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Abstract—Understanding I/O workloads and modeling their
performance is important for optimizing storage systems. A
useful first step towards understanding the characteristics of
storage workloads is to analyze their inter-arrival times and
service requirements. If these characteristics are found to follow
certain probability distributions, then corresponding stochastic
models can be employed to efficiently estimate the performance
of storage workloads. Such approaches have been explored in
other domains using an assortment of distributions, including
the Normal, Weibull, and Exponential. However, our analysis and
others’ past attempts revealed that none of those distributions
provided a good fit for storage workloads. We analyzed over 200
traces across 4 different workload families using 20 widely used
distributions, including ones seldom used for storage modeling.
We found that the Hyper-exponential distribution with just
two phases (H2) was superior in modeling the storage traces
compared to other distributions under five diverse metrics of
accuracy, including metrics that assess the risk of over-fitting.
Based on these results, we developed a Markov-chain-based
stochastic model that accurately estimates the storage system
performance across several workload traces. To highlight the
applicability of our model, we conducted what-if analyses to
investigate the performance impact of workload variability and
garbage collection under various scenarios.

Index Terms—Distribution fitting, storage traces, hyper-
exponential, performance modeling.

I. INTRODUCTION

Analyzing workload traces can provide useful insights into the
characteristics of a system, helping to design better scheduling,
caching, or service policies. Trace analysis can also help
in the development of performance models that can enable
useful what-if analysis, providing answers to questions such
as “how will response time be affected if the arrival rate
doubles?” or “how does workload variability impact per-
formance?” Request-level traces, such as inter-arrival times
(IATs) or service times (STs), are especially useful as they
lend themselves to such performance modeling efforts and to
the identification of system bottlenecks.

A popular approach to analyzing request-level traces is to
infer the distribution of events (e.g., distribution fitting), such
as the distribution of IATs [1], [2]. By fitting the empirical
IATs to known distributions, such as the Normal distribution,
one can leverage the various properties of the distribution
to assess the traffic characteristics, such as burstiness and
skew. Some of these distributions enable stochastic modeling
of the performance of the system or device. For example, if
the empirical IAT and/or ST traces can be shown to follow
an Exponential distribution, then Markov Chain analysis or

suitable queueing models can be developed to estimate the
system performance [3]–[5]. The benefits offered by such
distributions have encouraged many attempts to fit empirical
data to these distributions or to simply assume that empirical
data follows such distributions [6]–[8].

Unfortunately, storage workload characteristics are often
too complex or skewed to be accurately modeled by simple
Normal or Exponential distributions. Prior work has shown
that storage workloads often exhibit long-tail latencies [9]–
[13]; specifically, prior studies [2], [14] have found, via
parametric fitting, that storage traffic IATs and access patterns
are well modeled by the heavy-tailed Generalized Pareto distri-
bution. These observations also extend to other workloads; for
example, the IATs of web requests, grid computing workloads,
and supercomputing workloads were found to be well approxi-
mated by the 2-parameter Weibull distribution [15]–[17]. Such
complex distributions often have atypical properties that make
them infeasible for practical analysis. For instance, the Pareto
distribution can have an infinite variance [18]. Likewise, the
generalized extreme value (GEV) distribution [19] and the
log-logistic distribution [20], both of which we found can
accurately model storage IAT traces (see Section V), can have
infinite or undefined mean and/or variance. Thus, distributions
that accurately model empirical request-level traces may not be
helpful for analyzing storage workloads, say, for performance
modeling, as we demonstrate in Section VI.

The goal of this paper is to analyze various request-level
storage traces across multiple workloads and find distributions
that (i) provide high distribution fitting accuracy and (ii) pro-
vide practical analytical properties across all traces. To the best
of our knowledge, such practical and large-scale distribution
fitting study has not been carried out for request-level storage
traces. While request-level traces for various historical and
modern storage systems already exist in the public domain
(e.g., SNIA’s trace repository [21]), prior studies that analyze
such traces either did not focus on distribution fitting [22]–[24]
or did not leverage the distribution fit to enable performance
modeling [1], [2]; see Section VIII for a detailed discussion
of related work.

The key takeaway of our analysis is that the flexible
Hyper-exponential distribution is ideally suited for fitting and
modeling request-level storage traffic. The Hyper-exponential
distribution is a probabilistic mixture of several exponential
distributions, or phases. In general, the Hyper-exponential
distribution can model most heavy-tailed distributions by
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selecting the appropriate parameters [25]. Importantly, since
it is a mixture of Exponential distributions, it is amenable
to stochastic analysis, including queueing-theoretic modeling.
Further, because the Hyper-exponential is expressed in terms
of simpler Exponential distributions, it has finite and well-
defined (closed-form) mean and variance, which are easy to
compute (see Section III). The Hyper-exponential thus pro-
vides an opportunity to accurately model request-level traces
while retaining the benefits offered by simpler distributions.

For our analysis, we use over 200 publicly available block-
layer traces from different workload families (see Section IV).
We used three different metrics and associated techniques
to assess the accuracy of the distribution fit: (i) R

2 [26],
which indicates the goodness of fit, (ii) the Jensen-Shannon
divergence [27], which measures the similarity between two
distributions, and (iii) the likelihood [28], which describes
the plausibility of observing the empirical data given the
fitted distribution. We also employed the Akaike and Bayesian
information criteria (AIC and BIC) [29], [30], that assess over-
fitting by evaluating the quality and simplicity of the fit.

We find that, compared to 19 widely used distributions
(including Exponential, Generalized Pareto, Beta, Normal,
Gamma, and Weibull), the Hyper-exponential distribution,
with just two phases, provides better accuracy and lower risk
of over-fitting across all traces we considered. For individual
trace families, we found that Hyper-exponential is always
among the top 3 distributions, and often the top distribution,
for any metric of accuracy. While some distributions, like Burr
and Pareto, do provide the best distribution fit in a few cases,
their fit was poor in other cases (see Section V).

To highlight the importance of distribution fitting for work-
load traces, we developed a stochastic model based on using
the Hyper-exponential distribution fit for IATs and STs that
can estimate the performance of the storage system. Our model
relies on the fact that the Hyper-exponential is a mixture of
Exponentials, and is thus amenable to Markov chain modeling.
Our resulting model accurately predicts the mean response
time for workload traces. The median response time modeling
error for our Hyper-exponential–based model was 17.5%; by
contrast, the median error for other distributions was at least
2.7⇥ larger than our error (see Section VI).

