End-to-End Abstractions for
Application-Aware Storage

A Dissertation Presented
by
Gopalan Sivathanu
to
The Graduate School
in Partial fulfillment of the
Requirements

for the Degree of

Doctor of Philosophy
in
Computer Science
Stony Brook University

Technical Report FSL-08-01

May 2008

Copyright by
Gopalan Sivathanu
2008

Stony Brook University

The Graduate School

Gopalan Sivathanu

We, the dissertation committee for the above candidate
for the degree of Doctor of Philosophy, hereby recommend
acceptance of this dissertation.
Dr. Erez Zadok, Advisor

Associate Professor, Computer Science Department

Dr. R. Sekar, Chair-person of Defense
Computer Science Department

Dr. Rob Johnson
Assistant Professor, Computer Science Department

Dr. Remzi H. Arpaci-Dusseau

Associate Professor, Department of Computer Sciences,
University of Wisconsin-Madison

This dissertation is accepted by the Graduate School

Lawrence Martin
Dean of the Graduate School

Abstract of the Dissertation

End-to-End Abstractions for Application-Aware Storage
by

Gopalan Sivathanu

Doctor of Philosophy
in
Computer Science

Stony Brook University
2008

Modern computer systems are a composition of several lbgicalependent layers.
From a very simple hardware-software layering in early dalgis layering in computer
systems has increased significantly over time in both itshdapd complexity. For exam-
ple, in the past, file systems communicated directly withdis& hardware, whereas today
layers such as logical volume managers, RAID, or even a m&tean exist in between.
Although providing many important benefits, this rampageling has also led to the well-
explored problem of information-divide in the systems ktdayers hide information, thus
constraining functionality and limiting the power of indiwal layers. A particularly strik-
ing instance of this general problem exists in the storagekstoday. Modern high-end
storage systems have significant processing capabiliiigsjespite their potential, stor-
age systems are constrained in their functionality bectheseare oblivious of knowledge
about higher layers such as the applications using them.

In this thesis proposal, we seek to answer a simple questiom can we convey
application-level information across the diverse modetorage stack in a simple and
generic manner?We propose two flexible abstractions to solve this problerhe Tirst
abstraction we present is the notion of type-awarenessistitrage stack. In type-aware
storage, lower layers of the storage stack such as the diskveare of the pointer rela-
tionships between disk blocks that are imposed by highargaguch as the file system.
Type-awareness enables semantics-aware optimizatiadhs llower layers of the storage
stack, and also active enforcement of invariants on datasacbased on the pointer re-
lationships, resulting in better security and integrityheTsecond abstraction we evolve
is Context-Aware 1/0 (CAIO), a generic mechanism to propegaformation end-to-end
through the storage stack. CAIO provides a simple, yet gffenterface to communicate
application-dataandapplication-1/Orelationships to the storage stack, enabling interest-
ing functionality.

Through several case studies, we demonstrate the fleyibiit benefits of both ab-
stractions and show that they present a simple yet effegiéveral interface to build the
next generation of storage systems.

To my father, mother, and brothers.

Contents

List of Figures X
List of Tables X
1 Introduction 1
1.1 Information-Gap in the Storage Stack e e e 2
1.2 Bridging the Information-Gap: PastApproaches. e e e 3
1.3 OurApproach e 4
1.3.1 Type-Awareness i i e e 5
1.3.2 Context-Awareness e 6
1.4 Evaluation Methodology, 7
1.5 Contributions 7
1.6 Outline e 8
2 Background 9
2.1 ModernStorage Stack L L 9
2.2 Large-scale Storage Systems 9
23 RAIDlevels 10
2.4 OverviewofFileSystems. 11
2.4.1 The Layout of the Ext2 File System 11
2.4.2 FileSystemConsistency, 11
3 Type-Aware Storage Infrastructure 13
3.1 Motivation. e e 14
3.2 Type-Safety atthe DiskLevel 15
3.21 DiskAPl 16
3.2.2 ManagingBlock Pointers 16
3.2.3 Free-Space Management 16
3.24 Consistency 17
3.3 FileSystemSupport. 17
3.3 1 EXt2TSD 18
3.32 VFATTSD e e 19
3.4 A Software-Level Disk Prototyping Framework 20
3.5 TSDImplementation, 21
3.6 Evaluation. 22

3.6.1 Testinfrastructure 22

3.6.2 Benchmarks and configurations 22
3.6.3 PostmarkResults 23
3.6.4 KernelCompileResults 25
3.6.5 Sprite LFSBenchmarkResults 25
4 Case Study: ACCESS 30
4.1 Design o e 30
411 ACCESSmetadata. 31
4.1.2 Preventingreplayattacks 1 3
41.3 ACCESSoperation 32
414 ACCESSAPI e 33
4.2 Path-Based Capabilities 34
4.3 Key Revocation and Data Recovery 35
4.4 ACCESS Prototype o e e 35
4.5 The Ext2ACCESS FileSystem 36
4.6 Evaluation 37
46.1 PostmarkResultso L 37
4.6.2 KernelCompileResults 38
4.6.3 Sprite LFSBenchmarkResults. 38
5 Case Study: Disk-level Data Consistency 41
5.1 Inferring Dependencies from Pointers 42
5.2 AnEnhanced Pointer Interface 43
5.3 Consistency Enforcement 45
5.3.1 Temporal Ordering of Operations 7 4
5.4 Bounding Commitinterval, 74
55 Implementation 49
5.6 Limitations of Pointer-driven Consistency 49
5.7 Evaluation 50
571 PostmarkResults oL 50
5.7.2 Compile BenchmarkResults 51
5.7.3 Micro-benchmarks 52
6 Case Study: Discriminating Hierarchical Storage System 3
6.1 Design 54
6.1.1 A Hierarchical Storage Architecture 54
6.1.2 Pointer-Based Optimizations 56
6.2 Attributes 57
6.2.1 Attribute Interface L L oL 57
6.2.2 The Ext2DHIS File System 58
6.3 Attribute-Based Optimizations 58
6.3.1 Choosing OptimalRAID Level 59
6.3.2 Choosing Candidates for NVRAM caching 9 5
6.3.3 Reducing Disk Fragmentation 60

