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Abstract the OS, such as the disk firmware. These mechanisms

must not be overridable even by the highest privileged

Making vital disk data recoverable even in the event ofOS user, so that even if a malicious attacker gains OS

OS compromises has become a necessity, in view of thF - .

. - . oot privileges, disk data would be protected.

increased prevalence of OS vulnerability exploits over BLildi i hani t the disk-level

the recent years. We present the design and implemen- uiiding security mechanisms at the disk-Ievel comes

tation of a secure disk system, SVSDS, that perform ith a key prqblem: traditional disk systems Iac_k higher-
selective, flexible, and transparent versioning of store ?Vel semantic knowledge and hence cannot implement

data, at the disk-level. In addition to versioning, SVSDS exible policies. For example, today’s disk systems can-

actively enforces constraints to protect executables anHOt d|_f(fjeretr_1ft |atehb?rt]ween datt_a almd dr_nitzt-ld af_bl(écks or
system log files. Most existing versioning solutions thatEVen ldently whether a particuiar disk block IS being

operate at the disk-level are unaware of the higher—leveﬁJsed oris free. Disks hgve no knowleqlge of higher-level
bstractions such as files or directories and hence are

eral problem of lack of information at the lower layers of

of disk-level and file-system—Ilevel versioning systemsth e i v referred the “inf i
thereby ensuring security, while at the same time allow- © sys em IS commonly referred 1o as the -information-
ap” in the storage stack. Several existing works aim at

ing flexible policies. We implemented and evaluated gap-| g .

software-level prototype of SVSDS in the Linux kernelabr'dg'n_g this information-gap [4, 11, _16’ 18]. )
and it shows that the space and performance overheads N this paper, we present the design and implementa-
associated with selective versioning at the disk level ardion of SVSDS, a secure disk system that transparently
minimal. performs selective versioning of key data at the disk-

level. By preserving older versions of data, SVSDS pro-

vides a window of time where data damaged by mali-
1 Introduction cious attacks can be recovered through a secure admin-

istrative interface. In addition to this, SVSDS enforces
Protecting disk data against malicious damage is onéwo key constraintsread-onlyandappend-onlyto pro-
of the key requirements in computer systems securitytect executable files and system activity logs which are
Stored data is one the most valuable assets for most ohelpful for intrusion detection.
ganizations and damage to such data often results in ir- In SVSDS, we leverage the idea of Type-Safe Disks
recoverable loss of money and man power. In today'TSD) [16] to obtain higher-level semantic knowledge at
computer systems, vulnerabilities in the OS are not unthe disk-level with minimal modifications to storage soft-
common. OS attacks through root kits, buffer overflows,ware such as file systems. By instrumenting file systems
or malware cause serious threat to critical applicationgo automatically communicate logical block pointers to
and data. In spite of this, security policies and mechathe disk system, a TSD can obtain three key pieces of
nisms are built at the OS level in most of today’s com-information that are vital for implementing flexible secu-
puter systems. This results in wide-scale system com¥ity policies. First, by identifying blocks that have out-
promise when an OS vulnerability is exploited, making going pointers, a TSD differentiates between data and
the entire disk data open to attack. meta-data. Second, a TSD differentiates between used

To protect disk data even in the event of OS compro-and unused blocks, by just identifying blocks that have

mises, security mechanisms have to exist at a layer belowo incoming pointers (and hence not reachable from any



meta-data block). Third, a TSD knows higher abstrac-Application-level versioning. Application-level ver-
tions such as files and directories by just enumeratingioning is primarily used for source code management|1,
blocks in a sub-tree of the pointer hierarchy. For exam-2, 22]. The main advantage of these systems is that they
ple, the sub-tree of blocks starting from an inode blockprovide the maximum flexibility as users can control ev-
of an Ext2 file system belong to a collection of files. erything from choosing the versioning application to cre-
Using this semantic knowledge, SVSDS aggressivelyating new versions of files. The disadvantage with these
versions all meta-data blocks, as meta-data impact theystems is that they lack transparency and users can eas-
accessibility of normal data, and hence is more impor-ly bypass the versioning mechanism. The versioned data
tant. It also provides an interface through which ad-is typically stored in a remote server and becomes vulner-
ministrators can choose specific files or directories forable when the remote server's OS gets compromised.
versioning, or for enforcing operation-based constraints
(read-only or append-only). SVSDS uses its knowledgeFile-system—level versioning. Several file systems
of free and used blocks to place older versions of metasupport versioning [6, 10,12, 15, 19]. These systems are
data and chosen data, and virtualizes the block addressainly designed to allows users to access and revert back
space. Older versions of blocks are not accessible t@o previous versions of files. The older versions of files
higher layers, except through a secure administrative inare typically stored under a hidden directory beneath its
terface upon authentication using a capability. parent directory or on a separate partition. As these file
We implemented a prototype of SVSDS in the Linux systems maintain older versions of files, they can also be
kernel as a pseudo-device driver and evaluated its comsed for recovering individual files and directories in the
rectness and performance. Our results show that theventof an intrusion. Unlike application-level versiogin
overheads of selective disk-level versioning is quite min-systems, file-system—level versioning is usually transpar
imal. For a normal user workload SVYSDS had a smallent to higher layers. The main advantage of these ver-
overhead of 1% compared to regular disks. sioning systems is that they can selectively version files
The rest of the paper is organized as follows. Sec-2nd directories and can also support flexible versioning
tion 2 describe background. Section 3 discusses th@olicies (e.g., users can choose different policies foheac
threat model. Section 4 and Section 5 explain the defile or directory). Once a file is marked for versioning by
sign and implementation of our system respectively. Inthe user, the file system automatically starts versioning
Section 6, we discuss the performance evaluation of outhe file data. The main problem with file-system-level
prototype implementation. Related work is discussed inversioning is that their security is closely tied to the se-

Section 7 and we conclude in Section 8. curity of the operating system. When the operating sys-
tem is compromised, an intruder can bypass the security

checks and change the data stored in the disk.

2 Background
Disk-level versioning. The other alternative is to

Data protection has been a major focus of systems reversion blocks inside the disk [7,20,23]. The main
search in the past decade. Inadvertent user errors, ma@dvantage of this approach is that the versioning mech-
licious intruders, and malware applications that exploitanism is totally decoupled from the operating system
vulnerabilities in operating systems have exacerbated thand hence can make data recoverable even when the
need for stronger data protection mechanisms. In thi®perating system is compromised. The disadvantage
section we first talk about versioning as a means for proWith block-based disk-level versioning systems is that

tecting data. We then give a brief description about TSDghey cannot selectively version files as they lack seman-
to make the paper self-contained. tic information about the data stored inside them. As a

result, in most cases they end up versioning all the data
inside the disk which causes them to have significant
2.1 Data Versioning amount of space overheads in storing versions.

