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Instrumenting or profiling a program’s execution yields enormous amounts of data that the programmer
can use to diagnose bugs and performance problems or even explore how a program works. However, the
raw data is often too vast for any programmer to analyze unaided. The goal of execution visualization
is to present that data visually in a way that allows the viewer to better understand a program’s behavior
and to draw conclusions about that behavior. This paper surveys tools that visualize program executions
by graphing data from execution traces, showing the steps of the program’s execution, or displaying the
contents of runtime data structures. We evaluate the techniques these tools use based on how much data
they show with static displays, animations, and interactive queries and how clearly that data communicates
information the user is looking for. We also examine the availability of these techniques in production
software visualization packages. As part of our survey, we present our own system that visualizes output
from the Memcov memory profiler to aid in identifying sources of leaky or wasteful memory allocations.
Finally, we explore the types of data generated by program executions and discuss displays that are effective
for each.

This work was partially made possible thanks to a Computer Systems Research NSF award (CNS-0509230) and an NSF
CAREER award in the Next Generation Software program (EIA-0133589).
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Chapter 1

Introduction

A software execution visualization seeks to be a window into what a program does while it runs. The user
of a visualization wants the ability to examine a program’s execution simply by looking at the visualization.
Beyond that ability, many software execution visualizations let the user zoom and manipulate the view to
explore the visual features of an execution at different levels of detail.

The first step in visualizing an execution is collecting the data for display. Software instrumentation,
the most common method of collecting data from a program’s execution, is an active area of research.
Knowing how instrumentation works is not important to understanding the key motivator of visualization
tools, however. That motivator is that an instrumented program can produce immense data sets. Consider a
program instrumented to output some result for every function call. How long would the program need to
run before it outputs millions of these results? Probably only than a few minutes.

In its raw form, all this data is useless; no developer would search through it all. Instead, most developers
would instinctively construct a graph to compare results from different functions. Such a graph is a simple
visualization. This paper surveys a range of tools that solve the same problem, from those as simple as the
previously mentioned graph to much more sophisticated techniques.

The visualization tools discussed here fall into four different categories.

1. Execution visualizations show the individual steps that a program takes as it runs.
2. Data structure visualizations show the layout and contents of a program’s data structures.
3. Object-oriented program visualizations show the relationships between program classes and objects

during an object-oriented program’s execution.
4. Trace visualizations show measurements of other program properties, such as processor utilization or

memory access time.

These categories include both online and offline visualization tools. Offline tools collect data during a
program’s run and provide a view of the data once the run finishes. Online tools display the data during
program execution. One advantage to an online view is that the user can quickly see how a program action
affects the program state by watching the visualization.

One online visualization is Memcov Viz, our tool for visualizing dynamic memory events in real time.
Memcov Viz emphasizes this real time approach, allowing the user to see immediately accesses to all of a
program’s memory areas. We conclude the survey of visualization tools in Chapter 2 by presenting Memcov
Viz.

The rest of this paper is organized as follows. Chapter 2 discusses visualization tools in the four cate-
gories. Chapter 3 gives a theoretical overview of the types of data a software execution visualization can
present. Chapter 4 suggests avenues for research in software visualization.

1



Chapter 2

Visualization Tools

In this chapter, we evaluate visualization tools from four different categories. We classify them according
to the different ways they present data. Execution visualizations focus on presenting data with animations
that illustrate program actions, an approach well suited to understanding algorithm implementations. Data
structure visualizations, on the other hand, are typically static but show a more detailed view of a program’s
data. Object-oriented program visualizations provide views of runtime data that help reveal the static and
dynamic structure of a program. Trace visualizations, the last type of visualization we discuss, capture and
visualize various other statistics that can indirectly provide a programmer with insight into a program’s inner
workings.

2.1 Execution Visualization
The purpose of an execution visualization is to illustrate the steps of a program’s execution visually. Each
data entity, perhaps an array element or an object pointer, appears in the visualization, and each program
action is an animated interaction between those objects. The result is like opening the program’s hood and
watching its previously hidden internal workings.

Understanding these workings is the first step in debugging an application. Usually, that means stepping
through the application in a debugger. Because it shows a program’s every action, a debugger with a source
level view is like an execution visualizer. Source code is not a visual medium, however, and a debugger
only shows half the picture. Each statement shows a program action, but the data entities never appear in the
debugger’s source view.

The 1981 short movie Sorting out Sorting [2] is an early visualization of sorting algorithms. Vertical bars
with varying heights star as array elements, switching places with each other to demonstrate the swaps that
the sorting algorithm chooses until the bars stand in height order. What if we could have a view as simple
and powerful as Sorting out Sorting for any program? Rather then staring at source code as a program
executes, we could watch the program’s internal entities, searching for bugs or performance problems. This
goal motivates our discussion of execution visualizations.

2.1.1 XTANGO and POLKA
In 1990, Stasko implemented the XTANGO system for animating algorithms written in C [45]. The pro-
grammer adds animation events directly into the program by way of calls to XTANGO functions. These
animation events move and resize animated shapes that represent program objects. The system emphasizes
using smooth animation to keep the visualization clear. Shapes that change position in the animation move
along a path rather than snapping from place to place. Figure 2.1 is one frame from an XTANGO animation.

Though XTANGO cannot automatically create animations for arbitrary programs, as this is not gener-
ally possible, designing an XTANGO animation is simple enough that it is potentially useful as a tool for
debugging algorithm implementations.

2



Figure 2.1: Animated XTango view of a quicksort implementation swapping two elements.

The 1993 POLKA system, implemented by Stasko et al., expands XTANGO’s animation approach to
visualize parallel programs [47]. POLKA relies on an “animation choreographer” that lets the user manually
control synchronization in the animation by adjusting the ordering and speed of animation events in sepa-
rate threads. POLKA itself independently handles animation events that occur at overlapping times, as is
necessary to visualize concurrent operations. In addition to two-dimensional output like XTANGO, POLKA
supports three-dimensional animations.

