc.

An optional set of conditions may be supplied, enclosed in curly braces. If all the conditions are
met, the �lter will be applied. Conditions are separated by a semicolon. Each condition is a boolean
expression using C syntax binary operators &&, ||, ==, !=, etc.
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4.7.1 Filter Examples

Here are a few examples of �lters.

1. To compress data blocks of regular �les:

%filter gzip $$ %data f$$.%type == regularg

2. To apply the Unix crypt(3)-based �lter to all directories owned by user \ezk" (uid 2301) on the
�rst �le system:

%filter crypt $1 %data f$1.%type == dir && $1.owner == 2301g

3. To expand shell environment variables that may be embedded in names of symbolic links:

%filter envexpand $$ %name f$$.%type == linkg

4. One may want to ignore errors returned by a caching �le system, since data not in the cache can
always be retrieved from the source. For example, if a �le could not be written because the cache
is full, that should not result in the vnode operation failing. To ignore out-of-space errors from
the cache �le system, one might use the \ignore" (null) �lter:

%filter ignore $2 %error f$2.%vn_op == write && $2.%error == ENOSPACEg

5. To log all attempts to read my directories by any non-system user other than the owner:

%filter syslog $$ %vn_readdir f%cur_uid > 999 && %owner != %cur_uidg

4.7.2 Filter Functions

If the conditions of the �lter are met, then a C function that implements the �lter is called. The
prototype of the function is as follows:

int fist_filter_ �ltername_ attr( & attr-data-type, & attr-data-size, ... );

That is, the name of the �lter function is composed from the �lter name and the attribute type.
The function receives at least two arguments: a pointer to the data that �ts the type, and a pointer
to the size of the data being passed.

Note that having the �lter name and attribute type in the function's name could be easily done
in C++ using methods and overloaded prototypes. This information is included in the function name
because the code should be C, a requirement for portability.8

For example, for the �rst example in Section 4.7.1, the prototype would be:
8Most kernels (as well as Amd) were written in C, and cannot handle module linkage of objects that are written in

C++. There are more C compilers available than C++ compilers, and C compilers generally produce faster and smaller
object modules.
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int fist_filter_gzip_data( page_t *, int * );

and for the third example it would be:

int fist_filter_envexpand_name( char **, int * );

Filter functions should behave like system calls, returning 0 (zero) upon success, and a non-zero
integer if any failure occurred. Failure codes are assumed to be errno values.

To write a new �lter, all one must do is write a simple C function that manipulates the data as
needed. There is no need to worry about what vnode operations this would have to apply to, where the
information is stored, when to allocate or free vnodes, most errors, and so on. All these are handled
automatically by FiST.

4.8 Language Syntax

A FiST input �le has four main sections, shown in Figure 14 with the appropriate delimiters:

%f
C Declarations

%g

FiST Declarations

%%

FiST Rules

%%

Additional C Code

Figure 14: FiST Grammar Outline

Comments (enclosed in /* ... */) may appear in any of the sections and will be copied verbatim
to the output �le. C++ style comments starting with // are only useful for the FiST input �le, as
they get completely stripped during translation.

4.8.1 C Declarations

This optional section is copied verbatim to the head of the output �le. This section is for #include
statements, macros, forward and extern prototypes, etc., for functions whose code may exist later or
outside the module.
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4.8.2 FiST Declarations

The FiST declarations section contains keywords and other de�nitions that change the overall behavior
of the produced code. They are listed in Table 8.

Keyword Possible Default Comments
Values Value

%fstype stateless
incore
persistent

incore De�nes the type of �le system to be generated, as
described in Section 4.9. If the persistent �le system
type is chosen, an implicit additional �le system is
included to the number of interposers. The latter
has a special index $0.

%interface vnode, nfs vnode De�nes the default interface to generate code for.
Can also be de�ned or overriden by a command line
option to the translator.

%interposers integer 1 De�nes how many �le systems will this one directly
access. If more than one, then to reference these �le
systems in order use the FiST variables $1, $2, $3,
etc.

%mntopts struct f...g; NULL De�nes a C structure with types and �eld names of
arguments that need to be passed from the user pro-
cess that mounts this �le system, via the mount(2)

system call, to the VFS mount operation. User level
mount code and common header �les will be gener-
ated for these de�nitions.

%�lter See Section 4.7 none De�nes FiST �lter as described in Section 4.7

Table 8: FiST Declaration Keywords

If only one interposed �le system is de�ned in the %interposers keyword in the declarations section,
then its positional parameter may be omitted. All of the �lter declarations described in Section 4.7.2
go in this section.

4.8.3 Rules

Filters are a construct that is useful when a \stream" of data needs to be modi�ed the way Unix �lters
do. FiST Filters are just a specialization of the more general construct | Rules. FiST Rules allow
�ner and more exible control over errors, arguments, and even data. Rules can access global data,
where �lters may not.

Rules for vnode operations take precedence over the �lter de�nition of a vnode function. Each rule
has the form of a FiST operation, followed by a single colon, optional action code, and terminated with
a semicolon:

�

�

�

�
�stop: action ; where �stop is a name of a vnode/VFS operation, optionally pre�xed by

a �le system index variable and separated by a single dot. For example:

� vfs root refers to the \get root vnode" VFS operation of the �rst and only interposed �le system.
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� $1.vfs root refers to the same operation on the �rst interposed �le system, when there are two
or more interposed �le systems.

� $2.vn getattr refers to the vnode \get attributes" operation on the second interposed �le system.

� $0.vn mkdir refers to the vnode \make directory" operation on the state-storing interposed �le
system of a persistent �le system.

� $$.vn setattr.error action refers to the error action code section of the vnode \set attributes
operation of the current vnode. See Tables 9 and 10.

The optional action code, if included,

de�ne variables --- optional

manipulate the incoming arguments vector --- optional

foreach f in all interposers of this �le system
do

error = $ f.fistop( args);
if (error == ERROR); then

perform actions based on errors --- optional

return error;
endif

manipulate the returning arguments vector --- optional

done

Figure 15: FiST Default Rule Action for Stateless and In-Core
File Systems (Pseudo-Code)

must be delimited by a set of curly braces
f...g. If the action is omitted, the default
action is used. The pseudo-code for the
default action for stateless and in-core
FiST �le systems is depicted in Figure
15, while pseudo-code for the default ac-
tion for persistent �le systems is shown
in Figure 16.

FiST allows the �le system designer
to control each portion of the default code
for stateless and in-core �le systems. Key-
words for each section are listed in Table
9.

Keyword Code Section

%variables de�ne local variables

%in args manipulate the incoming arguments vector

%error action perform actions based on errors

%out args manipulate the returning arguments vector

Table 9: Code Section Names for Stateless and In-Core File Systems

FiST also lets the �le system designer to control each portion of the default code for persistent �le
systems. Keywords for each section are listed in Table 10.

The code is treated as normal C code, but certain special variables and functions are interpreted
and expanded at code generation time. The variables that are specially expanded are the positional
variables $$, $0, $1, $2, $3, etc. Special functions that are available would include all �lter functions
de�ned above:

� functions to access the state �le system (write state, read state, lookup state, etc.)

� functions to run a �lter on data (de/compress, encrypt/decrypt)

� functions to manipulate pathnames (expand, translate)
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de�ne variables --- optional

lock this vnode and all vnodes in the interposition chain.
manipulate the incoming arguments vector --- optional

foreach f in all interposers of this �le system ; do

retval[ f] = $ f.fistop( args);
manipulate the returning arguments vector --- optional

done

if any error occurred ; then

perform actions based on errors --- optional

unlock interposition chain (and possibly unroll action).
return error ;

endif

save any state de�ned on $0.
�nal manipulation of return codes
unlock interposition chain.
return status-code ;

Figure 16: FiST Default Rule Action for Persistent File Systems (Pseudo-Code)

Keyword Code Section

%variables de�ne local variables

%in args manipulate the incoming arguments vector

%action retval[f] = $f.�stop(args);

%out args manipulate the returning arguments vector

%error action perform actions based on errors

%out state save any state de�ned

%out error �nal manipulation of return codes

Table 10: Code Section Names for Persistent File Systems
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� functions to manipulate user credentials and �le modes

� error handling when using more than one interposed �le system (fail �rst, run through the end
and return worst failure, restart operation on error, number of retries, etc.)

4.8.4 Additional C Code

This optional section is copied verbatim to the end of the output �le. This section may contain the
�lter functions and any other auxiliary code.

4.9 File System Types

File systems generated by FiST may be classi�ed depending on how they store their state, if any. File
systems can have no state, regenerateable memory-resident state, or state that must be stored onto
persistent media.

4.9.1 Stateless File Systems

A stateless �le system does not create a \wrapping" vnode

for every vnode in the interposed �le system. As shown in

/

binetc

usr

ucblocal

usr

3 42

1

65

Filesystem

Y

Filesystem X2

Figure 17: Vnode Structure in a Stateless
File System

Figure 17, there is only one new vnode created, as is needed
for every �le system: the root (Y2) of the interposing �le
system Y.

This �le system type is quite limited. The only time that
something interesting can happen is when the �le system's
mount point is crossed. I expect very few useful �le systems
to fall into this category. An example is Crossfs (Appendix
B.1.2), a �le system that performs a stateless event when a
lookup operation traverses into it from the �le system it is
mounted on. A typical event might be to print a message on
the system console that includes the uid and gid of process
that crossed into this �le system.

4.9.2 In-Core File Systems

An in-core �le system is the type that has been developed so far in this proposal. State is maintained
by the interposing vnodes.

The main attraction of an in-core �le system is that its state may be regenerated after an unmount,
reboot, or crash. In general, the state of the �le system can be recovered by simply remounting it. A
secondary advantage to in-core �le systems is their simplicity. With just a few small modi�cations to
Wrapfs one can generate many interesting and useful �le systems, as exempli�ed in Appendix B.2. I
expect many �le systems generated by FiST to fall into this category.
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4.9.3 Persistent File Systems

Persistent �le systems require permanent state. To increase performance and fault tolerance, the state
might typically be stored on a local disk, but remote �le servers could be used just as well.

Figure 18 shows what happens when �le system Y interposes on top of �le system X. In that respect
it is similar to an in-core �le system. However, �le system Y also uses an auxiliary �le system W.
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Figure 18: Vnode Structure in a Persistent File System

An example stateful �le system is Cachefs (Appendix B.3.1), a �le system that is used as a cache
by another �le system. When the �le system is re-mounted the cache could be used again, subject to
consistency constraints.

I require that operations on the state-storing �le system be vnode operations. This has two bene�ts:

� The code is portable because it does not directly access native �le systems.

� State may be stored on any type of media, since access is via the VFS * and VOP *macros (depicted
in Appendices A.2 and A.4, respectively).

The restriction brings two disadvantages:

1. If only a little state is required, it could be stored in a much simpler data structure. Requiring
state operations to go through all the �le system layers may be unnecessarily costly.