Vi

6.4
6.5

7 Case Study: Secure Deletion

7.1
7.2
7.3
7.4

8 Context-Aware |/O Infrastructure

8.1
8.2

8.3
8.4

9 Case Study: Working Set Identifier

9.1
9.2

9.3
9.4

10 Case Study: Context-Aware Caching

Prototype Implementation, 60
Evaluation
6.5.1 EvaluationSetup
6.5.2 Benchmarks and Configurations
6.5.3 DHISResults
6.5.4 RAID Placement Optimizations
6.55 NVRAMCaching

Motivation e
Design e
Prototype implementation. 67
Evaluation

The Utility of Context-Aware 1/O 70
ContextTypes e
8.2.1 Data-boundvs. Access-bound
8.2.2 Repeatable vs. Non-Repeatable
Generalizingthe Interface 72
CAIODEeSIgN o e
8.4.1 Associating ContextsWith1/O
8.4.2 ContextPropagation
8.4.3 LinuxImplementation
8.4.4 ApplicationSupport
8.45 Evaluation
Experiments
Results

Motivation

Design e e
9.2.1 Associating AccesswithData
9.2.2 Working Set Identification
9.23 Prefetcher
Implementation
Evaluation
9.4.1 Completeness of theworking-set. 86
9.4.2 KernelModulesBuild
9.43 Postmark

10.1 Design o e e
10.2 Evaluation s,

Vil

11 Case-study: Context-Based Disk Scheduler 91

11.1 Design o o o e 91
11.2 Implementation 92
11.3 Evaluation 93
12 Related Work 95
12.1 Briding the Information-gap in the Storage Stack 95
12.1.1 ExtensibleSystems oo 95
12.1.2 Hint-Based Interfaces. 6 9
12.1.3 RicherAbstractions. 96
12.1.4 Inference-Based Systems 7 9
12.2 Interface Between File SystemsandDisks 97
12.3 Type-safety 98
12.4 Capability-based Access Control 98
12.5 Notionof ContextinStorage 98
12.6 File System Consistency 99
13 Conclusions 100
13.1 LessonsLearned 100
13.2 Future Work 101
13.2.1 Generalizing Information in Other Domains 102
13.2.2 Applications in Virtual Machine Environments 102
13.2.3 Applications in Distributed Environments 102
13.3 Summary e e e e e e 102

viii

List

2.1

3.1
3.2
3.3
3.4
3.5
3.6
3.7
3.8
3.9
3.10
3.11
3.12

4.1
4.2
4.3
4.4
4.5

5.1
5.2
5.3
5.4
5.5

6.1
6.2
6.3
6.4
6.5
6.6

7.1
8.1

of Figures

Modern Storage Stack L.

Comparison of tranditional disksvs. TSDs
DPROTO Architecture
Postmarkresultsfor TSD:1
Postmark resultsfor TSD:2
Kernel compileresultsforTSD
Create Sprite LFS benchmarksforTSD
Read Sprite LFS benchmarksforTSD
Delete Sprite LFS benchmarksforTSD
RandomreadresultsforTSD
Random writeresultsforTSD
Sequentialread resultsforTSD
Sequential write resultsforTSD

Postmark results for ACCESS
Kernel compile results for ACCESS
Create: Sprite LFS benchmark results for ACCESS
Read: Sprite LFS benchmark results for ACCESS
Delete: Sprite LFS benchmark results for ACCESS

Architecture ofan ACE-disk

Postmark results for ACE-disk
OpenSSH compile results for ACE-disk
Create micro-benchmark results for ACE-disk
Unlink micro-benchmark results for ACE-disk

Architecture of DHIS
Postmark results for DPROTO vs. regulardisk
Postmarkresults:DHIS
Postmark results for DHIS: RAID config
Microbenchmark resultsforDHIS
Postmark results for DHIS with NVRAM caching

Unlink micro-benchmark results for SDTSD

Hierarchical contexts

8.2 Postmark Results for CAIO Framework 79

9.1 WOorkSIDE implementation 58
9.2 PostmarkresultsforWorkSIDE 87
10.1 Context tree used for CA-cachetesting 90
11.1 CA-scheduleoperation 92

List of Tables

6.1 RAID placement heuristicsinDHIS 60
8.1 TPC-C Benchmark results for the CAIO framework 79
9.1 Compilation Working Set Statistics 86
11.1 Read micro-benchmark for CA-schedule 93
11.2 Write Micro-Benchmark for CA-Schedule 94
11.3 TPC-Cresultsfor CA-schedule 94

Xi

Acknowledgments

| am first thankful to my advisor Erez Zadok for his great suppad guidance through-
out my five year period of PhD at Stony Brook. Erez played atg@a in shaping up my
research skills by giving me a lot of guidance on how to apgincGanew research problem,
systematic performance evaluation, and formal paperngitErez provided me with the
right set of opportunities such as attending several togerences, internship referrals,
and an excellent infrastructure in his lab. | am grateful teZor his trust and belief over
my skills—the freedom of work | enjoyed during my PhD is rekarle. Erez’s dedication
towards the success of his students coupled with his stesearch and teaching expertise
make him a great advisor.

| thank R. Sekar, Remzi Arpaci-Dusseau, and Rob Johnsorefeing) in my defense
committee. | am grateful to Sekar for his valuable feedbawwkskeveral of my projects
during my PhD. | am indebted to Remazi for his extraordinarjpkhehe took the trouble
of traveling to Stony Brook for my prelims. | have also beemyding Remzi asking for
feedback for several of my ideas, and he was kind and patienigh to allocate time for
it. Such helping tendency is remarkable.

My brother Muthian Sivathanu is my main inspiration to do ®PHe is my role model
and | have always strived to emulate him in his academic aswhreh achievements. | am
thankful to my brother for his valuable feedback in almosoélmy projects, during the
various stages of my PhD.

The comments and suggestions of the anonymous reviewermyfaarious submis-
sions helped improve the quality of the thesis substantidlithank Garth Gibson who
shepherded my OSDI paper, for his extensive and detailearmorts that helped improve
the quality of content in this thesis.