Finally, to illustrate the applications of our distribution
fitting based performance model, we conducted two what-if
analyses (Section VII). First, we investigated the impact on
response time of an increase in workload traffic and/or increase
in workload variability. We found that, at high arrival rates,
doubling the workload variability can increase response time
by as much as 66%. Second, we explored the performance
degradation caused by garbage collection (GC), common in
SSDs, as a function of various parameters, including the
percentage of time spent in GC and its service rate slowdown.
We found that GC can degrade average performance by as
much as 2.8⇥ even if it runs only 1% of the time. Without
our performance model, the above analyses would require
extensive experimentation, and might even be infeasible.

II. BACKGROUND AND PRIOR WORK

To motivate the contributions of this paper and provide some
context for our work, we next provide a brief overview of
distribution fitting and then discuss related prior works that
specifically focus on distribution fitting for storage traces. We
discuss other related works later in Section VIII.

A. Significance of Distribution Fitting

Distribution fitting is the process of selecting a statistical
distribution that best fits the target empirical data set. Dis-
tribution fitting is a popular tool for analyzing empirical data,
with books and journals dedicated to the topic [18], [31]. We
are specifically interested in Parametric fitting (or inference),
where the empirical data is fit to a distribution with a known
structure, but variable parameter values [32].

The key advantage of distribution fitting is that the many
properties of the fitted distribution can now be directly applied
to study the empirical data and possibly make predictions of
future events. Further, appropriate statistical tests or hypothesis
testing can be used to analyze the characteristics of the data.
For example, if the service time (ST) of a storage workload is
shown to follow a Pareto distribution, then the many moments
of the distribution, as well as the tail probability (probability
that a request takes longer than x seconds to complete), can be
obtained in closed-form without any significant computational
effort [18]. Likewise, if the inter-arrival time (IAT) of requests
is shown to follow a Normal distribution, confidence intervals
can be easily obtained for various measures of the data [5].

A more subtle but practical advantage of distribution fitting
is the performance models that it enables. For example, if the
request-level characteristics of a storage workload are shown
to follow an Exponential distribution, its Markovian property
can be used to track the evolution of the number of requests
in the storage system as a continuous time Markov chain [4].
Likewise, based on the fitted distribution, various queueing-
theoretic results can be applied to estimate the performance
(e.g., response time) of the storage system.

Of course, the above advantages can only be realized
if an accurate enough distribution fit is found. There are
several techniques that exist in the literature for distribution
fitting [18], [31]. Typically, there is an associated metric
of accuracy that each technique aims to optimize for when
deriving the parameters of a fitted distribution. Rather than
using a single technique or metric, we employ the suggested
practice [33], [34] of using multiple techniques and metrics to
evaluate the distribution fitting; this avoids bias in results as
a distribution may exhibit high accuracy for only one metric.
We discuss our techniques and metrics in Section V-A.

B. Prior Work on Fitting Storage Traces

Prior work on distribution fitting for storage workloads is
restricted to analyzing traces from a specific source. Gomez et
al. [2] analyzed disk access patterns for HP-UX servers [35]
and found that the spatial access pattern is well modeled by a

2



Pareto distribution. The authors employed parametric fitting to
find the Pareto parameters but did not evaluate the accuracy of
the fit. Gracia-Tinedo et al. [14] analyzed network traffic for
the UbuntuOne cloud storage service and found that the IATs
of some of the operations have long tails and are thus not
well approximated by the Exponential distribution. Instead,
the authors visually inspected the IATs and used a Pareto
distribution fit. Birke et al. [36] analyzed storage workloads
in an enterprise cloud and found that the VM-level storage
capacity is well approximated by an Exponential distribution.

In general, heavy-tailed distributions have been used to
model storage workload characteristics. However, we note that
the above works rarely employ (one or more) statistical tests
for evaluating the accuracy of the distribution fit. Further, prior
work has not explored the performance models enabled by the
fitted distribution.

III. THE HYPER-EXPONENTIAL DISTRIBUTION AND
RELATED PERFORMANCE MODELS

We now describe the Hyper-exponential distribution, which we
find to be an accurate fit for the storage traces we analyze in
Section V. We then discuss the performance models enabled
by the Hyper-exponential distribution, and other distributions.

The k-phase Hyper-exponential distribution, denoted as Hk,
is a probabilistic mixture of k Exponential distributions. The
k-phase Hyper-exponential has (2k � 1) parameters, and can
be expressed as:

Hk =

8
>>>>><

>>>>>:

Exp(�1) with probability p1

Exp(�2) with probability p2
...

Exp(�k) with probability pk,

(1)

where p1 + p2 + . . .+ pk = 1. Since the Hyper-exponential is
simply a mixture of Exponentials, its moments are finite and
can be easily expressed in closed form. For example, the mean
(first moment) of a k-phase Hyper-exponential is

Pk
i=1 pi/�i.

In its simplest form, a 2-phase Hyper-exponential, or H2, is
a mixture of two Exponential distributions, say Exp(�1) with
probability p and Exp(�2) with probability (1�p). Since the
number of parameters to be estimated for the k-phase Hyper-
exponential distribution scales linearly with k, it is beneficial
to use a small value of k for efficient distribution fitting. In
Section V we show that the H2 with k = 2 is already powerful
enough to model the inter-arrival times (IATs) and service
times (STs) of storage traces.

The Hyper-exponential distribution has been used for mod-
eling metrics in other communities, such as modeling the
amount of rainfall in a region [37], modeling the completion
time in manufacturing systems [38], modeling the reliability of
software [39], and even the modeling of network traffic [40].
However, to the best of our knowledge, the Hyper-exponential
has not been applied to model storage workload characteristics.
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Fig. 1: Illustration of the probability distribution function
(PDF) of various distributions, all with mean 20.