2. The data structures representing the state may be too complex to be trivially stored in a Unix
�le system tree structure. Unix �le systems o�er a traditional tree-like organization. That makes
storing state in such a data structure obvious, as there is a one-to-one mapping of source �le to
auxiliary state �le. But what if the auxiliary state that needs to stored requires a more complex
data structure, such as a B-tree [Elmasri94] or a graph? In that case, there is no simple way
to take advantage of Unix's existing �le system structures. Rather, the only way such state can
be stored is within one or more \at" Unix �les, where an application level process will have to
maintain the complex data structures within.
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I think, however, that the bene�ts to my restriction outweigh the disadvantages. I intend to devise a
state-storing �le system using FiST, called Statefs. This �le system | described in detail in Appendix
B.2.3 | will do nothing more than record state for another �le system. Statefs will operate inside the
kernel, hopefully making its performance a non-issue.

For example, consider the Versionfs �le system described in Appendix B.3.5. Unix �le systems do
not have versioning capabilities. If one wanted to add version information per �le, without modifying
the implementation or content of an existing �le system, one would have to store the version information
in an auxiliary location, and somehow correlate data in the unmodi�ed �le system with the auxiliary
location. With FiST, one could create a �le system that interposes onto two others: the unmodi�ed
data �le system, and the auxiliary location. The latter can be any type of �le system. FiST provides
the facilities to make the necessary correlations between the \source" �le system and the \auxiliary"
one that is used for storing the extra versioning information. This auxiliary �le system is Statefs.

Note that Statefs is an in-core �le system. Although it requires storage for itself, the storage need
never be interposed upon, and therefore is not considered \state" which would make Statefs a persistent
�le system.

4.10 User Level File Systems

User level NFS �le system modules do not have the same functionality because the NFS protocol is
more restrictive; the set of operations NFS provides is not as rich as the vnode/VFS set.

4.10.1 Types of User-Level FiST File Systems

The three di�erent types of �le systems | stateless, in-core, and persistent | can also be generated
at the NFS level.

4.10.1.1 Stateless NFS File Systems

Stateless �le systems perform interesting operations only when the mount point is crossed. Amd and
all user-level �le servers that I know of are contacted by the kernel only after the kernel has crossed their
mount point during a lookup operation. Therefore, there is no logical place in a user-level automounter
to call an operation when a mount point is crossed.

Since this type of �le system is very limited in use and functionality, I will devote little or no e�ort
to getting this case working in FiST.

4.10.1.2 In-Core NFS File Systems

This type of �le system is the most natural to generate as a user level �le system. In-core kernel-
resident �le systems keep state that can be regenerated | a vnode for every interposed �le. An
interesting observation is that inside NFS �le systems, similar state is kept associated with an NFS �le
handle. That is exactly how Hlfsd and Amd are written: there exist nfs fhandle structures for every
�le that is being represented by the �le system.

4.10.1.3 Persistent NFS File Systems

Persistent �le systems are more complicated than in-core �le systems. However, it is much easier to
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produce user-level code for persistent �le systems. There is no longer a need for an auxiliary \state
storing �le system." Outside the kernel one may use any system call (like read() and write()), so
state for example can be stored in any �le on a local UFS disk.

4.10.2 Fan-Out in User-Level File Systems

Fan-out de�nes how many �le systems one module can interpose upon. Inside the kernel there is no
limit. The interposed vnode pointers are stored inside the interposer's private data �eld, then accessed
as described in Section 3.3 and depicted in Figure 19.

/* perform FOO operation on two interposed vnodes */

int

vn_foo(vnode_t *vp, args) {

vnode_t *hidden_vp1 = vp->v_data->hidden[0];

vnode_t *hidden_vp2 = vp->v_data->hidden[1];

int error;

error = VN_FOO(hidden_vp1, args);

if (error)

return(error);

error = VN_FOO(hidden_vp2, args);

return(error);

}

Figure 19: Fan-Out in Stackable Vnode File Systems

This code is nice because it does not know about the type of the �le systems it interposes upon.
This is the result of having an abstract vnode interface in the �rst place. NFS is not an abstract
interface like the vnode interface is. Therefore, an NFS module inside Amd would have to know what
type of �le system it is accessing:

� If the interposed �le operation it is calling is another NFS module in that same Amd, just call
that C function directly. This is just a simple optimization, but at the same time may avoid
deadlocks when Amd may be waiting for an operation that needs to use the same Amd process.

� If the interposed �le operation it is calling is not another NFS module in Amd, it would have to
call standard system calls like read(), write(), link(), mkdir() etc.

The generated code must have some hooks that can probe an Amd server at run-time to see if the
function it needs to call is local to the running process or not. This is a small complication to the
generated code that may make it less clean. For example, the same vnode operation as in Figure 19,
when generated for the NFS interface, would look much like the code in Figure 20.

Additional and detailed examples of using FiST are included in Appendix C.
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/* perform FOO operation on two interposed nodes */

int

nfs_foo(fhandle_t *fhp, args)

{

fhandle_t *hidden_fhp1 = fhp->fh_data->hidden[0];

fhandle_t *hidden_fhp2 = fhp->fh_data->hidden[1];

int error;

/* find type of first handle, and call it */

if (file_system_local_to_amd(fs_type_of(hidden_fhp1)))

error = AMD_FOO(hidden_vhp1, args);

else

error = syscall(SYS_FOO, hidden_vhp1, args);

if (error)

return(error);

/* find type of second handle, and call it */

if (file_system_local_to_amd(fs_type_of(hidden_fhp2)))

error = AMD_FOO(hidden_vhp2, args);

else

error = syscall(SYS_FOO, hidden_vhp2, args);

return(error);

}

Figure 20: Fan-Out in Stackable NFS File Systems
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5 Evaluation Plan

In evaluating FiST-produced �le systems, it is important to keep in mind their purpose and \compe-
tition." First, the goals for stackable �le systems include portability, ease of development, and ability
to perform quick prototyping of new ideas. Therefore, some amount of performance degradation is
expected and acceptable, given all the other bene�ts.

Second, \stacked" �le systems should be compared to other interposing �le systems, such as Sun's
caching �le system, Cachefs. It is inappropriate to compare interposing �le systems to lower level �le
systems such as UFS or NFS, since the latter call device drivers directly without any additional over-
head. Interposing �le systems must incur some extra overhead because they must store and continually
dereference information about the interposed �le system(s).

On the other hand, it would be unfair to only compare kernel-resident interposing �le systems to
out of kernel �le systems. Given all the context switches needed to communicate between the kernel
and a user level server, it is not surprising that user level �le systems are slower.

5.1 Criteria for Success

Given the above, these are the criteria I have set for testing the success of my work:

1. I should be able to generate at least one working, useful, and non-trivial �le system in each of
the categories of stateless, in-core, and persistent. I intend to generate the following FiST �le
systems: Crossfs (Appendix B.1.2), Cryptfs (Appendix B.2.6), and Cachefs (Appendix B.3.1).

2. For each such kernel level �le system generated from a FiST description, I should be able to
generate a user-level �le system that runs in Amd.

3. The same FiST inputs should generate working �le systems on at least three di�erent Unix
operating systems. I intend to produce code for Solaris (SVR4 based), FreeBSD (BSD-4.4-Lite
based), and another operating system that has an established vnode interface, but is suÆciently
di�erent from \pure" SVR4 or BSD (for example HP-UX, AIX, or Digital Unix).

4. The overhead of interposition should be comparable to that of previous work on stackable �le
systems, and should not exceed 10% for Wrapfs. See Section 3.6.2 for details of current perfor-
mance.

5. I should be able to show how to write FiST descriptions for a variety of other �le systems.

5.2 Experiments

I intend to compare �le systems in several categories:

� In-kernel �le systems produced automatically using FiST against in-kernel hand written ones.
For example Cachefs as described in Appendix B.3.1 and [SunSoft94].

� User-level �le systems produced automatically using FiST against user-level hand written ones.
For example Cryptfs as described in Appendix B.2.6 and [Blaze93].
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� FiST generated �le systems against another system that provides native stacking, such as UCLA's
work [Heidemann94].

� Various FiST generated �le systems vs. each other. For example an in-kernel Gzipfs (Appendix
B.2.5) against a user-level one.

For each category, I will run the following tests:

1. Compare the performance of the �le systems with similar or identical functionality.

2. Compare the size of the FiST input to the generated C code.

3. Compare the size of the FiST generated code to that of hand-written �le systems (when sources
for the latter are available).

4. Compare the e�ort required to write a �le system using FiST vs. hand writing one (pending the
availability of such information.)

Additionally I intend to �nd out how many di�erent operating systems I can generate a �le system
for, from the same FiST input.

5.3 Lessons to be Learned

Lessons I expect to learn from this work include:

1. How easy or hard it is to use FiST to describe �le systems at a high level | something that has
never been done before.

2. The degree of portability of FiST-generated �le systems across di�erent platforms.

3. The performance of FiST-generated �le systems compared to equivalent hand-written, optimized
�le systems.

4. The performance of identical �le systems when run in-kernel versus at user level.

5. How diÆcult it is to write a �le system from scratch versus describing it in FiST.
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6 Related Work

Besides the previous e�orts at vnode stacking mentioned in Section 2, there are several other approaches
to providing exible �le systems.

6.1 HURD

The \Herd of Unix-Replacing Daemons" (HURD) from the Free Software Foundation (FSF) is a set of
servers running on the Mach 3.0 microkernel that collectively provide a Unix-like environment. HURD
�le systems are implemented at user level, much the same as in Mach [Accetta86] and CHORUS
[Abrosimov92].

The novel concept introduced by HURD is that of the translator. A translator is a program that
can be attached to a pathname and perform specialized services when that pathname is accessed.

For example, in the HURD there is no need for the ftp program. Instead, a translator for ftp service
is attached to a pathname, for example, /ftp. To access, say, the latest sources for the HURD itself, one
could cd to the directory: /ftp/prep.ai.mit.edu/pub/gnu and copy the �le hurd-0.1.tar.gz. Com-
mon Unix commands such as ls, cp, and rm work normally when applied to remote ftp-accessed �les.
The ftp translator takes care of logging into the remote server, translating FTP protocol commands to
�le system commands, and returning result codes back to the user.

Originally, a translator-like idea was used by the \Alex" work and allowed for example transparent
ftp access via a �le system interface [Cate92].

6.1.1 How to Write a Translator

HURD de�nes a common interface for translators. The operations in this interface are much closer to
the user's view of a �le than the kernel's, in many cases resembling Unix commands:

� file chown to change owner and or group.

� file chflags to change �le ags.

� file utimes to change access and modify times.

� file lock to apply or manipulate advisory locks.

� dir lookup to translate a pathname.

� dir mkdir to create a new directory.

The HURD also includes a few operations not available in the vnode interface, but which have often
been wished for:

� file notice changes to send noti�cation when a �le changes.

� dir notice changes to send noti�cation when a directory changes.

� file getlinknode to get the other names of a hard-linked �le.
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� dir mkfile to create a new �le without linking it into the �le system. This is useful for temporary
�les, for preventing premature access to partially written �les, and also for security reasons.

� file set translator to attach a translator to a point in the name space.

I have listed only some of the HURD �le and directory operations, but even an exhaustive list is
not as long as the vfs and vnode interfaces listed in Sections A.2 and A.4.

HURD comes with library implementations for disk-based and network-based translators. Users
wishing to write new translators can link with libdiskfs.a or libnetfs.a respectively. If di�erent
semantics are desired, only those necessary functions must be modi�ed and relinked. HURD also comes
with libtrivfs.a, a trivial template library for �le system translators, useful when one needs to write
a complete translator from scratch.

