Exploiting Type-Awareness in a Self-Recovering Disk’

Kiron Vijayasankar, Gopalan Sivathanu, Swaminathan Sundararaman, and Erez Zadok

Stony Brook University Computer Science Department
Stony Brook, NY 11794-4400
{kvijayas,gopalan,swam,ezk}@cs.sunysb.edu
Appearsin the proceedings of the Third ACM Workshop on Storage Security and Survivability (StorageSS 2007)

ABSTRACT

Data recoverability in the face of partial disk errors is mportant
prerequisite in modern storage. We have designed and ingpitd

a prototype disk system that automatically ensures theiiityeof
stored data, and transparently recovers vital data in tleateof
integrity violations. We show that by using pointer knowded ef-
fective integrity assurance can be performed inside a bbaded
disk with negligible performance overheads. We also show ho
semantics-aware replication of blocks can help improver¢icev-
erability of data in the event of partial disk errors with dhspace
overheads. Our evaluation results show that for normal week-
loads, our disk system has a performance overhead of onl%1-5
compared to traditional disks.

Categories and Subject Descriptors

D.4.2 [Operating Systems]: Storage ManagementSecondary Stor-
age

General Terms
Performance, Reliability

Keywords

Type-awareness

1. INTRODUCTION

Modern commodity disks do not follow tHail stop failure model
where the disk stops operation when there is a hardware [@7pr
Partial failures in disks today can be attributed to lateotar faults [2]
or even silent block corruption [1], which can be hard to dete
While expensive high-end disk systems (e.g., RAID [13]) lenp
ment recovery methods to deal with partial faults, cheapsktbp

*This work was partially made possible by NSF CAREER
EIA-0133589 and CCR-0310493 awards and HP/Intel gifts num-
bers 87128 and 88415.1.

Permission to make digital or hard copies of all or part os thiork for

personal or classroom use is granted without fee providatidbpies are
not made or distributed for profit or commercial advantage #yat copies
bear this notice and the full citation on the first page. Toycotherwise, to
republish, to post on servers or to redistribute to listquies prior specific
permission and/or a fee.

SorageSS 07, October 29, 2007, Alexandria, Virginia, USA.

Copyright 2007 ACM 978-1-59593-891-6/07/0015..00.

hard drives (e.g., SATA disks) are much less reliable in tiagd
faults. Partial faults that are not detected on time can teasri-
ous software malfunction and data loss. For example, a kathpi
block in a file system can result in valid blocks being ovetieri.

Although current disks have mechanisms such as error-ctorge
codes and dynamic remapping of bad blocks to protect adalmst
corruption and failed writes, they do not handle severdt fsenar-
ios. Applications and file systems employ integrity chechd ge-
covery mechanisms to handle disk errors [4, 6, 9, 14, 15,R&k-
level integrity assurance and data recovery is useful forkey rea-
sons: (1) mechanisms can be completely transparent torHigyed
storage software such as file systems or databases, thusngdu
their complexity; (2) disks can make use of their internatdhzare
knowledge and load characteristics to perform efficient I/O

Today'’s disks treat data as completely opaque entities lzad t
lack information about higher-level data semantics. Thakes
it hard to implement efficient integrity checking techniqua the
disk-level. For example, if block checksumming is used to ve
ify integrity, information about access patterns can emabtelli-
gent prefetching of checksum blocks. Similarly, efficieatav-
ery mechanisms can be implemented if the relative impoeafc
blocks are known at the disk-level.

Knowledge about higher-level pointers at the disk leved.(ean
inode block pointing to several data blocks) can be usedf&r in
three key details useful for integrity checking and recgver

1. The paths used to access blocks, i.e., a sequence of blocks
that need to be accessed before a block is accessed (e.g., an
inode block has to be read before reading a data block pointed
to by it).

2. The relative importance of blocks; pointers help in comimu
cating the reachability of blocks. Blocks that have outgoin
pointers are more important as they impact reachability of
other blocks.