A. The Need for a Flexible and Heavy-Tailed Distribution

As discussed in Section II-B, storage workload characteristics
often exhibit heavy-tailed behavior [18]; this is further evi-
denced by prior work that focuses on the long-tail latencies
of storage workloads [9]–[13]. The Exponential distribution
has a single parameter and is not heavy-tailed. In fact, a
heavy-tailed distribution is often defined as one whose tail
probability is heavier than that of an Exponential [41]. The
Pareto and Weibull are heavy-tailed distributions that are often
employed for distribution fitting of empirical data that exhibits
long tails. There are several other heavy-tailed distributions
that exist, such as the Lognormal, Burr, Loglogistic, etc.;
we evaluated distribution fitting with many of these in our
trace analysis in Section V. We find that, despite several
statistical fitting techniques, the above distributions are not
flexible enough to accurately fit the IATs and STs of storage
workload traces obtained from different sources. That is, while
a given heavy-tailed distribution fits a specific trace accurately,
it does not fit other traces well. The 2-phase Hyper-exponential
distribution, H2, is flexible (3 parameters) and heavy-tailed. It
has been shown that the k-phase Hyper-exponential can model
most heavy-tailed distributions by selecting the appropriate
parameters [25]. Like the Exponential distribution, the Hyper-
exponential does have a decaying probability distribution
function. We illustrate the probability density function (PDF)
of the Hyper-exponential and other common distributions in
Figure 1; here, we show the PDF for a 2-phase Hyper-
exponential, or H2.

B. Performance Models Enabled by the Hyper-Exponential

Since the Hyper-exponential has more parameters than the Ex-
ponential, it is more flexible than the Exponential distribution.
However, the Hyper-exponential retains many of the analyt-
ical advantages of the Exponential distribution. Specifically,
the memoryless or Markovian property of the Exponential
allows us to model the evolution of events as a continuous
time Markov chain [4]. If the IAT and ST are modeled as
Exponentials, then we can model the storage system using
an M/M/1 Markov chain, as shown in Figure 2. The Markov
chain tracks the number of requests in the system as they
dynamically increase due to arrivals and decrease due to
service events. By solving for the steady-state probability of
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Fig. 2: Illustration of an M/M/1 Markov chain performance
model with mean IAT = 1/� and mean ST = 1/µ. The Markov
chain tracks the number of requests in the storage system.
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Fig. 3: Illustration of an H2/H2/1 Markov chain with the
IAT modeled as an H2(p,�1,�2) and the ST modeled as an
H2(q, µ1, µ2). We color-code some of the transitions and only
show ST events for simplicity. The state space (i, j, k) refers
to the number of requests in system, phase of the ST, and
phase of the IAT, respectively.

the different states of the chain, we can derive the mean
number of requests in the system [5]; the mean number in
system can then be converted to the mean response time
via Little’s Law [42]. Fortunately, the Hyper-exponential is
also amenable to Markov chain analysis due to its mixture
of Exponential nature. Specifically, each phase of a Hyper-
exponential can be modeled as a state in the Markov chain.
However, the resulting chain is quite complex. Consider a
workload whose IAT and ST are modeled as 2-phase Hyper-
exponentials:

IAT =

8
<

:

Exp(�1) w.p. p

Exp(�2) w.p. (1-p)
ST =

8
<

:

Exp(µ1) w.p. q

Exp(µ2) w.p. (1-q)

Figure 3 shows the Markov chain for the H2/H2/1 system
with the above IAT and ST distributions. Such chains have a
repeating structure and can be solved, either numerically (e.g.,
using matrix analytic methods [43]) or analytically. Thus, the
Hyper-exponential is a flexible and heavy-tailed distribution
that also allows for exact performance models.

For other distributions, such as Pareto or Weibull, exact per-
formance models are not known. However, approximations are
available [44]; we leverage these models and approximations
in Section VI to model the performance of a storage system
with different distribution fits.

IV. DESCRIPTION OF TRACES AND WORKLOADS

For the distribution fitting analysis, we consider more than 200
different block-level traces from 4 different sources, including
those from Flash-based devices and hard disks. We focus on
the following request-level information in the traces, when
available:

• Inter-arrival time (IAT): The IAT is defined as the time
between successive requests. When analyzing IAT, we dis-
tinguish between reads and writes to better understand their
individual characteristics.

• Service time (ST): The ST is defined as the time taken by the
request for processing at the device, and does not include the
queueing/waiting time at the device or at the upper layers.
ST is often difficult to obtain as there is some queueing that
happens within the device which cannot be easily tracked
due to vendor-specific (proprietary) firmware [45].

• Response time (RT): The RT is the performance metric
defined as the time taken by the request to complete service
from when it first arrives at the block layer.

A. Florida International University traces

These are an assortment of 3-4 week-long block traces ob-
tained from various HDD-based production systems in the
Department of Computer Science at Florida International Uni-
versity (FIU) by Verma et al. [46]. The home 1-4 workloads
are 4 separate traces of the home directories of 4 different
users in FIU’s research group. The mail workload served the
department’s e-mail inboxes. The online workload is a web
server hosting the department’s course management system.
The webmail workload is a web interface to the department’s
mail server. The webusers workload served the department
members’ websites. Lastly, the webresearch workload is an
Apache server managing around 10 research projects. We
analyzed the read and write IATs separately for each trace to
better understand access type specific traffic, resulting in 18
total traces. ST information is not available for these traces.

B. Virtual Desktop Infrastructure (VDI) Traces

These are a collection of storage traffic traces from an enter-
prise virtual desktop infrastructure (VDI), obtained from Lee
et al. [24]. The month-long traces contain I/O information for
six different block storage devices (LUNs), with each device
corresponding to one VDI server, which itself hosts about 50
VMs. We analyzed the read and write IATs separately for each
of the 6 devices, resulting in 12 traces. ST information is not
provided for these traces.

C. Mobile Storage Subsystem Traces

These 31 application-specific block-level I/O traces were col-
lected on a Nexus 5 smartphone when running different mobile
applications, as detailed in Zhou et al. [23]. The storage
subsystem is a Flash-based (SanDisk iNAND) eMMC. I/O in-
formation is collected at the block layer and the eMMC driver
layer, so we have both IAT and ST traces, and response times.
We analyzed the read and writes IATs and STs separately,
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Fig. 4: CDF of the R

2 metric (higher is better) for Hyper-exponential, Exponential, and the best alternative distribution fit.
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Fig. 6: CDF of Log-likelihood (LL, higher is better) for Hyper-exponential, Exponential, and the best alternative distribution.

resulting in 62 traces each. We leveraged the response times
to validate our performance models in Section VI.

