
Tracefs: A File System to Trace Them All

Akshat Aranya, Charles P. Wright, and Erez Zadok
Stony Brook University

Appears in the proceedings of the Third USENIX Conference on File and Storage Technologies (FAST 2004)

Abstract

File system traces have been used for years to analyze
user behavior and system software behavior, leading to
advances in file system and storage technologies. Ex-
isting traces, however, are difficult to use because they
were captured for a specific use and cannot be changed,
they often miss vital information for others to use, they
become stale as time goes by, and they cannot be easily
distributed due to user privacy concerns. Other forms of
traces (block level, NFS level, or system-call level) all
contain one or more deficiencies, limiting their useful-
ness to a wider range of studies.

We developed Tracefs, a thin stackable file system
for capturing file system traces in a portable manner.
Tracefs can capture uniform traces for any file system,
without modifying the file systems being traced. Tracefs
can capture traces at various degrees of granularity: by
users, groups, processes, files and file names, file oper-
ations, and more; it can transform trace data into aggre-
gate counters, compressed, checksummed, encrypted, or
anonymized streams; and it can buffer and direct the re-
sulting data to various destinations (e.g., sockets, disks,
etc.). Our modular and extensible design allows for uses
beyond traditional file system traces: Tracefs can wrap
around other file systems for debugging as well as for
feeding user activity data into an Intrusion Detection
System. We have implemented and evaluated a proto-
type Tracefs on Linux. Our evaluation shows a highly
versatile system with small overheads.

1 Introduction
File system traces have been used in the past to analyze
the user access patterns and file system software perfor-
mance. Studies using those traces helped the commu-
nity devise better software and hardware to accommo-
date ever-changing computing needs [1, 14, 18]. For ex-
ample, traces can be used to determine dynamic access
patterns of file systems such as the rate of file creation,
the distribution of read and write operations, file sizes,
file lifetimes, the frequency of each file system opera-
tion, etc. The information collected through traces is
useful to determine file system bottlenecks. It can help
identify typical usage patterns that can be optimized and
provide valuable data for improving performance.

Although the primary use of traces had been for file
system performance studies [18], two other uses exist:
security and debugging. First, file system tracing is
useful for security and auditing. Monitoring file sys-
tem operations can help detect intrusions and assess the
damage. Tracing can be conducted file system wide or
based on a suspected user, program, or process. Also,
file system tracing has the potential for use in computer
forensics—to roll back and replay the traced operations,
or to revert a file system to a state prior to an attack.

Second, file system tracing is useful for debugging
other file systems. A fine-grained tracing facility can
allow a file system developer to locate bugs and points
of failure. For example, a developer may want to trace
just one system call made into the file system, or all calls
made by a particular process, or turn tracing on and off
dynamically at critical times. A tracing file system that
can be easily layered or stacked on top of another file
system is particularly suitable for debugging as it re-
quires no modification to the file system or the OS.

Previous tracing systems were customized for a single
study [14, 18]. These systems were built either in an ad-
hoc manner, or were not well documented in research
texts. Their emphasis was on studying the characteris-
tics of file system operations and not on developing a
systematic or reusable infrastructure for tracing. After
such studies were published, the traces would sometimes
be released. Often, the traces excluded useful informa-
tion for others conducting new studies; information ex-
cluded could concern the initial state of the machines or
hardware on which the traces were collected, some file
system operations and their arguments, pathnames, and
more. For example, block-level traces often lack specific
information about file system operations and user activ-
ity. NFS-level traces lack information about the state of
the applications and users running on the clients, or the
servers’ state. System-call level traces often miss infor-
mation about how system call activity is translated into
multiple actions in the lower layers of the OS. System-
call traces also cannot work on NFS servers where no
system call activity is seen by the server.

To illustrate typical problems when using past traces,
we describe our own experiences. In the past two years,
we conducted a study comparing the growth rate of disk

1

sizes to the growth rate of users’ disk space consump-
tion; we required information about the growth rate of
various types of files. To determine file types, we used
the files’ extensions [5]. The traces we were able to ac-
cess proved unsuitable for our needs. The Sprite [1] and
BSD [14] traces were too old to be meaningful for to-
day’s fast-changing systems. These two also did not in-
clude the full file’s pathname or size. The “Labyrinth”
and “Lair” passive NFS traces (which were not available
at the time we conducted our study) only show patterns
as seen over the NFS protocol, lacking client and server
information [4]. Eventually, we found two traces which,
when combined, could provide us with the data required:
the SEER [10] and Roselli [18] traces. Even then, we
had to contact the authors of those traces to request ad-
ditional information about the systems on which those
traces were taken. Next, we attempted to draw conclu-
sions from the combination of the two distinct traces, a
less-than-ideal situation for precise studies. Finally, to
verify our conclusions, we had to capture our own traces
and correlate them with past traces. Our experience is
not uncommon: much time is wasted because available
traces are unsuitable for the tasks at hand.

For traces to be useful for more than one study, they
should include all information that could be necessary
even years later. To be flexible, the tracing system
should allow traces to be captured based on a wide range
of fine-grained conditions. To be efficient in time and
space, the system should trace only that which is desired,
support buffering and compression, and more. To be se-
cure, the trace system should support strong encryption
and powerful anonymization. We have designed and im-
plemented such a system, called Tracefs.

Tracefs uses a highly flexible and composable set of
modules. Input filters can efficiently determine what to
trace by users, groups, processes, sessions, file system
operations, file names and attributes, and more. Output
filters control trace data manipulations such as encryp-
tion, compression, buffering, checksumming—as well
as aggregation operators that count frequencies of traced
operations. Output drivers determine the amount of
buffering to use and where the trace data stream should
be directed: a raw device, a file, or a local or remote
socket. The traces are portable and self-describing to
preserve their usefulness in the future. A set of user-
level tools can anonymize selective parts of a trace
with encryption keys that can unlock desired subsets of
anonymized data. Finally, our design decomposes the
various components of the system in an extensible man-
ner, to allow others to write additional input or output
filters and drivers.

We chose a stackable file system implementation for
Tracefs because it requires no changes to the operating
system or the file systems being traced. A stackable file

system can capture traces with the same ease whether
running on individual clients’ local file systems (e.g.,
Ext2 or FFS), on network file system mounts (e.g., NFS
or SMBFS), or even directly on NFS file servers.

We developed a prototype of the Tracefs system on
Linux. Our evaluation shows negligible time overheads
for moderate levels of tracing. Tracefs demonstrates an
overhead of less than 2% for normal user operations and
6% for an I/O-intensive workload.

The rest of the paper is organized as follows. Section
2 describes the design of Tracefs. Section 3 discusses
interesting implementation aspects. Section 4 presents
an evaluation of Tracefs. Section 5 surveys related work.
We conclude in Section 6 and discuss future directions.

2 Design
We considered the following six design goals:

Flexibility Flexibility is the most important consider-
ation for a tracing file system like Tracefs. Traditionally,
tracing systems have either collected large amounts of
traces that are cumbersome to store and parse or were
focused at specific areas of study that make them less
useful to other studies. We designed Tracefs to support
different combinations of traced operations, verbosity of
tracing, the trace destination, and security and perfor-
mance features.

Performance It is essential that tracing does not incur
too much performance overhead. Tracing is inherently
an expensive operation, since it requires disk or network
I/O. When designing tracing mechanisms, tradeoffs have
to be made between performance and functionality. In
our design, we addressed performance issues through
buffering and provisions for limiting the data traced to
exactly that which is relevant to each study.

Convenience of Analysis We designed Tracefs to use
a simple binary format for generated traces. The traces
are self-contained, i.e., they incorporate information
about how the trace data is to be parsed and interpreted.

Security One of the uses for a tracing file system is
to monitor malicious activity on a system. Hence, it is
essential that the generated traces should be protected
from attacks or subversion. We incorporated encryption
and keyed checksums to provide strong security.

Privacy Public distribution of traces raises concerns
about privacy since traces may contain personal infor-
mation. Such information cannot simply be removed
from traces since it is required for correlation. To
address privacy concerns, we designed our system to
anonymize traces while still retaining information re-
quired for correlation. Data fields in traces can be se-
lectively anonymized, providing flexibility in choosing
the parts of the traces that need to be anonymized.

2

Portability We achieved portability through the use of
a stackable file system that is available on multiple plat-
forms [21]. A stackable file system allows us to easily
trace any underlying file system. Since Tracefs is imple-
mented as a kernel module, no kernel modifications are
required to enable tracing.

In Section 2.1 we describe the component architec-
ture of Tracefs, and in Sections 2.2–2.5 we discuss each
component in detail. In Section 2.6 we describe the trace
file structure. In Section 2.7 we describe how traces are
anonymized. In Section 2.8 we discuss usage scenarios.