Versioning data is a widely accepted solution to data prodin summary, application-level versioning is weak

tection especially for data recovery. Versioning has beernn terms of security as can be easily bypassed by users.
implemented in different layers. It has been implementedAlso, the versioning mechanism is not transparent to
above the operating system (in applications), inside theaisers and can be easily disabled by intruders. File-
operating system (e.qg., in file systems) and beneath thgystem—Ievel data-protection mechanisms provide
operating system (e.g., inside the disk firmware). Wetransparency and also flexibility in terms of what data

now discuss the advantages and disadvantages of veneeds to be versioned but they do not protect the data in
sioning at the different layers. the event of an operating system compromise. Disk-level



versioning systems provide better security than bothmanager uses &-TABLE (or pointer table) to main-
application and file system level versioning but they dotain the relationship among blocks inside the disk. En-
not provide any flexibility to the users to select the datatries are added to and deleted from theABLE during

that needs to be versioned. What we proposehigtaid CREATE_PTR andDELETE_PTR operations. When there
solution, i.e., combine the strong security that the are no incoming pointers to a block it is automatically
disk-level data versioning provide, with the flexibility of garbage collected by the TSD.

file-system—Ilevel versioning systems. One other important difference between a regular disk
and a TSD is that the file systems no longer does free-
. space management (i.e., file systems no longer need to
2.2 Type-Safe Disks maintain bitmaps to manage free space). The free-space

Today’s block-based disks cannot differentiate betweerinanagement is entirely moved to the disk. TSDs export
block types due to the limited expressiveness of the blocléLLOC-BLOCK API to allow file systems to request new
interface. All higher-level operations such as file cre-blocks from the disk. ThewLLoc_BLoCK API takes a
ation, deletion, extension, renaming, etc. are translatefeference block number, a hint block number, and the
into a set of block read and write requests. Hence, theyjlumber of blocks as arguments and allocates the re-
do not convey any semantic knowledge about the block§uested number of file system blocks from the disk main-
they modify. This problem is popularly known as the in- tained free block list. After allocating the new blocks,
formation gap in the storage stack [4, 5], and constraind SD creates pointers from the reference block to each of
disk systems with respect to the range of functionalitythe newly allocated blocks.
that they can provide. The garbage-collection process performed in TSDs is
Pointers are the primary mechanisms by which data idifferent from the traditional garbage-collection mecha-
organized. Most importantly, pointers define reachabilityNism employed in most programming languages. A TSD
of blocks: i.e., a block that is not pointed to by any otherreclaims back the deleted blocks in an online fashion as
block cannot be reached or accessed. Almost all popula®PPosed to the traditional offline mechanism in most pro-
data structures used for storing information use pointersgramming languages. TSDs maintain a reference count
For example, file systems and database systems make @ the number of incoming pointers) for each block.
tensive use of pointers to organize the data stored in th¥Vhen the reference count of a block decreases to zero,
disk. Storage mechanisms employed by databases liké€ block is garbage-collected; the space is reclaimed by

relationships between blocks. is important to note that it is the pointer information pro-

tems organize data into semantically meaningful entitie?!0cks, which cannot be done in traditional disks [17].
such as files and directories. Pointers define three things:

(1) the semantic dependency between blocks; (2) thelogg  Threat Model

ical grouping of blocks; and (3) the importance of blocks.

Even though pointers provide vast amounts of informa-Broadly, SVSDS provides a security boundary at the disk
tion about relationships among blocks, today’s disks argevel and makes vital data recoverable even when an at-
oblivious to pointers. A Type-Safe Disk (TSD) is a disk tacker obtains root privileges. In our threat model, ap-
system that is aware of pointer information and can usgjications and the OS are untrusted, and the storage sub-
it to enforce invariants on data access and also perforngystem comprising the firmware and magnetic media is
various semantic-aware optimizations which are not postrysted. The OS communicates with the disk through a
sible in today’s disk systems. narrow interface that does not expose the disk internal

TSDs widen the traditional block-based interface toversioning data. Our model assumes that the disk sys-
enable the software layers to communicate pointer infortem is physically secure, and the disk protects against at-
mation to the disk. File systems that use TSDs shouldackers that compromise a computer system through the
use the disk APIs {REATEPTR, DELETEPTR, AL-  network. This scenario covers a major class of attacks
LOC_BLOCK, GETFREE exported by TSDs to allocate inflicted on computer systems today.
blocks, create and delete pointers, and get free-space in- Specifically, an SVSDS provides the following guar-
formation from the disk. antees:

The pointer manager in TSDs keeps track of the re-
lationship among blocks stored inside the disk. The e All meta-data and chosen file data marked for pro-
pointer operations supported by TSDs amREATE_PTR tection will be recoverable to an arbitrary previous
andDELETE_PTR. Both operations take two arguments: state even if an attacker maliciously deletes or over-
source and destination block numbers. The pointer  writes the data, after compromising the OS. The



depth of history available for recovery is solely de-
pendent on the amount of free-space available on
disk. Given the fact that disk space is cheap, this is
an acceptable dependency.

e Data items explicitly marked agad-onlyis guar-
anteed to be intact against any malicious deletion or
overwriting.

e Data items marked aappend-onlycan never be
deleted or overwritten by any OS attacker.

It is important to note that SVSDS is designed to pro-
tect the data stored on the disk and does not provide
any guarantee on which binaries/files are actually exe-
cuted by the OS (e.g., rootkits could change the binarie&®¢®" SuperBlock | 1B | inode Block Directory Block pata Block
in memory). As files with operation-based constraints
(specifically read-only constraints) cannot be modifiedFigure 1: Pointer relationship inside an FFS-like file sys-
inside SVSDS, upon a reboot, the system running orfem
SVSDS would return to a safe state (provided the system

executables and configuration files are marked as read- . -
cannot bypass it. System administrators or users

only). can set up versioning policies or revert and delete
versions through an offline privileged channel after
4 Design a capability-based authentication process enforced

by the disk system.
Our aim while designing SVSDS is to combine the se-

curity of disk-level versioning, with the flexibility of e Aggressively version all meta-data (e.g., Ext2 inode
versioning at higher-layers such as the file system. By  blocks) and chosen data as per the policies set up by
transparently versioning data at the disk-level, we make  administrators or users. In the perspective of a file
data recoverable even in the event of OS compromises.  system, versioning policies must be at granularities
However, today’s disks lack information about higher- of individual files or directories.
level abstractions of data (such as files and directories),
and hence cannot support flexible versioning granulari- ® Enforce basic constraints at the disk-level, such as
ties. To solve this problem, we leverage Type-Safe Disks ~ read-onlyandappend-only Users must be able to
(TSDs) [16] and exploit higher-level data semantics at choose specific files or directories to be protected
the disk-level. by these constraints.
Type-safe disks export an extended block-based in-
terface to file systems. In addition to the regular Figure 2 shows the overall architecture of SVSDS. The
blockr ead andwr i t e primitives exported by traditional three major componentsin SVSDS are, (1) Storage virtu-
disks, TSDs support pointer management primitives thaglization Layer (SVL), (2) The Version Manager, and (3)
can be used by file systems to communicate pointerThe Constraint Manager. The SVL virtualizes the block
relationships between disk blocks. For example, an Ext&ddress space and manages physical space on the device.
file system can communicate the relationships betweed he version manager automatically versions meta-data
an inode block of a file and its corresponding data blocksand user-selected files and directories. It also provides
Through this, logical abstractions of most file systemsan interface to revert back the disk state to previous ver-
can be encoded and communicated to the disk systen§ions. The constraint manager enforces read-only and
Figure 1 shows the on-disk layout of Ext2. As seen append-only operation-level constraints on files and di-
from Figure1, files and directories can be identified us- rectories inside the disk.
ing pointers by just enumerating blocks of sub-trees with  The rest of this section is organized as follows. Sec-
inode or directory blocks as root. tion 4.1 describe how transparent versioning is per-
The overall goals of SVSDS are the following: formed inside SVSDS. Section 4.2 talks about the ver-
sioning mechanism. Section 4.4 describes our recov-
e Perform block versioning at the disk-level in a com- ery mechanism and how an administrator recovers af-
pletely transparent manner such that higher-leveker detecting an OS intrusion. Section 4.5 describes how
software (such as file systems or user applicationsFVSDS enforces operation based constraints on files and