D. Microsoft Production Server Storage Traces

These historical traces were collected on real production stor-
age servers of Microsoft services, as described in Kavalanekar
et al. [22]. We use the block-level IAT information for the
storage metadata servers, separated by access type (reads and
writes), resulting in 72 traces. ST information is not provided
for these traces.

V. REQUEST-LEVEL DISTRIBUTION FITTING

We now present our first contribution, analyzing the distribu-
tion fit for storage workload traces. We start with a description
of the distribution fitting methods we employ and then present
our results for IAT analysis and ST analysis.

Note that the focus of our study is analyzing the distribution
fitting of the traces, and not the analysis of the traces them-
selves. The traces we analyze for distribution fitting have been
studied before [22]–[24], [47], in other contexts, such as for
deduplication and energy management.

A. Methods and Metrics for Distribution Fitting

We consider several widely used distributions for our dis-
tribution fitting analysis1. To find the parameters of a given
distribution that result in the best fit to the empirical trace, we
use three different techniques. Each of these techniques has
its own designated metric of accuracy. We also evaluate the
risk of over-fitting by reporting metrics that estimate the model
quality. Using multiple techniques and metrics avoids any bias
that a fitted distribution may have to a single metric [33], [34].
1) Least Squares Optimization to Maximize R

2

The coefficient of determination, R2 [26], indicates the good-
ness of fit; that is, the closeness of the empirical data to the
fitted distribution. It is often used as the first step in evaluating
a fit. R2 typically lies between 0 and 1, with higher values
indicating a better fit, though negative values are possible
when the fit is poor. We use the least squares approach to
minimize the sum of the squares of the residuals between the

1The full list of distributions we consider includes Beta, Birnbaum-
Saunders, Burr, Exponential, Extreme Value, Gamma, Generalized Extreme
Value, Generalized Pareto, Half-normal, Hyper-exponential, Inverse Gaussian,
Logistic, Loglogistic, Lognormal, Nakagami, Normal, Rayleigh, Rician, t-
location scale, and Weibull.
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empirical CDF and the CDF of the target distribution. Our
global optimization heuristically chooses initialization points
and then applies the interior-point method to find the best
parameter values [48], [49]. At a high-level, the optimization
tests the value of the objective function in the neighborhood of
the initialization points, and moves in the direction that best
improves the objective value [50]; eventually, the algorithm
converges to the parameter values that result in the best value
of the objective function [51].

It has been shown in prior statistical studies that the R
2

metric alone may be insufficient to evaluate the fit [52]; we
thus make use of additional metrics as well.
2) Global Search Algorithm to Minimize Divergence
JSD, the Jensen-Shannon divergence [27], is a symmetric
and smoothed version of the Kullback-Leibler divergence, and
measures the similarity between two probability distributions.
JSD is popularly used in information theory and coding theory
to measure the relative entropy, or distance, between two
distributions [53]. JSD typically lies in the (0, 1) range, with
lower values indicating higher accuracy. We use the global
search algorithm [48] to find parameter values that minimize
the JSD between the empirical PDF and the PDF of the target
distribution. The algorithm is similar to the one described
above for maximizing R

2, and uses a similar framework for
initialization and convergence.
3) Expectation-Maximization to Maximize Likelihood
The likelihood objective function [28], the higher the better,
is often used in Bayesian statistics to describe the probability
of observing the empirical data given the target (fitted) dis-
tribution [54]. We use the popular expectation-maximization
(EM) algorithm [28] to find the distribution parameters that
maximize the expected log likelihood. EM is an iterative
algorithm; we follow the suggested practice of using normally
distributed values, with the same mean and variance as that of
the empirical data, to generate our initial guesses [55], [56].
The best performing initialization is then chosen.
4) Akaike Information Criterion
AIC [29], the lower the better, is an estimator of the relative
quality of statistical models for a given dataset, and is often
used for model selection. In simple words, AIC estimates
the amount of information lost by the model, and deals with
the trade-off between goodness of fit and simplicity of the
model by penalizing log likelihood proportional to the number
of model parameters. AIC is reported for the distribution fit
obtained via the EM algorithm that maximizes likelihood.
5) Bayesian Information Criterion
BIC [30], the lower the better, is similar to AIC but imposes
a larger penalty for the number of parameters. BIC can select
the true model with probability close to 1 when the number
of data points is high. As both AIC and BIC deal with the
trade-off between goodness of fit and simplicity of the model,
they allow us to to assess both over-fitting and under-fitting
of distributions to data, and help select the best model.

B. Inter-Arrival Time (IAT) Trace Analysis

All four trace families that we studied have IAT information.
Figures 4, 5 and 6, respectively, show the R

2, JSD and log-
likelihood metrics for the different trace families under three
distribution fits: (i) Hyper-exponential with two phases (H2),
(ii) Exponential, and (iii) the best alternative distribution (apart
from Hyper-exponential and Exponential). We include the
Exponential as a baseline as it enables useful performance
modeling of systems and has often been used as the default
IAT distribution in performance studies [6]–[8].

We see that the Hyper-exponential is always at least as
good as the best alternative distribution; the median R

2 for
Hyper-exponential ranges from 0.93–0.98 for all trace families.
By contrast, the Exponential is typically inaccurate, with the
median R

2 for Exponential ranging from 0.4–0.8 for the
different trace families. Note the stark contrast around the
median in the CDF plots for the Microsoft trace; this is because
of the difference in behavior of reads and writes. We separately
analyzed reads and writes and found that the fit accuracy for
all distributions was better for reads than for writes, indicating
bursty IAT behavior of write requests; this is expected as most
operating systems batch writes in their page cache and flush
them periodically in groups.

Finally, note that the best alternative distribution often
changes based on the trace family. Similarly, we observed
that the best alternative distribution for a given trace family
changed with the metric of accuracy. We note that the like-
lihood value depends on the number of data points, and so
likelihood values should not be compared across trace families.

To assess the risk of over-fitting, we now present the AIC
and BIC values for the various distribution fits. Figures 7 and
8 show the AIC and BIC metrics, respectively, for the different
trace families; we show results for the H2, Exponential, and
the best alternative distribution. We see that H2 provides a
superior fit, and typically has the lowest median AIC and
BIC (lower is better). Note that the AIC and BIC results look
similar, as they are both based on the log-likelihood metric,
with slightly different penalty functions for the number of
model parameters.