2.1 Component Architecture

Tracefs is implemented as a stackable file system that
can be stacked on top of any underlying file system. Fig-
ure 1 shows that Tracefs is a thin layer between the Vir-
tual File System (VFS) and any other file system. File-
system-related system calls invoke VFS calls which in
turn invoke an underlying file system. When Tracefs is
stacked on top of another file system, the VFS calls are
intercepted by Tracefs before being passed to the under-
lying file system. Before invoking the underlying file
system, Tracefs calls hooks into one or more tracers that
trace the operation. Another hook is called at the end of
the operation to trace the return value.

Tracer 1 Tracer 2 Tracer n

K
E

R
N

E
L

System calls ioctls

applications
Tracefs helperUser process

U
SE

R

Traced file system (Ext3, NFS, etc.)

Virtual File System

File system operations ioctls

Tracefs

Figure 1: Architecture of Tracefs as a stackable file system.
Tracefs intercepts operations and invokes hooks into one or
more tracers before passing the operations to the underlying
file system.

The use of stacking has several inherent advantages
for tracing. Tracefs can be used to trace any file sys-
tem. Moreover, memory-mapped I/O can only be traced
at the file-system level. It is also more natural to study
file system characteristics in terms of file system opera-
tions instead of system calls. Finally, server-side oper-
ations of network file systems are performed directly in
the kernel, not through system calls.

Figure 2 depicts the high level architecture of our trac-
ing infrastructure. It consists of four major components:

Assembly
Driver

Assembly
Driver

Assembly
Driver

Filter
Output

Chain of output
filters & an output

driver

Output
Filter

Output
Driver

Input
Filter

drivers
Chain of assembly

....

(Optional)
Asynchronous Filter

Buffers

Kernel Thread

....

Figure 2: Architecture for a Tracefs tracer. Assembly drivers
generate a trace stream that is transformed by output filters
before being written out by an output driver. An optional asyn-
chronous filter buffers the trace stream that is processed by a
separate kernel thread.

input filters, assembly drivers, output filters, and output
drivers. Input filters are invoked using hooks from the
file system layer. Input filters determine which opera-
tions to trace. Assembly drivers convert a traced oper-
ation and its parameters into a stream format. Output
filters perform a series of stream transformations like
encryption, compression, etc. Output drivers write the
trace stream out from the kernel to an external entity,
like a file or a socket.

A combination of an input filter, assembly drivers,
output filters, and an output driver defines a tracer.
Tracefs supports multiple tracers which makes it possi-
ble to trace the same system simultaneously under dif-
ferent trace configurations.

We have emphasized simplicity and extensibility in
designing interfaces for assembly drivers, output filters,
and output drivers. Each component has a well-defined
API. The APIs can be used to extend the functionality
of Tracefs. Writing custom drivers requires little knowl-
edge of kernel programming or file system internals. An
output driver or output filter defines five operations: ini-
tialize, release, write, flush, and get the preferred block
size. An assembly driver requires the implementation
of pre-call and post-call stubs for every VFS operation
of interest. Including initialization and cleanup, an as-
sembly driver can have up to 74 operations on Linux.
Pre-call methods invoke the assembly driver before the
actual operation is passed to the lower-level file system;
post-call methods invoke the assembly driver after the
call to the lower-level file system. For example, an as-
sembly driver that is interested in counting the frequency
of file creation and deletion need only implement two
methods: CREATE and UNLINK. Custom drivers can be
plugged into the existing infrastructure easily.

3

2.2 Input Filters
We use input filters to specify an expression that deter-
mines what operations are traced. For every file system
operation, the expression is evaluated to determine if the
operation needs to be traced. The user can specify arbi-
trary boolean expressions built from a set of basic predi-
cates, such as UID, GID, PID, session ID, process name,
file name, VFS operation type, system call name, etc.
Input filters provide a flexible mechanism for generating
specific traces based on the user’s requirements.

An input filter is implemented as an in-kernel directed
acyclic graph (DAG) that represents a boolean expres-
sion. We adapted the popular and efficient code for rep-
resenting expressions from the Berkeley Packet Filter
[11] and the PCAP library [8]. We evaluate an input
filter against file system objects that were passed as pa-
rameters to the call and the current process’s task struc-
ture. Fields in these structures define the tracing context
for evaluating the truth value of the trace expression.

Name="foo"?
T

TRUE FALSE

UID=0?

Start

T

Op=OPEN?

F

T F

F
GID=4?

T F

Figure 3: Directed acyclic graph representing the trace con-
dition: ((UID = 0) ∧ (Name = foo)) ∨ ((GID = 4)
∧ (Op = OPEN))

Figure 3 shows an example of one such expression
and its DAG representation. Each non-terminal vertex
in the graph represents a simple predicate, and has two
outgoing edges labeled TRUE and FALSE. The graph has
two terminal vertices representing the final result of the
evaluation. Evaluation starts at the root vertex. At each
step, the predicate of the vertex is evaluated, and one
of the two outgoing edges is taken based on the result of
the evaluation. This procedure is repeated until the graph
traversal reaches either of the two terminal vertices.

We chose this approach over a standard tree represen-
tation since it is more compact and allows for a simple
traversal from the start to a terminal vertex, instead of
recursion or complex threaded traversal of trees. It also
enables sharing of nodes [11].

To set up tracing, the DAG is constructed in user space
and then passed to the kernel using an array. The kernel
validates all the data fields, and verifies that the DAG
does not contain any cycles. This way the kernel does
not need to parse text expressions or construct graphs.

2.3 Assembly Drivers

Once the input filter has determined that a certain opera-
tion should be traced, the filter passes the corresponding
VFS objects to a series of assembly drivers that deter-
mine the content of generated traces. An assembly driver
is invoked through a well-defined interface that makes it
easy to chain multiple assembly drivers together. We de-
scribe two assembly drivers: stream and aggregate.

Stream driver The stream driver is the default assem-
bly driver. It converts the fields of VFS objects into a
stream format. The stream driver generates one mes-
sage for each logged file system operation. We describe
the stream format in Section 2.6. The stream driver has
various verbosity options that determine how much in-
formation is logged. Verbosity options allow the user to
choose any combination of the following:

• Fields of VFS objects like dentry, inode, or
file, e.g., inode number, link count, and size.

• Return values
• Timestamps with second or microsecond resolution
• Checksum for read and write data
• Data in read and write operations
• Process ID, session ID, process group ID
• User ID, group ID
• Process name
• System call number
• File name, file extension

Aggregate driver One of the popular applications of
tracing is to collect statistical distributions of operations,
instead of actually logging each operation [1, 18]. This
has been traditionally performed by post-processing vast
amounts of trace data and tallying the number of times
each operation was invoked. It is wasteful to log each
operation and its parameters since most of the informa-
tion is discarded in post-processing.

For such applications, we have developed an aggre-
gate driver that keeps track of the number of calls made
during a tracing session and records the values at the end
of the session. The aggregate driver can be used in con-
junction with input filters to determine specific statistical
properties of file system operations; for example, to de-
termine the access patterns of individual users.

2.4 Output Filters

Assembly drivers generate a stream of output and feed it
to the first of a series of output filters. Output filters per-
form operations on a stream of bytes and have no knowl-
edge about VFS objects or the trace file format. Each fil-
ter transforms the input stream and feeds it to the next fil-
ter in the chain. Output filters provide added functional-
ity such as encryption, compression, and checksum cal-
culation. During trace setup, the user can specify the

4

output filters and their order. The filters can be inserted
in any order as they are stream based. The last output fil-
ter in the chain feeds the trace stream to an output driver
that writes the trace stream to the destination.

Each output filter maintains a default block size of
4KB. We chose a 4KB default, since it is the page size on
most systems and it is a reasonably small unit of opera-
tion. However, the output filters are designed to operate
on streams, therefore, the block sizes can be different
for each output filter. The block size can be configured
during trace setup.

We now describe four output filters: checksum, com-
pression, encryption, and the asynchronous filter.

Checksum filter A checksum filter is used to verify
the integrity of traces. It calculates a block-by-block
HMAC-MD5 [17] digest and writes it at the end of each
block. It uses a default block size of 4KB that can be
overridden. The block size determines how frequently
checksums are generated, and therefore, how much over-
head checksumming has for the size of the trace file.
Each block is also numbered with a sequence number
that is included in the digest calculation, so that mod-
ification of traces by removal or reordering of blocks
can be detected. Each trace file also uses a randomly-
generated serial number that is included in each block
so that a block in one trace file cannot be replaced with a
block with the same sequence number from another file.

A checksum filter ensures that trace files are protected
against malicious modifications. Also, since each block
has its own digest, we can verify the integrity of each
block separately. Even if a few blocks are modified, the
unmodified blocks can still be trusted.

Compression filter Traces often contain repeated in-
formation. For example, the logged PID, UID, and GID
are repeated for each operation performed by a process.
Also, the meta-data of the traces, like message identifiers
and argument identifiers, is often repeated. As a result,
traces lend themselves well to compression.