Free-Space Management SVSDS has two different
address spaces, whereas the regular TSDs only have one.
Hence, SVSDS cannot reuse the existing block alloca-
tion mechanism of regular TSDs. To manage both ad-
dress spaces, the SVL uses two different bitmaps: log-
ical block bitmaps(BITMAPS) in addition to the exist-
ing physical block bitmapsP@ITMAPS). SVSDS uses
,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, a two-phased block allocation process. During the first
phase, the SVL allocates the requested number of physi-
‘ Cache }(—){ Storage Virtualization Layer }(—){Version Manager‘ cal blocks frompBITMAPS. The allocation request need
not always succeed as some of the physical blocks are
used for storing the previous versions of blocks. If the
ConstraintManager physical block allocation request succeeds, it proceeds
to the next phase. In the second phase, the SVL allocates
Physical Blocks an equal number of logical blocks fronBITMAPS. It
then associates each of the newly allocated logical block
Figure 2: Architecture of SVSDS with a physical block and adds an entry in the@ABLE
for each pair. The flags for these new entries are copied
from the reference block passed to theLoC_BLOCK
directories. Finally, in Section 4.6, we discuss some ofcall and the version number s copied from the disk main-
the issues with SVSDS. tained version number. This ensures that all blocks that
are added later to a file inherit the same attributes (or
flags) as their parent block.

File System / Software Layer

Software
READ
WRITE

ALLOC_BLOCK

CREATE_PTR
DELETE_PTR
VERSION_BLOCKS
SET_READ_ONLY
SET_APPEND_ONLY

Disk

4.1 Transparent Versioning 42 Creating versions

Transparent versioning is an important requirement, ashe version manager is responsible for creating new ver-
SVSDS has to ensure that the versioning mechanism isions and maintaining previous versions of data on the
not bypassed by higher layers. To provide transparengisk. The version manager provides the flexibility of file-
versioning, the storage virtualization layer (SVL) virtu- systerslevel versioning while operating inside the disk.
alizes the disk address space. The SVL Sp”tS the disk aqu default, it versions all meta-data blocks. In addi-
dress space into two: logical and physical, and internallytion, it can also selectively version user-selected files an
maintains the mapping between them. The logical addirectories. The version manager automatically check-
dress space is exposed to file systems and the SVL trangoints the meta-data and chosen data blocks at regular
lates logical addresses to physical ones for every diskntervals of time, and performs copy-on-write upon sub-
request. This enables SVL to transparently change thgequent modifications to the data. The version manager
underlying physical block mappings when required, andmaintains a global version number and increments it af-
applications are completely oblivious to the exact physiter every checkpoint interval. The checkpoint interval is
cal location of a logical block. the time interval after which the version number is au-
SVSDS maintainsT-TABLE (or translation table), tomatically incremented by the disk. SVSDS allows an
to store the relationship between logical and physicagdministrator to specify the checkpoint interval through
blocks. There is a one-to-one relationship between eaclis administrative interface.
logical and physical block in th&-TABLE. A version The version manager maintains a tableTABLE (or
number field is also added to each entrytefABLE to  version table), to keep track of previous versions of
denote the last version in which a particular block wasblocks. For each version, the TABLE has a separate
modified. Also, a status flag is added to eaehaBLE list of logical-to-physical block mappings for modified
entry to indicate the type (meta-data or data), and stablocks.
tus (versioned or non-versioned) of each block. The Once the current version is checkpointed, any subse-
TABLE is indexed by the logical block number and every quent write to a versioned block creates a new version for
allocated block has an entry in theTABLE. When ap-  that block. During this write, the version manager also
plications read (or write) blocks, the SVL looks up the backs up the existing logical to physical mapping in the
T-TABLE for the logical block and redirects the request to v-TABLE. To create a new version of a block, the version
the corresponding physical block stored in theABLE manger allocates a new physical block through the SVL,
entry. changes the corresponding logical block entry in the



TABLE to point to the newly allocated physical block, and But versioning all blocks inside the disk can quickly con-
updates the version number of this entry to the currensume all available free space on the disk. Also, version-
version. Figure 3 shows @-TABLE with a few entries  ing all blocks is not efficient for the following two rea-
in the mapping list for the first three versions. Let's take sons: (1) short lived temporary data (e.g., data irftimg
a simple example to show how entries are added to thélder and installation programs) need not be versioned,
V-TABLE. If block 3 is overwritten in version 2, the entry and (2) persistent data blocks have varying levels of im-
in the T-TABLE for block 3 is added to the mapping list portance. For example, in FFS-like file systems, version-
of the previous version (i.e., version 1). ing the super block, inode blocks, or indirect blocks is
more important than versioning data blocks as the for-
o ) o mer affects the reachability of other blocks stored inside
Versioning TSD Pointer Structures  TSDs maintains e gisk. Hence, SVSDS selectively versions meta-data

their own pointer structures inside the disk to track block ;4 \iser-selected files and directories to provide deeper
relationships. The pointer management in TSDs was €Xyarsion histories.

plained in Section 2.2. The pointers refers to the disk-

level pointers inside TSDs, unless otherwise mentione({/ersioning meta-data. Meta-data blocks have to be

in the paper. As pointers are used to track block live- . - . :
. S . . versioned inside the disk for two reasons. First, reach-
ness information inside TSDs, the disk needs to keep its

pointer structures up to date at all times. When the disk i ability: meta-data blocks affects the reachability of data

reverted back to the previous version, the pointer opera- locks that it points to (e.g., the data blocks can only be
' reached through the inode or the indirect block). Sec-

tions performed in the current version have to be undone d. recovery of user-selected files: we need to preserve
for the disk to reclaim back the space used by the currenth® y ' P

: all versions of the entire file system directory-structure
version. N . i . .
. . inside the disk to revert back files and directories.
To undo the pointer operations, SVSDS logs all

int i 0 th it tion list of th To selectively version meta-data blocks, SVSDS
pointer operations to the pointer operation ist orthe cur- .o 4, o pointer information available inside the TSDs.
rentversion in the/-TABLE. For example, in Figure 3 the

) X . i ; SVSDS identifies a meta-data block during the fiRE-
first entry in the pointer operation list for version 1 shows

: . TE_PTRoOperation the block passed as the source is iden-
that a pointer was created between logical blocks 3 and Ified as a meta-data block. For all source block passed
This create pointer operation has to be undone when th{ao the CREATE_PTR operation, SVSDS marks it as meta-
disk is reverted back from version 1 to 0. Similarly, the '

first entrv in th it tion list f ion 3 d data in theT-TABLE.
Irst entry in the pointer-operation fist for version € SvsSDS defers reallocation of deleted data blocks until

notes that a pointer was deleted between logical bIOCkS_ghere are no free blocks available inside the disk. This

and 8. This operation has to be undone when the disk "Bnsures that for a period of time the deleted data blocks

reverted back from version 3 to version 2. will still be valid and can be restored back when their