It was a great experience collaborating actively with Swaathan Sundararaman,
Kiron Vijayasankar, and Chaitanya Yalamanchili, in sel/prajects during my PhD. My
interactions with Charles Wright during the intial stagdsmyy PhD was quite helpful
in getting accustomed to the culture and projects in the Hjlstems and Storage Lab. |
am thankful to my colleagues, Sean Callanan, Abhishek Rai,Avishay Traeger who
joined in the same semester as | did, for their company andastipOther present and
past members of the lab, Akshat Aranya, Jay Dave, Ramya Edaeeen Gupta, Puja
Gupta, Rakesh lyer, Nikolai Joukov, Aditya Kashyap, Has@ean Pathangi Krishnan,
Arun Krishnakumar, Devaki Kulkarni, Adam Martin, Kiran-khar Muniswamy-Reddy,
Harry Papaxenopoulos, Chaitanya Patti, David Quigley,ilSatnur, Josef Sipek, Rick
Spillane, Gopala Suryanarayana, Kumar Thangavelu, andaMatad Nayyer Zubair,
have helped reviewing my papers, or involved in brainstogrgessions.

| thank my mentors, managers, and colleagues during my thtemships, for their
contribution in making my summer internships highly enjolaand educative. | particu-
larly thank Omer Zaki, Kaladhar Voruganti, and KK Rao in IBMidaden, Irfan Ahmad,
Vikram Makhija, and Jennifer Anderson in VMware, and GauathBhambidorai, Srdjan
Petrovic, and Qixiang Sun in Google.

| am thankful to Tzi-cker Chieuh, Christos Karamanolis, rielat McDanel, Ethan
Miller, and Radu Sion for their feedback about my research.

| am fortunate to have gotten great friends at Stony Brookndumy PhD. Specifi-
cally, I would like to thank Arvind Ramanathan, Prasanna¥i&n Thoguluva-Santharam,
Vasudevan Srinivasan, Sumant Sankaran, Prithviraj Salpbamd Sridhar Madishetty for
making my experience at Stony Brook a memorable one.

Above all, mere words cannot express the boundless lowexstadh, support, and guid-
ance extended to me by my father and mother all these yeal<sreslits of my accom-
plishments goes to my parents for their unparalleled effiorguiding me in the right path.
| am blessed to have gotten brothers like Muthian and Sankaliée without their love,
support, company, and comforting is unimaginable.

This work was partially made possible by NSF CAREER EIA-0833and NSF CCR-
0310493 awards.

Chapter 1

Introduction

Computer system design over the past years has revolveddatbe principle of layer-
ing [19]. Building systems as a hierarchy of layers enabteslized and independent
innovation in the individual layers. For example, in thevmatk protocol stack comprising
layers such as application, transport, network, and daka &ach layer can independently
innovate as long as the interface exported to the otherdagantact. With the growing
complexity of today’s systems, layering has become indispble in hardware and soft-
ware design.

Despite its obvious benefits, layered system design als@sovith an inevitable side-
effect: information available at one layer is not visibletla¢ other layers beyond what
is permitted by the interface separating those layers. mpact of this lack of informa-
tion is becoming more pronounced in the recent years as theaeneed for individual
layers to support advanced functionality, requiring ctlag®r information. This problem
is exacerbated by the fact that recent advancements in demgystems such as virtual
machine technology [7] have introduced more layers of @lization in the systems stack,
further widening the information-gap. Past research hastitied this general problem in
the context of different domains [4, 23, 55].

In the modern storage hierarchy, the general problem ofinédion-gap between lay-
ers has hampered development of new functionality. Laogdesstorage systems today
comprise diverse resources that include high processingepdundreds of gigabytes
of RAM, solid state storage media such as flash, and hundreésem thousands of
disks [16, 37]. Despite this advancement in storage hamlwsibrage systems are con-
strained in the range of functionality they can provide,shese they lack information about
higher-level data semantics. Several solutions have begoped to workaround this prob-
lem [5, 18,53, 70, 71], but they are mostly limited in scopad aone of them have been
widely adopted.

In this thesis, we evolve a new class of abstractions and amésims to effectively
bridge the information-gap in the storage stack with midimadifications to existing
hardware and software infrastructures. Our solution istpagate minimagenericinfor-
mation about application-level semantics across thegémstack, in an end-to-end manner.
By decoupling thgyenerationof such information from how the information isedin the

storage stack, our solution provides a simple and genafate for better application-
awareness in the lower layers of the storage stack. We spadbjfintroduce two new
abstractions under this category, to encode higher-lexelasitics: type-awarenesand
context-awareness

In type-aware storage, higher-layers encode structui@irimation about data by way of
pointersand communicate it to the disk subsystem, enabling the diskpport semantics-
aware optimizations and constraints. In context-awareag® applications can commu-
nicateapplication-dataand application-1/Orelationships to the storage stack by way of
logical contexts In the slew of related work that aims at bridging the infotima-gap, our
solution explores a unique design space of techniques tbgtaaverful, simple, and easy
to deploy. We have developed a number of case-studies usintyvo new abstractions,
that demonstrate our claim.

In the rest of this section, we explain at more length, theivatbon behind our work,
existing solutions, and the effectiveness of our new abttnas.

1.1 Information-Gap in the Storage Stack

In a simple storage stack comprising applications, fileesyst and the storage hardware,
each of the layers have different kinds of information altbetdata they manage. Appli-
cations have extensive knowledge about the higher-leugttsires of data (e.g., a B-tree
stored in a file) and their access characteristics. Fileegystknow about the organization
of data in the disk (e.qg., the set of disk blocks belonging pauicular file), and disk sys-
tems contain hardware-specific information such as cuhreat! position, hardware RAID
configuration, exact physical location of blocks (e.g., LBNphysical sector mapping
systems) etc.

In today’s storage stack, information available in eachhebe layers is not available to
any of the other layers. If there is better exchange of intran among the layers of the
storage stack, a wide range of new functionality can be.bdére are some examples:

¢ High performance I/O-intensive applications such as deteband Web servers have

long wanted a means for controlling the placement of theia da disk [73]. How-
ever, today’s file systems do not provide mechanisms fordritgvel applications to
communicate their desired data layout. For example, Fik&filie systems [52] such
as Ext2 group files and directories based on generic hatgigtid cannot tune their
policies for individual applications. If file systems are @ of application-level
access patterns and locality characteristics, they caflorperinformed placement
decisions to optimize 1/O.

e Many recent systems have looked at saving power by switafirysubset of disks
in a large RAID array in such a way that applications can #tifiction properly
without the switched-off disks [87,90]. These systems ggreat complexity to
identify the subset of data that is currently under use, lye$eé techniques are most
often approximate and too coarse-grained. If the disk systas knowledge about

2

the working-setsof data used by specific higher-level applications, they dara
much better job at such power optimizations by being moraesgive and more
accurate.