2.1.2 Lens
Also in 1993, Mukherjea and Stasko implemented the Lens system [30], designed to create visualizations
like XTANGO’s without requiring changes to a program’s source code. The animation designer selects lines
of code to spawn shapes and then places those shapes graphically. The designer controls a shape’s animation
by adding animation events that move the shape to a position based on the value of a program variable. These
events can similarly adjust a shape’s size. Lens reads the values of program variables by running the program
in the dbx debugger [49].

2.1.3 HotWire
In 1994, Laffra et al. implemented HotWire, a visual debugger for object-oriented C++ and Smalltalk pro-
grams [25]. HotWire includes a constraint language for displaying shapes for each program object. These
shapes animate during program execution.

Laffra et al. present a case study of debugging a performance bug in a word processor. Their example
draws a box in the execution view every time the word processor redraws a portion of its display. Each box
has the same size and position as the redrawn region. Running the program with this visualization reveals
which operations redraw unnecessarily large regions of the display.

HotWire also includes a display that shows a box for every object in the program. Each box is color
coded by how often its instance methods are called. Instances of the same class appear in the same row,
forming a view that is also useful as a bar chart.

2.1.4 3D-PP
In 2004, Okamura et al. implemented the “three-dimensional visual programming system” 3D-PP [36].
Rather than visualizing an existing program, 3D-PP allows a programmer to create the program visually.
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Figure 2.2: Box-and-arrow diagram of a binary tree data structure from a DDD debugging session.

The programmer places operands (input numbers) and operators (such as arithmetic and comparison opera-
tors) and then creates connections from operator outputs and operands to operator inputs.

When the user executes the program, the program itself animates to visualize its own execution. As each
operator executes, its input operands move towards it until the operands and operator combine and turn into
the result of the operation. Operators execute in this fashion until the last operator finishes, yielding the final
output. The user can pause and rewind the animation.

2.2 Data Structure Visualization
While execution visualizations focus on the actions that a program takes, data structure visualizations focus
on the data entities. Data structure visualizations are typically static, showing the state of a data structure at
a particular time during program execution.

The most flexible and most common type is the box-and-arrow diagram, a view included in all of the
tools in this section. However, the potential exists for as many kinds of data structure visualizations as there
are data structures.

2.2.1 Incense
In 1983, Myers implemented Incense, a tool for showing abstract views of data structures during program
execution [32]. Incense uses “Artists,” which know how to read a data structure and then draw it.

One included Artist draws box-and-arrow diagrams of records. The box-and-arrow Artist draws a box
for each record with that record’s fields inside of it and an arrow for each pointer from one record to another.
Figure 2.2 shows an example of a box-and-arrow diagram.

Incense users can write Artists for any kind of data structure. Another included Artist draws a tuple of
(hours,minutes, seconds) as a clock face. Myers also suggests potentially useful Artists for ring buffers
and list iterators. A ring buffer Artist could draw the buffer as a circle to show its ring structure. An iterator
Artist could draw the iterator variable as a progress bar to show how far it is through its iteration.

4



2.2.2 GDBX
In 1985, Baskerville implemented the GDBX frontend to the DBX debugger [3]. GDBX focuses on improv-
ing Incense’s approach to box-and-arrow diagrams, rather than allowing for many specialized data views.
One improvement is the “two-dimensional space allocation” mechanism for placing boxes in the visualiza-
tion as first suggested in Myers [32]. GDBX can place more boxes on the screen than Incense’s box-and-
arrow Artist, and rather than shrinking boxes to fit more in a limited space, GDBX places data structures on
a larger, scrollable canvas.

GDBX data structure visualizations are interactive. The user can hide or show boxes and move them
around to represent any structure. During program execution, the user can move an arrow to a different box
to actually change the underlying structure. GDBX automatically updates pointers to stay consistent with
the moved arrow.

2.2.3 DDD
In 1996, Zeller et al. implemented DDD [52], a free-software frontend for GDB [13] and dbx [49]. DDD
supports interactive box-and-arrow diagrams as shown in Figure 2.2.

More recent versions of DDD have the ability to plot one- and two-dimensional arrays with gnuplot [11].
While the target program is paused, the user selects an array for display, and DDD creates a bar chart for a
one-dimensional array or a surface plot for a two-dimensional array. The user can also add a breakpoint that
automatically graphs an array, creating an animated plot that shows the array changing over time.

2.2.4 Other Debuggers
A number of other debuggers also implement similar visualization features. The 1987 VIPS by Isoda et
al. is an ADA debugger that includes Incense-like facilities for box-and-arrow diagrams and custom data
views [21]. The commercial SoftBench [18] and CodeCenter [9] debuggers also support box-and-arrow
diagrams.

2.3 Object-Oriented Program Visualization
Object-oriented programming focuses on encapsulating data in objects that interact by passing messages,
or method calls. It is natural that this view of programming leads to visualizations that seek to show these
message-passing interactions.

Some of the visualizations presented here use the class as the primary visual entity, aggregating the
actions of all objects that belong to the same class. Other visualizations show individual objects for a finer-
grained view of the program.

2.3.1 Call Clusters and Call Matrices
In 1993 De Pauw et al. implemented a visualization tool for object-oriented programs written in C++ that
focuses on interactions between classes [37]. The system’s four animated views show the state of the program
while it runs or during playback of a recorded execution. The user can pause execution to examine each of
the views.

An “inter-class call cluster” view, shown in Figure 2.3(a), displays a label for each class in the program.
The view places classes closer together the more they call each other, so that tightly-bound groups of classes
cluster together. The cluster view shows the current call stack as a path of lines through the class labels. The
path starts from the class at the bottom of the stack (i.e., the class that contains the function at the bottom of
the stack) and passes through each of the classes above it, in order, until it reaches the class at the top of the
stack. The idea of a call stack trajectory is one that appears in several later visualizations.

An “inter-class call matrix” view, like the one in Figure 2.3(b), shows the number of calls between pairs
of classes up until the current time. This view uses the same principle as the message-queue matrix in
ParaGraph [16] discussed in Section 2.4.1. A program with n classes has an n×n grid. Box (i, j) is colored
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(a) Inter-class call cluster (b) Inter-class call matrix

Figure 2.3: Screen captures taken from De Pauw et al. [37]. In the call cluster, the blue line shows the current state of
the call stack. The red segment of the line is at the top of the stack. The call matrix shows which pairs of classes that
call each other’s methods.

by the number of calls that class i made to class j so far. Dark horizontal lines indicate classes that make
calls to many other classes, and dark vertical lines indicate classes that many other classes call.