6.1.2 Conclusions

The HURD is unlikely ever to include a \standard" vnode interface. For political and copyright reasons,
the HURD was designed and built using free software and standards, with the emphasis on changing
anything that could be improved. This undoubtedly will limit its popularity. That, coupled with the
very di�erent programming interface it o�ers, means that there is less need for something like a FiST
translator to provide vnode-like code translation for the HURD. Nevertheless, the HURD o�ers an
interface that is comparable to the vnode one and more.

6.2 Plan 9

Plan 9 was developed at Bell Labs in the late 1980's [Pike90, Pike91, Presotto93]. The Plan 9 approach
to �le system extension is similar to that of Unix.

The Plan 9 mount system call provides a �le descriptor that can be a user process or remote �le
server. After a successful mount, operations below the mount point are sent to the �le server. Plan 9's
equivalent of the vnode interface (called 9P) comprises the following operations:

1. nop: The NULL (\ping") call. It could be used to synchronize a �le descriptor between two
entities.

2. session: Initialize a connection between a client and a server. This is similar to the VFS mount
operation.

3. attach: Connect a user to a �le server. Returns a new �le descriptor for the root of the �le
system. Similar to the \get root" vnode operation.

4. auth: Authenticate a 9P connection.

5. clone: Duplicate an existing �le descriptor between a user and a �le server so that a new copy
could be operated upon separately to provide user-speci�c name space.

6. walk: Traverse a �le server (similar to lookup).

7. clwalk: Perform a clone operation followed by a walk operation. This one is an optimization of
this common sequence of operations, for use with low-speed network connections.
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8. create: Create a new �le.

9. open: Prepare a �le descriptor before read or write operations.

10. read: Read from a �le descriptor.

11. write: Write to a �le represented by a �le descriptor.

12. clunk: Close a �le descriptor (without a�ecting the �le).

13. remove: Delete an existing �le.

14. stat: Read the attributes of a �le

15. wstat: Write attributes to a �le.

16. flush: Abort a message and discard all remaining replies to it from a server.

17. error: Return an error code.

These operation messages are sent to a �le server by the Plan 9 kernel in response to client requests,
much the same way as user-level NFS servers behave.

My impression is that Plan 9 and 9P provide little bene�t over what can be done with the vnode
interface and a user level NFS server. Certainly, there is no major novelty in Plan 9 likes the translation
concept of the HURD. Support for writing Plan 9 �le servers is limited, and the functionality they can
provide is not as well thought out as the HURD's. The HURD therefore provides a more exible �le
service extension mechanism.

Changing FiST's language and translator to generate Plan 9 �le system code would be no more
diÆcult than doing it for the HURD.

6.2.1 Inferno

Inferno is Lucent Technologies' (\Bell Labs") successor to Plan 9. The Inferno network operating
system was designed to be compact while fully functional, and �t in a small amount of memory. It is
designed to run on devices such as set-top boxes, PDAs, and other embedded systems [Lucent97].

In Inferno, everything is represented by �les. Therefore, �le systems are indistinguishable from
other services; they are all part of the Inferno name space. Even devices appear as small directories
with a few �les named \data," \ctl," \status," etc. To control an entity represented by such a directory,
you write strings into the \ctl" �le; to get status, read the \status" �le; and to write data, open the
\data" �le and write to it. This model is simple and powerful: operations can be done using simple
open, read/write, and close sequences | all without the need for di�erent APIs for networking, �le
systems, or other daemons [Breitstein97].

Inferno allows name spaces to be customized by a client, server, or any application. The mount
operation imports a remote name space onto a local point, much like Unix �le system mounts work.
The bind operation is used to make a name space in one directory appear in another. This is similar to
creating symbolic links and hard links in traditional Unix �le systems, with the exception that Inferno
can also unify the contents of two directories.
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For Inferno to o�er a new �le system functionality that might otherwise be achieved via vnode
stacking, an application has to mount and bind the right name spaces, add its own as required (im-
plemented via the Limbo programming language [Kernighan96]), and then o�er them for importation
(which can be done securely).

Inferno's main disadvantage is a familiar one. It is a brand new operating system, and employs a
new programming language and model. Inferno is not likely to be as portable and in wide use for years
to come. My impression of Inferno is that if successful, it will become popular in the �eld of embedded
systems.

6.3 Programmed Logic Corp.'s StackFS

Programmed Logic Corp. is a company specializing in storage products. Among their o�erings are a
compression �le system, a 64-bit �le system, a high-throughput �le system utilizing transactions, and
a stackable �le system. PLC's StackFS [PLC96] is very similar to my wrapper �le system described in
Appendix B.2.1.

StackFS allows for di�erent modules to be plugged in a variety of ways to provide new function-
ality. Modules o�ering 64-bit access, mirroring, union, hierarchical storage management (HSM), FTP,
Caching, and others are available. Several modules can be loaded in a stack fashion into StackFS. The
only organization available is a single stack; that is, each �le system performs its task and then passes
on the vnode operation to the one it stacked on top of, until the lowest stacked �le system access the
native �le system (UFS or NFS).

There is no support for fan-in or fanout. There is seemingly no support for composition either.
Also, StackFS does not have facilities for saving state in an auxiliary �le system the way FiST de�nes
Statefs (see Appendix B.2.3). Finally, there is no language available for producing modules that will
work within StackFS. Still, PLC's products are the only known commercially available stackable �le
system implementation.

6.4 Spring

Spring is an object oriented research operating system built by SunMicrosystems Laboratories [Mitchel94].
It was designed as a set of cooperating servers on top of a microkernel. Spring uses a modi�ed Interface
De�nition Language (IDL) [Stone87, Warren87] as outlined in the CORBA speci�cations [CORBA91]
to de�ne the interfaces between the di�erent servers.

Spring includes several generic modules that provide services that are useful for �le systems:

� Caching: A module that provides attribute caching of objects.

� Coherency: A layer that guarantees object states in di�erent servers are identical. It is im-
plemented at the page level, so that every object inherited from it could get coherency \for
free."

� I/O: A layer that lets one perform streaming-based operation on objects such as used by the
Unix read and write system calls.

� Memory Mapper: A module that provides page-based caching, sharing, and access (similar to
the Unix mmap system call, and more).
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� Naming: A module that maintains names of objects.

� Security: A module that provides secure access and credentials veri�cation of objects.

Spring �le systems inherits from many of the above modules. The naming module provides naming
of otherwise anonymous �le objects, giving them persistence. The I/O layer is used when the read or
write system calls are invoked. The memory pager is used when a page needs to be shared or when
system calls equivalent of mmap are invoked. The security layer ensures that only permitted users can
access �les locally or remotely, and so on.

Spring �le servers can reside anywhere | not just on the local machine or remotely, but also in
kernel mode or in user-level. File servers can replace, overload, and augment operations they inherit
from one or more �le servers. This form of object oriented composition makes �le systems simpler to
write.

File system stacking is easy and exible in Spring. The implementation of the new �le system
chooses which �le system modules to inherit operations from, then changes only those that need
modi�cation. Since each �le object is named, Spring stackable �le systems can perform operations on
a per-�le basis; they can, for example, decide to alter the behavior of some �les, while letting others
pass through unchanged.

Spring is a research operating system used by Sun to develop new technology that could then be
incorporated into its commercial operating system products. As such, performance is a major concern
in Spring. Performance had always been a problem in microkernel architectures due to the numerous
messages that must be sent between the many servers that could be distributed over distinct machines
and even wide-area networks. Spring's main solution to this problem was the abundant use of caching.
Everything that can be cached is cached: pages, names, data, attributes, credentials, etc. | on both
clients and servers.

Without caching, performance degradation for a single stack layer �le system in Spring ranged from
23%-39%, and peaked at 69%-101% for a two-layer stack (for the fstat and open operations)! With
caching it was barely noticeable. However, even with caching extensively employed, basic �le system
operations (without stacking) still took on average 2-7 times longer than the highly optimized SunOS
4.1.3 [Khalidi93]. So while it is clear that caching helped to alleviate some overheads, many more
remain. Compare that to FiST's total overhead for a single stack layer of about 3-6% (Section 3.6.2)
and you see that FiST is more capable of commercial grade performance.

To implement a new stackable �le system in Spring, one has to write only those operations that
need implemented. The rest get their implementation inherited from other �le system modules. FiST
also lets you implement only those �le system operations that are needed. Every operation you do not
explicitly modify or override defaults to that of Wrapfs (forward the vnode operation to the interposed
�le system).

The work done in the Spring project is clean and impressive. Spring, however, still uses a di�erent
�le system interface and as a research operating system is not likely to become popular any time soon,
if ever. There is still plenty of merit to using FiST to provide as many of the �le system facilities that
Spring provides, using a simple to de�ne language and generating code for a more common interface.
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6.5 4.4 BSD's nullfs

4.4 BSD includes a �le system called \nullfs" that is identical to my Wrapfs. BSD's nullfs does not
create any infrastructure for stacking; all it does is allow mounting one part of the �le system in a
di�erent location. It proved useful as a template from which 4.4 BSD's Union �le system was written
[Pendry95]. The latter was developed by extending nullfs to merge the mount point �le system and
the mounted one, rather than blindly forward vnode and VFS operations to the new mount point.

The only contribution of 4.4 BSD to stacking is that it used an existing vnode interface in a manner
similar to FiST. In fact, the way to write stackable �le systems in 4.4 BSD is to take the template code
for their nullfs, and adapt it to one's needs.

7 Summary

The proposed work strives for a radical improvement in the ease and exibility with which new �le
systems can be written and deployed. I expect the most signi�cant contributions of my thesis to be:

1. The �rst language for the abstract description of �le system behavior.

2. The �rst method for writing �le systems without access to the sources for the target operating
system.

3. The �rst method for writing �le systems that are portable across di�erent operating systems.

4. A mechanism to produce either kernel or user-level �le systems from the same higher-level de-
scription.

5. The performance degradation added by my mechanism would be small.
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A Appendix: Vnode Interface Tutorial

This section provides a simple introduction to the vnode interface. The information herein is gath-
ered from pivotal papers on the subject [Kleiman86, Rosenthal90] and from system C header �les |
speci�cally <sys/vfs.h> and <sys/vnode.h>.

The two important data structures used in the vnode interface are struct vfs and struct vnode,
depicted in Figures 21 and 25, respectively.

A.1 struct vfs

An instance of the vfs structure exists in a running kernel for each mounted �le system. All of these
instances are chained together in a singly-linked list. The head of the list is a global variable called
root vp, which contains the vfs for the root device. The �eld vfs next links one vfs structure to the
following one in the list.

typedef struct vfs {

struct vfs *vfs_next; /* next VFS in VFS list */

struct vfsops *vfs_op; /* operations on VFS */

struct vnode *vfs_vnodecovered; /* vnode mounted on */

u_long vfs_flag; /* flags */

u_long vfs_bsize; /* native block size */

int vfs_fstype; /* file system type index */

fsid_t vfs_fsid; /* file system id */

caddr_t vfs_data; /* private data */

dev_t vfs_dev; /* device of mounted VFS */

u_long vfs_bcount; /* I/O count (accounting) */

u_short vfs_nsubmounts; /* immediate sub-mount count */

struct vfs *vfs_list; /* sync list pointer */

struct vfs *vfs_hash; /* hash list pointer */

kmutex_t vfs_reflock; /* mount/unmount/sync lock */

} vfs_t;

Figure 21: SunOS 5.x VFS Interface

The �elds relevant to this proposal are as follows:

� vfs next is a pointer to the next vfs in the linked list.