The compression filter compresses trace data on-the-
fly. Compression introduces additional overheads in
terms of CPU usage, but it provides considerable sav-
ings in terms of I/O and storage space. The compression
filter can be used when the size of traces needs to be
kept small, or when I/O overheads are large, for exam-
ple, when traces are recorded over a network.

The compression filter is more efficient when large
blocks of data are compressed at once instead of com-
pressing individual messages. We use an input buffer to
collect a block of data before compressing it. However,
if the compression filter is not the first filter in the chain,
its input data is received in blocks and additional input
buffering is unnecessary. The compression filter can de-
termine if there is another input filter before it and de-

cide intelligently whether or not to use input buffering.
Compression is performed in streaming mode: the com-
pression stream is not flushed until tracing is finished.

Our compression filter uses the zlib library for com-
pression [3]. Zlib is popular, efficient, and provides a
tradeoff between speed and compression ratio through
multiple compression levels.

Encryption filter The encryption filter secures the
contents of generated traces. This ensures that cleartext
traces are not written to the disk, which is preferable to
encrypting traces offline. We use the Linux CryptoAPI
[16]. This allows the use of various encryption algo-
rithms and key sizes.

Asynchronous Filter The asynchronous filter buffers
raw trace data from the assembly driver chain and re-
turns immediately. This filter is placed before any
other output filter. A separate kernel thread pushes the
buffered trace data to the chain of output filters: en-
cryption, compression, etc.—including the final output
driver. The asynchronous filter defers CPU-intensive
transformations and disk or network I/O. This eliminates
expensive operations from the critical path of application
execution, which can improve overall performance.

2.5 Output Drivers
Output drivers are similar to output filters in that they
operate on a stream of bytes. An output driver writes
out the trace stream after it has gone through a series of
transformations using output filters. Like output filters,
output drivers also employ buffering for efficiency. We
now describe two output drivers: file driver and netlink
socket driver.

File driver The file device driver writes the output to a
regular file, a raw device, or a socket. Since writing to a
disk is a slow I/O operation, the file driver uses internal
buffers to collect trace data before writing it to the disk.
The driver writes the buffer to the disk when the buffer
is full. Any data remaining in the buffer is flushed when
tracing is completed.

When used in the socket mode, the file driver con-
nects to a TCP socket at a remote location and sends the
traces over the network. This mode is useful when local
storage is limited and a server with large disk storage is
available elsewhere. It is also useful for high-security
applications as trace data is never written to the local
disk. Additionally, encryption and compression filters
can improve security and reduce network traffic.

If Tracefs is used for file system debugging, then the
trace file should be kept as current as possible. Dur-
ing code development, it is important that the state of
the system is known for the last few events leading up
to an error. In such cases, using buffering may not
be appropriate. Non-buffered I/O is also applicable to

5

high-security applications. In hostile environments, the
amount of information in memory should be kept to a
minimum. Therefore, the file driver also provides a non-
buffered mode that writes data immediately. This can
be used, for example, to write trace logs to non-erasable
tapes. Overall, non-buffered I/O is a tradeoff between
latency and performance.

Netlink socket driver Netlink sockets are a feature of
the Linux kernel that allows the kernel to set up a spe-
cial communication channel with a user-level process.
Tracefs’s netlink socket driver connects to a user level
process through a netlink socket and writes the trace
stream to the socket. The process can parse the trace
stream in real time. For example, the trace stream can
be used for dynamic monitoring of file system opera-
tions instead of storing for offline post-processing. The
trace data can also be used by an intrusion detection sys-
tem (IDS) to detect unusual file system activity.

2.6 Trace Structure
Traces are generated in a binary format to save space
and facilitate parsing. The trace file is composed of two
basic building blocks: an argument and a message.

An argument represents a field of data in the trace, for
example, a PID, UID, timestamp, etc. Each argument
is an 〈arg id, value 〉or an 〈arg id, length, value 〉tuple.
The arg id parameter specifies a unique identifier for the
argument. The length parameter is only necessary for
variable-length fields like file names and process names.
The length of constant-length fields can be omitted, thus
saving space in the trace. The highest bit of arg id is
zero for constant-length fields to indicate that there is no
length field. Anonymization toggles the highest bit of
arg id for constant-length arguments since the length of
arguments changes after encryption, due to padding.

A message is the smallest unit of data written to the
trace. It represents all the data traced for one file system
operation. Each message consists of a message iden-
tifier, msg id, a length field, and a variable number of
arguments. The length field is the length of the entire
message. When parsing the trace file, the parser can
quickly skip over messages by just reading the msg id
and length fields without parsing the arguments.

The trace file is self-contained in the sense that the
meta-data information is encoded within the trace. A
trace parser needs to be aware only of the basic build-
ing blocks of the trace. The header encodes the message
identifiers and argument identifiers with their respective
string values. The length of constant-length arguments is
also encoded in the header so that it need not be repeated
each time the argument occurs in the trace. The length
may vary on different platforms and it can be determined
from the header when the trace is parsed. Finally, the
header also encodes information about the machine the

trace was recorded on, the OS version, hardware charac-
teristics like the disk capacity of the mounted file system
and the amount of RAM, the input filter, the assembly
drivers, the output filters, the output driver for the trace,
and other system state information.

MSG_OPEN Field 1Length

ARG_UID Value ARG_NAME ValueLength

0 24

Field 2

High bit High bit

1 41

Figure 4: An example of a trace message. Each message con-
tains a message identifier, a length field, and multiple argu-
ments. The highest bit of the argument identifier indicates that
the argument has a length field.

Figure 4 shows a partial openmessage. The message
has an identifier, MSG OPEN, and a length field indicat-
ing the entire length of the message. It contains multiple
arguments. The figure shows two arguments: ARG UID
and ARG NAME. ARG UID is a constant-length argument
that does not contain a length field, whereas ARG NAME
is a variable-length field. Message identifiers are defined
for all operations, e.g., MSG READ and MSG WRITE,
and for trace meta-data messages, e.g., MSG START. All
message identifiers and argument identifiers are encoded
in the trace file header; for example, ARG UID is en-
coded as 〈24, "ARG UID"〉.

2.7 Anonymization
Distribution of traces raises concerns about security and
privacy. Traces cannot be distributed in their entirety as
they may reveal too much information about the traced
system, especially about user and personal activity [4].
Users are understandably reluctant to reveal information
about their files and access patterns. Traces may there-
fore be anonymized before they are released publicly.

Our anonymization methodology is based on secret-
key encryption. Each argument type in the trace is en-
crypted with a different randomly-generated key. En-
cryption provides a one-to-one reversible mapping be-
tween unanonymized and anonymized fields. Also,
different mappings for each field remove the possibil-
ity of correlation between related fields, for example
UID = 0 and GID = 0 usually occur together in traces,
but this cannot be easily inferred from the anonymized
traces in which the two fields have been encrypted us-
ing different keys. Trace files generated by Tracefs are
anonymized offline during post-processing. This allows
us to anonymize one source trace file in multiple ways.

Our user-level anonymization tool allows selection of
the arguments that should be anonymized. For example,

6

in one set of traces it may be necessary to anonymize
only the file names, whereas in another, UIDs and GIDs
may also be anonymized. Anonymized traces can be dis-
tributed publicly without encryption keys. Specific en-
cryption keys can be privately provided to someone who
needs to extract unanonymized data. Also, the use of en-
cryption makes anonymization more efficient since we
do not require lookup tables to map each occurrence of
a data field to the same anonymized value. Lookup ta-
bles can grow large as the trace grows. Such tables also
need to be stored separately if reversible anonymization
is required. In contrast, our anonymization approach is
stateless: we do not have to maintain any additional in-
formation other than one encryption key for each type of
data anonymized. Finally, we use cipher block chaining
(CBC) because cipher feedback (CFB) mode is prone to
XOR attacks and electronic code book (ECB) mode has
no protection for 8-byte repetitions [19].

2.8 Usage
Tracefs provides user-level tools to setup, start and stop
traces. A sample configuration file for trace setup is:

{
{ cuid = 0 OR cgid = 1 }
{ stream = { STR POST OP | STR PID |

STR UID | STR TIMESTAMP } }
{ compress;

filename = "/mnt/trace.log" buf = 262144 }
}

The configuration file contains three sections for each
tracer: input filter, assembly drivers, and output filters
and driver. In this example, the input filter contains two
OR-ed predicates. It uses the stream assembly driver,
with the parenthesized parameters specifying the ver-
bosity settings. Finally, the output chain consists of the
compression filter and the file output driver which spec-
ifies the name of the trace file and the buffer size being
used. This configuration file is parsed by a tool which
calls ioctls to specify the tracer. For the input filter, the
tool first constructs a DAG which is then passed to the
kernel in a topologically-sorted array. The kernel recon-
structs the DAG from this array. If the trace parameters
are correct, the kernel returns a unique identifier for the
tracer. This identifier can be used later to start and stop
tracing using ioctls.