3. Block-liveness information; all allocated blocks mustbach-
able from at least one block.

We therefore leverage Type-Safe Disks (TSDs) [18] to build a
self-recovering disk system that uses higher level dataagéos to
perform efficient integrity checking and recovery. A TSD idiak
system that uses pointer information (i.e., type inform@}ito en-
force active constraints on data access. For example, a B8D ¢
prevent applications from accessing unallocated blochsi(ello-
cated block is one that is not pointed to by any other blockje T
disk interface has been modified to allow file systems to conimu
cate pointers to the disk. The file systems uses the disk Aelsas
al | oc_bl ock, creat e_poi nt er, anddel et e_poi nter to

notify the disk about the relationships among blocks thatstored
in it.

to the recover original information when a disk fails. Altlgh
different levels of redundancy can be used for differenfqrerance

We have extended Type-Safe Disks to be more robust to disk and reliability requirements, a fundamental drawback aétenxg

errors. We call our modified disk systeBelf-Recovering Disks
(SRDs). SRDs perform integrity checks by storing the checis

of all blocks; during a block read, the SRD computes and com-
pares the block’s checksum with the one stored on disk. Taced
the overhead of storing and comparing checksums, SRDsti@re
checksum blocks close to the original block’s parent block.

In order to provide recovery for reference blocks, SRDs quenf
two-way replication of all reference blocks. Upon detegtan in-
tegrity violation, the replica is transparently used in fiece of the
corrupt reference block. It has been shown that some fornoakb
failures (e.g., a scratched surface) exhibit spacial Ipcahereby
making a group of blocks inaccessible [8]. Hence, SRD pléaoes
reference block and its replica bit far away from each otfdris
decreases the probability that both the block and its rapliit! be
affected by latent sector faults. In addition to the intggdhecks
and recovery mechanisms, SRDs saié-correcting: when an SRD
detects block corruption, it overwrites the corrupt blockhathe
data from its replica.

We benchmarked SRDs against regular disks for two different
workloads: Postmark, which represents a busy mail servet,aa
kernel compile, which represents a developer's machine.ileVh
providing integrity checks for all blocks and recovery ofance
blocks, SRDs had a small overhead of 4.9% for Postmark ad 0.7
for kernel compile benchmark.

SRDs provide better reliability at the disk by checking the i
tegrity of all blocks during read operations and replicgtiefer-
ence blocks (blocks that impact reachability of other bi)dit far
away from each other. SRDs intelligently store the checlsomm
blocks near their parent blocks and pre-fetch them when plaeent
blocks are read. Finally, SRDs try to improve the disk pearfance
by redirecting read requests to the nearest copy duringenete
block reads.

The rest of the paper is organized as follows. In Section 2, we
describe integrity assurance mechanisms, data recovempitpies
and Type-Safe Disks as a means of disk-level error deteetinh
recovery. Section 3 discusses the design of SRDs. Secti@a 4 d
scribes our prototype implementation of SRDs. We evalulatauia
prototype implementation in Section 5. We discuss relaterkin
Section 6, and conclude in Section 7.

2. BACKGROUND

In this section, we describe common integrity assurancenmec
nisms, and data recoverability mechanisms. We also deswaiity
Type-Safe Disks (TSDs) [18] are a good design choice for-disk
level error detection and recovery.

Integrity Assurance.

Sivathanu et al. [19] broadly classify integrity assuranuech-
anisms as physical redundancy technigues and logical dadhey
techniques. Physical redundancy techniques explicitisestedun-
dant information for integrity checking. Logical redundsrtech-
niques exploit structural redundancies that exist in the far in-
tegrity checking. Checksumming and parity are two physieal
dundancy techniques used commonly. SRDs employ block-leve
checksumming as a means of integrity assurance.

Data Recoverability.
Existing techniques like RAID [13] use redundant inforroati

techniques is the inability to selectively replicate datéhe disk-
level based on the data’s importance. This limitation arizet of
the information gap between the storage systems and therhigh
layers [3, 5].

TSD for Disk-level Data Recoverability.