¢ Reliability mechanisms (e.g., replication) at the storagstem treat all blocks
equally. However, from an application viewpoint, data kedcave varying
importance. For example, meta-data blocks are more impicttian regular data as
they impact accessibility of other data. Information abitigt semantic importance
of data items can improve the effectiveness of reliabil@gtbires.

1.2 Bridging the Information-Gap: Past Approaches

Utilizing application knowledge within the lower layers afcomputer system has long
been an attractive goal in computer systems research. Mestgrss have been proposed
with this high-level goal of bridging the information gaptiween applications, the OS, and
the hardware. Most existing research in this area can bsitieasunder the following four
categories.

Extensible systems. A very common way to bridge the information gap between appli
cations and the system layers is to enable the system comipmnige dynamically exten-
sible by the application. Extensible operating systems30026, 41, 47, 65] are examples
of this type. There have also been proposals to extend stdvagiware by enabling appli-
cations to dynamically download code [1, 62]. Extensibletegns provide a lot of control
to the application, but in the process, essentially tiemthegether. For applications to
actually use such extensible layers, they need to have arrably intricate understanding
of the system, thus making them complex to design.

Hint-based systems. Another approach that has been explored to solve the infilmma
gap problem is a more evolutionary one; provide specific jies at the system level
that the applications can use to convey information to therang system. Informed
prefetching [78] is an example of such a system. Researtia@esalso looked at the flip-
side of the problem: provide information about the opemsystem to the application
so that the application can make intelligent decisions Ih, Most of these hint-based
approaches are often tied to a specific kind of optimizatidoiectionality. In other words,
the information being transferred is designed with a paléicpurpose in mind. This in
turn limits the flexibility of such a system because each n&gscof functionality may
require yet another new primitive to be added to the intexfac

Brand new interfaces. A large body of research that aims at bridging the infornratio
gap examine new interfaces between file systems and diskgetgtl, 17,18,49]. The
Object-based Storage Interface [53] is a classic examplii®. Most of these interfaces
are designed with some specific applications or scenariognd. For example, it is hard
to implement a database in an object-based disk. Moreoraardimew interfaces require a

complete revamp of existing infrastructures, and henceualigely to be deployed in the
near future.

Inference-based systems. The final class of related work pertains to approaches that
take the extreme viewpoint along the axis of being evolw#igrand less intrusive. These
systems attempt to achieve cross-layer awareness, butwvigxplicitly communicating

it from one layer to another [70, 71]. Gray-box systems [4] iader this category. Al-
though valuable from the viewpoint of being easily depldgaénd less intrusive, these
approaches have their own limitations because they aralheawstrained in terms of not
changing interfaces. This in many cases results in ad@itiocomplexity, making it hard to
reason about correctness while also limiting the usage @i suferred knowledge to less
aggressive applications that can tolerate inaccuracy.

1.3 Our Approach

As described in Section 1.2, almost all existing solutiambtidge the information-gap
have one or more of the following problems: (1) They are laditn scope such that they
bridge the gap between just a sub-set of layers in the st@tagk. (2) They require wide-
scale modifications to existing infrastructures makingrtdeployment too unlikely. (3)
They are built with specific functionality in mind requirirgxplicit co-ordination between
layers. In a multi-vendor setup, such coordination traeslanto industry-wide consensus
on the interface, a standardization process that takes.year

Our approach to solve the problem of information-gap is toppgateminimal and
genericinformation relating to data and I/O, from higher-level éay of the storage stack
to the lowest-level (the storage hardware). We evolve twaege abstractions to encode
structuralandoperationalinformation available at the application-level and comioate
it as part of I/O operations. Our first abstractiortype-awarenessvhich is to commu-
nicate pointers between disk blocks to the lower layers of the storage std#inters
establish relationships between disk blocks in a genericraa and are maintained by
layers such as file systems or databases. Our second alostiaciontext-aware storage
which is to communicate higher-leviglgical contextof 1/0O operations across the storage
stack. For example, all /0O operations generated from alesinger application can be
grouped under the same logical context.

The following are the three key characteristics of our apptothat differentiates our
work from previous approaches.

1. Theinformation being communicated from higher-levgtlis is already available at
the corresponding layers (e.g., file systems already trémtkipointers), and hence
communicating such information requires limited and gfinifiorward modifications
to existing infrastructures. More specifically, the modifions required to layers
in our approach, arenplementation-levelThese modifications are much easier to
make compared to th@esign-levemodifications required with brand-new abstrac-
tions such as Object-based Storage [53].

4

2. By decoupling th@enerationof information at the higher layers from how the in-
formation isusedat the lower layers, we obviate the need for explicit cocation
between any two layers to support our abstractions. Ourt@oar context informa-
tion is not generated with any specific layer or functioryailit mind.

3. Our abstractions extend end-to-end across the storage $ite., from user applica-
tions to the storage hardware), hence allowing a wide-rafg&eresting function-
ality in the different layers of the storage stack.

Next, we present our two abstractions in more detail andrdesseveral case-studies
that we built to demonstrate the generality and usefulnkesaraapproach.

1.3.1 Type-Awareness

Pointers are the fundamental means by which modern file mgsteganize raw disk data
into semantically-meaningful entities such as files andalories. Pointers define three
things: (1) the semantic dependency between blocks (edataablock is accessible only
through a pointer from an inode block); (2) the logical grimgpof blocks (e.g., blocks
pointed to by the same indirect block are part of the same fildirectory); and (3) the
importance of a block (e.g., blocks with many outgoing peistare important because
they impact the accessibility of a large set of blocks).

Despite the rich semantic information inherently avaiatiirough pointers, pointers
are completely opaque to disk systems today. We proposedti@nrof atype-safe disk
(TSD), a disk system that has knowledge of the pointer mtatiips between blocks. A
TSD uses this knowledge in two key ways. First, semanticcaire conveyed through
pointers is used to enforce invariants on data access, @ngvbetter data integrity and
security. For example, a TSD prevents access to an unabdddck. Second, a TSD
can perform various semantics-aware optimizations theaddficult to provide in the cur-
rent storage hierarchy [69, 70]. A TSD extends the tradéldrock-based read-write disk
interface with three new primitives: block allocation, ptar creation, and pointer removal.