_ Toreduce the space required to store the pointer 0pergs, e snonding meta-data blocks are reverted back during
tions, SVSDS does not store pointer operations on blOCkFecovery

created and deleted (or deleted and created) within the 1 e sjon files and directories, applications issue an
same version. When@REATE_PTRIs issued with source
a and destinatio in versionz. During the lifetime of

the versionz, if a DELETE_PTR operation is called with inode block, and calls theersION BLOCKS disk prim-
the same source and destinatiorb, then the version e \ersionsLOCKS is a new primitive added to the
manager removes the entry from the pointer operations,siing disk interface for applications to communicate
list for that version in the/-TABLE. We can safely re- e fijeq for versioning (see Table 1). After the blocks of

move these pomter.operanons l_)ecaGREATF—PTRand the file are marked for versioning, the disk automatically
DELETE_PTRoOperations are the inverse of each other anq/ersions the marked blocks at regular intervals
would cancel out their changes when they occur with-

ing the same version. The recovery manager maintains o .
ersioning user-selected data. Versioning meta-data

hash table indexed on the source and destination pairfqbIOCkS alone does not make the disk svstem more se-
efficient retrieval of entries from the-TABLE. ; . yS .
cure. Users still want the disk to automatically version
certain files and directories. To selectively version files
4.3 Selective Versioning and directories, applications and file systems only have
to pass the starting block (or the root of the subtree) un-
Current block-based disk systems lack semantic inforder which all the blocks needs to be versioned. For ex-
mation about the data being stored inside. As a resultample, in Ext2 only the inode block of the file or the di-
disk-level versioning systems [7, 23] version all blocks. rectory needs to be passed for versioning. SVSDS does

ioctl to the file system that uses SVSDS. The file sys-
tem in turn locates the logical block number of the file’s
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Figure 3: The v-table data structure. A simplified v-table state is shown for first three versiofSMEDS. Each entry
in the old mapping list corresponds to logical and physidaick pair. C & D in the pointer operation list represent
Create pointer and Delete pointer operations, respecyivel

a Breadth First Search (BFS) on theTABLE, starting 4.4 Reverting Versions
from the root of the subtree. All the blocks traversed dur-

ing the BES are marked for versioning in therABLE. In the event of an intrusion or an operating system

compromise, an administrator would want to undo the

changes done by an intruder or a malicious application

) ] . ) by reverting back to a previous safe state of the disk. We

One common issue in performing BFS is that theregefine reverting back to a previous versions as restoring

could potentially be many cycles in the graph that is be+ne gisk state from time to the disk state at time- tv,
ing traversed. For example, in the Ext2TSD [16] file \yherety is the checkpoint interval.

system, there is a pointer from the inode of the direc- gyon though SVSDS can access any previous ver-
tory block, to the inode of the sub-directory block and gjon's gata, we require reverting only one version at a

vice versa. Symbolic links are yet another source of ¢y+jme. This is because SVSDS internally maintains state
cles. SVSDS detects cycles by maintaining a hash tablgyqyt plock relationships through pointers, and it re-

(D-TABLE) for blocks that have been visited during the yires that the pointer information be properly updated
BFS. During each stage of the BFS, the version managghside the disk to garbage-collect deleted blocks. To il-
checks to see if the currently visited node is presentin thg st ate the problem with reverting back to an arbitrary
D-TABLE before traversing the blocks pointed to by this version, let's revert the disk state from versigrio ver-

block. If the block is already present in thBTABLE,  gjon 4 by skipping reverting of the versions betwegn
SVSDS skips the block as it was already marked for ver-4nq 4 Reverting back the-TABLE entries for version

sioning. If not, SVSDS adds the currently visited block , 510ne would not suffice. As we directly jump to ver-

to theD-TABLE before continuing with the BFS. sion a, the blocks that were allocated, and pointers that
were created or deleted between versignanda, are
not reverted back. The blocks present during version
To identify blocks that are subsequently added todoes not contain information about blocks created after
versioned files or directories, SVSDS checks the flags/ersiona. As a result, blocks allocated after version
present in ther-TABLE of the source block during the becomes unreachable by applications but according to
CREATE_PTR operations. This is because when file sys-pointer information in the>-TABLE they are still reach-
tems want to get a free block from SVSDS, they is-able. As a result, the disk will not reclaim back these
sue anaLLoc_BLOCK call with a reference block and block and the we will be leaking disk space. Hence,
the number of required blocks as arguments. ThisSVSDS allows an administrator to revert back only one
ALLoc _BLOCK call is internally translated to &RrRE- version at a time.
ATE_PTR operation with the reference block and the SVSDS also allows an administrator to revert back
newly allocated block as its arguments. If the referencehe disk state to a arbitrary point in time by revert-
block is marked to be versioned, then the destinatioring back one version at a time until the largest ver-
block that it points to is also marked for versioning. File sion whose start time is less than or equal to the
systems normally pass the inode or the indirect block asime mentioned by the administrator is foundre-
the reference block. VERT_TO_PREVIOUSVERSION and REVERT.TO_TIME



Disk Primitives Description
Marks all blocks in the subtree starting from blaBkVo to be versioned.
VERSION.BLOCKS(BNo) The data blocks present in the subtree will be versionedgaldth the
reference (or meta-data) blocks.

REVERT_TO_PREVIOUSVERSION | Reverts back the disk state from current version to the presiversion.

REVERT.TO_TIME (¢) Reverts back the disk state one version at a time till it findsraionv
with start time less than or equalto

MARK _READ_ONLY (BNo) Marks all blocks in the sub-tree starting from bloBiVo as read-only.
Marks all blocks in the sub-tree starting from bloBkVo as

MARK _APPEND.ONLY (BNo) append-onlyB No itself will not be an append-only block as it could he

a meta-data block, with non-sequential updates.

Table 1:Additional Disk APlIs in SVSDS

are the additional primitives added to the existing disk4.4.2 Reverting Pointer Operations

interface to revert back versions by the administrator (see
Table 1). In the second phase of the recovery process, SVSDS re-

verts back the pointer operations performed in the cur-
rent version by applying the inverse of the pointer op-
erations. The inverse of theREATE_PTR operation is a

DELETE_PTR operation and vice versa. The pointer op-

data changes that happened in the current version are r rations are reverted back to free up the space used by

verted back; (3Data-blocks all versioned data blocks . lOCkS. created in thg current version a.nd also for restor-
ing pointers deleted in the current version.