To better assess the fitting capabilities of the Hyper-
exponential, we show the top 3 distribution fits, using the
median accuracy, across each trace family and for all traces
in Tables I and III, respectively. We also show the top 3
distribution fits, using the median AIC and BIC values, across
each trace family and for all traces in Tables II and IV,
respectively. We see that the Hyper-exponential always ranks
in the top 3 for any trace family under all 5 accuracy metrics.
For the accuracy metrics in Table I, the Hyper-exponential
typically ranks as the top distribution fit for any trace family
under at least two metrics, except for Microsoft. Further, the
Hyper-exponential resulted in the best fit across all traces
we used under JSD and log-likelihood (Table III), with the
median being 46.1% and 3.4% more accurate, respectively,
than the top alternative distribution. For R

2, the Hyper-
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Fig. 7: CDF of Akaike information criterion (AIC, lower is better) for Hyper-exponential, Exponential, and the best alternative.
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Fig. 8: CDF of Bayesian information criterion (BIC, lower is better) for Hyper-exponential, Exponential, and the best alternative.

FIU Microsoft Mobile VDI
R2 JSD LL R2 JSD LL R2 JSD LL R2 JSD LL

t-location H2 H2 H2 Burr GPareto H2 H2 H2 H2 H2 H2

H2 GPareto GPareto t-location LogL GEV Burr GEV GPareto LogN Burr Exp
Burr Gamma t-location LogN H2 H2 LogN Exp GEV Burr GPareto GPareto

TABLE I: Ranking of the top 3 fitted distributions (top-to-bottom) for each trace family. Here, LogN, LogL, GPareto, and
GEV refer to Lognormal, Loglogistic, Generalized Pareto, and Generalized Extreme Value, respectively.

FIU Microsoft Mobile VDI
AIC BIC AIC BIC AIC BIC AIC BIC
H2 H2 GPareto GPareto H2 H2 H2 H2

GPareto GPareto GEV GEV GPareto GPareto Exp Exp
t-location t-location H2 H2 GEV GEV GPareto GPareto

TABLE II: Ranking of the top 3 fitted distributions (top-to-bottom), according to AIC and BIC, for each trace family. Here,
GPareto and GEV refer to Generalized Pareto, and Generalized Extreme Value, respectively.

exponential is a close second, next only to t-location, and
only by 0.3%. Finally, the Hyper-exponential also provides
the highest quality fit, with the lowest median AIC and BIC
values across all traces we used (Table IV). This shows that
the Hyper-exponential’s superior distribution fit is not a result
of over-fitting.

In summary, the Hyper-exponential consistently provides
superior distribution fit under diverse accuracy metrics for all
trace families we consider.

C. Analyzing the Distribution Fit

Figure 9 shows examples of distribution fits from each family
of traces. The x-axis is on a log scale, and the y-axis uses
square root scale, a measure that preserves the relative y-axis
values per x-axis point and allows us to visually compare
tails of empirical data [57]. We show the histogram for the
empirical trace data and overlay it with the probability density

function (PDF) of the Hyper-exponential (H2), Exponential,
and the top alternative distribution for that trace.

Figure 9(a) represents the case where the H2 captures
the high PDF region (around 10�2) well whereas the other
distributions, including the best alternative distribution for
this trace, Generalized Pareto, fail to accurately fit around
this region. Figure 9(b) represents the case where all dis-
tributions perform similarly, but there is a difference at the
tail distribution (right of the graph). On close inspection, we
see that the Exponential under-fits and the Loglogistic over-
fits the tail probability; by contrast, the H2 accurately fits
the tail. Figure 9(c) represents a worst-case fitting example
where no distribution performs well. However, we clearly see
that the H2 has two distinct centers of high PDF (around
10�3 and 102) that provide good coverage of the empirical
data. By contrast, the other distributions concentrate around
a single IAT range. Finally, Figure 9(d) shows another non-
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(a) R2 (higher is better)

Distribution R2

t-location 0.969
Hyper-exponential 0.966
Burr 0.962

(b) JSD (lower is better)

Distribution JSD
Hyper-exponential 0.062
Lognormal 0.115
Weibull 0.118

(c) Log-likelihood, LL (higher is better)

Distribution LL
Hyper-exponential 6259
Generalized Pareto 6054
t-location 4846

TABLE III: Median R
2, JSD, and log-likelihood across all traces for the top 3 distributions in each case, sorted by accuracy.

(a) AIC (lower is better)

Distribution AIC
Hyper-exponential -12513
Generalized Pareto -12303
t-location -10078

(b) BIC (lower is better)

Distribution BIC
Hyper-exponential -12496
Generalized Pareto -12286
t-location -10057

TABLE IV: Median AIC and BIC values across all traces for the top 3 distributions in each case, sorted by accuracy.
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Fig. 9: Results of distribution fit for a sample trace from each trace family for Hyper-exponential, Exponential, and the best
alternative distribution (per log-likelihood).

trivial example where the H2 is able to fit the center of the
PDF (around 10�3) as well as the tail (around 100), whereas
the other distributions only fit the center.

These examples illustrate the flexible and heavy-tailed na-
ture of H2, which is important for accurately fitting the differ-
ent types of storage traces, as we alluded to in Section III-A.

D. Sensitivity Analysis for Number of Phases of the Hyper-
Exponential

While we only make use of the 2-phase Hyper-exponential
in the above analysis, the Hyper-exponential can be extended
to include more phases (more Exponentials within the mixture
distribution), though at the expense of increased computational
complexity. Figure 10(a) shows the accuracy for all five
metrics as a function of the number of phases, k, of the k-phase
Hyper-exponential. These results are for the home3 subtrace
from the FIU trace family; results are similar for other traces.
Note that k = 1 refers to the Exponential distribution. We
see that accuracy increases as we go from the Exponential
to the 2-phase Hyper-exponential, but then largely stabilizes
beyond k = 2; note that for AIC and BIC, lower values are
better. For JSD, whose range of values is small and thus not
distinguishable in the figure, the value drops from 0.0061 for
k = 1 to 0.0058 for k = 2 (smaller JSD is better), and then
largely remains unchanged.

Figure 10(b) shows the time taken for the distribution fitting
for different k values. We see that the computation time scales
with the number of phases, as expected. Note that the LL,
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Fig. 10: Impact of number of phases on (a) improvement
in accuracy, and (b) computation time, for different tech-
niques/objectives. Note that phase = 1 refers to Exponential
and phase = 2 refers to 2-phase Hyper-exponential (H2).