We demonstrate the utility of type-awareness through feotgbype case studies.

A Capability Conscious Extended Storage System (ACCESS).In our first case-study,
we show that a disk system can provide better data securitpbgtrainingdata access to
conform to implicit trust relationships conveyed throughirgers. ACCESS (A Capabil-
ity Conscious Extended Storage System) is a TSD prototyqeptiovides an independent
perimeter of security by constraining data access even wienperating system is com-
promised due to an attack.

Automatic Consistency Enforcing Disk (ACE-disk). In our second case study, ACE-
disk, we show how a disk system can preserve the semantiestamsy of data using
pointers. ACE-disk automatically constructs dependenmoygs based on pointer opera-
tions and ensures atomic commit of blocks in resolved degerydgroups. We developed
a prototype ACE-disk and show how it preserves the congigtehan Ext2 file system.

5

A Discriminating Hierarchical Storage System. In the third case-study, we propose
and evaluate a hierarchical storage system, DHIS, thapaiie of discriminating between
data with different access characteristics, and then migtog its layout and caching poli-
cies to each type. DHIS allows annotating pointers with ao$efeneric attributes that
convey various properties such as data importance, apedtans etc. We show via a
prototype implementation that customizing policies tocsfi@data requirements has sig-
nificant performance benefits.

A Secure Deleting Disk System. The fourth case-study is secure deletion [30], a type-
aware disk system prototype that automatically overwiiteleted blocks. When the last
incoming pointer to a block is removed (making the block aecteble), our secure delet-
ing disk overwrites the block to provide secure deletion.skDievel secure deletion is
considered more secure, compared to existing softward-hegthods [69].

1.3.2 Context-Awareness

Our second abstraction is the concepCaintext-Aware I/QCAIO), a simple and generic
way for applications to convey arbitrary information abtheir I/O behavior and relation-
ships, without worrying about how the information will beeasby the storage stack. In
CAIO, an application-levetontextis propagated along with an 1/0O operation across the
entire storage stack, in an end-to-end fashion. An apphicdéevel context is represented
by one or morecontext identifiersFor example, a database application can have a unique
identifier that it can propagate along with every I/O it gextes, such that any storage layer
can easily group all I/O generated by the database apmitati

Decoupling the generator and consumer of the context irdion leads to an interest-
ing challenge: when the application could conceivably useenthan one possible granu-
larity of grouping 1/0O, how can it decide which one to use wtbking oblivious to how the
grouping is interpreted by the lower level? For example,taliase application can group
the I/O requests it generates based on the database usensésnsaction, or query for
which the I/O is issued; but the lower layers are oblivioug®granularity of the context.
To solve this issue, contexts in CAIO dnesrarchical With hierarchical contexts, higher
layers can encode multiple granularities of grouping, dedawer layers can decide which
granularity is the best for the particular functionalityatihey provide.

We have implemented the CAIO framework in the Linux kernal amaluated its us-
ability. To illustrate the power and generality of this cexit abstraction, we prototyped
and evaluated three case studies, described below:

Working-Set Identifier (WorkSIDE). Ouir first case study is an automatic working set
identifier, WorkSIDE which operates at the block-based storage hardware |ayerk-
SIDE automatically tracks the data working set requiredaiomapplication context to run
to completion. WorkSIDE correlates contexts with the 1/@ #ime corresponding data they
access, thus obtaining a complete view of the entire settafittans that the particular ap-
plication context requires. This working set can then béga@ed as appropriate in order

to improve performance and availability, or to enable poa@imizations.

Context-Aware Disk-Level Caching. Our second case study is a context-aware cache-
placement algorithm within the disk that automaticallyckswhich application-level con-
texts exhibit sequential access pattern and avoids cacbmgests with that context. We
demonstrate the usefulness of both of our case-studieg psatotype implementations
we built for the Linux kernel, and evaluate various worklead

A Proportional-Share Disk Scheduler. In our third case-study, we built a context-based
proportional-share disk scheduler which shows the fleixybdf using resource shares as-
sociated with logical contexts, in a disk scheduler. We hay@emented a prototype of
our scheduler in the Linux kernel.

Overall, we find that our end-to-end abstractions enabledewéange of functional-
ity and optimizations in the different layers of the storaggck, while requiring minimal
modifications to the storage interfaces.

1.4 Evaluation Methodology

We have implemented prototypes of both our abstractionsafirttie case-studies, in the
Linux kernel 2.6.15. For evaluating disk-level functioglwe built our own software-
level disk prototyping framework. Our framework operatesagpseudo device driver that
interposes between the file system and the regular diskrdriv@ne key challenge in this
prototyping environment is to ensure there is no perforreanterference between the host
application and the processing at the pseudo driver laygrcaBeful use of kernel isola-
tion techniques, we isolate the CPU and memory usage of thease prototype from the
“host” applications, thus providing a very close approxiioa of an actual hardware pro-
totype with its own processing and memory. We believe thatglototyping environment
is valuable more generally for evaluating other kinds ofcimnality in the storage system.

1.5 Contributions

They key contributions of this dissertation are as follows:

e Formulation of thgointerabstraction and the design of the Type-Safe Disk interface
that enables easy communication of higher-level pointetke disk system.

e Design, implementation, and evaluation of four case-stwdnat demonstrate the
security functionality and performance optimizations ttype-awareness enables.

e Formulation of théhierarchical contexabstraction and the Linux implementation of
the context propagation infrastructure.

e Design, implementation, and evaluation of three caseiesut demonstrate the
power and generality of the context abstraction.

7

e Implementation of a software-level framework to easily auturately prototype
disk-level functionality. This framework provides an irgsting choice between
hardware-level prototyping and entirely simulation-thpeototyping.

1.6 Outline

The rest of this thesis is organized as follows.. Chapters2Zudises some background
information. In Chapter 3, we present the detail design,l@mgntation, and evaluation
of type-aware storage. In Chapters 4, 5, 6, and 7, we desatib&ur case-studies that
use type-aware storage. Chapter 8 presents context-al@arinIChapters 9, 10, and 11,
we describe the three case-studies of context-aware 1/Ohapter 12 we discuss related
work, and we finally conclude in Chapter 13.