and some (or all) of the non-versioned deleted data- _ _ )
blocks are reverted back (i.e., the non-versioned data REVerting backCREATEPTR operations are straight

blocks that have been garbage collected cannot be rdorward. SVSDS issues the correspondiE) ETE PTR
verted back); and (4Bitmaps both logical and physical qper_atlons. If there are no incoming p0|_nters to thg des-
block bitmap changes that happened during the currerfination blocks of thedELETE PTR operations, the disk
version are reverted. automatically garbage collects the destination blocks.
While reverting theDELETE_PTR operations, SVSDS
checks if the destination blocks are present in the
4.4.1 Reverting Mapping TABLE. Ifyes, SVSDS executes the correspondime-
ATE_PTR operations. If the destination blocks is not
SVSDS reverts back to its previous version from the cur-present in the-TABLE, it implies that theDELETE_PTR
rent version in two phases. In the first phase, it restoresperations were performed on non-versioned blocks. If
all the T-TABLE entries stored in the mapping list of the the destination blocks are present in the deleted block
previous version in the-TABLE. While restoring back list, SVSDS restores the backed THTABLE entries from
theT-TABLE entries of the previous version, there are two the deleted block list and issues the correspondirg-
cases that need to be handled. (1) An entry already exATE_PTR Operations.
ists in theT-TABLE for the logical block of the restored  While reverting back to a previous version, the inverse
mapping. (2) An entry does not exist. When an entrypointer operations have to be replayed in the reverse or-
exists in theT-TABLE, the current mapping is replaced der. If not, SVSDS would prematurely garbage collect
with the old physical block from the mapping list in the these blocks. We illustrate this problem with a simple
V-TABLE. The current physical block is freed by clearing example. From Figure 4(a) we can see that bledias
the bit corresponding to the physical block number in thea pointer to block and blockb has pointers to blocks
PBITMAPS. If an entry does not exist in theTABLE, it  andd. The pointers fronb are first deleted and then the
implies that the block was deleted in the current versionpointer froma to b is deleted. This is shown in Figs. 4(b)
and the mapping was backed up intheasLE. SVSDS  and 4(c). If the inverse pointer operations are applied in
restores the mapping as a new entry intheaBLE and  the same order, first a pointer would be is created from
the logical block is marked as used in thBITMAPS. blockb to d (assuming pointer frorhito d is deleted first)
The physical block need not be marked as used as it ibut blockb would be automatically garbage collected by
already alive. At the end of the first phase, SVSDS re-SVSDS as there are no incoming pointers to blbcRe-
stores back all the versioned data that got modified oplaying pointer operations in the reverse order avoids this
deleted in the current version. problem. Figs 4(d), 4(e), and 4(f) show the sequence of

While reverting back to a previous version, SVSDS
recovers the data by reverting back the following: (1)
Pointers the pointer operation that happened in the cur-
rent version are reverted back; (Rleta-data all meta-



a - 1 a 1 e
b<da b<da»e>baa b a b\(
) | (b) | |

©@ @ @©

a——
(a

Figure 4: Steps in reverting back delete pointer operations

steps performed while reverting back the delete pointetions only if the deleted data blocks are still present in
operations in the reverse order. We can see that reverthe deleted block list. This policy of lazy garbage collec-
ing back pointer operations in the reverse order correctlytion allows users to recover the deleted data blocks that

reestablishes the pointers in the correct sequence. have not yet been garbage collected yet.
Lazy garbage collection is also useful when a user re-
4.4.3 Reverting Meta-Data verts back the disk state after inadvertently deleting a di-

rectory. If all data blocks that belong to the directory are

SVSDS uses the mapping information in th@ABLE to not garbage collected, then the user can get back the en-
revert back changes to the meta-data blocks. There anére directory along with the files stored under it. If some
three cases that need to be handled while reverting backf the blocks are already reclaimed by the disk, the user
meta-data blocks: (1) The meta-data block is modifiedvould get back the deleted directory with data missing in
in the new version, (2) The meta-data block is deletedsome files. Even though SVSDS does not version all data
in the new version, and (3) The meta-data block is firstblock, it still tries to restore back all deleted data blocks
modified and then deleted in the new version. In the firstwhen disk is revert back to its previous version.
case, the mappings that are backed up in the previous
version for_th_e modified block in the-TABL_E arere- 44g Reverting Bitmaps
stored. This is done to get back the previous contents
of the meta-data blocks. For the second case, the delei&hen data blocks are added or reclaimed back during
pointer operations would have caused theaBLE en-  the recovery process the bitmaps have to be adjusted to
tries to be backed up in the- TABLE as they would be keep track of free blocks. TheBITMAPS need not be
the last incoming pointer to the meta-data blocks. Theestored back as they are never deleted. The physical
T-TABLE entries will be restored back in the first phase blocks are backed up either in the deleted block list or
of the recovery process and the deleted pointers are rén the old mapping lists in the-TABLE. The physical
stored back in the second phase of the recovery procesblocks that are added in the current version are freed dur-
Reverting meta-data blocks when they are first modifiedng the first and second phases of the recovery process.
and then deleted is the same as in reverting meta-datauring the first phase, the previous version’s data is re-
blocks when they are deleted. stored from mapping list in the-TABLE. At this time the
physical blocks of the newer version are marked free in
thePBITMAPS. When the pointers created in the current
version are reverted back by deleting them in the second
When the recovery manager reverts back to a previouphase, the garbage collector frees both the physical and
version, it cannot revert back to the exact disk state inthe logical blocks, only if it is the last incoming pointer
most cases. To revert back to the exact disk state, the digk the destination block.
would need to revert mappings for all blocks, including TheLBITMAPS only have to be restored back for ver-
the data blocks that are not versioned by default. In asioned blocks that have been deleted in the current ver-
typical TSD scenario, blocks are automatically garbagesion. While restoring the backed up mappings from the
collected as soon as the last incoming pointer to thenv-TaBLE, SVSDS checks if the logical block is allocated
is deleted, making their recovery difficult if not impos- in the LBITMAPS. If it is not allocated, SVSDS reallo-
sible. The garbage collector in SVSDS tries to reclaimcates the deleted logical block by setting the correspond-
the deleted data blocks as late as possible. To do thisng bit in the LBITMAPS. The deleted non-versioned
SVSDS maintains an LRU list of deleted non-versionedblocks need not be restored back. Previously, these
blocks (also known as the deleted block list). blocks were moved to the deleted block list and were

When the delete-pointer operations are reverted backadded back to thg-TABLE during the second phase of
SVSDS issues the corresponding create-pointer operdhe recovery process.

4.4.4 Reverting Data Blocks



4.5 Operation-based constraints pendent on the integrity of the log files. The operation-
based constraints implemented by SVSDS can be used

!n addition to versioning _data inside the d,'Sk' It 'S_"?‘ISO to protect log files from being overwritten or deleted by
important to protect certain blocks from being modified, intruders

pverwritten, or deleteq. SVSDS allows users 1o spec- gy5ps aliows marking any subtree in the pointer
ify the types of operations that can be performed on &hain as “append-only”. During a write to a block in

bloc_k, and _the constra!nt manager enforces these cons, append-only subtree, the operation manager allows
straints during block writes. SVSDS enforces two types:

) . t only if the modification is to change trailing zeroes

of operation-based constraints: read-only and appen4—0 non-zeroes values. SVSDS checks the difference be-
onlyr.] ¢ ken by th . tween the original and the new contents to verify that