� vfs op is a pointer to a function-pointer table. That is, this vfs op can hold pointers to UFS
functions, NFS, PCFS, HSFS, etc. For example, if the vnode interface calls the function to mount
the �le system, it will call whatever sub�eld of struct vfsops (See Section A.2) is designated
for the mount function. That is how the transition from the vnode level to a �le system-speci�c
level is made.

� vfs vnodecovered is the vnode on which this �le system is mounted (the mount point).
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� vfs flag contains bit ags for characteristics such as whether this �le system is mounted read-
only, if the setuid/setgid bits should be turned o� when exec-ing a new process, if sub-mounts
are allowed, etc.

� vfs data is a pointer to opaque data speci�c to this vfs and the type of �le system this one is.
For an NFS vfs, this would be a pointer to struct mntinfo (located in <nfs/nfs clnt.h>) |
a large NFS-speci�c structure containing such information as the NFS mount options, NFS read
and write sizes, host name, attribute cache limits, whether the remote server is down or not, and
more.

� vfs reflock is a mutual exclusion variable used by locking functions that need to change values
of certain �elds in the vfs structure.

A.2 struct vfsops

The vfs operations structure (struct vfsops, seen in Figure 22) is constant for each type of �le system.
For every instance of a �le system, the vfs �eld vfs op is set to the pointer of the operations vector of
the underlying �le system.

typedef struct vfsops {

int (*vfs_mount)();

int (*vfs_unmount)();

int (*vfs_root)();

int (*vfs_statvfs)();

int (*vfs_sync)();

int (*vfs_vget)();

int (*vfs_mountroot)();

int (*vfs_swapvp)();

} vfsops_t;

Figure 22: SunOS 5.x VFS Operations Interface

Each �eld of the structure is assigned a pointer to a function that implements a particular operation
for the �le system in question:

� vfs mount is the function to mount a �le system on a particular vnode. It is responsible for
initializing data structures, and �lling in the vfs structure with all the relevant information (such
as the vfs data �eld).

� vfs unmount is the function to release this �le system, or unmount it. It is the one, for example,
responsible for detecting that a �le system has still opened resources that cannot be released,
and for returning an errno code that results in the user process getting a \device busy" error.

� vfs root will return the root vnode of this �le system. Each �le system has a root vnode from
which traversal to all other vnodes in the �le system is enabled. This vnode usually is hand crafted
(via kernel malloc) and not created as part of the standard ways of creating new vnodes (i.e.
vn lookup).



A.2 struct vfsops 49

� vfs statvfs is used by programs such df to return the resource usage status of this �le system
(number of used/free blocks/inodes).

� vfs sync is called successively in every �le system when the sync(2) system call is invoked, to
ush in-memory bu�ers onto persistent media.

� vfs vget turns a unique �le identi�er �d for a vnode into the vnode representing this �le. This
call works in conjunction with the vnode operation vop fid, described in Appendix section A.4.

� vfs mountroot is used to mount this �le system as the root (�rst) �le system on this host. It is
di�erent from vfs mount because it is the �rst one, and therefore many resources such as root vp

do not yet exist. This function has to manually create and initialize all of these resources.

� vfs swapvp returns a vnode speci�c to a particular device onto which the system can swap.
It is used for example when adding a �le as a virtual swap device via the swap -a command
[SMCC94b].

The VFS operations get invoked transparently via macros that dereference the operations vector's
�eld for that operation, and pass along the vfs and the arguments it needs. Each VFS operation has
a macro associated with it, located in <sys/vfs.h>. Figure 23 shows the de�nitions for these macros.

#define VFS_MOUNT(vfsp, mvp, uap, cr) (*(vfsp)->vfs_op->vfs_mount)(vfsp, mvp, uap, cr)

#define VFS_UNMOUNT(vfsp, cr) (*(vfsp)->vfs_op->vfs_unmount)(vfsp, cr)

#define VFS_ROOT(vfsp, vpp) (*(vfsp)->vfs_op->vfs_root)(vfsp, vpp)

#define VFS_STATVFS(vfsp, sp) (*(vfsp)->vfs_op->vfs_statvfs)(vfsp, sp)

#define VFS_SYNC(vfsp, flag, cr) (*(vfsp)->vfs_op->vfs_sync)(vfsp, flag, cr)

#define VFS_VGET(vfsp, vpp, fidp) (*(vfsp)->vfs_op->vfs_vget)(vfsp, vpp, fidp)

#define VFS_MOUNTROOT(vfsp, init) (*(vfsp)->vfs_op->vfs_mountroot)(vfsp, init)

#define VFS_SWAPVP(vfsp, vpp, nm) (*(vfsp)->vfs_op->vfs_swapvp)(vfsp, vpp, nm)

Figure 23: VFS Macros

When any piece of �le system code, that has a handle on a vfs, wants to call a vfs operation on
that vfs, they simply dereference the macro, as depicted in Figure 24.

int foo(const vfs_t *vfsp, vnode_t **vpp)

{

int error;

error = VFS_ROOT(vfsp, vpp);

if (error)

return (error);

}

Figure 24: VFS Macros Usage Example
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A.3 struct vnode

An instance of struct vnode (Figure 25) exists in a running system for every opened (in-use) �le,
directory, symbolic-link, hard-link, block or character device, a socket, a Unix pipe, etc.

typedef struct vnode {

kmutex_t v_lock; /* protects vnode fields */

u_short v_flag; /* vnode flags (see below) */

u_long v_count; /* reference count */

struct vfs *v_vfsmountedhere; /* ptr to vfs mounted here */

struct vnodeops *v_op; /* vnode operations */

struct vfs *v_vfsp; /* ptr to containing VFS */

struct stdata *v_stream; /* associated stream */

struct page *v_pages; /* vnode pages list */

enum vtype v_type; /* vnode type */

dev_t v_rdev; /* device (VCHR, VBLK) */

caddr_t v_data; /* private data for fs */

struct filock *v_filocks; /* ptr to filock list */

kcondvar_t v_cv; /* synchronize locking */

} vnode_t;

Figure 25: SunOS 5.x Vnode Interface

Structure �elds relevant to our work are:

� v lock is a mutual exclusion variable used by locking functions that need to perform changes to
values of certain �elds in the vnode structure.

� v flag contains bit ags for characteristics such as whether this vnode is the root of its �le
system, if it has a shared or exclusive lock, whether pages should be cached, if it is a swap device,
etc.

� v count is incremented each time a new process opens the same vnode.

� v vfsmountedhere, if non-null, contains a pointer to the vfs that is mounted on this vnode. This
vnode thus is a directory that is a mount point for a mounted �le system.

� v op is a pointer to a function-pointer table. That is, this v op can hold pointers to UFS functions,
NFS, PCFS, HSFS, etc. For example, if the vnode interface calls the function to open a �le, it will
call whatever sub�eld of struct vnodeops (See Section A.4) is designated for the open function.
That is how the transition from the vnode level to a �le system-speci�c level is made.

� v vfsp is a pointer to the vfs that this vnode belongs to. If the value of the �eld v vfsmountedhere

is non-null, it is also said that v vfsp is the parent �le system of the one mounted here.

� v type is used to distinguish between a regular �le, a directory, a symbolic link, a block/character
device, a socket, a Unix pipe (�fo), etc.
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� v data is a pointer to opaque data speci�c to this vnode. For an NFS vfs, this might be a
pointer to struct rnode (located in <nfs/rnode.h>) | a remote �le system-speci�c structure
containing such information as the �le-handle, owner, user credentials, �le size (from the client's
view), and more.

A.4 struct vnodeops

An instance of the vnode operations structure (struct vnodeops, listed in Figure 26) exists for each
di�erent type of �le system. For each vnode, the vnode �eld v op is set to the pointer of the operations
vector of the underlying �le system.

typedef struct vnodeops {

int (*vop_open)();

int (*vop_close)();

int (*vop_read)();

int (*vop_write)();

int (*vop_ioctl)();

int (*vop_setfl)();

int (*vop_getattr)();

int (*vop_setattr)();

int (*vop_access)();

int (*vop_lookup)();

int (*vop_create)();

int (*vop_remove)();

int (*vop_link)();

int (*vop_rename)();

int (*vop_mkdir)();

int (*vop_rmdir)();

int (*vop_readdir)();

int (*vop_symlink)();

int (*vop_readlink)();

int (*vop_fsync)();

void (*vop_inactive)();

int (*vop_fid)();

void (*vop_rwlock)();

void (*vop_rwunlock)();

int (*vop_seek)();

int (*vop_cmp)();

int (*vop_frlock)();

int (*vop_space)();

int (*vop_realvp)();

int (*vop_getpage)();

int (*vop_putpage)();

int (*vop_map)();

int (*vop_addmap)();

int (*vop_delmap)();

int (*vop_poll)();

int (*vop_dump)();

int (*vop_pathconf)();

int (*vop_pageio)();

int (*vop_dumpctl)();

void (*vop_dispose)();

int (*vop_setsecattr)();

int (*vop_getsecattr)();

} vnodeops_t;

Figure 26: SunOS 5.x Vnode Operations Interface

Each �eld of the structure is assigned a pointer to a function that implements a particular operation
on the �le system in question:

� vop open opens the requested �le and returns a new vnode for it.

� vop close closes a �le.

� vop read reads data from the opened �le.

� vop write writes data to the �le.
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� vop ioctl performs miscellaneous I/O control operations on the �le, such as setting non-blocking
I/O access.

� vop setfl is used to set arbitrary �le ags.

� vop getattr gets the attributes of a �le, such as the mode bits, user and group ownership, etc.

� vop setattr sets the attributes of a �le.

� vop access checks to see if a particular user, given the user's credentials, is allowed to access a
�le.

� vop lookup looks up a directory for a �le name. If found, a new vnode is returned.

� vop create creates a new �le.

� vop remove removes a �le from the �le system.

� vop link makes a hard-link to an existing �le.

� vop rename renames a �le.

� vop mkdir makes a new directory.

� vop rmdir removes an existing directory.

� vop readdir reads a directory for entries within.

� vop symlink creates a symbolic-link to a �le.

� vop readlink reads the value of a symbolic link, that is, what the link points to.

� vop fsync writes out all cached information for a �le.

� vop inactive signi�es to the vnode layer that this �le is no longer in use, that all its references
had been released, and that it can now we deallocated.

� vop fid returns a unique �le identi�er �d for a vnode. This call works in conjunction with the
vfs operation vfs vget described in Appendix section A.2.

� vop rwlock locks a �le before attempting to read from or write to it.

� vop rwunlock unlocks a �le after having read from or wrote to it.

� vop seek sets the read/write head to a particular point within a �le, so the next read/write call
can work from that location in the �le.

� vop cmp compares two vnodes and returns true/false.

� vop frlock perform �le and record locking on a �le.