A second matrix view shows the number of allocations classes make. The view is the same as the call
matrix, except that box (i, j) shows the number of times that class i allocated an object of class j. This view
is designed to show the source of heavy memory usage.

A bar chart shows the number of instances of each class.

2.3.2 Program Explorer
In 1995, Lange et al. implemented Program Explorer, a tool to visualize object-oriented executions that
focuses on object instances rather than classes [26]. To cope with the large number of objects a program may
have, the user can choose to display only objects of a certain class (and its subclasses).

An “object graph” view shows the objects in the program and their creation relationships. Edges exist
from every object to the objects it created. A similar call graph view instead shows method call relationships,
as seen in Figure 2.4. An edge (labeled by method name) exists for every object that calls another object’s
method. The user can also choose to display only certain methods.

An “invocation chart” view, also shown in Figure 2.4, shows the sequence of method calls. Objects
appear in the chart as a row of vertical bars. Events appear in sequence going down the chart. The beginning
of a bar (the top of the bar) represents object creation, and the end of the bar represents object destruction. A
horizontal arrow (labeled by method name) from the calling object’s bar to the target object’s bar represents
a method call. This view is similar to a UML sequence diagram.

2.3.3 Module Views
In 1998, Walker et al. developed a visualization tool for object-oriented programs [50]. After the target
program runs, their tool divides its execution into intervals of time and draws a cel for each interval.

The user defines several program modules, assigning program classes to those modules, and each cel
contains a graph of those modules. For every function call across modules during a cel’s interval, there is
a directed edge in the graph. A curved path goes through the modules in the call stack at the end of the
interval, like the call stack trajectory in the “inter-class cluster view” from De Pauw et al. [37].
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Figure 2.4: A screenshot of Program Explorer taken from Lange et al. [26]. The invocation chart on the left shows a
sequence of method calls between five objects, and the view on the right shows those same method calls in an object
graph.

Every node contains a histogram of the number of objects in the module (i.e., instantiated from a class
in that module) by age.

2.3.4 Jinsight
The IBM Jinsight project implements several views for examining object-oriented program executions.

Execution patterns. In 1998, De Pauw et al. implemented a visualization tool with an “execution patterns”
view for showing a sequence of method calls [38]. The execution pattern view is modeled after UML
sequence diagrams. Vertical bars represent method calls, but the bars are not placed on per-object tracks
like in a sequence diagram. While such tracks show communication between small numbers of objects very
clearly, they are impractical for large systems.

Each bar is labeled with an object number and is colored to show the object’s class. The method calls
that a method makes all appear immediately to its right, each connected by an arrow labeled with the method
name. A method’s distance to the right indicates how deep it is in the stack.

The Jinsight implementation includes several means to manage the complexity of an execution pattern
from a long execution, as shown in Figure 2.5. When a sequence of calls repeats itself, Jinsight draws the
sequence only once, along with the number of repetitions. Additionally, the user can click any method bar
to collapse it, hiding all of its method calls. Rather than collapsing an entire subtree, the user can show just
a summary of the subtree with a list of its classes.

The user can zoom out to see more of the view. When it is zoomed out far enough, Jinsight turns off
labels and arrows. Only small colored boxes remain, providing a bar chart of stack depth over time.

Object references. In 2001, De Pauw et al. implemented a visualization of object references designed to
help find wasted memory in Java programs [39]. Though Java programs are garbage collected, they can still
leak memory if they retain references to objects that are no longer necessary.
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Figure 2.5: A screenshot of an execution pattern in Jinsight taken from Lange et al. [38]. Jinsight combined several
repeated sequences in this view. Method bars with a bevel are collapsed. The user can click them to see more of the
tree.

Figure 2.6: A “communication interaction view” taken from Bertuli et al. [4]. The larger rectangles represent classes
with a lot of methods. Classes that are closer together are more tightly-bound. That is, they call each other’s methods
very frequently.

The visualization seeks to show patterns of memory references with a tree view. The user chooses a set
of objects for the roots of the tree. There is one node for each class of objects in the set, and each of these
nodes forms the root of a tree. A node’s children consist of all the objects that hold references to one of the
node’s objects, again grouped into sets of objects in the same class.

By choosing objects that remain in memory even after their useful lifespans for the starting set, the user
can find what objects are holding unnecessary references to those objects.

2.3.5 Run-time Polymetric Views
In 2003, Bertuli et al. implemented a tool to visualize object-oriented program executions using “run-time
polymetric views” [4]. Classes in this kind of view are rectangles. A rectangle’s color and each of its
dimensions represent statistical properties of the class. The rectangles also serve as nodes in a graph.

As an example, the “instance usage overview” shows the class rectangles in an inheritance tree, with an
edge from each superclass to its subclass. A rectangle’s width indicates how many instances of that class the
program created during its execution, and its height indicates how many methods the class has (excluding
methods that are never called). A rectangle’s color represents the total number of calls to methods from the
class.

8



Figure 2.7: A screenshot of Jive taken from Reiss [41]. The width of each colored box in the left panel indicates how
many methods the class has, and the height represents how many allocations the class made.

The “communication interaction view,” seen in Figure 2.6, shows method invocations between classes.
The height and color of rectangles in this view use the same metric as in the instance usage overview. The
height is always the same as the width, so all the nodes are squares. There is an edge between two rectangles
for each class that invokes a method in another class. The more frequently a pair of classes invoke each
other’s methods, the heavier their edge is weighted. Edge weights do not appear on the graph, but the
graph embedding draws nodes with highly weighted edges closer together. This behavior forces groups of
tightly-bound classes to cluster together.

2.3.6 Jive
Also in 2003, Reiss implemented Jive, a real-time visualization for object-oriented programs [41]. Figure 2.7
shows an example Jive session. Like a runtime polymetric view [4], the view has a box for each class. The
boxes are arranged in a grid, however, and their positions convey no information. Each box has five ways
of displaying a value: width, height, hue, saturation, and brightness. The saturation indicates whether the
program recently called any of the class’ methods. Other values include how many instances of the class
exist and how many new objects the class created.