AIC, and BIC data points overlap as the same (EM) algorithm
is employed for their fits (see Section V-A). We did not
specifically optimize the code for computation time as that
is not the focus of this work; however, we used the same
code for all phases to enable a fair comparison. In summary,
k = 2 provides a good trade-off between high accuracy and
low computation time, thus representing a good choice for the
Hyper-exponential distribution fitting.

E. Service Time (ST) Trace Analysis

We performed a similar distribution fitting for service times
(ST). Only one of the trace families we studied, mobile storage
traces, had ST information. Our ST analysis results are similar
to IAT analysis, so we briefly highlight the results.

We again find that H2 consistently provides a superior fit
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for service time under all accuracy metrics. We also find
that the top alternative distribution changes with the accuracy
metric. For R

2, JSD, and log-likelihood, the best alternative
distribution was Lognormal, Birnbaum-Saunders, and Burr,
respectively. The Exponential and Generalized Pareto distri-
butions did not provide a good fit for ST.

VI. PERFORMANCE MODELING EVALUATION

We now present our performance modeling study that demon-
strates the applicability of the Hyper-exponential distribution
fit to predict the mean response time for the modeled storage
workload. We first describe the performance models we use,
and then present our modeling results.

A. Methodology

As discussed in Section III-B, both the Exponential and Hyper-
exponential distributions enable Markov chain models. These,
in turn, can be solved analytically or numerically to find the
mean response time; for other distributions, only approximate
results are available.
1) Hyper-Exponential–Based Model (H2/H2/1)
When the IAT and ST are distributed as 2-phase Hyper-
exponentials, the resulting queueing model is referred to as
a H2/H2/1 queue [5]. For this queue, closed-form analytical
expressions for mean response time can be obtained [58]. The
analysis involves tracking the queue length in the Markov
chain (see Figure 3) given the input (IAT) and output (ST)
processes, resulting in a degree 3 polynomial that can be
solved to derive the mean queueing time, E[W ]; here, E[X]
denotes the expectation or mean of the random variable X .
Adding the mean ST to the mean queueing time gives the
mean response time of the system, [T ] = E[W ] + E[ST ].
Using the above approach, the mean response time for the
H2/H2/1 model can be obtained in less than one millisecond
with negligible CPU and memory overhead.
2) Exponential-Based Model (M/M/1)
When the IAT and ST are distributed as Exponentials, we can
model the resulting M/M/1 system [4] as a simple Markov
chain (see Figure 2) that can be easily solved to obtain the
mean response time as E[T ] = 1/(E[ST ]�1 � E[IAT ]�1).
3) Models for Other Distributions (G/G/1)
For general IAT and ST distributions, the queueing model is
referred to as the G/G/1 queue [4]. For G/G/1, exact results
are not known, and Markov chain modeling is not applica-
ble for distributions other than the Exponential and Hyper-
exponential. However, the Kingman’s approximation [44] is
widely used to estimate the mean waiting time of G/G/1 as

E[T ] ⇡ E[ST ]+
E[ST ]2

2(E[IAT ]� E[ST ])
·
✓
V ar[IAT ]
E[IAT ]2

+
V ar[ST ]
E[ST ]2

◆

where V ar[X] denotes the variance of the random variable X .
Note that given the parameters of the IAT and ST distribution
fit, their mean and variance can be easily computed.
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Fig. 11: CDF of mean response time modeling error using
the Hyper-exponential and Exponential distribution fits, along
with the other top alternative distribution fits for the mobile
storage traces.

B. Response Time Modeling Results
We consider the mobile storage subsystem traces (see Sec-
tion IV-C), which contain IAT, ST, and response time informa-
tion for 31 traces. Zhou et al. [23] reported that the observed
response time for their mobile traces is typically 2⇥ the service
time, suggesting that there is significant delay in the system.
This motivated our response time modeling efforts for these
traces. Since the scheduler used for the Flash-based mobile
storage subsystem does not maintain different service queues
for reads and writes [23], we model the IATs and STs for both
request access types together.

Figure 11 shows the CDF of the mean response time model-
ing error for the 31 mobile storage traces. We show modeling
error results for the case of Hyper-exponential and Exponential
based distribution fits of IATs and STs, using the H2/H2/1
and M/M/1 queueing models, respectively. Additionally, we
show results for the two other top alternative distribution
fits (ordered by median accuracy), whose response time is
modeled by the G/G/1 approximation. We note that while the
General Extreme Value, t-location, Burr, and the Loglogistic
distribution also resulted in high median accuracy for the IAT
and ST distribution fits, their fitted parameters resulted in
infinite mean and/or variance. Clearly, this would result in a
poor approximation and so we omit these distributions.

We see that the Hyper-exponential-based modeling error
for mean response time is significantly lower than the other
distributions in Figure 11. The median error for the Hyper-
exponential, Exponential, Generalized Pareto, and Lognormal
based response time modeling is 17.5%, 48.8%, 87.8%, and
361.2%, respectively. The corresponding mean error numbers
are 19.8%, 52.1%, 96.9%, and 672.2%, respectively; the
mean error is higher than the median error due to the much
higher error values for a few traces. The high error numbers
for the Generalized Pareto and Lognormal based modeling
should be expected since the response time model is only an
approximation for these cases. Note that an error > 100%
indicates that the predicted response time is at least twice
the actual response time. Across all traces, the H2/H2/1
model reduces the relative modeling error by about 64% when
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Fig. 12: Response time modeling error for the Hyper-exponential, Exponential, and other top alternative distribution fits for
all mobile storage traces.

compared to the M/M/1 model.
Figure 12 shows the per-trace response time modeling errors

for all 31 mobile storage traces. In most cases, the Hyper-
exponential–based H2/H2/1 model results in low error; the
modeling error is less than 20% for 24 of the 31 traces and less
than 25% for 27 of the 31 traces. We inspected the remaining
4 traces (DtoH, idle, callIn, and youtube) and found that for
most of these, the number of entries in the trace was small. It
is likely that the smaller sample size in these traces resulted
in poor accuracy for our modeling approach. It should be
noted that the modeling error for these 4 traces using the other
distributions in Figure 12 is also high. Although our approach
does not have a minimum sample size requirement for the
trace, in general, the more data points we have, the better is
our modeling accuracy. In our evaluation, a minimum trace
length of 3,000 provided good modeling accuracy.