� vop space frees any storage space associated with this �le.
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� vop realvp for certain �le systems, returns the \real" vnode. This is useful in stackable vnodes,
where a higher layer may request the real/hidden vnode underneath, so it can operate on it.

� vop getpage reads a page of a memory-mapped �le.

� vop putpage writes to a page of a memory-mapped �le.

� vop map maps a �le into memory. See [Gingell87a, Gingell87b] for more details.

� vop addmap adds more pages to a memory-mapped �le.

� vop delmap removes some pages from a memory-mapped �le.

� vop poll polls for events on the �le. This is mostly useful when the vnode is of type \socket"
or \�fo," and replaces the older vop select vnode operation. This operation is often used to
implement the select(2) system call.

� vop dump dumps the state of the kernel (memory bu�ers, tables, variables, registers, etc.) to
a given vnode, usually a swap-device. This is used as the last action performed when a kernel
panics and needs to save state for post-mortem recovery by tools such as crash [SMCC95].

� vop pathconf supports the POSIX path con�guration standard. This call returns various con-
�gurable �le or directory variables.

� vop pageio performs I/O directly on mapped pages of a �le.

� vop dumpctl works in conjunction with vop dump. It is used to prepare a �le system before a
dump operation by storing data structures that might otherwise get corrupted shortly after a
panic had occurred, and deallocates these private dump data structures after a successful dump.

� vop dispose removes a mapped page from memory.

� vop setsecattr is used to set Access Control Lists (ACLs) on a �le.

� vop getsecattr is used to retrieve the ACLs of a �le.

Vnode operations get invoked transparently via macros that dereference the operations vector's �eld
for that operation, and pass along the vnode and the arguments it needs. Each vnode operation has a
macro associated with it, located in <sys/vnode.h>. Figure 27 shows as an example, the de�nitions
for some of these calls.

When any piece of �le system code, that has a handle on a vnode, wants to call a vnode operation
on it, it simply dereferences the macro, as depicted in Figure 28.
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#define VOP_OPEN(vpp, mode, cr) (*(*(vpp))->v_op->vop_open)(vpp, mode, cr)

#define VOP_CLOSE(vp, f, c, o, cr) (*(vp)->v_op->vop_close)(vp, f, c, o, cr)

#define VOP_READ(vp, uiop, iof, cr) (*(vp)->v_op->vop_read)(vp, uiop, iof, cr)

#define VOP_MKDIR(dp, p, vap, vpp, cr) (*(dp)->v_op->vop_mkdir)(dp, p, vap, vpp, cr)

#define VOP_GETATTR(vp, vap, f, cr) (*(vp)->v_op->vop_getattr)(vp, vap, f, cr)

#define VOP_LOOKUP(vp, cp, vpp, pnp, f, rdir, cr) \

(*(vp)->v_op->vop_lookup)(vp, cp, vpp, pnp, f, rdir, cr)

#define VOP_CREATE(dvp, p, vap, ex, mode, vpp, cr) \

(*(dvp)->v_op->vop_create)(dvp, p, vap, ex, mode, vpp, cr)

Figure 27: Some Vnode Macros

int foo(vnode_t *dp, char *name,

vattr_t *vap, vnode_t **vpp, cred_t *cr)

{

int error;

error = VOP_MKDIR(dp, name, vap, vpp, cr);

if (error)

return (error);

}

Figure 28: Vnode Macros Usage Example
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A.5 How It All Fits

To see how it all �ts in, the following example depicts what happens when a remote (NFS) �le system
is mounted onto a local (UFS) �le system, and the sequence of operations that a user level process goes
through to satisfy a simple read of a �le on the mounted �le system.

A.5.1 Mounting

Consider �rst the two �le systems X and Y, depicted in Figure 29. In this �gure, the numbers near
the node names represent the �le/inode/vnode numbers of that �le or directory within that particular
�le system. For example \X5" refers to the vnode of the directory /usr/local on �le system X.

/

binetcusr

ucblocal

3 4

65

2

1Filesystem X

/

gnuX11local

manlibbin

3 42

5 6

1Filesystem Y

7

/

3 42

1

usr etc bin

5 6 7

X11local gnu

8 9 10

bin lib man

Filesystem Y

Filesystem Z (Y on X)

Figure 29: File System Z as Y mounted on X

Let's also assume that X is a UFS (local) �le system, and that Y is the /usr �le system avail-
able on a remote �le server named \titan." We wish to perform the following NFS mount action:�

�

�

�
mount titan:/usr /usr .

The in-kernel actions that proceed, assuming that all export and mount permissions are successful,
are the following:

1. A new vfs is created and is passed on to nfs mount.

2. nfs mount �lls in the new vfs structure with the vfs operations structure for NFS, and sets the
v vfsmountedhere of the vnode X2 to this new vfs.

3. nfs mount also creates a new vnode to serve as the root vnode of the Y �le system as mounted
on X. It stores this vnode in the v data �eld of the new vfs structure.

A.5.2 Path Traversal

Figure 29 also shows the new structure of �le system X, after Y had been mounted, as �le system Z.

The sequence of in-kernel operations to, say, read the �le /usr/local/bin/tex would be as follows:
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1. The system call read() is executed. It begins by looking up the �le.

2. The generic lookup function performs a VOP LOOKUP(rootvp, "usr"). It tries to look for the
next component in the path, starting from the current lookup directory (root vnode).

3. The lookup function is translated into ufs lookup. The vnode X2 is found. Note that X2 is not
the same vnode as Z2! X2 is hidden, while Z2 overshadows it.

4. The lookup function now notices that X2's v vfsmountedhere �eld is non-null, so it knows that
X2 is a mount point. It calls the VOP ROOT function on the vfs that is \mounted here," that
translates to nfs lookup. This function returns the root vnode of the Y �le system as it is
mounted on X. This root vnode is X2. The \magic" part that happens at this point is that the
lookup routine now resumes its path traversal but on the mounted �le system.

5. An nfs lookup is performed on the Z2 vnode for the component "local", that will return the
vnode Z5.

6. An NFS lookup is performed on vnode Z5 for the component "bin", that will return the vnode
Z8.

7. An NFS lookup is performed on vnode Z8 for the component "tex", that will return the vnode
for the �le.

8. The lookup is complete and returns the newly found vnode for component "tex" to the read()
system call.

9. The generic read function performs a VOP READ on the newly found vnode. Since that vnode is
an NFS one, the read is translated into nfs read.

10. Actual reading of the �le /usr/local/bin/tex begins in earnest.
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B Appendix: Typical Stackable File Systems

This section lists a few typical �le systems that can be generated using FiST. It is intended as a non-
exhaustive listing of exemplary �le systems that could be produced, so that references to them by name
from other sections in this proposal could be made.

The �le systems are classi�ed into three categories as described in Section 4.9: stateless, in-core,
and persistent.

B.1 Stateless File Systems

In a stateless �le system, state is not required for the �le system anywhere | neither in memory nor
on disk. This means that the �le system does not have to maintain vnode states. It does not need to
create a \wrapping" vnode for every vnode in the interposed �le system.

B.1.1 Nullfs

A �le system that does nothing but pass the vnode operation to the underlying vnode. Not very useful
beyond an educational exercise. The only interesting action that may occur happens when a mount
point is crossed into Nullfs.

B.1.2 Crossfs

A �le system that performs a simple event when a pathname lookup has traversed into it from the one
it is mounted on. A typical event might be to print a message on the system console that includes the
uid and gid of process that crossed into this �le system. It is a simpler form of the Snoopfs �le system
(see Appendix section B.2.4).

B.2 In-Core File Systems

In an in-core �le system, state for the �le system is maintained only within the kernel's memory. The
�le system needs to create its own vnodes on top of lower level �le systems. For each in-core vnode of
the interposed �le system, there will be a vnode in the interposer's �le system. However, if the machine
crashes and all contents of memory are lost, no permanent disk corruption would occur due to this �le
system's state not having been written out.

B.2.1 Wrapfs

Wrapfs is a template �le system. It maintains a vnode for every open vnode on the interposed �le
system, and passes on the vnode or vfs operation to the interposed vnode, receiving its return status,
and returning it back to the caller.

B.2.2 Envfs

A �le system that expands some environment variables in path names. Envfs needs the list of variables
and their values to expand, given to it as mount options. Envfs is very similar to Wrapfs. The only
operation that is di�erent in Envfs is vn lookup(). All it has to do is expand any variable names to
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their values within the interposing �le system, modify the pathname component being looked up as
needed, and then call the interposed �le system.

Incidentally, that is not what I call \state," since it can be reproduced by remounting the �le system
with the same options. The state that is required is a vnode in Envfs for each vnode in the underlying
�le system. The reason we need it is so that open �les in the interposing �le system can refer to the
proper interposed vnodes. For example, the current working directory (cwd) of Unix shells, is actually
represented by an open directory vnode in the kernel. When a lookup operation occurs in Envfs, it
starts from the directory vnode of the current working directory of the process in question; that is
the vnode the kernel passes on to the lookup routine, and that operation must be able to access the
interposed vnode for the lookup to proceed.

B.2.3 Statefs

A �le system that will record a few pre-determined data structures in one or more �les of their �le
system. Initially it will provide a simple lookup table functions that could be used once a state �le
has been read into memory. Later on it could be expanded to more complex and exotic o�-line data
structures such as B-trees [Elmasri94].

Since �les in this �le system will be completely under the control of the �le system, it could be made
hidden from users. User processes would not need to be able to modify these �les. However, it would
be useful for users to be able to list and read them for logging, reporting, and debugging purposes. In
other words, it may be a read-only �le systems as far as user-processes are concerned.

Statefs itself cannot be directly interposed upon. It can only be accessed within the implementation
of another interposeable module (via $0, as described in Table 8). Statefs sole existence is to augment
an existing �le system's functionality, not to be the functionality itself. Therefore, at the moment, I
see no reason to allow Statefs to be directly interposed upon.

B.2.4 Snoopfs

A �le system that will tell you who accessed what �les or directories, and when. The �le system will
record, via direct console messages or syslog [SMCC90], the uid and gid of a process accessing �les
in this �le system, the names of the �les or directories, and the time of access. After recording this
information, Snoopfs will forward the vnode request to the interposed �le system, thus hiding the fact
that this �le system is being monitored.

Unix �le permissions provide a mechanism to protect one's �les from prying eyes, but there are
many ways for remote users, especially ones with local root access on their workstations, to become
a di�erent user (using the su program) and then try and access someone else's �les. Besides, even if
the user was unsuccessful at poking about someone else's �les (maybe a student looking for a leftover
copy of a �nal exam in their instructor's account), the fact that such access was attempted may be an
interesting fact on its own.

B.2.5 Gzipfs

A compression �le system using the GNU zip algorithms. Only �le data should be compressed for
performance reasons. File name extensions will be used to �nd �les that are already compressed and
avoid re-compressing them (a process that normally results in the growth of the �le size). Data blocks
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will be compressed before written out to the interposed's �le system, and decompressed after being
read from it and before being returned to the caller of the interposer's �le system.

A slight modi�cation of this �le system would only compress �les older than a certain date, thus
allowing frequently accessible �les speeder access, and saving space on seldom-used �les.

The diÆculty in implementing this �le system will come from having to deal with the fact that the
sizes of the data streams change when reading compressed �les (size grows) and writing (size generally
shrinks), and how to maintain the uncompressed �le size while saving partition disk blocks resulting
from �les having been compressed.