Each running thread also has a box. Thread boxes are colored coded by thread state. The dimensions of
the box indicate how much time the thread has spent so far in its state.

All the boxes update in real time as the target program executes.

2.3.7 TraceVis
In 2006, Deelen implemented TraceVis, a tool for visualizing executions of object-oriented Java pro-
grams [10]. Figure 2.8 shows an example TraceVis session. TraceVis’ main view is a class communication
view. Every class is a node in the view, and a directed edge exists between two nodes if one class makes
method calls to the other during execution. Instead of arrows, TraceVis uses a gradient to show an edge’s
direction.

The user can drag a timeline view to change the class communication view. Nodes change in size to show
a user-selected property, such as the number of calls made to the class so far. Edges change in thickness to
show the number of calls made along each edge so far. TraceVis highlights nodes in red that are on the call
stack at the selected time and traces the path from the bottom to the top of the call stack in red, creating a
call stack trajectory like the one in De Pauw et al. [37].
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Figure 2.8: A screenshot of the TraceVis class communication and timeline views taken from Deelen [10]. There
are two active threads at the selected time. The BoardState class is at the top of one thread’s call stack, and the
ConsoleAnim class is at the top of the other thread’s call stack.

The timeline itself has a horizontal strip for every class. The strip changes color across its length to
indicate what percent of time it is “active” (that is, execution is in one of that class’ methods). The timeline
is designed to look like a UML sequence diagram.

2.4 Trace Visualization
There is more to a program execution than program actions and data structures. Profilers can trace myriad
behind-the-scenes statistics, like processor utilization, memory access times, or program speed. Amidst that
trace data are valuable clues for the programmer seeking to tune performance and track down subtle bugs. A
trace visualization can be the best way to find those clues.

We further categorize trace visualizations into offline and online tools. A programmer using an offline
tool first runs the target program to collect trace data and then views that data with the visualization tool.
Some visualizations, however, allow the programmer to view trace data in real time, while interacting with
the target program.

2.4.1 Offline Tools
ParaGraph
In 1991, Heath et al. implemented ParaGraph, a software package with a number of visualizations for trace
data captured from executions of parallel programs [16]. Most of ParaGraph’s visualizations are animated
over time.

Some ParaGraph visualizations use a horizontal time axis. These views scroll to the left as time passes
in the animation. Gantt chart views have a timeline for each processor that is color coded to show the
processor’s state at each time (Figure 2.10(a)). The state can be whether the processor is busy or waiting,
or it can be the task that the processor is working on. For task views, the programmer has to add calls to
the target program that indicate transitions from one task to another. Every Gantt chart has a corresponding
stacked-bar chart view that shows the number of processors in each state at each point in time.

A “space-time” view (Figure 2.10(b)) is a Gantt chart augmented with messages between processors.

10



Proc 0 Proc 1

Proc 2

Proc 3

Proc 7

Proc 6

Proc 5 Proc 4

Figure 2.9: Example of a Kiviat diagram showing utilization for eight processors.

Each message is shown as a diagonal line from the sending processor’s timeline to the receiving processor’s
timeline. On the time axis, the line starts at the time it is sent and ends at the time it is finally processed by
the receiving processor. Line slopes roughly show how fast processors handle messages.

Other visualizations have no time axis, so they either show aggregate statistics from the entire program
execution (and are therefore static), or show information from only a single instant in time. Each Gantt chart
view has a corresponding static stacked-bar view that shows the total time each processor spent in each state.

An animated bar chart view shows the number of messages each processor has in its message queue.
A more sophisticated message-queue visualization uses an n × n grid to show message-passing activity in
an n-processor system. During the grid’s animation, box (i, j) is filled in when there is a message from
processor i in processor j’s message queue. A third view draws each processor as a node in a graph, color
coded to indicate it if is busy, and draws edges between nodes to show the source and destination of queued
messages. Edges can be color coded to show whether they lie along a physical interconnect.

A Kiviat diagram shows the load average of all processors, like the example shown in Figure 2.9. The
Kiviat diagram for an n-processor system is an n-gon with the distance of each vertex from the center of the
diagram proportional to one processor’s load average. When utilization is very high among all processors,
the result is a regular polygon with a large area. When load is spread unevenly among processors, the Kiviat
diagram appears lopsided.

A “phase portrait” shows the relationship between two variables as a point on a 2D plane (Figure 2.10(d)).
ParaGraph’s phase portrait has the number of busy processors on one axis and the number of messages
waiting on message queues on the other axis. As these two values change during the course of the animation,
the point moves around the view, tracing its path as it goes.

PARvis and VAMPIR
In 1994, Nagel et al. implemented PARvis, which also provides animated visualizations of parallel program
execution traces [33]. The main PARvis view shows a rectangle for each processor divided into a top and
a bottom half. The top half shows the processor’s task at the current time in the animation, and the bottom
half shows the percent of time the processor has spent on a user-selected task. A statistical view shows a pie
chart or bar chart for each processor with the total time spent in all tasks.

PARvis also has a space-time view like ParaGraph’s with interactive zooming so the user can see a
detailed view of the tasks processed in a small period of time. Clicking on a line in the space-time view
shows a description of the message that line represents.
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(a) Gantt chart (b) Space-time diagram

(c) Task count bar chart (d) Phase portrait

Figure 2.10: Screen captures of a ParaGraph visualization. These four views are of a trace file for a program run on
an eight processor system.
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Figure 2.11: This do-loop-surface, taken from Naı́m et al. [35], shows the main loop of a matrix multiplication program.
The three straight peeks show communication delays while one processor broadcasts a row to the other processors.

The 1996 VAMPIR, by Nagel et al., is based on PARvis [34]. It includes a grid view similar to the n×n

grid in ParaGraph for visualizing message passing activity [16]. Box (i, j) is color coded to show the number
of messages sent from processor i to processor j.

In 2005, Knüpfer et al. implemented Vampir NG, which stores traces in a “Complete Call Graph” data
structure for faster drawing of timelines with more events [23].