The sequence o steps taken by the operatloq Mayata is only being appended, and not overwritten. To
ager to mark a file as read-only or append-only is the|mprove the performance, the operation manager caches
Same as me_lrkmg a file tq be versioned. The s_teps fo{he append-only blocks when they are written to the disk
marking a file to be versioned was described in Secyy, 46id reading the original contents of block from the
tion 4.3. While marking a group of blocks, the first gy qyring comparison. If a block is not present in the
block (or the root block of the subtree) encountered iNcache, the constraint manager reads the block and adds
the breadth first search is treated differently to accoms; {4 the cache before processing the write request. To
modate special file system updates._ For example, f'lespeed up comparisons, the operation manager also stores
s_ystems_ under UN_I_X SPPPO_” three _tlmestamps. ACCESHhe offsets of end of data inside the append-only blocks.
time (atime), modification time (mtime), and creation 1o peywly written data is compared with the cached data
time (ctime). When data from a file is read, its atime until the stored offsets
?S upda}t_ed ir_1 the file’s inode: Similarly, When.th.e fi_Ie When data is appended to the log file, the atime and
|sdmod|f|ed, Its mtlgne and ctime are upc(ijatgd n 'tsd'n'the mtime are also updated in the inode block of the file
ode. To accommodate atime, mtime, and ctime updategy e file system. As a result, the first block of the
on the first block, the_ constraln'g manager d'St'ngu'She%\ppend-only block is overwritten with every update to
Fhe first block by adding a special metal-data block ﬂagthe file. As mentioned earlier, SVSDS does not have the
in the T-TABLE for the block. SVSDS disallows dele- information about the file system data structures. Hence,

tlon.of blocks marked as read-only or append-only con-gy,gpg permits the first block of the append-only files to
straints.MARK_READ_ONLY andMARK_APPEND.ONLY |0 oue s by the file system

are the t.WO new API_sthathave b_een added to the d_iSk for SVSDS does not have information about how file
applications to specify the operation-based constraimts o
blocks stored inside the disk. These APIs are describe
in Table 1.

ystems organize its directory data. Hence, enforcing

ppend-only constraints on directories will only work iff
the new directory entries are added after the existing en-
tries. This also ensures that files in directories marked as
Read-only constraint. The read-only operation-based append-only cannot be deleted. This would help in pre-
constraint is implemented to make block(s) immutable.venting malicious users from deleting a file and creating
For example, the system administrator could mark bi-a symlink to a new file (for example, an attacker can no
naries or directories that contain libraries as read-onlyJonger unlink a critical file likdetc/passwgand then just
so that later on they are not modified by an intruder orcreates a new file in its place).
any other malware application. Since SVSDS does not
have information about the file system data structures4 6
atime updates cannot be distinguished from regular block *
writes using pointer information. SVSDS neglects (or In this section, we talk about some of the issues with
disallows) the atime updates on read-only blocks, as thegVSDS. First we talk about the file system consistency
do not change the integrity of the file. Note that the read-after reverting back to a previous version inside the disk.
only constraint can also be applied to files that are rarelywe then talk about the need for a special port on the disk
updated (such as binaries). When such files have to b® provide secure communication. Finally, we talk about
updated, the read-only constraint can be removed and s@enial of Service (DoS) attacks and possible solutions to
back again by the administrator through the secure dislovercome them.
interface.

Issues

Consistency Although TSDs understand a limited
Append-only constraint. Log files serve as an impor- amount of file system semantics through pointers, they
tant resource for intrusion analysis and statistics cellecare still oblivious to the exact format of file system-
tion. The results of the intrusion analysis is heavily de-specific meta-data and hence it cannot revert the state that
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is consistent in the viewpoint of specific file systems. Awhen they are deleted. One possible solution to prevent
file system consistency checker (ef3ck needs to be versioned files from being deleted is to atntdeletdlag
run after the disk is reverted back to a previous versionon the inode block of the file. This flag would be checked
Since SVSDS internally uses pointers to track blocks, theby SVSDS along with other operation-based constraints
consistency checker should also issue appropriate calls toefore deleting/modifying the block. The downside of
SVSDS to ensure that disk-level pointers are consistenthis approach is that normal users can no longer delete
with file system pointers. versioned files that have been markechasdelete The
administrator has to explicitly delete this flag on the

Administrative Interfaces To prevent unauthorized deletefiles.

users from reverting versions inside the disk, SVSDS
should have a special hardware interface through whicI15
an administrator can log in and revert back versions.

This port can also be used for setting the checkpoint freWe implemented a prototype SVSDS as a pseudo-device
quency. driver in Linux kernel 2.6.15 that stacks on top of an
existing disk block driver. Figure 5 shows the pseudo

Supporting Encryption File Systems Encryption File  device driver implementation of SVSDS. SVSDS has
systems (EFS) can run on top of SVSDS with minimal 7,487 lines of kernel code out of whicl, 060 were
modifications. SVSDS only requires EFS to use TSD’sreused from an existing TSD prototype. The SVSDS
API for block allocation and notifying pointer relation- layer receives all block requests from the file system,
ship to the disk. The append-only operation-based conand re-maps and redirects the common read and write
straint would not work for EFS as end of block can- requests to the lower-level device driver. The additional
not be detected if blocks are encrypted. If encryptionprimitives required for operations such as block alloca-
keys are changed across versions and if the administrdion and pointer management are implemented as driver
tor reverts back to a previous version, the decryption ofi oct | s.
the file would no longer work. One possible solution is
to change the encryption keys of files after a capability %

b

Pyl

Implementation

based authentication upon which SVSDS would decrypt ( User Applications J
all the older versions and re-encrypt them with the newly
provided keys. The disadvantage with this approach is - - --ca e mee it
that the versioned blocks need to be decrypted and re- Y
encrypted when the keys are changed. File Systems

l l l l lSVSDSInterface
DoS Attacks SVSDS is vulnerable to denial of service - - |.7,3,
attacks. There are three issues to be handled: (1) blocks { SUEILE PEaLE gEEniEs D! g
that are marked for versioning could be repeatedly over- l l Regular Block Interface  [TI
written; (2) lots of bogus files could be created to delete | SCSI/IDE Driver | i
old versions, and (3) versioned files could be deleted and l l Regular Block nterface
recreated again preventing subsequent modifications to
files from being versioned inside the disk. To counter at- -
tacks of typel, SVSDS can throttle writes to files that Disk / RAID

are versioned very frequently. An alternative solution to
this problem would be to exponentially increase the ver-
sioning interval of the particular file / directory that is
being constantly overwritten resulting in fewer number
of versions for the file. As with most of the denial of
service attacks there is no perfect solution to attack of Inthe currentimplementation we maintain all hash ta-
type 2. One possible solution would be to stop further bles {/-TABLE, T-TABLE, P-TABLE, andD-TABLE) as in-
writes to the disk, until some of the space used up bymemory data structures. As these hash tables only have
older versions, are freed up by the administrator througksmall space requirements, they can be persistently stored
the administrative interface. The downside of this ap-in a portion of the NVRAM inside the disk. This helps
proach is that the disk effectively becomes read-only tillSVSDS to avoid disk I/O for reading these tables.

the administrator frees up some space. Typ#acks are The read and write requests from file systems reach
not that serious as versioned files are always backed ugVSDS through the Block IO (BIO) layer in the Linux