Type-Safe Disks (TSDs) [18] aim to bridge the informatiopga
between the storage systems and the higher layers [3, Slghro
pointers. Pointers serve as a simple yet powerful mechatism
bridge this information gap. TSDs can distinguish refeeebiocks
from data blocks through pointers. Reference blocks arsethioat
have at least one incoming and outgoing pointer, whereashitatks
have no outgoing pointers. Example of reference blocks avbal
inode or indirect blocks that have outgoing pointers to datadi-
rect blocks, in the case of an FFS-like file system [12]. A kibas
to be allocated first using the TSD API before it can be accgsse
this is because free-space management is moved to the disk fr
file systems, and blocks that are not pointed by any othekldoe
automatically garbage collected. TSDs have type inforomadi.e.,
the ability to differentiate between reference and datzhsdp and
block liveness information inside them. This makes TSDs adgo
design choice for disk-level data recoverability techeisju SRDs
try to leverage TSDs’ type and liveness information to pdeveffi-
cient disk-level error detection and recovery while kegiime same
TSD interface.

File System

Namespace
Management

P

READ
ALLOC_BLOCKS
CREATE_PTR
DELETE_PTR

-
-t

DISK/RAID

Firmware

Freespace Pointer || Replication and
Management|{ Manager || Recovery Manager

Physical Storage

Figure 1. Self-Recovering Disk

3. DESIGN

SRDs aim to provide error detection and recovery at diskllev
for asingle disk. SRDs are designed to leverage the avaifabhter

information to selectively replicate important blocks.igknables
recovery of key data while consuming marginally more space.

3.1 Detecting Block Errors

Checksums using collision-resistant hash functions ha# lse
popular way of ensuring integrity. To provide data integrBRDs
compute collision-resistant checksum of all the blockseegxthose
that store the checksums. Our current implementation of S&ie
the MD5 [16] algorithm to compute the checksum of blocks. How
ever, the design does not restrict the hash algorithm used/&b

be reclaimed from.RU-CTABLE by the time the data block is read.
In such cases, the checksum block is read again and usedue pop
late the entries inRU-CTABLE. The read request for the block has
to wait during this period of time. From our benchmark resule
show that this situation seldom occurs. In the majority eftiime,

the data-blocks are read immediately after their parentkoldhe
operations that are performed during block writes are gsiitei-

lar to the operations performed during block reads. Duritagl
writes, checksums are updatedLRU-CTABLE and marked dirty.

If the entry is not present inRU-CTABLE, they are repopulated by

can be replaced by any other hash algorithm. Checksums are up reading the checksum blocks as in the case of block readsnWhe

dated when the blocks are written to the disk. SRDs compute th
checksum of data read from the block and compares it with the
stored checksum of block to check for block corruption. Feglli
shows the interface and components of SRDs.

3.1.1 Data Sructures

SRDs use TSD on-disk structures [18] and additional date-str
tures to keep track of the redundant information needed riar e
detection and recovery. SRDs also maintain in-memory &tras
that act as caches to improve performance.

On-Disk Structures.

PCTABLE. SRDs maintain a reference-block tracking table called
pPCTABLEthat is indexed by the reference block number. Each table
entry contains the reference block number, the list of blogkn-
bers that store checksums for the blocks pointed to by ther-ref
ence block, and the bitmaps associated with each of thesk-che
sum blocks. A newcTABLEentry is added when the first outgoing
pointer is created from a block.

PTABLE. SRDs also maintain a pointer tracking table calied
ABLE that stores the set of all pointers. TheAaBLE is indexed by
the destination block of the pointer. EaelmABLE entry contains

a reference to th@CTABLE entry corresponding to the pointer’s
source block, and the offset of the destination block’s Ekem in

the list of checksum blocks associated with the source blaaiew
PTABLE entry is added when a new pointer is created.

In-Memory Structures.

LRU-CTABLE. Thisis anin-memory table that caches block check-
sums for fast updates and verification. It is a hash tablexiedle
by block number and each node contains block number, checksu
and the on-disk address of the checksum that is cached. ét¢keh
sum fetches and updates first ga.foU-CTABLE. An LRU-CTABLE
cache miss results in the corresponding checksum blockead
andLRU-CTABLE entries being created. We use an LRU algorithm
to purge entries fromRU-CTABLE and limit its size within the
maximum limit.