Do-Loop-Surface
In 1996, Naı́m et al. presented the “Do-Loop-Surface” (DLS), a visualization of loop performance in a
parallel program [35]. A DLS, like the one in Figure 2.11, shows the time that each loop iteration takes on
each processor. The surface is a three-dimensional surface plot with the loop index on one axis, the processor
number on another axis, and the total time that processor spent executing that loop iteration on the final axis.

SvPablo
In 1998, De Rose et al. implemented SvPablo, a parallel program analysis tool that overlays its visualization
directly on program source code [43]. SvPablo displays the name of each program function with two color-
coded boxes. One box is colored according the number of calls to the function, and the other is colored with
the total time spent in the function. Similarly, SvPablo has a source display that annotates every line of code
with eleven boxes. Each box is colored with a different parameter, such as the total time spent executing that
line of code.

Other Parallel Program Visualizations
In 1992, Reed et al. implemented the Pablo performance analysis environment, which includes a visualization
creation tool that is powerful enough to implement many of the parallel program visualizations described
here [40]. It also includes “sonifications” which represent trace data with sound.

In 1994, Geist et al. implemented XPVM, which features a space-time view that updates in real time as
the program executes. It can also generate space-time views after program execution from trace files [15].

In 1995, Miller et al. implemented Paradyn, which includes a visualization component with line plots
and bar charts for processor utilization [29].

In 1996, Labarta et al. implemented the DiP parallel program development environment [24]. DiP’s
visualization tool, Paraver, displays space-time views from trace files. In 2002, Freitag et al. implemented
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parallel program tracing with a visualization component that shows Gantt charts [14].

GPV
In 2001, Weaver et al. implemented the Graphical Pipeline Viewer (GPV) to visualize trace files from pro-
cessor simulations [51]. The visualization, inspired by instruction views used in architecture text books [17],
shows a timeline for each instruction in the execution trace.

An instruction timeline is horizontal and changes color over its length as the instruction moves through
different pipeline stages (or stalls). Time, measured in processor cycles, is on the x-axis.

Viewed from a distance, a line going through the timelines shows the rate of instruction execution.
Because the timelines are stacked vertically, a steep line (i.e., close to vertical) indicates a high rate of
Instructions Per Second retired (IPS). A shallower line indicates lower IPS.

GPV supports interactive zooming, so the user can zoom in to examine local phenomena or zoom out
to see IPS variation throughout the program’s execution. At close enough zoom, GPV prints the assembler
instruction next to each timeline. The user can click on each timeline to reveal even more detailed information
about the instruction.

The instruction view can show several program executions overlaid in the same view. Viewing traces
together is a good way to compare the performance of different attempts at optimizing a program.

In addition to the instruction view, GPV provides a “resource view” that sits below the instruction view
and shares its time axis. The resource view has lines plots of several variables that vary over time, such as
power consumption.

Weaver et al. [51] includes a case study using GPV to improve an RC6 cipher implementation. Viewing
the execution trace, they found a significant number of branch mispredictions in the cipher’s inner loop.
Removing an if statement and then unrolling the loop eliminated the mispredictions and improved execution
time by 24%.

TraceVis
In 2004, Roberts implemented TraceVis, which features an instruction view like GPV’s with additional
features [42]. Figure 2.12 shows screen captures of TraceVis’ instruction view. Note that, though this
TraceVis shares its name with the TraceVis discussed in Section 2.3.7, the two tools are not related.

The user can search for instructions by program address and event (such as a cache miss). After search-
ing, non-matching instructions appear dimmed, and the user can move the view through matching instruc-
tions. TraceVis can also “bookmark” instructions so that the user can return to them later.

Like GPV, TraceVis can graph statistics on a shared axis with the instruction. TraceVis shows statistics
per instruction, however, rather than over time. As a result, the plot is a histogram that runs vertically along
the y-axis of the instruction view.

The user can also select a group of instructions by drawing a box around them in order to view the values
of statistics for that region of instructions.

“Static code correlation” aids in analyzing the performance of specific regions of code. The user can
assign colors to selected regions of high-level source code. TraceVis then colors each instruction according
to the region of code it belongs to. When the view is zoomed out too far to color static regions separately,
the static regions are shown as a statistics histogram.

Finally, the user can view data dependencies for an instruction in the trace. TraceVis draws a line from
an instruction to the phase in a previous instruction that it is dependent on and then draws that phase’s data
dependencies recursively.

Rivet
The Rivet system (Bosch et al.) provides a framework for computer system visualizations [6]. Though it is
not publicly available, there are several visualization projects built on Rivet, which we describe next.
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(a) Close-up view of individual instruction timelines with
data dependencies

(b) Zoomed-out view of entire execution

Figure 2.12: Screen captures of TraceVis taken from Roberts [42]. Each timeline represents a single processor instruc-
tion. From far away, it is not possible to see individual instructions, but it is easy to see the execution speed (in IPS)
at any time during the program execution. The zoomed-out view also has a histogram on the left and detailed statistics
for two user-selected regions.

Hyperbolic Graph View. Among the facilities that Rivet provides is the hyperbolic graph view, imple-
mented in 1998 by Munzner [31]. By laying out the graph in hyperbolic space and projecting the result onto
a Euclidean sphere, it is possible to draw very large graphs that the user can move through interactively.
This view is especially useful for graphs that have a meaningful spanning tree, like a call graph. Figure 2.13
shows a FORTRAN program call graph.

Seesoft. In 1992, Eick et al. implemented the Seesoft system for displaying statistics for lines of code [12].
Though the Seesoft project is not related to Rivet, it is included here because many Rivet visualizations use
an implementation of this method provided by the Rivet framework.

Seesoft displays a zoomed-out view of the source code itself. Every line of code is drawn as a line one
pixel in height. The text of each line is no longer discernible, but the view preserves indentation, providing
a rough view of the program’s control structures.

The system can color each line to show a property or statistic. Thousands of lines of code, all annotated
by color, can fit on a regular display.