The input filter determines which operations will be
traced and under what conditions. The ability to limit
traces provides flexibility in applying Tracefs for a large
variety of applications. We now discuss three such ap-
plications: trace studies, IDSs, and debugging.

Trace Studies When configuring Tracefs for collect-
ing traces for studies, typically all operations will be
traced using a simple or null input filter. The stream as-
sembly driver will trace all arguments. The output driver

will typically be a file with buffered asynchronous writes
for maximum performance.

Intrusion Detection Systems An IDS is configured
with two tracers. The first tracer is an aggregate counter
that keeps track of how often each operation is executed.
This information is periodically updated and a monitor-
ing application can raise an alarm in case of abnormal
behavior. The second tracer creates a detailed operation
log. In case of an alarm, the IDS can read this log and
get detailed information of file system activity. An IDS
needs to trace only a few operations. The output filter in-
cludes checksumming and encryption for security. The
trace output is sent over a socket to a remote destination,
or written to a non-erasable tape. Additionally, compres-
sion may be used to limit network traffic.

To defeat denial of service attacks, a QoS output filter
can be implemented. Such a filter can effectively throttle
file system operations, thus limiting resource usage.

Debugging For debugging file systems, Tracefs can be
used with a precise input filter, which defines only the
operations that are a part of a sequence of operations
known to be buggy. Additionally, specific fields of file
system objects can be traced, (e.g., the inode number,
link count, dentry name, etc.). No output filters need
to be used because security and storage space are not
the primary concern and the trace file should be easy
to parse. The file output driver is used in unbuffered
synchronous mode to keep the trace output as up-to-date
as possible.

3 Implementation
We developed a prototype of Tracefs as a kernel module
for Linux 2.4.20 based on a stackable file system tem-
plate [21]. Tracefs is 9,272 lines of code. The original
stacking template was 3,659 lines of code. The netlink
socket output driver is not yet implemented.

We now describe three interesting aspects of our
implementation: system-call based filtering, file-name
based filtering and asynchronous filter.

System call based filtering To support system call
based filtering, we needed to determine which system
call invoked the file system operation. System call num-
bers are lost at the file system level. All other infor-
mation that we log is available either through function
parameters, or globally (e.g., the current running task
structure contains the PID, current UID, etc.). System
call filtering requires a small patch to the kernel. The
patch is required only for this additional functionality.
All other features are still available without any modifi-
cations to the Linux kernel.

We added an extra field, sys call, to struct
task struct, the structure for tasks. All system calls

7

are invoked through a common entry point parameter-
ized by the system call number. We added four lines of
assembly code to the system call invocation path to set
the system call number in the task structure before entry
and then reset it on exit. In Tracefs, we can filter based
on the system call number by comparing the sys call
field of the current process’s task structure with a bitmap
of system calls being traced. We can also record the sys-
tem call number for each operation so that file system
operations can be correlated with system calls.

File name based filtering Implementation of file
name based filtering posed a challenge when develop-
ing Tracefs. The name of the file is available only in the
dentry object of a file, not in the inode. There are
some VFS operations that do not pass the dentry ob-
ject to the file system. Even in cases when the dentry
is available, comparison of file names might require ex-
pensive string matching.

To implement file name and file extension based trac-
ing, we developed a file name cache that stores all inode
numbers for inodes that match a specified name or exten-
sion. In case of hard links, the inode number is present
in every name group that the names of the file satisfy.

Input Filter

*.c

*.o

foo.tex

68769

9871

Inode Table

90121

12200

8721

Inode Table

Name Inode Table

Figure 5: The file name cache for tracing based on file names
and extensions. The first level table maps a name to an inode
number table that stores inode numbers with that name. An
input filter has a direct reference to the inode number table.

Figure 5 shows the structure of the name cache. The
figure shows that the name cache is implemented as a
two-level hash table. The first level table maps the name
or extension to a second level table that stores all the in-
ode numbers that satisfy the rule. The input filter has
a direct reference to an inode table. A file name pred-
icate is evaluated by simply looking up the inode num-
ber in the inode table. We create a new entry in the ta-
ble for a newly created inode if its name satisfies any
of the rules; the entry is removed when the inode is
flushed from memory. Multiple input filters share the
same inode table if they are evaluating the same file
name predicate. In the figure, foo.tex is one of the
file names being traced. This will trace operations on
all files named foo.tex. The entry in the first level
table for foo.tex points to an inode table that con-

tains three entries, one for each inode that has the name
foo.tex. The input filter that has a file name predi-
cate for foo.tex directly refers to the inode table for
predicate evaluation.

Asynchronous filter The asynchronous filter allows
Tracefs to move expensive operations out of the critical
execution path, as described in Section 2.4. The filter
maintains a list of buffers and two queues: the empty
queue and the full queue. The empty queue contains the
list of buffers that are currently free and available for use.
The full queue contains buffers that are filled and need
to be written out. The buffer size and the number of
buffers can be configuring during trace setup. The main
execution thread picks the first available buffer from the
empty queue and makes it the current buffer. The trace
stream is written into this current buffer until it is filled
up, at which point it is appended to the full queue and
the next empty buffer is picked up. A separate kernel
thread is spawned at tracing startup; it gets a buffer from
the full queue, writes the buffer to the next output filter,
and inserts the emptied-out buffer into the empty queue.
Each queue has a counting semaphore that indicates the
number of buffers available in it. Both threads wait on
the respective queue semaphores when they are zero.

4 Evaluation

We evaluated the performance of Tracefs on a 1.7GHz
Pentium 4 machine with 1.2GB of RAM. All experi-
ments were conducted on a 30GB 7200 RPM Western
Digital Caviar IDE disk formatted with Ext3. To isolate
performance characteristics, the traces were written to a
separate 10GB 5400 RPM Seagate IDE disk. To reduce
ZCAV effects, the tests took place in a separate partition
toward the outside of the disk, and the partition size was
just large enough to accommodate the test data [7]. The
machine ran Red Hat Linux 9 with a vanilla 2.4.20 ker-
nel. Our kernel was modified with a patch for tracing
by system call number, so that we could include system
call numbers in the trace. However, the results obtained
without the optional kernel patch were indistinguishable
from those we discuss here. To ensure cold cache, be-
tween each test we unmounted the file system on which
the experiments took place and to which the traces were
written. All other executables and libraries (e.g., compil-
ers) were located on the root file system. We ran all tests
at least ten times, and computed 95% confidence inter-
vals for the mean elapsed, system, and user times using
the Student-t distribution. In each case, the half-width
of the interval was less than 5% of the mean.

4.1 Configurations

Tracefs can be used with multiple different configura-
tions. In our benchmarks, we chose indicative configu-

8

rations to evaluate performance over the entire spectrum
of available features. We conducted the tests at the high-
est verbosity level of the stream assembly driver so that
we could evaluate worst case performance. We selected
seven configurations to isolate performance overheads
of each output filter and output driver:

EXT3: A vanilla Ext3, which serves as a baseline for
performance of other configurations.

FILE: Tracefs configured to generate output directly to
a file using a 256KB buffer for traces. We chose a
buffer size of 256KB instead of the default of 4KB
because our experiments indicated that a 256KB
buffer improves the performance on our test setup
by 4–5% over 4KB and there are no additional
gains in performance with a larger buffer.

UNBUFFERED-FILE: Tracefs configured to generate
output to a file without using internal buffering.

CKSUM-FILE: Tracing with an HMAC-MD5 digest of
blocks of 4KB, followed by output to a file.

ENCR-FILE: Blowfish cipher in CBC mode with 128-
bit keys, followed by output to a file. We used
Blowfish because it is efficient, well understood,
and was designed for software encryption [19].

COMPR-FILE: Tracing with zlib compression in default
compression mode, followed by output to a file.

CKSUM-COMPR-ENCR-FILE: Tracing with checksum
calculation followed by compression, then encryp-
tion, and finally output to a file. This represents a
worst-case configuration.

We also performed experiments for tracing different
operations. This demonstrates the performance with re-
spect to the rate of trace generation. We used the aggre-
gate driver to determine the distribution of file system
operations and chose a combination of file system oper-
ations that produces a trace whose size is a specific frac-
tion of the full-size trace generated when all operations
are traced. We used the following three configurations:

FULL: Tracing all file system operations.
MEDIUM: Tracing only the operations that comprise

40–50% of a typical trace. Our tests with the ag-
gregate driver indicated that open, close, read,
write, create, and unlink form 40–50% of
all trace messages. We chose these operations
because they are usually recorded in all studies.
Roselli’s study also shows that these operations
form 49.5% of all operations [18].

LIGHT: Tracing only the operations that comprise ap-
proximately 10% of a typical trace. We chose
open, close, read, and write for this config-
uration based on the results of our test. This config-
uration generates traces with an order of magnitude
fewer operations than for FULL tracing.