LRU CHECKSUM BLOCK CACHE. It is a list of checksum
blocks cached by SRD in order to speed up writing checksurtis ba
to the disk. When a checksum block is read, it is added to ittis |
The size of this list is also limited to a fixed maximum valudd O
checksum blocks are written back to the disk (or discardéley
are not dirty) to make space for newly read checksum blockiseén
list. We use an LRU algorithm to reclaim entries from this.lis

3.1.2 SRD Operationsfor Block Reads and Writes

When a meta-data block is read, the checksum blocks of tlae dat
that it points to are also read. The data read from thesetplefe
checksum blocks are populatedLRuU-CTABLE to reduce the time
required to read and verify the checksums of the data blduks t
this meta-data block points to. Sometimes the checksury eray

dirty entries are reclaimed fromrRU-CTABLE, the corresponding
checksum blocks are updated on disk. Updating checksunkdloc
is optimized by keeping a cache of recently read checksurckblo
and updating all dirty checksums fronRU-CTABLE that belong to

a particular checksum block before it is being written.

3.2 Selective Block Replication

Previous works such as D-GRAID [20] does selective meta-dat
replication. D-GRAID understands file system data striesuand
hence D-GRAID can replicate naming and system meta-date-str
tures of the file system to a high degree while using standstidn-
dancy techniques for data. However, D-GRAID targets higt-e
RAID systems whereas SRDs try to solve the same problem for
a single disk. SRDs understand the importance of blocksdbase
on pointer information. Hence SRDs are able to replicateoimp
tant blocks selectively while not replicating less impattalocks,
thereby saving space without compromising much on errcovery
capabilities. The reachability of data blocks is deterrdibg their
reference blocks [18]. This means that reference blocksrame
important than data blocks. Therefore, SRDs replicatereefs
blocks and not data blocks.

Since SRDs replicate only reference blocks, we BSEABLE
to hold the block number of the replica block along with eagh r
erence block number. Since higher level software is not awér
reference block replication, all I/O requests are iderdifiy the
block number of the primary copy. As theCTABLE is indexed
by the block number of the primary copy, it is easy to retridve
replica block number in case of an 1/O error. All I/O operasmon
replica blocks keep track of the block number of the primaopyc
since it is needed to updateTABLE and to pass the result to the
higher-level software layers.

Recovery mechanism during failed block writes are alreadggnt
in disks [15]. SRD focuses on unreadable blocks or blockugsrr
tion. During a block read, the stored checksum of the bloclk ma
not match the one computed from its contents. If the blockref-a
erence block SRD tries to locates its replica. The repliaddcbe
scheduled to be written to disk, waiting in the disk queueeeds
to be read back from the disk and is returned back to the usss on
its integrity is verified.

The prototype implementation of SRD does not handle crash
consistency. If power is lost abruptly, the disk may go tomn i
consistent state: copies of the meta-data block that asxistdd to
be written could be lost. We can avoid this situation by usimige
ahead logging for the meta-data updates. This would enbate t
during crash recovery, the disk replays the operationsimgaidom
the logs.

3.3 DataRecovery

We check the replica block when the checksum does not match
with the original block. If the checksum matches with theliegp
block, the data is recovered. If the checksum of the replassdot

match with the stored checksum, then we assume that thedstore tem modified to support TSDs. Ext2TSD is similar to Ext2 excep
checksum block is corrupted. SRDs compute checksums for the for the fact that allocations and de-allocations are donedlyg the
original block and its replica and compare them to see if #reythe disk API. We ran general-purpose workloads on our protctygred
same. If the checksums match, SRDs replace the corruptstneck compared them with an unmodified Ext2 file system on a regular
entry. Hence SRDs are able to recover data when at least tthe of ~ disk. This section is organized as follows: first we descdbetest