B.2.6 Cryptfs

An encryption �le system that will use similar algorithms as cfs [Blaze93]. For security reasons, all data
blocks will be encrypted (both directory and �le blocks). Data streams get encrypted before written
to the interposed �le system (on the way \down"), and decrypted after being read (on the way \up").

An added diÆcultly in writing this �le system, in addition to the problems of stream size changes,
will be key management. The �le system should enable each individual user to have their own private
key for decoding their own �les within the encrypted �le system.

B.2.7 Statsfs

A �le system that will record statistics on the interposed �le system, and report them via console
messages or syslog. Information that can be recorded includes number of times �les or directories are
accessed, and performance measures such as overall time to perform various vnode operations. This
�le system can serve as an optimizing or pro�ling tool for other stackable �le systems, by identifying
potential bottlenecks.

B.2.8 Regexpfs

A �le system that will hide certain �les whose names match a regular expression. It could choose to
hide these �les only from certain users. There are times when you wish to provide access to certain
directories but only to a few users. Other times you want to totally hide the existence of some directories
or �les (exams, proprietary mail, salaries, etc.) from anyone but yourself and the operators performing
backups.9

More generally, there are times when you want to perform certain operations only on some �les,
perhaps as few as a single �le. Having the ability in a �le system to be as granular as one �le can
be very useful. The main fashion by which this �le system operates is when looking up �les names,
it decides what regular expression matched the �le name, and then can classify the �le in question as
one of several types, each of which can be passed on to be operated upon by a di�erent �le system:
compressed �les can be passed to Gzipfs, encrypted �les can get decrypted automatically, and so on.

B.2.9 Unionfs

A �le system that presents the union of all the �les and directories of several �le systems. Special
mount options are needed to de�ne the semantics of collision resolution [Pendry95].

9This is what's called \security by obscurity."
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B.2.10 Hlfs

A �le system that uses the user credentials (primarily uid and gid) to create symbolic links di�erent
for each user and group, much the way Hlfsd does [Zadok93b]. Hlfs could be used in conjunction with
a cryptographic �le system to provide user-speci�c encryption �le systems.

B.2.11 Automountfs

A �le system that would perform automounter functions much like Amd [Pendry91] does, but in the
kernel. It can therefore avoid locking and work much faster. There is only one problem: Amd as it
stands knows about the underlying types of �le systems that it automounts. If Automountfs will have
to know the same, it will violate the symmetry principle of stackable �le systems. One solution is to
move only part of the automounter code into the kernel, and keep the mount-speci�c code outside the
kernel. This is exactly what Sun had done with Autofs [Callaghan93]: most of the code was moved
into the kernel, but the actual mounting is initiated by a user-level daemon called automountd. Autofs
talks to this daemon using RPCs initiated from the kernel. My �le systems would be able to make use
of kernel based RPCs to communicated with user-level (or remote) servers.

B.2.12 Applicfs

A �le system that would provide per application vnode operations. It is similar to Hlfs described above,
with the di�erence that now, di�erent �le system semantics are based on the process ID of the calling
context. The information on the current process executing the system call is trivially available in any
running kernel.

B.2.13 Namefs

A �le system that for every �le ever looked up or opened, it keeps the name of that �le. This could be
useful by other stackable �le systems that need to know �le names later than when they were originally
looked up. This could for example be used in work such as Zadok and Duchamp's [Zadok93a] where
the need arose for mapping open vnodes to their pathnames for purposes of simple replication.

B.3 Persistent File Systems

Persistent �le systems contain state that should not be lost; therefore it must be written to permanent
media. Generally the state would be stored on a local hard-disk, but remote �le servers can be used
just as easily.

B.3.1 Cachefs

This is very similar to Sun's Cachefs [SunSoft94]. However, Sun's implementation allows for writes
through the cache. For simplicity, my initial implementation would pass writing operations directly to
the source �le system being cached.
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B.3.2 Replicfs

A simple replicated (mirroring) �le system. This �le system will use several �le systems assumed to be
\identical." Reading operations will be sent to any of the replicas, presumably whichever is the most
available at the moment. Writing operations will be performed on all replicas, to ensure consistency.
The Statefs �le system will be used to store state useful for recovery such as partial write failures,
which replicas have the latest versions of the same �le, etc.

B.3.3 Expirefs

A �le system that will set an expiration date for the �les within. This additional information will be
recorded using Statefs. A �le which expired will be a good candidate for removal. This �le system is
useful for a multi-user shared temporary space, for USENET news articles that need to get removed
automatically after articles expire, and more.

There is one serious problem with such a �le system. There is no convenient way to pass expiration
date information between user-level processes and the in-kernel �le system. Vnode operations such as
vn getattr return predetermined information such as uid, gid, �le size, last access time, last modi�ca-
tion time, last create/mode-change time, etc. The information being passed cannot be changed. Some
implementation have left a few empty bytes in this attributes structure, meant for later use. So I could
use it for my additional information, but that would not be portable or a vendor supported option for
long term use.

The best method for manipulating this information is for Expirefs to provide an additional mount
point, besides the one it directly interposes upon. The \shadow" mount point will have a di�erent
vnode operations vector (this alone may qualify it to become a di�erent �le system) that will provide
a �le for every �le in the �le system being interposed. These \dummy" �les would have no real storage
space associated with them, only a real inode. One of the three time �elds (access, modi�cation,
creation) of the inode will be used to record the expiration date of the �le. That way, programs like
ls and find can continue to function almost normally.

B.3.4 Createfs

This �le system will record the real creation date of a �le, much the same way Expirefs works. While
Unix inodes contain a time �eld called \creation date" that gets initialized at �le creation date, this
�eld gets updated each time the �le is recreated (via creat(2)), update via touch(1), or its mode
changed via chmod(2).

There are many times when the real and original creation date of the �le is needed and yet current
Unix �le systems do not keep this information very reliably; there is no way to tell if the creation time
stored in the inode is the original one or not. This �le system can �x this problem.

B.3.5 Versionfs

A �le system that will record version numbers for �les each time they are modi�ed. That is, it will
record the number of times a �le got modi�ed. It may or may not keep backup copies of some older
versions of the �le.
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An alternative way would be to allow the user to set (via similar mechanisms as with Expirefs ) the
explicit version of the �le. The actual version information could be stored in one of the inode �elds in
the \dummy" �le system, and maintained by Statefs.

File versions are very useful. For example, when using replicated �le systems, it is often not enough
to compare �le sizes and dates as a method of ensuring �le equivalence. A true �le version number,
could be a much more eÆcient and reliable method to tell that, for example, one binary of emacs is
for version 19.33, and another is for version 19.34. For an expanded discussion on �le equivalence in a
replicated environment, see [Zadok93a].

A special use for Versionfs would be a �le system that is used by multiple software developers to
manage source �les in a large software project. Such a �le system could remove the need to use tools
such as RCS or CVS.

Another possible feature of Versionfs might be to change the behavior of unlink() such that when
a �le is removed, a previous version of it is being placed instead. Only when the oldest version of the
�le is removed, does the �le get unlinked from the underlying �le system.

B.3.6 Undofs

A �le system that will allow a limited form of undoing destructive operations. Unix users often remove
�les unintentionally.10 Files that get removed will �rst be copied over to the backup storage (using
Statefs). These �les can get expired (perhaps via Expirefs ) after a period of disuse. But in the short
term, a user realizing the unintentional loss of his/her �les could simply copy them from the undo �le
system back to their original location.

It is important that Undofs will not allow non-root users to delete �les from the backup location,
so that they could not be inadvertently removed.

B.3.7 Aclfs

Although the current vnode interface shown in Appendix section A.4 includes operations on ACLs,
these are very rarely used (I know of none). Aclfs is a �le system with a simpler form of Access Control
Lists. The ACLs will be stored using Statefs. ACLs could for example include information such as
sets of Unix groups that are allowed to access certain �les, sets of users all of which will be treated
as owners of the �les, and even negation ACLs | users whose membership in certain groups denies
them access. It is generally believed that Unix owner and group access permissions are too limiting for
multi-user environments, especially software development environments.

B.3.8 Umaskfs

A �le system that allows the user to set a per-directory umask. Unix masks are usually set once per the
user's environment. Some, like myself, prefer a restrictive umask of 077. But when working in a group
on a software project (using say RCS or CVS), it is necessary to set a less restrictive umask of 022
or even 002, allowing all users to read the �les created, or users in the group to also write these �les.
Umaskfs could solve this problem by allowing the user to set a mask for each directory independently.

10At least once, we all have intended to type
�

�

�

�rm *.o , but instead typed
�

�

�

�rm * .o .
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C Extended Examples Using FiST

In this section I provide three extended examples of �le systems designed using FiST, each progressively
more complex than the previous. The �rst is Crossfs, a stateless �le system described in Appendix
B.1.2. The second is Gzipfs, an in-core �le system described in Appendix B.2.5. The third is Replicfs,
a persistent �le system described in Appendix B.3.2. The keen reader would notice that complicated
compilation is not necessary for converting FiST inputs to working C code, only sophisticated, yet
straightforward translation.

C.1 Crossfs: A Stateless File System

Crossfs is a trivial �le system based on my Null �le system (Appendix B.1.1). When a lookup operation
crosses into this �le system, it performs a simple action such as logging a message on the system console.
For all other vnode and vfs operations, it forwards them to the interposed �le system. Crossfs keeps
no state.

The example of Figure 30 shows the FiST input for this �le system. Speci�cally, in this implemen-
tation I wish to log the user ID and the host from where access to the �les originated.

%{

#ifdef HAVE_AC_CONFIG_H

/* include Autoconf-generated header */

# include "config.h"

#endif

%}

%fstype stateless

%filter syslog(%cur_uid, %from_host) $$ vn_lookup {%cur_uid > 999 && %cur_uid != 2301}

%%

/* Empty FiST rules section */

%%

/* No additional code needed */

Figure 30: FiST De�nition for Crossfs

The code automatically generated for Crossfs will be identical to Nullfs, with the exception of the
lookup function. One possible code for the lookup function is shown in Figure 31.

This example shows how FiST \%" directives get translated into local variables (name), global
variables (curtime), or even special functions (fist get from host()).