To determine the computational overhead of evaluat-
ing input filters, we executed a CPU-intensive bench-
mark with expressions of various degrees of complexity,
containing 1, 10, and 50 predicates. A one-predicate ex-
pression is the simplest configuration and demonstrates
the minimum overhead of expression evaluation. We be-
lieve that practical applications of tracing will typically
use expressions of up to ten predicates. We used 50 pred-
icates to demonstrate worst case performance. The ex-
pressions were constructed so that the final value of the
expression can be determined only after all predicates
are evaluated.

4.2 Workloads
We tested our configurations using two workloads: one
CPU intensive and the other I/O intensive. We chose
one benchmark of each type so that we could evalu-
ate the performance under different system activity lev-
els. Tracing typically results in large I/O activity. At
the same time, our output filters perform CPU-intensive
computations like encryption and compression. The first
workload was a build of Am-Utils [15]. We used Am-
Utils 6.1b3, which contains 430 files and over 60,000
lines of C code. The build process begins by running
several hundred small configuration tests to detect sys-
tem features. It then builds a shared library, ten binaries,
four scripts, and documentation. The Am-Utils build
process is CPU intensive, but it also exercises the file
system because it creates a large number of temporary
files and object files. We ran this benchmark with all of
the configurations mentioned in Section 4.1.

The second workload we chose was Postmark [9]. We
configured Postmark to create 20,000 files (between 512
bytes and 10KB) and perform 200,000 transactions in
200 directories. This benchmark uses little CPU, but
is I/O intensive. Postmark focuses on stressing the file
system by performing a series of file system operations
such as directory lookups, creations, and deletions. A
large number of small files being randomly modified by
multiple users is common in electronic mail and news
servers [9].

4.3 Am-Utils Results
Figure 6 shows the results of the Am-Utils build. The
figure depicts system, user, and elapsed times for Am-
Utils under different configurations of Tracefs. Each
bar shows user time stacked over the system time. The
height of the bar depicts the total elapsed time for exe-
cution. The error bars show the 95% confidence interval
for the test. Each group of bars shows execution times
for a particular configuration of output filters and output
drivers while bars within a group show times for LIGHT,
MEDIUM, and FULL tracing. The leftmost bar in each
group shows the execution time on Ext3 for reference.

9

 0

 50

 100

 150

 200

 250

Li
gh

t

M
ed F
ul

l

Li
gh

t

Li
gh

t

Li
gh

t

Li
gh

t

Li
gh

t

M
ed

M
ed

M
ed

M
ed

M
ed F
ul

l

F
ul

l

F
ul

l

F
ul

l

F
ul

l

E
xt

3

E
xt

3

E
xt

3

E
xt

3

E
xt

3

E
xt

3

Cksum-Compr
-Encr-File

Compr-FileEncr-FileCksum-FileUnbuffered
-File

File

T
im

e
(S

ec
on

ds
)

Tracing Levels

Output Filters

18
6

18
6

18
6

18
6

18
6

18
6

18
9

19
0

19
1

19
4

19
6

18
8

18
9

18
9

19
0

19
1

18
7

18
8

18
8

18
9

18
9

19
1

19
1

19
1

Elapsed Time
User Time

System Time

 0

 50

 100

 150

 200

 250

Li
gh

t

M
ed F
ul

l

Li
gh

t

Li
gh

t

Li
gh

t

Li
gh

t

Li
gh

t

M
ed

M
ed

M
ed

M
ed

M
ed F
ul

l

F
ul

l

F
ul

l

F
ul

l

F
ul

l

E
xt

3

E
xt

3

E
xt

3

E
xt

3

E
xt

3

E
xt

3

Cksum-Compr
-Encr-File

Compr-FileEncr-FileCksum-FileUnbuffered
-File

File

T
im

e
(S

ec
on

ds
)

Tracing Levels

Output Filters

18
6

18
6

18
6

18
6

18
6

18
6

18
9

19
0

19
1

19
4

19
6

18
8

18
9

18
9

19
0

19
1

18
7

18
8

18
8

18
9

18
9

19
1

19
1

19
1

Elapsed Time
User Time

System Time

Figure 6: Execution times for an Am-Utils build. Each group
of bars represents an output filter configuration under LIGHT,
MEDIUM, and FULL tracing. The leftmost bar in each group
shows the execution time for Ext3.

Tracefs incurs a 1.7% elapsed time overhead for FULL

tracing when tracing to a file without any output fil-
ters. Checksum calculation and encryption introduce ad-
ditional overheads of 0.7% and 1.3% in elapsed time.
Compression results in 2.7% elapsed time overhead.
Combining all output filters results in a 5.3% overhead.
System time overheads are 9.6–26.8%. The base over-
head of 9.6% is due to stacking and handling of the trace
stream. CPU intensive stream transformations introduce
additional overheads. The low elapsed time overheads
indicate that users will not notice a change in perfor-
mance under normal working conditions.

Under MEDIUM workload, Tracefs incurs a 1.1%
overhead in elapsed time when writing directly to a trace
file. Checksum calculation and encryption have an ad-
ditional overhead of less than 1%. Compression has an
additional 2.3% overhead. The system time overheads
vary from 7.6–13.7%.

Finally, under LIGHT workload, Tracefs incurs less
than 1% overhead in elapsed time. The output filters
result in an additional overhead of up to 1.1%. System
time overheads vary from 6.1–8.6%.

Unbuffered I/O with FULL tracing has an overhead of
2.7%. The system time overhead is 13.7%, an increase
of 4.1% over buffered I/O. This shows that buffered I/O
provides better performance, as expected.

Overall, these results show that Tracefs has little im-
pact on elapsed time, even with encryption, compres-
sion, and checksumming. Among the output filters,
compression incurs the highest performance overhead.
However, we can see from Figure 8 that the trace file
shrinks from 51.1MB to 2.7MB, a compression ratio of
18.8. This indicates that compression is useful for cases
where disk space or network bandwidth are limited.

Input Filter Performance We evaluated the perfor-
mance of input filters on the Am-Utils workload because
it is CPU intensive and it gives us an indication of the
CPU time spent evaluating expressions under a work-
load that already has high CPU usage. We tested with
input filters containing 1, 10, and 50 predicates. We con-
sidered two cases: a FALSE filter that always evaluates to
false, and thus never records any trace data; and a TRUE

filter that always evaluates to true, and thus constructs
the trace data, but writes it to /dev/null.

With a FALSE one-predicate input filter, the system
time overhead is 4.5%; with a TRUE filter, the overhead
is 11.0%. For a ten-predicate input filter, the system time
overhead is 8.7% for a false expression and 12.6% for
a true expression. Going up to a fifty-predicate filter,
the overhead is 16.1% for a FALSE filter and 21.8% for
a TRUE filter. In terms of elapsed time, the maximum
overhead is 4% with a fifty-predicate filter. Therefore,
we can see that Tracefs scales well with complex expres-
sions, and justifies our use of directed acyclic graphs for
expression evaluation, as described in Section 2.2.

4.4 Postmark Results
Figure 7 shows the execution times for Postmark. This
figure has the same structure as Figure 6 and shows re-
sults for the same Tracefs configurations for Postmark.

 0

 200

 400

 600

 800

 1000

Li
gh

t

M
ed F
ul

l

Li
gh

t

M
ed F
ul

l

Li
gh

t

M
ed F
ul

l

Li
gh

t

M
ed F
ul

l

Li
gh

t

M
ed F
ul

l

Li
gh

t

M
ed F
ul

l

E
xt

3

E
xt

3

E
xt

3

E
xt

3

E
xt

3

E
xt

3

Cksum-Compr
-Encr-File

Compr-FileEncr-FileCksum-FileUnbuffered
-File

File

T
im

e
(S

ec
on

ds
)

Tracing Levels

Output Filters

64
1

64
1

64
1

64
1

64
1

64
172

0

70
5

67
8 74

4

71
9

69
173

8

71
1

71
0 75

9

74
6

72
4 76

7

73
8

71
373

4

71
7

67
5

Elapsed Time
User Time

System Time

 0

 200

 400

 600

 800

 1000

Li
gh

t

M
ed F
ul

l

Li
gh

t

M
ed F
ul

l

Li
gh

t

M
ed F
ul

l

Li
gh

t

M
ed F
ul

l

Li
gh

t

M
ed F
ul

l

Li
gh

t

M
ed F
ul

l

E
xt

3

E
xt

3

E
xt

3

E
xt

3

E
xt

3

E
xt

3

Cksum-Compr
-Encr-File

Compr-FileEncr-FileCksum-FileUnbuffered
-File

File

T
im

e
(S

ec
on

ds
)

Tracing Levels

Output Filters

64
1

64
1

64
1

64
1

64
1

64
172

0

70
5

67
8 74

4

71
9

69
173

8

71
1

71
0 75

9

74
6

72
4 76

7

73
8

71
373

4

71
7

67
5

Elapsed Time
User Time

System Time

Figure 7: Execution times for Postmark. Each group of
bars represents an output filter configuration under LIGHT,
MEDIUM, and FULL tracing. The leftmost bar in each group
shows execution times for Ext3.