three redundant data items are available (primary copliceg@nd platform and configurations. We then analyze the perforraaic
checksum). the SRD framework using the Ext2TSD file system with the Post-
T mark and kernel compile benchmarks.
34 Limitations We conducted all tests on a 2.8GHz Xeon with 1GB RAM, and
Error detection and recovery at disk-level alone cannotdlean a 74GB 10Krpm Ultra-320 SCSI disk. We used Fedora Core 4,
certain types of errors, like bus errors or firmware bugsfd®aing running a vanilla Linux 2.6.15 kernel. To ensure a cold caebe
error detection and recovery at the file-system level cosld better unmounted all involved file systems between each test. Waltan
option in these cases. tests at least five times and computed the 95% confidence inter
vals for the mean elapsed, system, user, and wait times tising
4. IMPLEMENTATION Student-t distribution. In each case, the half-widths efititervals

imol d based imol were less than 5% of the mean. We define wait time as the elapsed
We implemented a p'fowty?e S,RD, ased on our TSD implemen- time less CPU time used and it consists mostly of I/O, but gsec
tation as a pseudo-device driver in Linux kernel 2.6.15 #tatks scheduling can also affect it.

on top of an existing disk block driver. Our implementati@usied
approximately 1,500 lines of kernel code to the prototypedDTS 5.1 Space Over heads

block driver implementation while changing about 50 linésx- We measured the space overhead of the SRD over a traditional
isting TSD code. No change was needed at file system level or gy tor a Linux-2.6.15 kemel tree. This is a 253MB datasithw

user level. SRDs work with file systems modified for TSDs witho 1,160 directories and 18,798 files. The extra space takemdy t

any further changes. This shows that SRDs can be used with anysrp was 2.01%., out of which 1.90% was for PTABLE and 0.11%

software that runs on TSDs. o was for PCTABLE. For large files, the overhead will be lessin
The SRD layer accepts all but only those primitives accepled e number of pointer blocks will be less. 1.90% of this spae-

TSDs. The SRD layer intercepts all read/write requestsippes head is for TSD meta-data and the SRD meta-data adds onf§60.11

the operations needed for error detection/recovery anideed the since PCTABLE is the only persistent meta-data maintainyethée
requests to the lower-level device driver. The SRD layeo ats SRD other than the TSD meta-data.

tercepts replies from the lower level device driver and perfs the
necessary SRD operations on the 1/0. The operations pegtbrm 5.2 Postmark
at SRD layer include checksum update and verification, akasel
replication.

We implemented theTABLE and thePCTABLE as in-memory
hash tables which get written flushed to disk at regular watisrof
time through an asynchronous commit thread. We did not rngodif
other TSD data structures such as®#1@BLE and thus they remain
unchanged from the TSD implementation we used.

We used Postmark v1.5 to generate an I/O-intensive workload
Postmark stresses the file system by performing a seriesesfiop
tions such as directory lookups, creations, reads, appandgele-
tions on small files [17]. For all runs, we ran Postmark with0BD
files and 500,000 transactions.

We implemented the SRD in-memory structures§-CTABLE 400 Wait ———
andCHECKSUM BLOCK CACHB as data structures with fixed max- 350 | Sy;’t:fnr —
imum size limit. This was to ensure that they can fit into themne 287.9
ory available on a real disk. We used the LRU strategy to iecla g 800 1 273.0 s
entries from the RU-CTABLE and theCHECKSUM BLOCK CACHE § 250 | N M
The replication of a block has to be initiated when the firshpy)
is created from that block. This is when the block changes feo g 200
normal block to a reference block. We achieve this by aliogat fj
the replica block and explicitly initiating the first repditon when a 2 150 ¢
block is newly added to thecTABLE. To handle subsequent writes S ol N N N
to a reference block, each write I/O is intercepted by the &8Br
and we perform a lookup to check to see if the block is present 50 -
in the PCTABLE. If it is present, then the replica block number is 0 J
fetched from theecTABLE and an asynchronous write is issued to Traditional Disk SRD SRD with Faults

the replica block with the same data.

