
38 ; LO G I N : vO L . 35, N O. 1

e R e z z a d o k , v a S i ly ta R a S o v, a n d
P R i ya S e h g a l

the case for specialized
file systems, or, fighting
file system obesity

Erez Zadok is an Associate Professor of Com-
puter Science at Stony Brook University. His
research interests involve file systems and
operating systems, performance benchmark-
ing and tuning, and green computing.

ezk@cs.sunysb.edu

Vasily Tarasov is a third year PhD student in
the Computer Science Department of Stony
Brook University. His scientific interests
include operating systems, computer
architectures, software engineering, green
technologies, and services science.

vtaras@cs.sunysb.edu

Priya Sehgal is a Master’s student at the
Computer Science Department of Stony
Brook University. Her research interests
include operating systems, green computing,
and computer architecture.

psehgal@fsl.cs.sunysb.edu

t h e c o m p l e x I t y o f m o d e r n f I l e
systems has increased drastically in recent
decades, and it keeps increasing. The ext2
file system in the Linux kernel has over
8,000 lines of code (LoC), ext3 doubles this,
and ext4 doubles it again. A working devel-
opment version of btrfs file system already
has over 52,000 LoC, XFS is over 77,000
LoC, and other network-based file systems
easily exceed 100,000 LoC. We believe that
the amount of functionality provided in
modern file systems is overkill for many of
the usage scenarios, and this often hurts
performance, energy efficiency, and even
reliability [1]. Instead of creating gigantic
general-purpose file systems that are hard
to develop, debug, maintain, and tune for
specific workloads, we propose to develop
minimalistic file systems, each tuned for a
particular case.

The growth of complexity is mainly caused by the
expanding functionality integrated in a file system.
In fact, the list of the features supported by modern
file systems is impressive: journaling, B-tree-based
search for objects, flexible data extents, access
control lists (ACLs), extended attributes, encryp-
tion, checksumming, etc. ReiserFS allows program-
mers to write plugins for it; large file systems such
as zfs and btrfs integrate complex storage pool
management and deduplication. Features such as
access-permission checks, hardlinks and symlinks,
unlimited file name length and file size, as well as
arbitrary directory depths, are no longer considered
extra features: any self-respecting file system must
support them. But should this “must” really be so
strict?

Too Many features

The large variety of features supported by modern
file systems is, in part, the desire of file system
developers to satisfy as many end users as pos-
sible. Depending on the specific situation, different
characteristics are required from a file system. In
emergency cases, reliability is the most important
factor; for storing military data, security is crucial;
enterprise servers require high performance; and
in mobile platforms, energy efficiency plays an
important role. When all corresponding features
go into one file system, the final user obtains not

; LO G I N : Fe b rua ry 201 0 Th e C a Se FO r SPeCI a LIze d F I Le SySTemS 39

only the functionality they require, but also all the functionality that other
users may need. The number of tunable parameters of a file system grows
proportionally to the functionality of a file system. Ext2 alone allows users
to specify over 10 format options and over five mount options, resulting in
at least a 10×5 = 50 parameter space; often, many of these options are not
mutually exclusive, making the parameter space exponential (e.g., as large as
250 in ext’s case). It is extremely difficult for the end user to find an optional
point in this space where performance is best. Our experiments show that
the default format and mount parameters (often considered by the users
as universally best) are up to 50% suboptimal and in some cases nearly an
order of magnitude worse than a carefully tuned system [2].

From the developers’ point of view it is hard to support, maintain, and
develop large file systems. Integration of new features takes a lot of time:
one needs to ensure that new functionality interoperates correctly with all
other features that are already implemented in the file system. Consequently,
the amount of effort spent on adding each new feature grows exponentially.
The number of different code paths in a large file system is huge, leading to
an exponential number of states to explore, which considerably complicates
debugging and performance analysis. New developers spend a lot of time
understanding the details of a complex file system before they can fix bugs
or change file system behavior in some way.