Chapter 2

Background

In this section, we discuss background information aboeitiodern storage stack, large-
scale storage systems, RAID levels, and file systems.

2.1 Modern Storage Stack

In the past file systems communicated directly with disks siyng hardware-specific in-
formation such as tracks and sectors. The storage stackvbbseé significantly since
then. Figure 2.1 shows an example of the modern storage.sfagk hardware infor-
mation is virtualized through block-based interfaces saslsCSI and ATA. Layers such
as RAID [59] or logical volume managers can exist beneattsfitems, and they aggre-
gate several independent disks. File systems are completalvare of whether they are
communicating with a single disk system or a RAID array. ldags storage stack, even
a network can exist between file systems and the storage hexdi3, 64,67, 75], and
higher-level user applications are completely oblivough&se intermediate layers.

2.2 Large-scale Storage Systems

Large-scale storage systems today comprise diverse mEsotirat include high processing
power, hundreds of gigabytes of RAM, solid state storageiangdich as flash, and hun-
dreds or even thousands of disks [16]. Modern storage sgstemcomplex software to
provide functionality such as reliability, fault-tolereg, and high performance 1/0. One of
the challenges in such storage systems is to effectivelyagethe wide range of resources
to provide optimal performance and customizable featuresvever, despite the advance-
ment in storage hardware, the interface used for commungatith hardware devices
is still simple and narrow in most scenarios. For example, $I€SI interface supports
just two main primitives, block ead andwr i t e, resulting in the storage system being
mostly oblivious to higher-level information. This makd§fi@ent resource management
within modern storage systems a difficult problem, as s®sgtems cannot discriminate
between the different kinds of information they store.
Some existing systems try to work around this problem by ekpgpmore information

to higher-level software [18, 34]. For example, certairegntise-class storage systems al-

9

User Applications

File System

Virtual Machine Monitor

A

Network

Logical Volume Managers

Device Drivers

Disk Interface

RAID

oood

Figure 2.1:Modern Storage Stack

low higher-level software to choose the RAID level to use danew volume, during its

creation [35]. However, this requires that the file systerhigher-level storage software
be aware of the characteristics of each volume, which coeltbtally tied to the internal

architecture of the specific storage systems. For exam@mrage system could contain
several fine-grained RAID levels, and devices such as NVRAM solid state memory.

Storage architectures could also be different across vemaled models, and it may be
cumbersome to customize file systems for specific storagersgs Moreover, the ab-

straction of a volume is in most cases too coarse-grainedpcess difference in access
characteristics across files.

2.3 RAID levels

Redundant Array of Independent Disks (RAID) is one of the ncosnmon ways used to
improve storage system performance and reliability [36, 3®iere are several configura-
tions of RAID (commonly referred to aRAID leveld that are used in practice. Each of
these configurations have their own performance, religbiind cost characteristics. In
this section, we describe three most commonly used RAIDOdeve

RAIDO performs plain striping across several disks withaoy redundancy and hence
it has the lowest reliability level among the three. Howewerterms of performance,
RAIDO is good for sequential and random read-write workkadhis is mainly because
I/O operations get parallelized across the individual slisken data is striped. In terms of
cost per gigabyte, RAIDO is the cheapest as there is no reshoydind the storage capacity
is the sum of the individual disk capacities.

RAID1 mirrors data across two disks. As two disks contaimtaml data at all times,
data reliability is better as it can tolerate a single diskufa. In terms of performance,
RAID1 has similar characteristics for both sequential amodom 1/0. Reads are faster
than writes as reads can be parallized across the two diskie ¥yeed is in tune with

10

that of a single disk, because for every write, both diskehawe updated, but in parallel.
RAID1 has the highest cost per gigabyte as the total capatttye drives is halved due to
mirroring.

RAIDS stripes both data and parity information across tlara@aore drives. In principle
itis similar to having a single dedicated parity drive, batipy blocks are distributed across
all drives RAID5 can recover from single disk failures antibe has comparable reliability
to RAID1. Read performance in RAID5 is similar to that of RAIDHowever, for small
random writes RAID5 performs poorly. This is because for kmvdtes that do not span
a complete stripe, computation of new parity involves regdhe old contents of the data
block and the parity block. In terms of cost per gigabyte, RBis the second best among
the three, as there is a single parity block for a stripe.

2.4 Overview of File Systems

Several applications need to store data persistently oonslecy storage disks. Storage
software such as file systems and databases provide a garierface to access storage
devices and maintain their own structures to track abstiagt For example, each file
system has its own on-disk layout. In this section, we pr@adbackground of file systems
in general and about the layout of the Ext2 file system in palidr. We also discuss briefly
a few other common storage structures that software use nagesdata on disk.

File systems abstract raw disk blocks into logical entitesh as file and directories.
To track the set of blocks that constitute a logical file oediory, a file system uses various
forms of meta-datasuch meta-data can be broadly classified into directdiiesspecific
meta-data, and structures required for free-space mareagemirectories link logical file
identifiers to file specific meta-data. File-specific mettad@ntains the file attributes and
links to the actual data blocks. Allocation structures uigg bitmaps and free-lists that
required for managing disk space. In common Unix file systeérasfollow the semantics
of the Berkeley Fast File System (FFS) [52], per-file mettaadjects are callethodes

2.4.1 The Layout of the Ext2 File System

The Ext2 file system which has its roots in BSD’s FFS, groupetioer a fixed number of
sequential blocks into a block group and the file system isaged as a series of block
groups. This is done to keep related blocks together. Eamtklgroup contains a copy of
the super block, inode and block allocation data-strusiuaed the inode blocks. The inode
table is a contiguous array of blocks in the block group tloattains on-disk inodes. The
number of inodes and their location are statically deteediduring themkfsoperation.
Each inode block can contain several inodes. Each inodddresiblock is treated as an
allocatableunit, and bitmaps keeps track of allocated and free inod#sma block group.