Our current prototype implementation of SRDs does not axddre
data-block recovery. In the future, parity methods can kexlue
recover data-blocks. SRDs cannot overcome multiple faduof
the same meta-data block (i.e., if the block and its replieacar-

Figure2: Postmark resultsfor SRD

Figure 2 shows the comparison of Ext2TSD over SRD with reg-
ular Ext2 over a traditional disk. SRD has a system time cx&dh

rupted). ” . . .
upted) of about 19% compared to a traditional disk. The increasg/sn s
tem time is due to checksum computation and hash table I@okup
5. EVALUATION required for checksum updates and verification. The waietoh
We evaluated the performance of our prototype SRD framework SRD was only about 2% higher than that of a traditional digRDS
in the context of Ext2TSD [18]. Ext2TSD is the Linux Ext2 filess impose additional overhead when reading and writing chaoks

blocks. However, this overhead is offset to some extent byb#t-
ter spatial locality in SRD for the Postmark workload. Estallo-
cation policy takes into account future file growth and heleeses
free blocks between newly created files. Ext2TSD does nokeimp
ment this policy and hence we have better locality for smbdkfi
Overall, the elapsed time for SRD is 5% more than that for &ige r
ular disk.

We also tested the performance of SRD with artificial faykda
tion. For this, we injected 20% faults during reads. Howgesirce
the prototype implementation of SRD cannot recover coedjpiata
blocks, we ignored data block corruption and passed thelieadt
to the higher layers. The implementation cannot recoverwthb
copies of a pointer block are corrupted. So we injected $qostri-
odically, once for every five reads. Faults injected in pairtlock
reads were caught by SRD and the replica blocks were read.
riodic injection of faults ensured that both the originatiaeplica
reads were not fault injected. The total overhead was alSuaver
SRD without fault injection. The system and wait times wesee

data integrity, physical redundancy and performance dpétion
at disk-level.

Data integrity.

Data integrity has become more important in recent timestdue
unreliable hardware devices. Many file systems [4, 6, 9, 2]Lu&e
checksums to verify the integrity of the data stored on disk.

Our work is closely related to IRON file systems [15], a tedhno
ogy which makes file systems more robust to disk errors by com-
puting checksums for all blocks, replicating meta-datackdofor
redundancy, and recovering corrupted or inaccessiblekbloé&s
seen from their benchmark results, the overheads of iryeggrifi-
cation, replication, and recovery are higher when perfaraethe
file-system level. Conversely, SRD fulfills these respoaititigs in-

Pe-side the disk, avoiding duplication of functionality for tiple file

systems. With the help of type information and internal ditke,
SRDs can perform these operations more efficiently.
ZFS [22] is another file system that is close to our work. ZFS

parable to normal SRD, but wait time was about 9% higher due to provides block-level integrity verification, replicatipand recov-

the extra reads needed for replica blocks.

5.3 Kerne Compile

To simulate a relatively CPU-intensive user workload, weeo
piled the Linux kernel source code. We used a vanilla Linéx15
kernel, and analyzed the overheads of Ext2TSD, foruhear ,
make ol dconfi g, andnmake operations combined.

Wait ——
User
System m—

3000

2500

2213 2229

2000

1500 -

1000 -

Elapsed Time (seconds)

500 r

i

Traditional Disk

\

SRD

Figure 3: Kernel compileresultsfor SRD

Figure 3 shows the comparison of Ext2TSD over SRD with reg-
ular Ext2 over a traditional disk. The system time overhe&d o
SRD over a traditional disk for kernel compile workload isoab

ery. ZFS also stores the checksums of each data block in thatpa
block that points to it. ZFS'’s recovery mechanism makes dse o
multiple disks, if available. In contrast, SRD’s recovergehanism
works within a single disk. SRD provides functionality siamito

the Storage Pool Allocator layer of ZFS, but at disk levelnc®i
SRD checks integrity, replicates, and recovers blocks ireamar
that is transparent to other layers in the storage staclqrikswvith
any file system designed for TSDs.

Replicating blocks.

Replicating blocks at the file system and the disk level hanbe
a popular solution for providing redundancy. The Fast Fis-S
tem [12] replicates the super block across all platters efdisk.
RAID systems [13] replicate blocks for redundancy. Thestesys
do not have type information inside the disk, hence they gann
replicate blocks selectively (e.g., only metadata bloakshe disk.