Figure 32 shows the code that would be generated for the NFS version of the same lookup operation.
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static int

fist_crossfs_lookup( vnode_t *dvp, char *name, vnode_t **vpp,

pathname_t *pnp, int flags, vnode_t *rdir, cred_t *cr)

{

/* check if event should be logged */

if (u.u_uid > 999 && u.u_uid != 2301)

kernel_syslog("File %s was accessed at %d by %s@%s.\n",

name, curtime, u.u_uid, fist_get_from_host(u));

/* pass operation to file system, and return status */

return VOP_LOOKUP(dvp, name, vpp, pnp, flags, rdir, cr);

}

Figure 31: Vnode Code Automatically Generated by FiST for Crossfs

diropres *

nfsproc2_crossfs_lookup( diropargs *argp,

struct svc_req *rqstp;

{

diropres res;

uid_t uid;

gid_t gid;

char host[MAXHOSTNAMELEN];

time_t tm;

/* get credentials */

if (fist_getcreds(rqstp, &uid, &gid, &host) < 0)

return(NULL);

/* get time */

time(&tm);

/* check if event should be logged */

if (uid > 999 && uid != 2301)

syslog("File %s was accessed at %d by %s@%s.\n",

argp->name, ctime(&tm), uid, host);

/* perform generic lookup operation, and return status */

res = fist_nfs_lookup(argp, rqstp);

return &res;

}

Figure 32: NFS Code Automatically Generated by FiST for Crossfs
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C.2 Gzipfs: An In-Core File System

%{

#ifdef HAVE_AC_CONFIG_H

/* include Autoconf-generated header */

# include "config.h"

#endif

%}

%fstype incore

%filter gzip $$ %vn_write {%name =~ "\.txt$"}

%filter gunzip $$ %vn_read {%name =~ "\.txt$"}

%%

/* Empty FiST rules section */

%%

/* No additional code needed */

Figure 33: FiST De�nition for Gzipfs

Gzipfs is a compression �le system based on my wrapper �le system (Appendix B.2.1). Data gets
compressed before written to stable media, and decompressed after having been read from such. For
this example, I only wish to compress regular �les that have a �le extension .txt', since ASCII �les
yield better compression ratios. The example of Figure 33 shows the FiST input for this �le system.

The code automatically generated for Gzipfs will be similar to Wrapfs, with the two exceptions of
the read and write functions. One possible code for these, for example the read() function, is shown
in Figure 34.

In this example, the routine decodes the \hidden" vnode pointer, and then passes the read operation
to it. After the read had succeeded, we call the FiST �lter function fist filter gzip data(). This
�lter is used to decompress data in the uio. The �lter function would make use of kernel functions that
manipulate uio structures such as uiomove() to move blocks of bytes between one uio and another.
Bytes will be read o� of one uio structure, passed through a generic stream decompression function I
pulled out of the GNU Zip package, and written to a new uio structure. Then the old uio structure is
deallocated and replaced with the new one.

Figure 35 shows the code that would be generated for the NFS version of the same read operation.
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static int

fist_gzipfs_read(vnode_t *vp, uio_t *uiop, int ioflag, cred_t *cr)

{

int error;

vnode_t *interposed_vp;

uio_t *new_uiop; /* for the decompressed bytes */

/* find interposed vnode that is "hidden" inside this vnode */

interposed_vp = vntofwn(vp)->fwn_vnodep;

/* pass operation to interposed file system, and return status */

if ((error = VOP_READ(interposed_vp, uiop, ioflag, cr)) != 0)

return (error);

/* Check for triggered events after reading */

if (regexp_match(fist_get_file_name(vp), "\.txt$"))

if (fist_filter_gunzip_data(&uiop, sizeof(uio_t), &new_uiop) < 0)

return EIO; /* I/O error occurred */

uiop = new_uiop; /* pass up decompressed data */

return (error);

}

Figure 34: Vnode Code Automatically Generated by FiST for Gzipfs

int

nfsproc2_gzipfs_read(struct nfsreadargs *in, struct nfsrdresult *out,

struct exportinfo *ex, struct svc_req *sr, cred_t *cr)

{

int error NFS_OK;

/* perform simple read */

error = fist_gzipfs_read(in, out);

if (error)

return (error);

/* check for triggered events after reading */

if (regexp_match(fist_get_nfs_file_name(in->ra_fhandle), "\.txt$"))

if (fist_filter_gunzip_nfs_data(in, out) < 0)

return NFS_ERR; /* I/O error occurred */

return (error);

}

Figure 35: NFS Code Automatically Generated by FiST for Gzipfs
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C.3 Replicfs: A Persistent File System

Replicfs is a persistent �le system that replicates �les among two copies, as described in Appendix
B.3.2. It uses an auxiliary state �le system for storing which replica has the most up-to-date copy of
each �le. For the purpose of this example, I've set the following additional criteria:

� There are only two replicas.

� The state storing �le system will record the numeric index number of the �le system that has
the most up-to-date copy of the �le. That number would be 1 for the �rst replica and 2 for the
second replica.

� The key for looking up a �le in Statefs' tables is the �le ID generated by the vnode operation
vn fid. That function generates a unique ID for every �le.

� If both replicas are identical, Statefs will not have an entry at all.

� When performing vnode reading operations, call the operation on the \best" replica as recorded
in the state. If both replicas are identical, call one of them randomly (thus distributing the
operations among both).

� When performing vnode writing operations, call the operation on both replicas in order. If both
succeeded, remove the Statefs entry. If only one succeeded, store its number in the state. However,
if at least one replica got updated, then do not return an error code; instead, report success.

Of course, these criteria can be changed by the �le system's designer to result in di�erent �le system
semantics. Figure 36 shows the top FiST de�nitions for Replicfs. Figure 37 shows the FiST rule section
for reading operations, and Figure 38 shows the FiST rule section for writing operations.

%{

#ifdef HAVE_AC_CONFIG_H

/* include Autoconf-generated header */

# include "config.h"

#endif

%}

%fstype persistent

%interposers 2

%%

Figure 36: FiST De�nition for Replicfs (top)

Figure 39 shows the code that will be automatically generated by FiST for the reading operation
vn getattr (get �le attributes).

Figure 40 shows the code that will be automatically generated by FiST for the writing operation
vn setattr (set �le attributes).
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/* FiST Rules for read operations*/

$$.%vn_op_read.%variables: {

int best_copy = 0;

}

$$.%vn_op_read.%in_state: {

/* find who has the best copy */

best_copy = %state get, $$.%fid;

};

$$.%vn_op_read.%action: {

/* perform the operation on the "best" copy */

if (best_copy == 1) {

/* first replica is most up-to-date */

error = $1.%vn_op_this;

} else if (best_copy == 2) {

/* second replica is most up-to-date */

error = $2.%vn_op_this;

} else {

/* both replicas are OK. pick one */

if (fist_random_int() & 0x1 == 0)

error = $1.%vn_op_this;

else

error = $2.%vn_op_this;

}

}

Figure 37: FiST De�nition for Replicfs (reading operations)
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$$.%vn_op_write.%action: {

retval[1] = $1.%vn_op_this;

retval[2] = $2.%vn_op_this;

}

$$.%vn_op_write.%error_action: {

if (retval[1] != 0 && retval[2] != 0) {

/* both actions failed */

error = retval[1];

} else if (retval[1] == 0 && retval[2] != 0) {

/* replica 2 failed. save "1" in statefs */

%state add, $$.%vn_fid, 1;

error = retval[1];

} else if (retval[1] != 0 && retval[2] == 0) {

/* replica 1 failed. save "2" in statefs */

%state add, $$.%vn_fid, 2;

error = retval[2];

}

}

$$.%vn_op_write.%out_state: {

/* both actions succeeded. delete state if any */

%state del, $$.%vn_fid;

}

%%

/* No additional code needed */

Figure 38: FiST De�nition for Replicfs (writing operations)
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static int

fist_wrap_getattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr)

int error = EPERM;

vnode_t *interposed_vp1, *interposed_vp2;

int best_copy = 0;

/* lock the interposition chain (default action) */

fist_lock_interposition_chain(vp);

/* find the interposed vnodes (default action) */

interposed_vp1 = vntofwn(vp)->fwn_vnodep1;

interposed_vp2 = vntofwn(vp)->fwn_vnodep2;

/* find who has the best copy */

best_copy = fist_state_get(vp, fist_get_fid(vp));

/* perform the operation on the "best" copy */

if (best_copy == 1) {

/* first replica is most up-to-date */

error = VOP_GETATTR(interposed_vp1, vap, flags, cr);

} else if (best_copy == 2) {

/* second replica is most up-to-date */

error = VOP_GETATTR(interposed_vp2, vap, flags, cr);

} else {

/* both replicas are OK. pick one */

if (fist_random_int() & 0x1 == 0)

error = VOP_GETATTR(interposed_vp1, vap, flags, cr);

else

error = VOP_GETATTR(interposed_vp2, vap, flags, cr);

}

/* unlock the interposition chain (default action) */

fist_unlock_interposition_chain(vp);

/* return status code (default action) */

return (error);

}

Figure 39: Vnode Code Automatically Generated by FiST for replicfs (reading operation)



C.3 Replicfs: A Persistent File System 71

static int

fist_wrap_setattr(vnode_t *vp, vattr_t *vap, int flags, cred_t *cr)

{

int error = EPERM;

vnode_t *interposed_vp1, *interposed_vp2;

int retval[2];

/* lock the interposition chain (default action) */

fist_lock_interposition_chain(vp);

/* find the interposed vnodes (default action) */

interposed_vp1 = vntofwn(vp)->fwn_vnodep1;

interposed_vp2 = vntofwn(vp)->fwn_vnodep2;

/* perform actions on interposed vnodes */

retval[1] = VOP_SETATTR(interposed_vp1, vap, flags, cr);

retval[2] = VOP_SETATTR(interposed_vp2, vap, flags, cr);

/* check if any errors occurred (default action) */

if (retval[1] != 0 || retval[2] != 0) {

if (retval[1] != 0 && retval[2] != 0) {

/* both actions failed */

error = retval[1];

} else if (retval[1] == 0 && retval[2] != 0) {

/* replica 2 failed. save "1" in statefs */

fist_state_add(vp, fist_get_fid(vp), 1);

error = retval[1];

} else if (retval[1] != 0 && retval[2] == 0) {

/* replica 1 failed. save "2" in statefs */

fist_state_add(vp, fist_get_fid(vp), 2);

error = retval[2];

}

/* return status code (default action) */

return (error);

}

/* both actions succeeded. delete state if any */

fist_state_del(vp, fist_get_fid(vp));

/* unlock the interposition chain (default action) */

fist_unlock_interposition_chain(vp);

/* return status code (default action) */

return (error);

}

Figure 40: Vnode Code Automatically Generated by FiST for replicfs (writing operation)
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D Appendix: Wrapfs Mount Code

This section includes the actual C code that is used to mount an interposer �le system on an interposed
one, and is described in Section 3.5.

static int

fist_wrap_mount(

vfs_t *vfsp, /* pre-made vfs structure to mount */

vnode_t *vp, /* existing vnode to mount on */

struct mounta *uap, /* user-area mount(2) arguments */

cred_t *cr /* user credentials */

)

{

int error = 0;

#ifdef HAVE_FIST_ARGS

struct fist_wrap_args args;

char datalen = uap->datalen;

#endif

struct fist_wrapinfo *fwip;

fist_wrapnode_t *fwnp;

dev_t fist_wrapfs_dev;

struct vnode *rootvp;

vnode_t *interposed_vp; /* interposed vnode */

#ifdef FIST_WRAPDEBUG

if (vfsp) {

fist_wrap_print_vfs("fist_wrap_mount", vfsp);

}

if (vp) {

fist_wrap_dprint(fist_wrapdebug, 4,

"%s: fist_wrap_vnodeops %x\n",

"fist_wrap_mount",

(int) &fist_wrap_vnodeops);

fist_wrap_print_vnode("fist_wrap_mount", vp);

}

if (uap) {

fist_wrap_print_uap("fist_wrap_mount", uap);

}

#endif

/*

* Make sure we're root

*/

if (!suser(cr)) {

error = EPERM;
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goto out;

}

/* Make sure we mount on a directory */

if (vp->v_type != VDIR) {

error = ENOTDIR;

goto out;

}

/*

* check if vnode is already a root of a file system (i.e., there

* is already a mount on this vnode).