Figure 5: Prototype Implementation of SVSDS
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kernel. The BIO layer issues I/O requests with the desSection 6.2 analyzes the performance of the SVSDS
tination block number, callback functiomIi_(END_IO),  framework for an I/O-intensive workload, Postmark [8].
and the buffers for data transfer, embedded inside thén Sections 6.3 and 6.4 we analyze the performance on
BIO data structure. To redirect the block requests fromOpenSSH and kernel compile workloads respectively.
SVSDS to the underlying disk, we add a new data struc-
ture BACKUP_BIO_DATA). This structure stores the des-
tination block numbergi_END_IO, andBI_PRIVATE of
the BIO data structure. Thel_PRIVATE field is used \We conducted all tests on a 2.8GHz Intel Xeon CPU with
by the owner of the BIO request to store private infor- 1GB RAM, and a 74GB 10Krpm Ultra-320 SCSI disk.
mation. As I/O request are by default asynchronousye used Fedora Core 6 running a vanilla Linux 2.6.15
in the Linux kernel, we stored the original contents of kernel. To ensure a cold cache, we unmounted all in-
the BIO data structures by replacing the value storedyolved file systems between each test. We ran all tests at
inside BI_PRIVATE to point to OUrBACKUP_BIO_DATA |east five times and computed 95% confidence intervals
data structure. When 1/O requests reach SVSDS, Weor the mean elapsed, system, user, and wait times using
replace the destination block number, END_IO, and  the Student-distribution. In each case, the half-widths
BI_PRIVATE in the BIO data structure with the mapped of the intervals were less than 5% of the mean. Wait time
physical block from theT-TABLE, our callback func- s the difference between elapsed time and CPU time,
tion (SVSDSEND_IO), and theBACKUP_BIO_DATA re-  and is affected by 1/0 and process scheduling.
spectively. Once the I/O request is completed, the con- Unless otherwise mentioned, the system time over-
trol reaches ousVSDSEND_IO function. In this func-  heads were mainly caused by the hash table lookups
tion, we restore back the original block number andon T-TABLE during the read and write operations and
BI_PRIVATE information from theBACKUP_BIO_DATA also due toP-TABLE lookups duringcREATE.PTR and
data structure. We then call th®_END_10 function  peLETE_PTR operations. This CPU overhead is due to
stored in theBACKUP_BIO_DATA data structure, to notify the fact that our prototype is imp|emented as a pseudo-
the BIO layer that the I/O request is now complete. device driver that runs on the same CPU as the file sys-
We did not make any design changes to the eXtem. In areal SVSDS setting, the hash table lookups will
isting Ext2TSD file system to support SVSDS. The pe performed by the processor embedded in the disk and
Ext2TSD is a modified version of the Ext2 file sys- hence will not influence the overheads on the host sys-
tem that notifies the pointer relationship to the file sys-tem, but will add to the wait time.
tem through the TSD disk APIs. To enable users to We have Compared the overheads of SVSDS using
select files and directories for versioning or enforcing Ext2TSD against Ext2 on a regular disk. We denote
operation-based constraints, we have added three ioctlsxt2TSD on a SVSDS using the name Ext2Ver. The let-
namely: VERSIONFILE, MARK_FILE_.READONLY, and  tersid andall are used to denote selective versioning
MARK _FILE_APPENDONLY to the Ext2TSD file system. of meta-data and all data respectively.
All three ioctls take a file descriptor as their argument,
and gets the inode number from the in-memory inode
data structure. Once the Ext2TSD file system has th@'2 Postmark

inode number of the file, it finds the the logical block posimark [8] simulates the operation of electronic mail
number that correspond to inode number of the file. Fi-54 news servers. It does so by performing a series of
nally, we call the the corresponding disk primitive from e system operations such as appends, file reads, direc-
the file system ioctl with logical block number of the in- 1 jookups, creations, and deletions. This benchmark
ode as the argument. Inside the disk primitive we markses ittle CPU but is I/O intensive. We configured Post-

the file’s blocks for versioning or enforcing operation- .41k to create 3,000 files, between 100-200 kilobytes,
based constraint by performing a breadth first search on 4 perform 300,000 transactions.

6.1 Testinfrastructure

theP-TABLE. Figure 6 show the performance of Ex2TSD on SVSDS
for Postmark with a versioning interval of 30 seconds.
6 Evaluation Postmark deletes all its files at the end of the benchmark,

S0 no space is occupied at the end of the test. SVSDS
We evaluated the performance of our prototype SVSDSransparently creates versions and thus, consumes stor-
using the Ext2TSD file system [16]. We ran general-age space which is not visible to the file system. The av-
purpose workloads on our prototype and compared thenerage number of versions created during this benchmark
with unmodified Ext2 file system on a regular disk. This is 27.
section is organized as follows: In Section 6.1, we talk For Ext2TSD, system time is observed to be 1.1 times
about our test platform, configurations, and proceduresmore, and wait time is 8% lesser that of Ext2. The
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1200 for theunt ar, conf i gur e, andmake stages combined.

User S Since the entire benchmark completed in 60—65 seconds,
_. 1000 r System m— . . .
3 we used a 2 second versioning interval to create more
8 a0 | 8.6 768.0 8.7 7931 versions of blocks. On an average, 10 versions were
tZ,’ 600 | created. This is because the pdflush deamon starts writ-
= ing the modified file system blocks to disk after 30 sec-
§ 400 - onds. As aresult, the disk does not get any write request
it 200 | for blocks during the first 30 seconds of the OpenSSH
Compile benchmark. The amount of data generated by
0 B2 Ext2TSD  Extzver(md) Exizver(al) this benchmark was 16MB. The results for the OpenSSH

Ext2 |Ex2TSD| Ext2ver(md) Exaver@)|  ComPilation are shown in Figure 7.

Elapsed | 780.5s| 768.0s 789.7s 793.1s
System | 36.28s| 88.58s 191.71s 191.94s 100

Wait 741.425 676.11s 593.80s 597.09s
Space o/f OMB OMB 443MB 1879MB g 80
Performance Overhead over Ext2 S 64.5

Elapsed | - | -1.60% | 1.17% 1.61% L o0

System - 1.44 % 4.28 x 4.29x E a0 |
Wait - -8.12% | -19.9% -19.47% g
Q.

‘_5 L

Figure 6: Postmark results for SVSDS w2

0

Ext2 Ext2TSD ExtVer(md) ExtVer(all)

increase in the system time is because of the hash t
ble lookups duringeREATE PTRandDELETE PTRcalls.
The decrease in the wait time is because, Ext2TSD doe
not take into account future growth of files while allocat-
ing space for files. This decrease in wait time allowed
Ext2TSD to perform slight better than Ext2 file system
on a regular disk, but would have had a more significant

Ext2 | Ext2TSD| Ext2Ver(md)| Ext2Ver(all)
| Elapsed | 60.1869 60.532s| 64.520s 64.546s

DSystem 10.0279 10.231s| 14.147s 14.025s

Wait 0.187s| 0.390s 0.454s 0.634s

Space o/h OMB OMB 496KB 15.14MB
Performance Overhead over Ext2

impact in a benchmark with files that grow. gi‘ifﬂd i 0'25;% 74?;70 733;%
. . - 0 0 0
For Ext2Ver(md), elapsed time is observed to have no Wait ] 108% 142% 235%

overhead, system time is 4 times more and wait time is
_20% less than th:_:\t_ of Ext2. The increase in system time Figure 7: OpenSSH Compile Results for SVSDS

is due to the additional hash table lookups to locate en-

tries in theT-TABLE. The decrease in wait time is due to L . _
better spacial locality and increased number of requests FOr EXt2TSD, we recorded a insignificant increase in
being merged inside the disk. This is because the ran€lapsed time and system time, and a 108% increase in the
dom writes (i.e., writing inode block along with writing wait time over Ext2. Since the elapsed and system times
the newly allocated block) were converted to sequentiaP"® si_mi_lar, it is not possible to quantify for the increase
writes due to copy-on-write in versioning. In wait ime.