The figure shows that Tracefs incurs 12.4% overhead
in elapsed time for FULL tracing. Encryption intro-
duces another 3.7% overhead, and checksum calcula-
tion has an additional overhead of 2.8%. Compression
has an overhead of 6.1% in elapsed time. The system
time overheads are higher: 132.9% without any out-
put filters, whereas encryption, checksum calculation,
and compression have additional overheads of 80.4%,
36.9%, and 291.4%, respectively. However, Figure 7

10

shows that system time is a small portion of this I/O-
intensive benchmark and the performance in terms of
elapsed time is reasonable considering the I/O intensive
nature of the benchmark.

For MEDIUM tracing, the elapsed time overhead is
10.0%. Encryption, checksum calculation, and compres-
sion have additional elapsed time overheads of 2.2%,
0.9%, and 5.2%, respectively. The system time in-
creases by 90.6% without any output filters; encryption,
checksum calculation, and compression have additional
overheads of 28.7%, 12.8%, and 140.7%, respectively.
LIGHT tracing has an overhead ranging from 5.9–11.3%
in elapsed time. System time overheads vary from 70.1–
122.8%. This shows that selective tracing can effectively
limit the computational overheads of transformations.
Reducing the trace configuration from FULL to MEDIUM

tracing reduces the system time overhead by a factor of
2.1. From FULL to LIGHT tracing, the system time over-
head is reduced by a factor of 3.4.

Input Filter Performance We evaluated the perfor-
mance of input filters for the Postmark workload using
a worst-case configuration: a 50-predicate input filter
that always evaluates to true, in conjunction with the
CKSUM-COMPR-ENCR-FILE configuration of output fil-
ters and with FULL tracing. In this configuration, the
elapsed time increases from 767 to 780 seconds, an in-
crease of 1.7%, as compared to a one-predicate input fil-
ter. This is less than the overhead for Am-Utils because
Postmark is I/O intensive.

4.5 Trace File Sizes and Creation Rates

Figure 8 shows the size of trace files (left half) and the
file creation rates (right half) for the Am-Utils and Post-
mark benchmarks. Each bar shows values for FULL,
MEDIUM, and LIGHT tracing under a particular config-
uration. The bar for FILE also shows variation in file
size (and rate) for CKSUM-FILE and ENCR-FILE config-
urations; the values for these two configurations were
similar and we excluded them for brevity.

This figure shows that Postmark generates traces
at a rate 2.5 times faster than an Am-Utils build.
This explains the disparity in overheads between the
two benchmarks. Encryption does not increase the
file size whereas checksumming increases the file size
marginally because checksums are added to each block
of data. Trace files achieve a compression ratio in the
range of 8–21. The file creation rate decreases as out-
put filters are introduced. However, the rate shows an
increase from COMPR-FILE to CKSUM-COMPR-ENCR-
FILE since the file size increases because of checksum
calculation. The figure also demonstrates how trace files
can be effectively reduced in size using input filters.

 0

 100

 200

 300

 400

 500

C
ks

um
-C

om
pr

-E
nc

r-
F

ile

C
ks

um
-C

om
pr

-E
nc

r-
F

ile

C
om

pr
-F

ile

C
om

pr
-F

ile

F
ile

F
ile

C
ks

um
-C

om
pr

-E
nc

r-
F

ile

C
ks

um
-C

om
pr

-E
nc

r-
F

ile

C
om

pr
-F

ile

C
om

pr
-F

ile

F
ile

F
ile

 0

 100

 200

 300

 400

 500

 600

 700

 800

F
ile

 S
iz

e
(M

B
)

R
at

e
(K

B
ps

)

481.7

700.2

36.3

POSTMARK

48.9

POSTMARK

39.6 52.9
51.3

278.3

2.7

AM-UTILS

14.3

AM-UTILS

3.1 16.0

FULL
MEDIUM

LIGHT

 0

 100

 200

 300

 400

 500

C
ks

um
-C

om
pr

-E
nc

r-
F

ile

C
ks

um
-C

om
pr

-E
nc

r-
F

ile

C
om

pr
-F

ile

C
om

pr
-F

ile

F
ile

F
ile

C
ks

um
-C

om
pr

-E
nc

r-
F

ile

C
ks

um
-C

om
pr

-E
nc

r-
F

ile

C
om

pr
-F

ile

C
om

pr
-F

ile

F
ile

F
ile

 0

 100

 200

 300

 400

 500

 600

 700

 800

F
ile

 S
iz

e
(M

B
)

R
at

e
(K

B
ps

)

481.7

700.2

36.3

POSTMARK

48.9

POSTMARK

39.6 52.9
51.3

278.3

2.7

AM-UTILS

14.3

AM-UTILS

3.1 16.0

FULL
MEDIUM

LIGHT

Figure 8: Trace file sizes and creation rates for Postmark
and Am-Utils benchmarks. Each bar shows values for FULL,
MEDIUM, and LIGHT tracing. The left half depicts file sizes
and the right half depicts trace file creation rates

4.6 Effect of Asynchronous Writes

There are two aspects to Tracefs’s performance with re-
spect to asynchronous writes: (1) writing the trace file
to disk, and (2) using the asynchronous filter to perform
output filter transformations asynchronously. We evalu-
ated Tracefs under the following four configurations:

Synchronous Asynchronous
File System Filter

WSYNC-TSYNC yes no
WSYNC-TASYNC yes yes
WASYNC-TSYNC no no
WASYNC-TASYNC no yes

All benchmarks mentioned previously were per-
formed in WASYNC-TSYNC mode since it is the default
configuration for Tracefs and the file system to which
the traces were written (Ext2/3). To study the effects
of asynchronous writes, we performed two benchmarks:
(1) Postmark with a configuration as mentioned in Sec-
tion 4.2, and (2) OpenClose, a micro-benchmark that
performs open and close on a file in a tight loop us-
ing ten threads, each thread performing 300,000 open-
close pairs. We chose OpenClose since we determined
that general-purpose benchmarks like Postmark perform
large I/O on the underlying file system but produce com-
paratively little I/O for tracing. The OpenClose micro-
benchmark is designed to generate large trace data with-
out writing much data to the underlying file system.

Figure 9 shows the system, user, and elapsed times
for the two benchmarks under the four configurations.
Elapsed time Postmark increases by 3.0% when the
traces were written synchronously as compared to asyn-
chronous writes; such an all-synchronous mode is use-
ful for debugging or security applications. For the in-
tensive OpenClose benchmark, synchronous disk writes
increase the elapsed time by a factor of 2.3.

11

 0

 200

 400

 600

 800

 1000

O
pe

nC
lo

se

O
pe

nC
lo

se

O
pe

nC
lo

se

O
pe

nC
lo

se

P
os

tm
ar

k

P
os

tm
ar

k

P
os

tm
ar

k

P
os

tm
ar

k

WASYNC-TASYNCWASYNC-TSYNCWSYNC-TASYNCWSYNC-TSYNC

T
im

e
(S

ec
on

ds
)

Benchmark

Output Filters

755778 752
731

181

409

167

393

Elapsed Time
User Time

System Time

 0

 200

 400

 600

 800

 1000

O
pe

nC
lo

se

O
pe

nC
lo

se

O
pe

nC
lo

se

O
pe

nC
lo

se

P
os

tm
ar

k

P
os

tm
ar

k

P
os

tm
ar

k

P
os

tm
ar

k

WASYNC-TASYNCWASYNC-TSYNCWSYNC-TASYNCWSYNC-TSYNC

T
im

e
(S

ec
on

ds
)

Benchmark

Output Filters

755778 752
731

181

409

167

393

Elapsed Time
User Time

System Time

Figure 9: Execution times for Postmark and OpenClose. Bars
show system, user, and elapsed times for all combinations of
asynchronous filter and trace file writes.

The asynchronous filter lowers the elapsed time for
execution of Postmark by 6.0% with synchronous trace
file writes. The change with asynchronous disk writes
is negligible. For OpenClose, the elapsed time reduces
by 3.9% with synchronous disk writes and 7.5% with
asynchronous disk writes. The larger improvement is
the result of the micro-benchmark stressing the tracing
subsystem by generating large traces without actual I/O.
The asynchronous filter is useful in such cases.

4.7 Multi-Process Scalability

We evaluated the scalability of Tracefs by executing
multiple Postmark processes simultaneously. We config-
ured Postmark to create 10,000 files (between 512 bytes
and 10KB) and perform 100,000 transactions in 100 di-
rectories for one process, but the workload was evenly
divided among the processes by dividing the number of
files, transactions, and subdirectories by the number of
processes. This ensures that the number of files per di-
rectory remains the same. We measured the elapsed time
as the maximum of all processes, because this is the
amount of time that the work took to complete. We mea-
sured the user and system time as the total of the user and
system for each process. We executed the benchmark in
the FILE configuration with FULL tracing for 1, 2, 4, 8,
and 16 processes.