Compared to the M/M/1 model, our H2/H2/1 model
provides better modeling accuracy for 27 of the 31 traces,
lowering the modeling error by about 76% for these traces. For
the remaining 4 traces, the M/M/1 results in about 7% lower
relative error. Note that the H2/H2/1 is significantly better
than the Generalized Pareto and Lognormal based models for
almost all traces.

VII. MODELING USE CASE: WHAT-IF ANALYSIS

An immediate and interesting use case for any system mod-
eling approach is what-if analysis. We now present two
such what-if analyses enabled by the H2/H2/1 performance
models we presented in the previous section.

A. Impact of Request Arrivals on Response Time

Our first use case analyzes the impact of change in arrival
rate of requests (inverse of inter-arrival time, 1/E[IAT ]) on
response time. We consider the msg subtrace from the mobile
storage traces and use the H2/H2/1 model, whose Markov
chain is shown in Figure 3, to obtain the mean response time
estimates. As discussed in Section VI-A1, the input to this
model is the IAT and ST parameters of the subtrace. We use
the IAT and ST Hyper-exponential distribution fit parameters
for the msg subtrace from Section V as inputs for our modeling
and what-if analyses in this section.

The black line in Figure 13(a) shows the results of our

analysis; the cross marker on the line corresponds to the arrival
rate observed in the msg subtrace (about 330 req/s). As the
arrival rate increases, the mean response time increases, as
expected. When the request rate doubles to 660 req/s, the mean
response time increases from about 1.9ms to 2.7ms.

We also analyzed the impact of variability in inter-arrival
time (IAT). A less variable IAT indicates that the request
arrivals are more evenly spaced whereas a more variable IAT
indicates that the request arrivals are more unevenly spaced
(e.g., more temporally batched or bursty requests). We used the
squared coefficient of variation of IAT, C2

IAT , to parameterize
variability. C2

IAT is the normalized variability of IAT, and is
mathematically defined as the variability in IAT divided by
the square of the mean IAT. For the msg subtrace, C2

IAT ⇡ 4.
Note that C2

IAT has no units: larger C2
IAT values imply higher

IAT variability. For a fixed IAT or request rate, a doubling of
C

2
IAT implies a doubling of the IAT variability.
The red, black, and blue lines in Figure 13(a) show the

impact on mean response time under C
2
IAT = 8, C2

IAT = 4,
and C

2
IAT = 2, respectively. We modeled the different IAT

variabilities by changing the probability parameter (p) of the
IAT hyper-exponential distribution (see Eq. (2)). We see that
IAT variability significantly impacts response time, especially
at high arrival rate. When C

2
IAT doubles from 2 to 4, mean

response time increases by 29% on average, and by up to 53%,
for the arrival rate range considered in Figure 13(a). Likewise,
as C

2
IAT doubles from 4 to 8, mean response time increases

by 33% on average, and by up to 66% at high arrival rates.

B. Impact of Garbage Collection’s Service Rate Slowdown on
Response Time

We analyzed a more complex use case using our performance
models: the impact of performance degradation events, such
as garbage collection (GC) on response time. To analyze this
use case, we extended our H2/H2/1 Markov chain model for
the msg subtrace to include an additional regime (or row of
states) where the service rate of the storage device (inverse
of mean service time, 1/E[ST ]) is reduced to represent the
degraded service rate under GC; the service rate slowdown
under GC is a model parameter that we vary. We also vary
the percentage of time spent in GC, with the frequency of
GC set to once every minute (configurable). Essentially, the
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Fig. 13: Results of our what-if analysis. Figure (a) shows the
impact of arrival rate on response time under different inter-
arrival time (IAT) variabilities. Figure (b) shows the impact
of time spent in garbage collection (GC) on response time for
different GC service rate slowdowns.

new Markov chain (not shown here) additionally includes
a replica of the chain in Figure 3 with lower service rates
(µ1 ⇥ slowdown and µ2 ⇥ slowdown), representing the state
space under GC. Transitions are then added from every state
in the original chain to the corresponding state in the replica
chain, with the transition rate determined by the GC frequency.
Inverse transitions are likewise added between the replica
states and the original states to return the system to the
previous, normal service rate.

This extended model is more complex than the H2/H2/1
model in Figure 3, and has not been analyzed before, to the
best of our knowledge. Although this extended model has an
infinite state space, the repeating structure of the underlying
Markov chain still allows us to obtain the mean response
time numerically as a function of the various parameters,
using matrix analytic methods [43]—and in less than one
second with a small memory footprint (a couple MBs). Note
that our model is only an approximation, because real-world
SSDs typically have proprietary firmware whose behavior and
parameters are largely unknown [45]; nevertheless, to provide
useful results, we explored all model parameters over a range
of possible values. (More precise models can be constructed
using parameters obtained from the GC bounds of a specific
storage device under a given workload.)

Figure 13(b) shows the results of our analysis; note the
log scale on the y-axis. Here, the arrival rate is the same as
that observed in the msg subtrace (330 req/s). The range of
parameters (percentage time spent in GC and GC slowdown)
in the figure was chosen based on numbers reported in
prior studies on GC [59], [60]. We see that the service rate
slowdown significantly impacts response time, even when the
fraction of time spent in GC is quite small. For example, even
if we spend only 5% of the time in GC, the mean response
time increases to 2ms, 4.4ms, and 40.9ms, under 2⇥, 10⇥,
and 100⇥ service rate slowdown, respectively. By contrast,
without GC, the response time is about 1.8ms. We also tried
other GC frequencies, once every 6s and once every 600s, and
found the results (and trends) to be qualitatively similar.

The above use cases highlight the benefits of our distribution

fitting based performance modeling approach. Our models can
also be employed for analyzing other use cases, such as the
impact of device aging (by considering multiple service rate
slowdown regimes) or the impact of newer hardware (faster
service rate) on response time. Without such models, the above
what-if analysis would require extensive experimentation and
might even be infeasible.