SUIF Explorer. In 1999, Liao et al. implemented the SUIF Explorer system for parallelizing pro-
grams [27]. The system uses the “bird’s-eye view” of the code first described in Eick [12] to present
the result of the first pass of parallelization. Loops are colored to show which loops were successfully
parallelized. The user can also use filters to find loops that take a certain percent of execution time or are at
a certain depth. These loops appear highlighted in the “bird’s-eye view.”

PipeCleaner. In 1999, Stolte et al. implemented the PipeCleaner system for visualizing application perfor-
mance on superscalar processors [48]. PipeCleaner combines trace visualization and execution visualization.

PipeCleaner considers every cycle that does not retire the maximum possible number of instructions as
a stall and chooses a reason for the stall (such as cache misses or data dependencies). A “strip chart” shows
the causes of stalls over a program’s execution.

The strip chart is a stacked histogram with processor cycles on the x-axis. The user can select a region
of the histogram to see a zoomed-in view of the chart, along with a histogram for the types of instructions in
the pipeline.

After choosing a region of time in the strip chart, the user can watch an animated execution visualiza-
tion for that time period. Instructions appear as rectangles labeled with the assembly language text of the
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Figure 2.13: A hyperbolic space view of a FORTRAN program’s call graph taken from Munzner [31].

instruction and colored by instruction type. Speculatively-executed instructions have a colored border. Lines
between instructions represent data dependencies.

Different regions of the view represent pipeline stages and functional units. As each instruction changes
stages, its rectangle moves smoothly between regions. The user can pause the animation, control its speed
or watch it backwards.

Finally, PipeCleaner also provides a “bird’s-eye view” of the source [12] that is color coded to indicate
lines in the selected region of time and lines that are executing in the animated pipeline view.

Argus Case Study. In 2000, Bosch et al. [5] presented a case study using Rivet visualization tools to find
a performance problem in the Argus [19] parallel rendering library.

They first developed the MView visualization to examine the performance of memory accesses. MView
includes:

1. “bird’s-eye” source views [12] that are color coded by how much time each line of code spent waiting
for cache misses to resolve;

2. bar charts showing the time that the program spent waiting on cache misses for each region of memory,
arranged by physical and virtual addresses; and

3. strip charts for each process, showing the time that the process spent running, waiting, and resolving
cache misses.

The strip charts are zoomable and at close enough zoom become Gantt charts showing exactly how long a
processes spent in each state.

Examining the strip charts revealed that, later on in the application’s execution, processes were spending
increasingly more time on the wait queue. Further analysis revealed that the wait time was the result of
lock contention in the kernel. A simple workaround alleviated the contention and dramatically improved
scalability.
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(a) Line plot of statistics

(b) Call graph

Figure 2.14: Examples of VTune’s two visualization views, a line plot of statistics over time, and a call graph view.
The red edges in the call graph trace out a “critical path.”

Thor. The Thor system visualizes the result of cache-miss profiling on parallel programs [7]. The memory
profile gives each cache miss a type and categorizes it by processor, function, and data structure. The main
Thor view can show a stacked bar graph with a bar for every combination of the three categories (e.g., every
cache miss made by the nth processor in function foo to a particular data structure). Each bar shows the
number of cache misses of each type.

When displaying a bar for every possible combination, there are too many bars to be useful, so Thor
provides several ways to filter the display. The user can choose to collapse one of the categories, so the view
will only show bars for each combination of the other two categories (e.g., every cache miss made by the n th

processor in function foo to any data structure). The user can also choose which processors and functions to
show bars for. Finally, the user can hide all bars with a total number of cache misses that is below a specified
threshold.

Intel VTune
The Intel VTune Performance Analyzer is a performance profiler with a visualization utility [20]. After
collecting data, VTune displays a line plot, shown in Figure 2.14(a), with several statistics, including the
target program’s memory and processor usage.

A call graph visualization, shown in Figure 2.14(b), shows a graph with program functions as nodes.
Expanding a node, by clicking a button on the right of the node, shows its callees. The user can also use a
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Figure 2.15: An Instruments session with two instruments. The sampler instrument shows a graph of call stack depth
over time, and the ObjectAlloc instrument shows a graph of memory usage. The lower panel shows detailed information
from the sampler instrument. Each entry shows how much time the program spent in a function.

button on the left to expand a function’s callers.
Each function has one critical line that goes to the callee that the function spent most of its time in, which

the call graph draws in red. By following the red arrows, a user can trace a “critical path” in the program
execution.

Holding the mouse over a function reveals a tooltip with detailed statistics about that function.

2.4.2 Real-Time Tools
Instruments
In 2007, Apple released Instruments, a profiler with several instrumentation backends, including
DTrace [28], that provides a real-time visualization of its trace data [1]. The user chooses “instruments” that
collect data from the target program. Among the available instruments are a sampling profiler, which plots
call-stack depth; a memory usage profiler, which plots bytes allocated; and a processor utilization monitor,
which plots overall CPU utilization for all processes. The user can add custom instruments by writing
DTrace “probes.”

Each instrument collects data and draws a line plot of that data while the program runs. All the line plots
share a time axis, so it is possible to correlate events from different instruments in time. The user can zoom
both the shared time axis and the individual y-axes.

A panel below the instrument plots shows the individual events that the selected instrument captured. By
default, the bottom panel shows all the collected data, but the user can select a region of time to see only data
for that time.
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Figure 2.16: A Memcov Viz display of a running text editor. Time advances downward in this view, so the bottom of the
figure represents the time the screenshot was taken at. The thick blue bars all the way to the right are large allocations
that the editor created when changing modes. Periods of memory access (darker regions in the bars) further down the
view correspond to the user entering text in the editor. The blue and green bars are each Gantt charts for individual
ranges. The gray regions aggregate data for smaller ranges.

Memcov Viz
Memcov Viz is our real-time memory access visualization tool. It uses the Memcov system as a backend
to track dynamic memory allocations, deallocations, and accesses [8]. Memcov observes an allocated range
of memory by turning off its read and write protections and then waiting for a segmentation fault. The
segmentation fault indicates an access to the region. Memcov learns about ranges by interposing on malloc
and free.

We designed Memcov Viz as a tool to investigate interactive programs. For instance, a user may want to
understand what happens when entering text in a text editor. The user can watch the Memcov Viz memory
view while typing text in the target program and then immediately see which regions it accesses, allocates,
and destroys.