For Ext2Ver(all), The system time istimes more and For Ext2Ver(md), we recorded a 7% increase in
wait time is 20% less that of Ext2. The wait time in elapsed time, and a 41% increase in system time over
Ext2Ver(all) does not have any observable overhead ovelext2. The increase in system time overhead is due to the
the wait time in Ext2Ver(md). Hence, it is not possible additional hash table lookups by SVL to remap the read
to explain for the slight increase in the wait time. and write requests. Ext2Ver(md) consumed 496KB of

additional disk space to store the versions.

6.3 OpenSSH Compile For Ext2Ver(all), we recorded a 7% increase in

elapsed time, and a 39% increase in system time over
To show the space overheads of a typical program inExt2. Ext2Ver(all) consumes 15MB of additional space
staller, we compiled the OpenSSH source code. We usetb store the versions. The overhead of storing versions
OpenSSH version 4.5, and analyzed the overheads a$ 95%. From this benchmark, we can clearly see that
Ext2 on a regular disk, Ext2TSD on a TSD, and meta-the versioning all data inside the disk is not very useful,
data and all data versioning in Ext2TSD on SVSDSespecially for program installers.
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6.4 Kernel Compile 7 Related Work

To simulate a CPU-intensive user workload, we com-SVSDS borrows ideas from many of the previous works.
piled the Linux kernel source code. We used a vanillaThe idea of versioning at the granularity of files has been
Linux 2.6.15 kernel and analyzed the overheads ofexplored in many file systems [6,10,12,15,19]. These
Ext2TSD on a TSD and Ext2TSD on SVSDS with ver- file systems maintain previous versions of files primarily
sioning of all blocks and selective versioning of meta-to help users to recover from their mistakes. The main
data blocks against regular Ext2, for thet ar, make  advantage of SVSDS over these systems is that, it is de-
ol dconfi g, andmake operations combined. We used coupled from the client operating system. This helps in
30 second versioning interval and 78 versions were Creprotecting the versioned data, even in the event of an in-
ated during this benchmark. The results are shown inrusion or an operating system compromise. The virtu-
Figure 8. alization of disk address space has been implemented in
several systems [3,7,9, 13,21]. For example, the Log-

3500 ical disk [3] separated the file-system implementation

Wait ——3 from the disk characteristics by providing a logical view

3000 system mm—s of the block device. The Storage Virtualization Layer

£ 2500 24672 24608 24706 24863 in SVSDS is analogous to their logical disk layer. The
g 2000 - operation-based constraints in SVSDS is a scaled down
2 version of access control mechanisms. We now compare
3 PO and contrast SVSDS with other disk-level data protection

& 1000 | systems: S4 [20], TRAP [23], and Peabody [7].

- 500 1 The Self-Securing Storage System (S4) is an object-
& & & N based disk that internally audits all requests that arrive

0 Ext2 Ex2TSD Ext2Ver(md) Ext2ver(all) at the disk. It protects data in compromised systems by

Ext2 | EXC2TSD| Ext2Ver(md)| Ext2Ver(all) com_b|n!ng Iog-structur_lng with Journal-based_ meta-data

Elapsed | 24675 2461s SA71s 52685 versioning to prevent intruders from tampering or per-
System | 162s| 167s 1695 1775 manently deleting the data stored on the disk. SVSDS
Wait 72.1s| 54.75 68.0s 71.6s on the other hand, is a block-based disk that protect data
Space o/l OMB | OMB 51MB 181MB by transparently versioning blocks inside the disk. The
Performance Overhead over Ex2 guarant_ees provided_by S4_ho|d true only during the win-

Elapsed - 0.26% 0130 0T dow of time in which it versions the data. V_Vhe_n the disk
System ) 3.6% 4T% 10% runs out of storage space, S4 stops versioning d{;\ta.un-
Wait i 24% 5.6% 0.8% til the cleaner thread can free up space for versioning

to continue. As S4 is designed to aid in intrusion di-
Figure 8: Kernel Compile results for SVSDS. agnosis and recovery, it does not provide any flexibility
to users to version files (i.e, objects) inside the disk. In
contrast, SVSDS allows users to select files and direc-

For Ext2TSD, elapsed time is observed to be the sam§gyies for versioning inside the disk. The disadvantage
system time overhead is 4% lower and wait time is lowerith s4 is that, it does not provide any protection mech-
by 24% than that of Ext2. The decrease in the wait timeanism to prevent modifications to stored data during in-
is because Ext2TSD does not consider future growth ofrsjons and always depends on the versioned data to re-
files while allocating new blocks. cover from intrusions. In contrast, SVSDS attempts to

For Ext2Ver(md), elapsed time is observed to be theprevent modifications to stored data during intrusions by
same, system time overhead is 5%, and wait time is loweenforcing operation-based constraints on system and log
by 6% than that of Ext2. The increase in wait time in re- files.
lation to ext2TSD is due to versioning meta-data blocks  Timely Recovery to any Point-in-time (TRAP) is a

which affect the locality of the stored files. The spaceqisk array architecture that provides data recovery in
overhead of versioning meta-data blocks is 51 MB. three different modes. The three modes are: TRAP-1
For Ext2Ver(all), elapsed time is observed to be indis-that takes snapshots at periodic time intervals; TRAP-
tinguishable, system time overhead is 10% higher thar8 that provides timely recovery to any point in time at
that of Ext2. The increase in system time is due to the adthe block device level (this mode is popularly known as
ditional hash table lookups required for storing the map-Continuous Data Protection in storage); TRAP-4 is sim-
ping information in thev/-TABLE. The space overhead of ilar to RAID-5, where a log of the parities is kept for
versioning all blocks is 181 MB. each block write. The disadvantage with this system is
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that, it cannot provide TRAP-2 (data protection at theFuture Work . Our current design supports reverting
file-level) as their block-based disk lacks semantic infor-the entire disk state to an older version. In future, we
mation about the data stored in the disk blocks. Henceplan to work on supporting more fine-grained recovery
TRAP ends up versioning all the blocks. TRAP-1 is policies to revert specific files or directories to their alde
similar to our current implementation where an adminis-versions. SVSDS in its current form, relies on the admin-
trator can choose a particular interval to version blocksistrator to detect an intrusion and revert back to a previ-
We have implemented TRAP-2, or file-level versioning ously known safe state. We plan to build a storage-based
inside the disk as SVSDS has semantic information abountrusion detection system [14] inside SVSDS. Our sys-
blocks stored on the disk through pointers. TRAP-3 istem would do better than the system developed by Pen-
similar to the mode in SVSDS where the time betweennington et al. [14] as we also have data dependencies
creating versions is set to zero. Since SVSDS runs oronveyed through pointers. We also plan to explore more
a local disk, it cannot implement the TRAP-4 level of operation-based constraints that can be supported at the
versioning. disk-level.

Peabody is a network block storage device, that vir-
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