VIII. RELATED WORK

A. Analyzing Disk Access Patterns

Storage workloads have been the focus of analysis since at
least as far back as the 1980’s when disk access patterns were
studied. Ruemmler and Wilkes [35] presented an analysis of
disk access patterns on three HP-UX systems collected in
1992. Their analysis focused on the volume of read versus
write traffic, and the nature of the traffic, such as sequential,
synchronous, swap traffic, etc. A similar study was later
conducted by Keeton et al. [61] for disk block traces from a
mail server and a database server in 2000. While both papers
analyze skew in I/O load across devices, distribution fitting of
the I/O traffic is not considered. Gomez and Santonja [2] later
analyzed and specifically modeled the disk access patterns for
the traces provided by Ruemmler and Wilkes. They found that
the spatial access pattern is well modeled as a heavy-tailed
Pareto distribution; however, the fitted parameters do result in
infinite variance.

Verma et al. [46] analyzed block-level I/O traces from
various servers at FIU’s Computer Science department. The
analysis focused on the usage of working sets, variability in
workload intensity, and read-idle time distribution. The authors
observed that data usage was highly skewed, but did not
consider distribution fitting.

B. Analyzing Request-Level Storage Traces

Kavalanekar et al. [22] analyzed the characteristics of storage
workload traces from production servers at Microsoft. The
analysis focused on block-level statistics, file access fre-
quencies, and temporal and spatial self-similarity. IAT (inter-
arrival time) analysis was also conducted, focusing on the
visualization of the IAT histograms and the overall rate of
requests, but not on distribution fitting.

Gracia-Tinedo et al. [14] analyzed user-level storage work-
loads for the personal cloud service, UbuntuOne. The analysis
shows that some of the inter-operation times, such as those for
Upload, are not well approximated by the Exponential distri-
bution and are better approximated by the Pareto distribution.

Zhou et al. [23] analyzed block-level I/O traces from
common applications, such as email and YouTube, on a Nexus
5 smartphone equipped with a Flash-based eMMC (embedded
multimedia card) device. The analysis focused on the size of
the requests (or service times, STs) received by the eMMc
device and their access type (read versus write). IATs of the
traces are also considered, but the analysis is restricted to mean
IAT and the extent of batching among requests.
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In our analysis here we considered several of the above
traces (that are publicly available on SNIA’s repository [21]),
but focused on the distribution fitting of their IAT and ST
traces, separated by reads and writes. By finding an accurate
distribution fit, we enabled queueing-based performance mod-
els that can accurately predict the response time for requests.

C. Analyzing the Aggregate Storage Volume of Workloads

Leung et al. [62] analyzed the traffic for two enterprise
file servers deployed at NetApp. The paper analyzes various
characteristics of file I/O traffic such as volume, lifetimes,
access frequency, etc. The authors do find that several of the
characteristics are heavy-tailed, but do not identify a specific
distribution fit. Birke et al. [36] analyzed storage workloads on
VMs in an enterprise private cloud and found that the VM-
level storage capacity and used storage volume can be well
approximated by an Exponential distribution. Mei et al. [63]
analyzed and modeled a few traces from MSR and found that
the spatio-temporal behavior is well modeled as a Gaussian.

Seo et al. [64] presented a data-mining and clustering
approach to classify and thus characterize I/O workloads using
previously published deduplication traces [21], [65]. While
classification is a useful characterization of workloads, the
classified workloads and clusters are not intuitive and require
further analysis. For instance, while the authors do use the
mean IAT as a feature, the clustering results do not provide
any information about the IAT distribution within the cluster.

D. Analyzing the Network Traffic of Storage Workloads

Lee et al. [24] analyzed storage traffic on servers that host
commercial virtual desktop infrastructure (VDI) VMs. The
analysis is focused on the traffic volume and burstiness of
specific applications on these VDI servers. A similar analysis
was conducted on a smaller set of traces by Shamma et
al. [66]. Drago et al. [67] analyzed the network traffic to
Dropbox from home networks and found that a small number
of users are responsible for most of the traffic.

E. Analyzing File System Characteristics

Prior work has also focused on analyzing file system charac-
teristics, such as file size, file count, directory count, etc. For
example, the file size distribution was found to be well mod-
eled by a Lognormal [68], Lambda [69] (similar to Normal
and Logistic), or Bimodal [70], [71] distribution, depending
on the source of the trace. A recent work, Impressions [72],
focused on generating realistic file system images with asso-
ciated metadata to facilitate performance benchmarking of file
systems. Our focus in this paper is on request-level modeling
for IAT and ST (service time). ST is the time required to
service a request on a device, and is thus different from file
size.

F. Other Storage Analysis Works

There are several other storage analysis studies that focus on
other metrics such as device failures [73], [74], data corrup-

tion [75], data deduplication [65], etc. These are orthogonal to
our paper: we focus specifically on request-level distribution
fitting and performance modeling.

IX. CONCLUSIONS

Storage workload modeling is critical to optimizing storage
systems—often the slowest component of any system. Good
models depend on an accurate characterization of inter-arrival
times and service requirements. Many distributions exist that
have been found to accurately model behavior in other do-
mains, but not for storage systems—in part because storage
systems exhibit multi-modalities and long tails [45], [76]. And
some distributions that do fit storage systems, however, do not
provide analytical properties that can be used to, say, build an
accurate and efficient performance model for storage systems.
This paper makes the following contributions:

1) We undertook a detailed study of distribution fitting for
storage workloads, using over 200 traces from four differ-
ent sources, and evaluated their fitness using 20 different
probability distributions under 5 diverse accuracy metrics.

2) We discovered that the seldom used Hyper-exponential
distribution provided the best fit based on all five metrics
of accuracy. Moreover, we found that only two phases
were needed to make this distribution fit well: more phases
did not improve accuracy by much, and took longer to fit
compared to other distributions.

3) This Hyper-exponential distribution with two terms (H2)
is amenable to performance modeling. We built such a
model and evaluated it in predicting storage performance.
Whereas the few other distributions (e.g., Exponential)
that do enable modeling resulted in at least 48% median
modeling error, and as high as 361% error, H2’s median
error was under 18%.

4) We employed and extended our Hyper-exponential–based
performance model to conduct two different what-if anal-
yses. First, we highlighted the severe impact of workload
variability on response time. Second, we investigated the
performance impact of different parameters of garbage
collection; we found that even if garbage collection is only
active for a fraction of time, performance can degrade by
as much 20⇥.

While our focus in this work is on modeling request-level
characteristics of storage systems, we believe that the appli-
cability of the Hyper-exponential for distribution fitting can
extend to other fields as well, such as file system characteristics
and other workloads or system traces.
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