When the target program creates a region with malloc, Memcov Viz shows the region as vertical Gantt
chart, with a width equal to the range’s size. Large regions stand out because they have thicker Gantt charts.
Figure 2.16 shows an example memory view.

Each Gantt chart shows when accesses occur for its memory region. Dimmer regions of the chart indicate
periods of non-access. Over time, the Gantt charts scroll up, so that the bottom of the display is always the
current time.
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Using the mouse wheel, the user can smoothly zoom the x-axis (measured in bytes) to show more
memory ranges or to see more detail. Memcov Viz emphasizes smooth animation of the view. The user
can quickly zoom out to search an overview of the whole graph for an interesting region then zoom in to
investigate that region.

In order to provide a useful overview, Memcov Viz needs to show a lot of memory ranges on the screen
at once. At far enough zoom to show all of a program’s ranges, most of those ranges are too thin to display.
To cope with this problem, Memcov Viz combines adjacent ranges together until they form a Gantt chart that
is thick enough to display. These aggregated Gantt charts are gray to distinguish them from Gantt charts for
individual regions. Memcov Viz marks them in the accessed state when any of their ranges are accessed. To
see all the ranges in an aggregated Gantt chart, the user need only zoom in on it.

Moving the mouse over a memory range’s Gantt chart highlights it and displays text information. The
user can see the range’s exact size in bytes, the time since its last access, and its call site. A memory range’s
call site is the address of the call to malloc that created it.

Since a user might be interested in examining the behavior of memory ranges created by a particular line
of code, Memcov Viz provides the option of grouping ranges by call site. With this option on, MemcovViz
orders ranges so that those created by the same call to malloc appear next to each other, instead of ordering
them by creation time.

In order to achieve the fast animation we need for fluid zooming, we use OpenGL as a rendering backend.
OpenGL allows us to take advantage of hardware acceleration for drawing and scaling.
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Chapter 3

Visualizing Data

3.1 Types of Data
In this chapter, we endeavor to classify the types of data that execution visualization tools present, giving
examples from the tools discussed in Chapter 2. Our classification adds to several existing comparisons of
visualization tools.

Stasko et al. present a scheme for classifying execution visualization tools by four properties [46]. The
four properties, “aspect,” “abstractness,” “animation,” and “automation,” are practical metrics for comparing
visualization tools. One useful observation is that high aspect and abstractness tools, those that provide a
high-level view, are low automation. Such views are specific to the program they visualize, whereas high
automation tools need to be more general.

Shneiderman presents a more general classification for all types of visualizations, called a “task by
data type taxonomy” [44]. It includes seven visualization tasks and seven data types. Though our data type
classification is narrower, focusing only on program execution visualization, it is also much simpler, defining
only three data types.

Shneiderman’s seven tasks are inspired by his “Visual Information Seeking Mantra:”

Overview first, zoom and filter, then details-on-demand.

The mantra orders four of the tasks into a workflow that is a basis for an interactive visualization. Bosch
et al. cite the mantra as an important insight while developing the Rivet visualizations discussed in Sec-
tion 2.4.1 [6].

Memcov Viz (Section 2.4.2) also draws inspiration from Shneiderman’s mantra. Aggregated timelines
make it possible to see a whole program overview even when a program has a lot of memory ranges. The
user can smoothly zoom using the mouse wheel and filter by call site. Finally, highlighting a memory range
provides details on demand.

Our classification system categorizes the data that execution-visualization tools present into three types:
statistics, actions, and relationships. All the tools discussed in Chapter 2 show views of some combination
of these data types.

3.1.1 Statistics
Statistics are the most basic data that a visualization can show. We define a statistic as a value that changes
over time, so a statistic is most at home on a line plot with time on one axis.

Any input can be a statistic. Memcov Viz, for example, takes a program’s sequence of memory accesses
as its input. Such a sequence serves as a more detailed input than a simple statistic. Simply measure the
percent of recently accessed memory ranges, however, and the input is expressible as a statistic.
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For just this reason, statistics are the simplest and most flexible subject for visualization. There exists no
system that one cannot visualize by measuring its properties and then plotting them together on a common
time axis.

This type of data is limited in its power, however. A line plot with the number of recently used memory
ranges, for instance, will show you that a program is not using most of its ranges, but it cannot tell you why.
At best, the user needs another statistic to see that. In short, a statistic provides Shneiderman’s overview, but
without other types of data, it does not provide detail.

Displays beyond simple line plots help correlate multiple statistics measured over the same time, but
they do not provide any of the missing detail. A Kiviat diagram (Section 2.4.1) combines multiple statistics
along with a simple approximation of their total in the form of the diagram’s area. Stacked histograms show
how several statistics combine to form a total, which serves as an additional statistic. Phase diagrams (also
Section 2.4.1) show direct relationships between pairs of statistics.

3.1.2 Actions
Actions form an important type of data in execution visualization because a program execution is a sequence
of actions. The GPV and TraceVis visualizations (Section 2.4.1) represent programs as a sprawling timeline
of processor instructions. Each processor instruction is an action.

We define an action as a piece of data with at least an associated time: the time when the action occurred.
An action can have additional information. An instruction, for instance, is associated with its instruction
name and operands.

Because every action has a time, it makes sense to visualize actions on a timeline, like the GPV and
TraceVis pipelines. A Gantt chart is a type of timeline that shows actions. Each change in state represents
an action.

In addition to timelines, actions are naturally suited to animated views. An animation without any actions
is just a picture. In the XTANGO quicksort animation (Figure 2.1), for example, each animation of two
numbers switching places directly represents a program action.

3.1.3 Relationships
Finally, relationships are crucial to understanding a software system. Software with any kind of entities—
data structures, objects, threads—must have relationships because those entities will interact with each other.

Graphs are an intuitive way to show relationships. Consider the has a pointer to relationship. Box-and-
arrow diagrams (Figure 2.2) show this relationship as a graph with records as nodes and their relationships
as edges. Graphs also appear in most object-oriented program visualizations. They show relationships like
those between a class that calls another class’ method or an object that instantiates another object.