Figure 10 shows the elapsed and system times for
Postmark with multiple processes. With a single pro-
cess, the elapsed time is 383 seconds on Ext3 and 444
seconds with Tracefs. For 16 processes, the elapsed time
reduces by a factor of 5.6 on Ext3 and by a factor of 3.3
with Tracefs. This shows that Tracefs scales well with
multiple processes, though by a lesser factor, as com-
pared to Ext3. This can be attributed to the serialization
of writing traces to disk. The system times remain con-
stant for both Ext3 and Tracefs.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 2 4 6 8 10 12 14 16

T
im

e
(S

ec
on

ds
)

Number of Processes

Elapsed Time (Tracefs)
Elapsed Time (Ext3)

System Time (Tracefs)
System Time (Ext3)

 0

 50

 100

 150

 200

 250

 300

 350

 400

 450

 0 2 4 6 8 10 12 14 16

T
im

e
(S

ec
on

ds
)

Number of Processes

Elapsed Time (Tracefs)
Elapsed Time (Ext3)

System Time (Tracefs)
System Time (Ext3)

Figure 10: Elapsed and system times for Postmark with Ext3
and Tracefs with multiple processes

4.8 Anonymization Results
Anonymization tests were conducted by anonymizing
selected fields of a trace file generated during one run
of our Postmark benchmarks under FULL tracing with
no output filters. We chose the following five configura-
tions for anonymization:

• Null anonymization. The trace is parsed and rewrit-
ten. This serves as the baseline for comparison.

• Process name, file name, and strings anonymized.
This accounts for 12.5% of the trace.

• UIDs and GIDs anonymized. This accounts for
17.9% of the trace file.

• Process names, file names, UIDs, GIDs, and strings
anonymized. This accounts for 30.4% of the trace.

• Process names, file names, UIDs, GIDs, PIDs and
strings anonymized. This accounts for 39.3% of the
trace.

• Process names, file names, UIDs, GIDs, PIDs,
strings, and timestamps anonymized. This accounts
for 48.2% of the trace.

Figure 11 shows the performance of our user-level
anonymization tool. The figure shows the size of the
anonymized traces in comparison to the original trace
file as bars. It also shows the rate of anonymization as a
line. The rate of anonymization is the rate at which the
unanonymized input trace file can be processed by the
anonymization tool.

The leftmost bar in the figure shows the base configu-
ration where no data is anonymized. Each bar shows the
size of the anonymized file and the increase in size over
the original file. The line shows the rate of anonymiza-
tion in KBps. The base configuration shows the rate of
parsing without any anonymization.

In the figure we see that the rate of anonymization
decreases as a larger percentage of data is anonymized,
as expected. The rate of anonymization decreases by
30.5% whereas the percentage of anonymized data is in-
creased by 48.2%. The rate of anonymization is lim-
ited by the increased I/O required for larger trace files.

12

 0

 100

 200

 300

 400

 500

 600

 700

 800

48.2%39.3%30.4%17.9%12.5%0.0%
 0

 1

 2

 3

 4

 5

F
ile

 s
iz

e
(M

B
)

R
at

e
of

 a
no

ny
m

iz
at

io
n

(M
B

ps
)

Percentage of data anonymized

440 MB
476 MB

558 MB
595 MB

654 MB

713 MB

Anonymized File Size
Base File Size

Rate of Anonymization

 0

 100

 200

 300

 400

 500

 600

 700

 800

48.2%39.3%30.4%17.9%12.5%0.0%
 0

 1

 2

 3

 4

 5

F
ile

 s
iz

e
(M

B
)

R
at

e
of

 a
no

ny
m

iz
at

io
n

(M
B

ps
)

Percentage of data anonymized

440 MB
476 MB

558 MB
595 MB

654 MB

713 MB

Anonymized File Size
Base File Size

Rate of Anonymization

Figure 11: Trace file anonymization rates and increase in file
sizes for different portions of traces anonymized. The Y1 axis
shows the scale for file sizes whereas the Y2 axis shows the
scale for the rate of anonymization.

Anonymization increases the trace file size since fields
in the trace need to be padded up to the encryption block
size. Also, anonymized constant-length fields are con-
verted into variable-length fields since anonymization
changes the length of the field. The length of variable-
length fields needs to be stored in the trace.

In summary, we evaluated Tracefs’s performance us-
ing CPU-intensive and I/O-intensive benchmarks under
different configurations, and show that Tracefs has ac-
ceptable overheads under normal conditions, even with
CPU-intensive output filters, or complex input filters.

5 Related Work
In this section we discuss six past trace studies and sys-
tems that motivated our design.

File System Tracing Package for Berkeley UNIX In
1984, Zhou et al. implemented a tracing package for the
UNIX file system [22]. They instrumented the file oper-
ations and process-control-related system calls to log the
call and its parameters. Their traces are collected in a bi-
nary format and buffered in the kernel before writing to
the disk. The package uses a ring of buffers that are writ-
ten asynchronously using a user-level daemon. The trac-
ing system also switches between trace files so that pri-
mary storage can be freed by moving the traces to a tape.
The generated binary traces are parsed and correlated
into open-close sessions for study. The overhead of trac-
ing is reported up to 10%. The package is comprehen-
sive: it allows tracing of a large number of system calls
and logs detailed information about the parameters of
each call. However, it provides little flexibility in choos-
ing which calls to trace and the verbosity of the trace.
The generated traces require laborious post-processing.
Finally, tracing at the system call level makes it impos-

sible to log memory-mapped I/O or to trace network file
systems.

BSD Study In 1985, Ousterhout et al. implemented
a system for analyzing the UNIX 4.2 BSD file system
[14]. In this study, they traced three servers over a pe-
riod of 2–3 days. This system was implemented by mod-
ifying the BSD kernel to trap file-system–related sys-
tem calls. They chose not to trace reads or writes to
avoid generating large traces and consuming too much
CPU. Memory-mapped I/O was estimated by logging
execve. The BSD study was one of the first file system
studies and its results influenced the design of future file
systems. However, the tracing system used in the study
is too specific to be used for other applications. The sys-
tem traced few operations and other file system activity
was inferred, rather than logged. Important file system
operations like read, write, lookup, directory reads, and
accessing file inodes were not considered.

Sprite Study In 1991, Baker et al. conducted a study
on user-level file access patterns on the Sprite operat-
ing system [1]. They studied file system activity for the
Sprite distributed file system served by four file servers,
over four 48-hour periods. In this study, they repeated
the analysis of the BSD study. They also analyzed file
caching in the Sprite system. They instrumented the
Sprite kernel to trace file system calls and periodically
feed the data to a user-level logging process. Cache per-
formance was studied by using counters in the kernel
that were periodically retrieved and stored by a user-
level program. The use of counters provides a light-
weight mechanism for statistical evaluation, and we have
made similar provisions for aggregate counters in our
Tracefs design. However, the Sprite traces are limited
to a few file system operations. Like the BSD study,
the Sprite study did not record read and write opera-
tions to limit CPU and storage overheads. In compari-
son, Tracefs provides a flexible mechanism to selectively
trace any set of file system operations.

Windows NT 4.0 Study In 1998, Vogels conducted a
usage study on the Windows NT file system [20]. The
purpose of this study was to conduct BSD and Sprite like
studies, in the context of changes in computing needs.
The usage of components of the Windows NT I/O sub-
system was studied. The study was conducted on a set
of 45 systems in distinct usage environments. Traces
were collected by using a filter driver that intercepts file
system requests. The trace driver records 54 I/O re-
quest packet (IRP) events on local and remote file sys-
tem activity covering all major I/O operations. Memory-
mapped I/O was also traced. Due to the nature of Win-
dows NT paging, separating actual file system opera-
tions from the other VM activity is difficult and must be
done during post-processing. This VM activity almost

13

doubled the size of the traces. Also, daily snapshots of
local file systems were taken to record the file system
hierarchy. Traces were logged to a remote collection
server, and analyzed using data-warehousing techniques.

Roselli Study In 2000, Roselli et al. collected and ana-
lyzed file system traces from four separate environments
running HP-UX 9.05 and Windows NT 4.0 [18]. HP-UX
traces were collected by using the auditing subsystem to
record file system events. Additional changes to the ker-
nel were required to trace changes to the current working
directory for resolving relative paths in system calls to
absolute pathnames. The use of the auditing subsystem
provides a mechanism for selectively tracing file system
events with minimal changes to kernel code. The sys-
tem demonstrates that processes frequently use memory
mapped I/O; however, tracing of system calls on Unix
makes it impossible to determine paging activity that re-
sults either from explicit memory-mapped I/O or from
loading of executables. Windows NT traces were col-
lected by interposing file system calls using a file sys-
tem filter driver. Unfortunately, to collect information
on memory-mapped operations they needed to interpose
not only file system operations, but also system calls.
Roselli’s filter driver also suffers from problems related
to paging activity that are similar to Vogels’s.