Most of the users do not need all of the functionality incorporated in a mod-
ern file system at once. Actually, in certain cases only minimal file system
functionality is enough. We held discussions with scientists who sought our
help in designing efficient HDF-based file formats for complex images [3].
These scientists have diverse backgrounds—in neutron and X-ray imag-
ing, molecular and structural biology, optical microscopy, macro-molecular
imaging, 3D cryo-electron microscopy, and astrophysics—and use vari-
ous clusters, with a range of file systems installed, analyzing terabyte-sized
data sets on a daily basis. It was surprising to find out that they do not care
about even basic features available in modern file systems. They do not use
hardlinks, softlinks, or ACLs. The sequence of open-unlink-close (which
is painful to implement in a file system) as well as directory renaming are
very rare in their environments. They do not use deep directories: most files
often reside in one flat directory or a shallow hierarchy. Files typically have
known names of fixed length. The input and output file sizes in an experi-
ment are often known in advance. Reliability features (e.g., journaling) are
usually not crucial, because lost data can be regenerated easily by rerunning
an experiment; for long-running experiments, periodic checkpointing is
performed at the application level. With all this in mind, many scientists do
not have a preferred file system, because most present file systems provide
all the bare features the scientists require.

Simpler file Systems

We looked at all the difficulties related to developing and using the func-
tionality in “obese” file systems, as well as the lack of necessity for the full
set of features they offer. We propose creating minimalistic file systems with
the functionality incorporated only on an as-needed basis. In this case the
code size of a file system can be much smaller, which allows programmers to
develop the file system quickly and then support it with less effort. Addi-
tionally, such file systems can be tuned more tightly for specific workloads,
and without creating a myriad of parameters to confuse the end user. Note
that inmany cases (e.g., the aforementioned scientists), users already know
the target usage of the file system and the characteristics of the workloads

40 ; LO G I N : vO L . 35, N O. 1

they are running. In our recent work we showed that careful tuning of
existing file systems can increase their performance and power efficiency by
as much as a factor of nine [2]. Developing a specialized file system would
increase these numbers even more.

Creating a new file system is not as hard as one might think. To demonstrate
this, we conducted an experiment within the graduate Operating System
class at Stony Brook University. Four teams of 2–3 first-year MS students de-
veloped a very simple real file system (VSRFS). The functionality was limited,
but varied from group to group: fixed/variable number of files and file sizes,
no directories vs. simple directories, support of extended attributes, time-
stamp storing, etc. It took only 3–4 calendar weeks for the students to create
a working file system, with code sizes of 1000–2000 LoC. We therefore
hypothesize that file system development time is not linear with respect to
the code size and that it is easier to develop many small file systems instead
of a few larger, feature-rich file systems. To facilitate filesystem development
more, one can take advantage of templates technology similar to the one
used in FiST for automatic generation of stackable file systems [4]. Another
alternative is to design file systems to be modular: minimal sets of features
could be loaded on demand based on workload characteristics.

In conclusion, file systems have become kitchen sinks in recent years; they
integrate many hard-to-implement features that many do not use. This fact
complicates the development of file systems and makes them less efficient
for specific usage. We think that the adoption of small custom file systems is
a feasible alternative that facilitates development and increases the efficiency
of future file systems.

rEfErEnCES

[1] V. Prabhakaran, N. Agrawal, L.N. Bairavasundaram, H.S. Gunawi, A.C.
Arpaci-Dusseau, and R.H. Arpaci-Dusseau. “IRON File Systems,” Proceedings
of the 20th ACM Symposium on Operating Systems Principles, SOSP ’05 (ACM
Press, 2005), pp. 206–220.

[2] P. Sehgal, V. Tarasov, and E. Zadok, “Evaluating Performance and Energy
in File System Server Workloads Extensions,” Proceedings of FAST ’10: 8th
USENIX Conference on File and Storage Technologies (USENIX Association,
2010), forthcoming.

[3] The HDF Group, Hierarchical Data Format, 2009: www.hdfgroup.org.

[4] E. Zadok and J. Nieh, “FiST: A Language for Stackable File Systems,”
Proceedings of the 2000 USENIX Annual Technical Conference (USENIX Associa-
tion, 2000), pp. 55–70.