Matrix views, like the ParaGraph message-passing matrix (Section 2.4.1), are also useful for showing
relationships. A matrix view is not far removed from a graph view; programs commonly represent graphs
in memory as adjacency matrices. Visually, a matrix has the advantage of avoiding the clutter from many
overlapping edges that occurs in dense graphs, as in Figure 2.6. However, it is hard for a viewer to follow a
path through multiple relationships in a matrix view, an operation that is very natural in a graph view.

3.1.4 Combining Types of Data
Developers of visualizations need not limit themselves to representing data from these categories alone,
however. Many visualizations combine these three types of data.

Many graph views, for example, annotate nodes and edges with extra information. This technique is a
powerful way to combine statistics and relationships. Run-time polymorphic views [4], discussed in Sec-
tion 2.3.5, pull graph nodes together to visualize the strength of relationships in the graph (as in Figure 2.6).
The object-oriented TraceVis tool, discussed in Section 2.3.7, puts a statistic directly on each edge by varying
its thickness with the value (as in Figure 2.8).
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The ParaGraph space-time view (Figure 2.10(b)) combines action and relationship data. The view shows
inter-processor messages, which are each actions. Since each message connects two processors, the sending
and receiving processors, it also serves as relationship data. Views closely modeled after UML sequence
diagrams, like the Program Explorer invocation view (Figure 2.4) discussed in Section 2.3.2, are similar to
the space-time view. They also combine action and relationship data. This time, the action is the method
call, and the relationship is between the calling object and the callee object.

The overlaid bar charts and histograms in GPV and TraceVis (as in Figure 2.12(b)) combine statistics
and actions. The means of combining the two, laying one on top of the other, is simple but powerful. The
viewer can see each instruction in the context of the statistical data. The statistics provide the overview, and
the instructions provide the missing details.
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Chapter 4

Areas of Future Research

4.1 Interacting with the visualization
Some of the visualization tools presented here run at the same time as the target program. Using a real-time
visualization, the user can perform experiments on the running program by interacting with it in some way
and then watching for the effect in the visualization.

An interactive visualization tool, however, could allow experiments that the user initiates directly from
the visualization window. The user could alter program entities by selecting them in the view and then
immediately see the results of the change.

Data-structure visualizations already support this kind of manipulation. GDBX [3] (Section 2.2.2) and
similar debuggers allow the user to directly modify record values and reassign pointers by dragging arrows.
The views are not real-time, however. The user must pause the target program, make the change, then resume
the program.

To give an example of such an interactive visualization, Memcov Viz (Section 2.4.2) could provide tools
to manipulate allocated memory ranges directly. A developer of mission-critical algorithms that rely on
redundant data structures might want a way to corrupt program data for testing purposes. The developer
would click a range in the Memcov Viz view to corrupt the data it holds and would then see accesses to the
redundant regions as the target program recovers from the corruption.

Alternatively a user might want to be able to click a region to deallocate after becoming convinced that
the program will not access it again. That way, the program would have more memory to use for the rest of
the debugging session.

4.2 Overviews
Shneiderman’s “Visual Information Seeking Mantra” [44] demands an overview, but when a visualization
provides huge amounts of data, it is not always obvious how to show all of it in a single overview. A computer
monitor’s resolution limits how many entities a visualization can present. Extremely high-resolution moni-
tors could push this boundary back, but it would not take long to hit the more fundamental limits presented
by the viewer’s visual acuity.

Several of the tools presented here provide interesting ways to distill large amounts of data into a rel-
atively small area. The GPV and TraceVis tools (Section 2.4.1) can shrink instruction timelines until they
form a thin line, and Memcov Viz aggregates memory ranges together until there are few enough entities
that it is practical to display them all.

Jerding et al. present a more general way for aggregating large numbers of objects for an overview called
an information mural [22]. The information mural colors each pixel in its view according to how many
objects pass through the area that pixel covers. Dark areas in the view represent areas that are densely
packed with objects.
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All of these methods throw away all the visual patterns that are available at close range, however. Though
there is no way to avoid omitting detail when constructing an overview, it might be possible to preserve
enough to be useful to the viewer.

Perhaps computer vision and image processing algorithms could find the patterns that a viewer with a
perfect view of the entire visualization would see. For example, in a GPV view of a program with a rapidly
fluctuating rate of instructions per second, the line created by the view would form a stair-step pattern. After
zooming out far enough, however, the stair-step pattern would be too small to see, instead appearing as
a diagonal line. A computer vision algorithm could see this pattern as an interesting feature and add an
annotation to regions of the view that follow it.

4.3 Three-dimensional views
Only a few of the tools presented here take advantage of three-dimensional views. New kinds of three-
dimensional views could potentially display more data and reveal more sophisticated patterns.

Ubiquitous graphics hardware makes 3D visualizations even more tempting. Data sets represented by
hundreds of thousands of polygons are well within reach using consumer hardware, and programmable pixel
and vertex pipelines are advanced enough to share some of the burden of mapping input data onto the 3D
output.

However, the problem of displaying large overviews gets even worse in 3D. When entities clutter a 3D
view, they occlude each other. In the worst case, the bulk of data could be hidden from any viewpoint.

Solving the occlusion problem requires a more advanced way to navigate the data. Perhaps the user
could fly through the visualization or interactively construct cutaway views to reveal different parts of the
data set.
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Chapter 5

Conclusion

In this paper, we have surveyed tools and techniques for visualizing program executions. These visualizations
can illustrate patterns that are hidden in the huge number of events that a program run generates: information
that is useful for optimizing performance, fixing bugs, or learning an unfamiliar program.

Additionally, we presented our own visualization tool, Memcov Viz, which visualizes dynamic memory
events. Memcov Viz seeks to present a powerful, real-time overview, even for large numbers of memory
regions.

After examining these visualization tools, we turned an eye to the data they present, categorizing the tools
by the types of data they show. The three categories of visualization data offer a framework for understanding
what kinds of program properties are good targets for visualization.

We concluded with a discussion of possible future directions for research in software execution visu-
alizations. New visualizations have the potential to control the program execution that they display or to
visually interepret results for the user.
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