*/

mutex_enter(&vp->v_lock);

if ((uap->flags & MS_REMOUNT) == 0 &&

(uap->flags & MS_OVERLAY) == 0 &&

(vp->v_count != 1 || (vp->v_flag & VROOT))) {

mutex_exit(&vp->v_lock);

error = EBUSY;

goto out;

}

mutex_exit(&vp->v_lock);

/*

* Get arguments: (not needed yet)

*/

/*

* Get vnode for interposed directory.

*/

/* make sure special dir is a valid absolute pathname string */

if (!uap || !uap->spec || uap->spec[0] != '/') {

error = EINVAL;

goto out;

}

error = lookupname(uap->spec, UIO_USERSPACE, FOLLOW,

NULLVPP, &interposed_vp);

if (error)

goto out;

/* Make sure the thing we just looked up is a directory */

if (interposed_vp->v_type != VDIR) {

VN_RELE(interposed_vp);

error = ENOTDIR;
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goto out;

}

#ifdef FIST_WRAPDEBUG

if (interposed_vp) {

fist_wrap_print_vnode("fist_wrap_mount", vp);

}

#endif

/*

* Now we can increment the count of module instances.

* meaning that from now, the mounting cannot fail.

*/

++module_keepcnt;

/**************************************************************************

* FIST_WRAPINFO:

* The private information stored by the vfs for fist_wrapfs.

*/

/* this implicitly allocates one vnode to be used for root vnode */

/* XXX: enter this vnode in dnlc? */

fwip = (struct fist_wrapinfo *)

kmem_alloc(sizeof(struct fist_wrapinfo), KM_SLEEP);

/* store the vfs of the stacked file system (pushed onto "stack") */

fwip->fwi_mountvfs = vp->v_vfsp;

/* initialize number of interposed vnodes */

fwip->fwi_num_vnodes = 0;

/* fwip->fwi_rootvnode: is setup in the "root vnode" section below */

/**************************************************************************

* FIST_WRAPNODE:

* The private information stored by interposing vnodes.

* The interposing vnode here is the new root vnode of fist_wrapfs. It

* interposes upon the uap->spec vnode we are mounting on (the directory,

* or partition interposed upon).

*/

fwnp = (fist_wrapnode_t *)

kmem_alloc(sizeof(fist_wrapnode_t), KM_SLEEP);

fwnp->fwn_vnodep = interposed_vp;

/**************************************************************************

* VFS FOR THE FIST_WRAP FILE SYSTEM:
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*/

vfsp->vfs_bsize = 1024;

vfsp->vfs_fstype = fist_wrapfs_fstype;

/* Assign a unique device id to the mount */

mutex_enter(&fist_wrapfs_minor_lock);

do {

fist_wrapfs_minor = (fist_wrapfs_minor + 1) & MAXMIN;

fist_wrapfs_dev = makedevice(fist_wrapfs_major, fist_wrapfs_minor);

} while (vfs_devsearch(fist_wrapfs_dev));

mutex_exit(&fist_wrapfs_minor_lock);

/* set the rest of the fields */

vfsp->vfs_dev = fist_wrapfs_dev;

vfsp->vfs_fsid.val[0] = fist_wrapfs_dev;

vfsp->vfs_fsid.val[1] = fist_wrapfs_fstype;

vfsp->vfs_bcount = 0;

/* store private fist_wrap info in the pre-made vfs */

vfsp->vfs_data = (caddr_t) fwip;

/* fill in the vnode we are mounted on, in the vfs */

vfsp->vfs_vnodecovered = vp;

/**************************************************************************

* ROOT VNODE OF FIST_WRAPFS:

*/

rootvp = &(fwip->fwi_rootvnode);

VN_INIT(rootvp, vfsp, VDIR, (dev_t) NULL);

/* this is a root vnode of this file system */

rootvp->v_flag |= VROOT;

/* vnode operations of this root vnode are the fist_wrap */

rootvp->v_op = &fist_wrap_vnodeops;

/* this one is NOT a mount point at this stage */

rootvp->v_vfsmountedhere = NULL;

/*

* This v_data stores the interposed vnode in for now, but in the future

* it could hold more information which is specific to a single vnode

* within a file system. For example, in fist_gzipfs, we could store

* information about the file: type of compression (gzip, pack, zip, lzh,

* compress, etc), whether the file should not be compressed (maybe it is

* stored already in a compact format such as GIF files), etc.

*/

rootvp->v_data = (caddr_t) fwnp;

/* NULLify the rest, just in case */

rootvp->v_filocks = NULL;
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/* rootvp->v_cv = NULL; */ /* don't do this one for now */

/**************************************************************************

* VNODE MOUNTED UPON:

*/

/* this vnode to mount on is a mount point for fist_wrap */

vp->v_vfsmountedhere = vfsp;

#ifdef FIST_WRAPDEBUG

/* print values after we change them */

if (vfsp) {

fist_wrap_print_vfs("fist_wrap_mount2", vfsp);

}

if (vp) {

fist_wrap_print_vnode("fist_wrap_mount2", vp);

}

fist_wrap_print_vnode("fist_wrap_mount2rvn", &(fwip->fwi_rootvnode));

#endif

out:

/*

* Cleanup our mess

*/

#ifdef FIST_WRAPDEBUG

fist_wrap_dprint(fist_wrapdebug, 4, "fist_wrap_mount: EXIT\n");

#endif

return (error);

}
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Source code portability is not easy to achieve across Unix platforms. Many variants use completely
di�erent and incompatible interfaces. Especially diÆcult to port is \system" code | that is, code that
performs low level operations such as network messaging, system calls, �le serving, access to kernel
data structures, and of course, kernel resident code itself.

E.1 Portability Solutions

Several solutions to the problem of portability were used over the years. The simplest was to include
header �les with each package that abstract away the di�erences between platforms using a plethora
of multi-nested #define and #ifdef statements. It made code very hard to read. Other alternatives
asked the user to run an interactive con�guration script that prompted the user to answer questions
such as \Is this machine big-endian?" and \Are you POSIX Compliant?" These con�guration scripts
tended to become very long, verbose, and tedious for users to go through. Worse of all, they did not
guarantee that the user would really answer the questions correctly. To answer some of them correctly
one had to be a Unix expert to begin with. More sophisticated solutions used the X11 Imake utility
which abstracted the di�erences using preprocessing (via cpp) of several pre-written template �les.
Imake's usefulness never extended beyond that of the X11 domain of applications [Haemer94].

All of these solutions su�ered from one major problem | they were static. That is, the portability
o�ered was only as good as what the programmers of the package included. They could not be easily
changed to accommodate new operating systems or even new minor revisions of existing operating
systems. In addition, they could never account for partially installed or misinstalled systems. For
example, operating systems such as Solaris and IRIX require the installation of special software packages
in order to use Motif or NFS, respectively. System administrators could choose to install these packages
or not. It is even possible (and unfortunately quite common), for systems to claim to have a particular
feature but not to implement it correctly. Finally, Unix systems are as good as the administrators
who maintain them. Often, complex installations tend to have poor con�gurations. A good solution
to portability must be able to handle all of these cases.

The Free Software Foundation (FSF) solved these problems using a dynamic, automatic con�g-
uration system called Autoconf [MacKenzie95], which I plan to use with FiST. Autoconf is a large
collection of highly portable M4 macros and Bourne shell scripts that perform on-the-y feature tests
to determine di�erences among systems.

For example, in order to �nd out if one has the proper Motif libraries to link X11 applications
with, Autoconf provides a simple test that can be used as follows: AC CHECK LIB(Xm). The test in
turn is implement as a small shell script that writes a test C program on the y, and tries to compile
and link it. If it succeeds, it knows for certain that the Motif library libXm is available. If the test is
successful, then Autoconf modi�es the auto-generated Make�le and adds to it the line

�

�

�

�LIBS += -lXm .
The Make�le generated is guaranteed to link with the Motif library if and only if it exists.

Another example is the Autoconf macro AC FUNC ALLOCA. It runs tests that check for the existence of
the alloca(3) library call. This particular library call is known to have many broken implementations
on various systems. Autoconf therefore performs additional tests to validate the correct behavior of the
call! If successful, Autoconf will add the line

�

�

�

�#define HAVE ALLOCA H to the autogenerated header
�le it creates, "config.h". An application can include this locally created header �le and use the
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de�nitions within to ensure that the proper headers and their associated de�nitions get included, and
nothing more.

Autoconf's standard M4 tests include easy facilities to extend them: you can supply actions to be
performed if the test failed or succeeded, you can include existing tests in other tests you write, you
can cache previous results and reuse them, and so on. The basic set of Autoconf tests have been used
by large and very complex packages such as the GNU HURD, gcc, emacs, gdb, LATEX, Tcl/Tk, and
many more. Autoconf can make it easy to port applications to over one hundred Unix variants known,
and by its nature automatically handles new ones as they spring into existence.

E.2 An Example Using Autoconf

Here is an example of how I intend to use Autoconf within FiST. The name of the VFS structure on
most operating systems such as SunOS and Solaris is struct vfs and is de�ned <sys/vfs.h>. But
on other systems such as FreeBSD, the name of the same structure is struct mount and is de�ned
in <sys/mount.h>. Existing tests within Autoconf can �nd out if a C structure named vfs is de�ned
in any of the system header �les. If not found, the failure action code for looking up struct vfs

would invoke the same test, but on a di�erent name: it would look for struct mount. Once found,
Autoconf will create a typedef which will be one of these two:

�

�

�

�
typedef struct vfs vfs t; or

�

�

�

�
typedef struct mount vfs t; . In addition, Autoconf will de�ne one of

�

�

�

�#define HAVE SYS VFS H

or
�

�

�

�#define HAVE SYS MOUNT H in the config.h �le it creates. I would then write code that includes
the correct header �le and uses the typedef whenever I need to refer to the VFS structure. Figure 41
shows how I will write such VFS code.

In a similar manner I will write

#ifdef HAVE_AC_CONFIG_H

/* include Autoconf-generated header */

# include "config.h"

#endif

#ifdef HAVE_SYS_VNODE_H

# include <sys/vnode.h>

#endif

#ifdef HAVE_SYS_MOUNT_H

# include <sys/mount.h>

#endif

int print_vfs(vfs_t *vfsp)

{

/* code to print values within the vfs structure */

}

Figure 41: VFS Sample Code Using Autoconf

Autoconf tests that �nd and gener-
alize more minute di�erences such as
the di�erent names used for �elds
within key C structures, whether an
operating system has loadable ker-
nel modules or not, what macros are
used to dereference VFS and vnode
pointers, and so on.

Autoconf can perform syntactic
checks and limited tests for the cor-
rect use of certain symbols based on
syntactic features. Autoconf, how-
ever, cannot solve purely semantic
problems. Without additional help,
it cannot discover the meaning of,
say, two symbols with the same name
across di�erent operating systems that
are used di�erently. Those cases un-
fortunately have to be specially handled. Nevertheless, Autoconf is a tool that will be able to �gure
out over 95% of the di�erences among operating systems automatically.
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