2.4.2 File System Consistency

Today’s block-based disks export a flat array-like absibacbf fixed size blocks. To man-
age data in the form of groups (e.g., a file) and to provide titeon of hierarchy (such as

11

directories), they need to manage pointers between bl&@iksh pointers are vital entities
in storage and in most cases they impact the accessibilttyeoflata. For example, when
an inode block is lost, all data pertaining to the correspagdiles become unreachable
and hence inaccessible. More importantly, toasistencyf these pointers determines to
a large extent the semantic consistency of the informatiored in a disk. For example,
during ar enamne operation in Ext2, a directory entry (which is a pointer tdramde block)
in a directory block is removed and added in another dirgdbtock. If the system crashes
after the removal operation is done, a file becomes inaddessien though its data items
are intact. While complex storage software maintain strf@mms of consistency such as
the consistency between the size field in an inode and thalddti size, mere pointer
consistency is sufficient in most cases. For example, if@hters from an inode are con-
sistent, the size field can be re-constructed by just lookinthe set of pointers. In this
work, we focus on ensuring pointer consistency at the digélle

12

Chapter 3

Type-Aware Storage Infrastructure

Type-safety is a well explored concept in the field of progmang languages, with proven
benefits such as controlled access to memory. We proposediocethe property of type-
awareness and type-safety to the disk subsystem, and shbitvdan significantly improve
the security and functionality of the disk subsystem. Sjdly, we advocate regulating
access to disk blocks to conform to well-defined rules, thatumderstood and enforced
by the disk itself. In building this, we leverage the facttttitee semantics of most file sys-
tems today can be broadly classified into two categories:daa blocks, angointersor
references that implement logical relationships betwesa blocks (for example, dentries-
inodes and inodes-data blocks). We defirtgpe-awaredisk as one that can differentiate
between these two distinct types of information it storesc®a disk has this information,
it can exploit this knowledge to provide better functiohaliWe believe that this simple
type-awareness could be a significant source of semantomattion that can bridge the
semantic gap between file systems and storage devices.uglitseveral existing research
projects like Object-store Disks (OSD) explore alternadivo bridge this gap, we believe
that adata-pointerabstraction is the right interface that a disk should prewi file sys-
tems. A disk that is type-aware canforcetype safety by limiting block accesses to only
the legal set of pointers, thus preventing arbitrary bloekefierencing. We call such a disk
atype-safe diskTSD).

TSDs require a few changes to the current block-based aterfFirst, like any other
type-safe system, allocation and deallocation has to benthd control of the disk ssyste.
By performing block allocation and de-allocation, a TSDekehe file system from the
need for free-space management. Similar in spirit to tygfe-programming languages, a
TSD also exploits its pointer awareness to perform autangatibage collection of unused
blocks; blocks which have no pointers pointing to them actaiened automatically, thus
freeing file systems of the need to track reference countslémks in many cases.

In this chapter we present in more detail, our type-awareagmabstraction, and four
case-studies that we built to show the usefulness of ouraadisin.

This chapter is organized as follows. In Section 3.1 we disdtie utility of pointer
information at the disk. Section 3.2 discusses the desidriraplementation of the basic
TSD framework. In Section 3.3 we describe file system supjporf SDs. In Section 3.4
we present the software-level disk prototyping environtritbat we built to evaluate the
idea of TSDs and all our case-studies. We present the ei@iuaitour prototype imple-

13

mentation of TSD in Section 3.6.

3.1 Motivation

In this section we present an extended motivation.

Pointers as a proxy for data semantics The inter-linkage between blocks conveys rich
semantic information about the structure imposed on the lolahigher layers. Most mod-
ern file systems and database systems make extensive usent#rpao organize disk
blocks. For example, in a typical file system, directory B®dogically point to inode
blocks which in turn point to indirect blocks and regularalatocks. Blocks pointed to
by the same pointer block are often semantically relategl,(they belong to the same file
or directory). Pointers also define reachability: if an iadalock is corrupt, the file sys-
tem cannot access any of the data blocks it points to. Thustgue convey information
about which blocks impact the availability of the file systenvarious degrees. Database
systems are very similar in their usage of pointers. Theyeh2ree indexes that contain
on-disk pointers, and their extent maps track the set ofdslbelonging to a table or index.

In addition to being passively aware of pointer relatiopshia type-safe disk takes it
one step further. It actively enforces invariants on dataeas based on the pointer knowl-
edge it has. This feature of a TSD enables independent \&idicof file system opera-
tions; more specifically, it can provide an additional pexter of security and integrity in
the case of buggy file systems or a compromised OS. As we sh8eation 4, a type-safe
disk can limit the damage caused to stored data, even by arkattwith root privileges.
We believe this active nature of control and enforcemensibbes with the pointer abstrac-
tion makes it powerful compared to other more passive in&diom-based interfaces.

Pointers thus present a simple but general way of captupptication semantics. By
aligning with the core abstraction used by higher-levell@ption designs, a TSD has the
potential to enable on-disk functionality that exploitsadaemantics. In the next subsec-
tion, we list a few examples of new functionality (some pregd in previous work in the
context of alternative approaches) that TSDs enable.

Applications There are several possible uses of TSDs.

Selective Data Replication Since TSDs are capable of differentiating data and pointers
they can identify metadata blocks as those blocks that ooatagoing pointers and repli-
cate them to a higher degree, or distribute them evenly aatighe disks. This could
provide graceful degradation of availability as providgdd»GRAID [70].

Data colocation Using the knowledge of pointers, a TSD can co-locate blodtsga
with their reference blocks (blocks that point to them). émgral, blocks will be accessed
just after their pointer blocks are accessed, and hence thauld be better locality during
access.

14

Intelligent Prefetching TSDs can perform intelligent prefetching of data becausa®f
pointer information. When a pointer block is accessed, a t&Dprefetch the data blocks
pointed to by it, and store it in the on-disk buffers for imped read performance.

Disk-level security TSDs can provide new security properties using the poirmemni-
edge by enforcingmplicit capabilities. We discuss this in detail in Section 4.

Secure deletion TSDs can perform automatic secure deletion of deleted Blbgkrack-
ing block liveness using pointer knowledge. We describgithdetail in Section 7.

3.2 Type-Safety at the Disk Level

Having pointer information inside the disk system enablgsreement of interesting con-
straints on data access. For example, a TSD allows accessytohose blocks that are
reachable through some pointer path. TSDs manage blockatibms and enforce that
every block must be allocated in the context of an existinigeo path, thus preventing
allocated blocks from becoming unreachable. More intergist TSDs enable disk-level
enforcement of much richer constraints for data securitgescribed in our case study in
section 4.