Passive Network Monitoring Passive network mon-
itoring has been widely used to trace activity on net-
work file systems. Passive tracing is performed by plac-
ing a monitoring system on the network that snoops all
NFS traffic. The captured packets are converted into a
human-readable format and written to a trace file. Post-
processing tools are used to parse the trace file and cor-
relate the RPC messages.

Blaze implemented two tools, rpcspy and
nfstrace, to decode RPC messages and analyze
NFS operations by deriving the structure of the file
system from NFS commands and responses [2].

Ellard et al. implemented a set of tools for anonymiza-
tion and analysis of NFS traces. These tools capture NFS
packets and dump the output in a convenient human-
readable format [4, 6]. The traces are generated in a ta-
ble format that can be parsed using scripts and analyzed
with spreadsheets and database software.

Passive tracing has the advantage of incurring no over-
head on the traced system. It does not require any mod-
ifications to the kernel and can be applied to trace any
system that supports the NFS protocol. It also enables
the study of an NFS based system as a whole, which
is not possible through system call based kernel instru-
mentation strategies [12, 13]. However, NFS traces are
not fully accurate since network packets can be dropped
or missed. Passive tracing also does not provide accu-
rate timing information. The NFSv2 and NFSv3 proto-

cols do not have open and close commands which
make it impossible to determine file access sessions ac-
curately. Memory-mapped I/O cannot be distinguished
from normal reads and writes using passive NFS tracing.
Passive tracing also does not provide an easy mechanism
for capturing specific data; large amounts of traces need
to be captured and analyzed during post-processing to
extract specific information.

Tracefs can be used for monitoring the file system at
the server since the tracing is performed at the file sys-
tem level instead of system call level. Tracefs provides
fine-grained control over the specific data to be traced
which makes post-processing easier.

6 Conclusions
Our work has three contributions. First, we have cre-
ated a low-overhead and flexible tracing file system that
intercepts operations at the VFS level. Unlike system
call tracing, file system tracing records memory-mapped
operations. Unlike NFS tracing, file system tracing re-
ceives open and close events. For normal user oper-
ations, even with the most verbose traces, our overhead
is less than 2%. Our system has several modular compo-
nents: assembly drivers provide different trace formats
or aggregate statistics; output filters perform transforma-
tions on the data (e.g., compression or encryption); and
output drivers write the traces to various types of media.
Low overhead and flexibility makes Tracefs useful for
applications where tracing was previously unused: file
system debugging, intrusion detection, and more.

Second, Tracefs supports complex input filters that
can reduce the amount of trace data generated. Using an
input filter to capture open, close, read, and write events,
an I/O-intensive workload has only a 6% overhead. In-
put filters also increase Tracefs’s usefulness as a security
tool. Tracefs can intercept only suspicious activity and
feed it to an IDS.

Third, our trace format is self-contained. No addi-
tional information aside from the syntax is required to
parse and analyze it. Our trace contains information
about the machine that was being traced (memory, pro-
cessors, disks, etc.) as well as OS information. Rather
than use embedded numbers with special meaning, our
traces contain mappings of numbers to plaintext opera-
tions to ease further analysis (e.g., all system call num-
bers are recorded at the beginning of the trace).

6.1 Future Work
Our main research focus in this project now shifts to sup-
port replaying traces, including selective trace replaying,
and replaying at faster or slower rates than the origi-
nal trace. Replaying traces is useful for several reasons.
First, to be able to repeat a sequence of file system oper-
ations under different system conditions (e.g., evaluating

14

with a new file system). Second, for debugging, it is es-
pecially useful for validating the reproducibility of a bug
in file system code or for changing timing conditions
when tracking down a race-condition. Third, for com-
puter forensics it is useful to be able to go back and forth
in a trace of suspicious activity, inspecting actions in de-
tail. To support flexible trace replaying, we are investi-
gating what initial state information needs to be recorded
in the traces, and possible trace format enhancements.

We are also exploring a few additional aspects of
Tracefs. First, we would like to provide a tool to convert
binary traces into XML, which can then be processed
easily by XML parsers. Second, we are investigating
support for capturing lower level disk block information.
This information is useful for file system developers to
determine optimal on-disk layout. This information is
not easily available in a stackable file system.

7 Acknowledgments
We thank the FAST reviewers for the valuable feedback
they provided, as well as our shepherd, Yuanyuan Zhou.
This work was partially made possible by an NSF CA-
REER award EIA-0133589, NSF award CCR-0310493,
and HP/Intel gifts numbers 87128 and 88415.1.

References
[1] M. G. Baker, J. H. Hartman, M. D. Kupfer, K. W.

Shirriff, and J. K. Ousterhout. Measurements of a Dis-
tributed File System. In Proceedings of 13th ACM SOSP,
pages 198–212. ACM SIGOPS, 1991.

[2] M. Blaze. NFS Tracing by Passive Network Monitor-
ing. In Proceedings of the USENIX Winter Conference,
January 1992.

[3] P. Deutsch and J. L. Gailly. RFC 1050: Zlib 3.3 Specifi-
cation. Network Working Group, May 1996.

[4] D. Ellard, J. Ledlie, P. Malkani, and M. Seltzer. Passive
NFS Tracing of Email and Research Workloads. In Pro-
ceedings of the Annual USENIX Conference on File and
Storage Technologies, March 2003.

[5] D. Ellard, J. Ledlie, and M. Seltzer. The Utility of File
Names. Technical Report TR-05-03, Computer Science
Group, Harvard University, March 2003.

[6] D. Ellard and M. Seltzer. New NFS Tracing Tools and
Techniques for System Analysis. In Proceedings of the
Annual USENIX Conference on Large Installation Sys-
tems Administration, October 2003.

[7] D. Ellard and M. Seltzer. NFS Tricks and Benchmarking
Traps. In Proceedings of the Annual USENIX Techni-
cal Conference, FREENIX Track, pages 101–114, June
2003.

[8] LBNL Network Research Group. The TCP-
Dump/Libpcap site. www.tcpdump.org, February
2003.

[9] J. Katcher. PostMark: a New Filesystem Benchmark.
Technical Report TR3022, Network Appliance, 1997.
www.netapp.com/tech_library/3022.html.

[10] G. H. Kuenning. Seer: Predictive File Hoarding for Dis-
connected Mobile Operation. PhD thesis, University of
California, Los Angeles, May 1997.

[11] S. McCanne and V. Jacobson. The BSD Packet Filter: A
New Architecture for User-level Packet Capture. In Pro-
ceedings of the Winter USENIX Technical Conference,
pages 259–69, January 1993.

[12] A. W. Moore. Operating system and file system mon-
itoring: A comparison of passive network monitoring
with full kernel instrumentation techniques. Master’s
thesis, Department of Robotics and Digital Technology,
Monash University, 1998.

[13] A. W. Moore, A. J. McGregor, and J. W. Breen. A com-
parison of system monitoring methods, passive network
monitoring and kernel instrumentation. ACM SIGOPS
Operating Systems Review, 30(1):16–38, 1996.

[14] J. Ousterhout, H. Costa, D. Harrison, J. Kunze,
M. Kupfer, and J. Thompson. A Trace-Driven Analy-
sis of the UNIX 4.2 BSD File System. In Proceedings
of the 10th ACM SOSP, pages 15–24, Orcas Island, WA,
December 1985. ACM.

[15] J. S. Pendry, N. Williams, and E. Zadok. Am-utils User
Manual, 6.1b3 edition, July 2003. www.am-utils.
org.

[16] H. V. Riedel. The GNU/Linux CryptoAPI site. www.
kerneli.org, August 2003.

[17] R. L. Rivest. RFC 1321: The MD5 Message-Digest Al-
gorithm. Internet Activities Board, April 1992.

[18] D. Roselli, J. R. Lorch, and T. E. Anderson. A Compar-
ison of File System Workloads. In Proc. of the Annual
USENIX Technical Conference, pages 41–54, June 2000.

[19] B. Schneier. Applied Cryptography. John Wiley & Sons,
second edition, October 1995.

[20] W. Vogels. File System Usage in Windows NT 4.0. In
Proceedings of the 17th ACM SOSP, pages 93–109, De-
cember 1999.

[21] E. Zadok and J. Nieh. FiST: A Language for Stackable
File Systems. In Proceedings of the Annual USENIX
Technical Conference, pages 55–70, June 2000.

[22] S. Zhou, H. Da Costa, and A. J. Smith. A File System
Tracing Package for Berkeley UNIX. In Proceedings of
the USENIX Summer Conference, pages 407–419, June
1984.

15