FS2 [7] uses the free space in the file system to replicate&kbloc
in the disk according to their access pattern. This is notaptete
solution as the disk cannot capture the access patterrectgrdue
to three reasons: (1) caching of blocks by OS, (2) changingssc
patterns, and (3) the fact that replicating all blocks watddsume
at least half of total disk space. In contrast, type-awasmmables
SRDs to know the relationship between blocks stored on thle di
and selectively replicate meta-data blocks. We believe $RDs
can also use the information about access patterns of btodks
prove their performance.

Performance optimization in the disk.
The idea of utilizing the available disk bandwidth by in&aV-

4%. The elapsed-time overhead of Ext2TSD over SRD compared ing low-priority requests between high priority requests fbeen

to Ext2 over a traditional disk under this benchmark is less1t1%.
The wait time overhead is about 16%. This increase in wai¢ fisn
not only due to the increase in 1/0. The increase occurs aso b

explored in freeblock scheduling [10, 11]. SRDs take a simil
approach by interleaving low-priority operations such a#ting
back modified checksum blocks and replicating meta-datekblo

cause the SRD checksum cache update thread preempts th@CPU tbetween regular block requests, incurring a very small uad.

update the checksum cache and write dirty checksums to she di
This thread takes more system time, which manifests as imast t
in the context of the kernel compile benchmark.

6. RELATED WORK

SRDs combine integrity check, physical redundancy, ank-dis
level performance optimization to provide efficient err@tettion
and recovery. In this section, we discuss previous workiedl#o

7. CONCLUSIONS

In this paper, we have shown that with pointer information at
the disk-level, effective integrity assurance and dataverabil-
ity mechanisms can be built inside the disk. Our pointedgdi
prefetching mechanism for checksum blocks achieves riblgig
1/0 overheads for reading redundant data used for integhigck-
ing. With selective block replication, we have handled oh¢he

most important forms of data recoverability, by just repting a
small fraction of blocks on disk. Intelligent placement gmefetch-
ing of checksum blocks ensure that the overall overheadsegyie
gible for SRDs as shown by our evaluation results. We belilese
our design represents an effective choice for building nmelieble
disks while remaining compatible with a wide-range of stigrap-
plications such as file systems and databases.

8.

ACKNOWLEDGMENTS

We thank the anonymous reviewers for their comments, anshayi
Traeger and Sean Callanan for their insightful commentsaoiee
drafts of the paper.

9.
(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

REFERENCES

W. Barlett and L. Spainbower. Commercial fault tolerané\
tale of two systems. IRroceedings of the |EEE Transactions
on Dependable and Secure Computing, pages 87-96, January
2004.

P. Corbett, B. English, A. Goel, T. Grcanac, S. Kleiman,

J. Leong, and S. Sankar. Row-Diagonal Parity for Double
Disk Failure Correction. IfProceedings of the Third USENIX
Conference on File and Storage Technologies (FAST 2004),
pages 1-14, San Francisco, CA, March/April 2004. USENIX
Association.

T. E. Denehy, A. C. Arpaci-Dusseau, and R. H.
Arpaci-Dusseau. Bridging the information gap in storage
protocol stacks. IfProceedings of the Annual USENIX
Technical Conference, pages 177-190, Monterey, CA, June
2002. USENIX Association.

K. Fu, M. F. Kaashoek, and D. Mazieres. Fast and Secure
Distributed Read-Only File System. Rroceedings of the 4th
Usenix Symposium on Operating System Design and
Implementation (OSDI ’00), pages 181-196, San Diego, CA,
October 2000. USENIX Association.

G. R. Ganger. Blurring the Line Between OSes and Storage
Devices. Technical Report CMU-CS-01-166, CMU,
December 2001.

S. Ghemawat, H. Gobioff, and S. T. Leung. The Google File
System. InProceedings of the 19th ACM Symposium on
Operating Systems Principles (SOSP ' 03), pages 2943,
Bolton Landing, NY, October 2003. ACM SIGOPS.

H. Huang, W. Hung, and K. Shin. FS2: Dynamic Data
Replication in Free Disk Space for Improving Disk
Performance and Energy ConsumptionPhoceedings of the
20th ACM Symposium on Operating Systems Principles

(SOSP '05), pages 263-276, Brighton, UK, October 2005.
ACM Press.

H. Kari, H. Saikkonen, and F. Lombardi. Detection of
defective media in disks. IRroceedings of the IEEE
International Workshop on Defect and Fault Tolerancein

VLS Systems, Washington, DC, 1993. IEEE Computer
Society.

[9] A. Kashyap, S. Patil, G. Sivathanu, and E. Zadok. I3FS: An

[10]

In-Kernel Integrity Checker and Intrusion Detection File
System. InProceedings of the 18th USENIX Large
Installation System Administration Conference (LISA 2004),
pages 69-79, Atlanta, GA, November 2004. USENIX
Association.

C. Lumb, J. Schindler, G. R. Ganger, and D. F. Nagle.
Towards higher disk head utilization: Extracting free

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

bandwidth from busy disk drives. IProceedings of the 4th
Usenix Symposium on Operating System Design and
Implementation (OSDI ' 00), pages 87—-102, San Diego, CA,
October 2000. USENIX Association.

C. R. Lumb, J. Schindler, and G. R. Ganger. Freeblock
Scheduling Outside of Disk Firmware. Rroceedings of the
First USENIX Conference on File and Sorage Technologies
(FAST 2002), pages 275-288, Monterey, CA, January 2002.
USENIX Association.

M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry. A
fast file system for UNIXACM Transactions on Computer
Systems, 2(3):181-197, August 1984.

D. Patterson, G. Gibson, and R. Katz. A case for redundan
arrays of inexpensive disks (RAID). Proceedings of the
ACM SIGMOD, pages 109-116, June 1988.

H. Patterson, S. Manley, M. Federwisch, D. Hitz,

S. Kleinman, and S. Owara. SnapMirror: File System Based
Asynchronous Mirroring for Disaster Recovery. In
Proceedings of the First USENIX Conference on File and
Sorage Technologies (FAST 2002), pages 117-129,
Monterey, CA, January 2002. USENIX Association.

V. Prabhakaran, N. Agrawal, L. N. Bairavasundaram, H. S
Gunawi, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau.
IRON File Systems. IfProceedings of the 20th ACM
Symposium on Operating Systems Principles (SOSP ' 05),
pages 206—220, Brighton, UK, October 2005. ACM Press.
R. L. Rivest. RFC 1321: The MD5 Message-Digest
Algorithm. In Internet Activities Board. Internet Activities
Board, April 1992.

Fred B. Schneider. Implementing fault-tolerant sees using
the state machine approach: a tutorRCM Computer

Survey, 22(4):219-319, 1990.

G. Sivathanu, S. Sundararaman, and E. Zadok. Type-Safe
Disks. InProceedings of the 7th Symposium on Operating
Systems Design and Implementation (OSDI 2006), pages
15-28, Seattle, WA, November 2006. ACM SIGOPS.

G. Sivathanu, C. P. Wright, and E. Zadok. Ensuring data
integrity in storage: Techniques and applications. In
Proceedings of the First ACM Workshop on Storage Security
and Survivability (StorageSS 2005), pages 26—36, FairFax,
VA, November 2005. ACM.

M. Sivathanu, V. Prabhakaran, A. C. Arpaci-Dussead, an
R. H. Arpaci-Dusseau. Improving Storage System
Availability with D-GRAID. In Proceedings of the Third
USENIX Conference on File and Storage Technologies (FAST
2004), pages 15-30, San Francisco, CA, March/April 2004.
USENIX Association.

C. A. Stein, J. H. Howard, and M. I. Seltzer. Unifying file
system protection. IRroceedings of the Annual USENIX
Technical Conference, pages 79-90, Boston, MA, June 2001.
USENIX Association.

Sun Microsystems, Inc. Solaris ZFS file storage sotutio
Solaris 10 Data Sheets, 2004.

www. sun. comt sof t war e/ sol ari s/ ds/ zfs.jsp.

C. P. Wright, M. Martino, and E. Zadok. NCryptfs: A seeur
and convenient cryptographic file system Hroceedings of

the Annual USENIX Technical Conference, pages 197-210,
San Antonio, TX, June 2003. USENIX Association.