Enforcing such access constraints based on pointer nesdtips between blocks is a re-
stricted form oftype-safetya well-known concept in the field of programming languages.
The type information that a TSD exploits, however, is nagouw scope: TSDs just differ-
entiate between normal data and pointers.

We now detail the TSD interface, its operation, and our gyge implementation.
Figure 3.1 shows the architectural differences betweemabdisks and a TSD.

File System File System
Namespace Freespace Namespace
Management Management Management

)
o o
= =

a w w § i I

-) = o w w

2 g D og g § @

8 % o

3 a

<
v ' v Y

Firmware

Freespace Pointer
Management Manager

Physical Storage

Firmware

Physical Storage

(a) Traditional Disk (b) Type-safe Disk

Figure 3.1:Comparison of traditional disks vs. type-safe disks

15

3.2.1 Disk API
A type-safe disk exports the following primitives, in addit to the basic block-based API:

e SET_BLOCKSIZE(Size): Sets the file system block size in bytes.

e ALLOC_BLOCKS(Ref, Hint, Count): AllocatesCount number of new file system
blocks from the disk-maintained free block list, and creaieinters to the allocated
blocks, from blockRef. Allocated blocks need not be contiguouge f must be a
valid block number that was previously allocatédint is the block number closest
to which the new blocks should be allocateff.int can be NULL, which means
the disk can choose the new block totally at its own discretiReturns an array of
addresses of the newly allocated blocks, or NULL if thererareenough free blocks
on the device.

e ALLOC_CONTIG.BLOCKS(Ref, Hint, Count): Follows the same semantics Ais-
LOC_BLOCKS, except that it allocate§'ount number of contiguous blocks if avail-
able.

e CREATE_PTR(STc, Dest): Creates a pointer from blocKrc to block Dest. Both
Src and Dest must be previously allocated. Returns success or failure.

e DELETE_PTR(STc, Dest): Deletes a pointer from blockrc that points to block
Dest. Semantics similar tcREATE_PTR.

e GET_FREE Returns the number of free blocks left.

3.2.2 Managing Block Pointers

A TSD needs to maintain internal data-structures to keegktcd all pointers between
blocks. It maintains a pointer tracking table calfehBLE that stores the set of all pointers.
ThePTABLE is indexed by the source block number and each table enttgicsthe list of
destination block numbers. A neRTABLE entry is added every time a pointer is created.
Based on pointer information, TSD disk blocks are classifitmlthree kinds: (alReference
blocks blocks with both incoming and outgoing pointers (such asléblocks). (bPata
blocks blocks without any outgoing pointers but just incomingmgers. (c)Root blocksa
pre-determined set of blocks that contain just outgoinggos but not incoming pointers.
Root blocks are never allocated or freed, and they are atigtidetermined by the disk.
Root blocks are used for storing boot information or the amynmetadata block of file
systems (e.g., the Ext2 super block).

3.2.3 Free-Space Management

To perform free-space management at the disk level, we tiaeknd free blocks. A TSD

internally maintains an allocation bitmaplLOC-BITMAP, containing one bit for every
logical unit of data maintained by the higher level softwgg., a file system block). The
size of a logical unit is set by the upper-level software tigio theSET_BLOCKSIZE disk

16

primitive. When a new block need to be allocated, the TSD tmose a free block closest
to the hint block number passed by the caller. Since the TSDegaloit the low level
knowledge it has, it chooses a block number which requiresetast access time from the
hint block.

TSDs use the knowledge of block liveness (a block is defindaetdead if it has no
incoming pointers) to perform garbage collection. Unlikaditional garbage collection
systems in programming languages, garbage collection ID W& penssynchronously
during a particulaDeLETE_PTR call which deletes the last incoming pointer to a block.
A TSD maintains a reference count tabkTABLE, to speed up garbage collection. The
reference count of a block gets incremented every time a neaniing pointer is created
and is decremented during pointer deletions. When theaeéer count of a block drops
to zero during aDELETE_PTR call, the block is marked free immediately. A TSD per-
forms garbage collection one block at a time as opposed forpang cascading deletes.
Garbage collection of reference blocks with outgoing paisiis prevented by disallowing
deletion of the last pointer to a reference block before@fjoing pointers in it are deleted.

3.2.4 Consistency

As TSDs maintain separate pointer information, TSD post&uld become inconsistent
with the file system pointers during system crashes. Thegefgoon a system crash, the
consistency mechanism of the file system is triggered whigdtks file system pointers
against TSD pointers and first fixes any inconsistencies dmtvboth. It then performs
a regular scan of the file system to fix file system inconsisésnand update the TSD
pointers appropriately. For example, if the consistencgimaaism creates a new inode
pointer to fix an inconsistency, it also calls thBEATE PTR primitive to update the TSD
internal pointers. Alternatively, we can obviate the needdonsistency mechanisms by
just modifying file systems to use TSD pointers instead ofnt@@ning their own copy in
their meta-data. However, this involves wide-scale madliftms to the file system.

File system integrity checkers suchfasck for TSDs have to run in a privileged mode
so that they can perform a scan of the disk without being stdjeto the constraints
enforced by TSDs. This privileged mode can use a special radtrative interface that
overrides TSD constraints and provides direct access to$iiepointer management data-
structures.

Block corruption When a block containing TSD-maintained pointer data-stmes gets
corrupted the pointer information has to be recovered, asl#tta blocks pertaining to the
pointers could still be reachable through the file systemangetta. Block corruption can
be detected using well-known methods such as checksumrdimon detection, the TSD
notifies the file system, which recreates the lost pointens fits meta-data.

3.3 File System Support

We now describe how a file system needs to be modified to use aWebrst describe the
general modifications required to make any file system woth @il SD. Next, we describe

17

our modifications to two file systems, Linux Ext2 and VFAT, sewur framework.

Since TSDs perform free-space management at the disk-fdeedystems using TSD
are freed from the complexity of allocation algorithms, aratking free block bitmaps and
other related meta-data. However, file systems now needllttheadisk API to perform
allocations, pointer management, and getting the freeksloount. The following are the
general modifications required to existing file systems fupsut type-safe disks:

1. Thenkf s program should set the file system block size usingstiie BLOCKSIZE
primitive, and store the primary meta-data block of the fiystem (e.g., the Ext2
super block) in one of the TSD root blocks. Note that the TSBX tdocks are a
designated set of well-known blocks known to the file system.

2. The free-space management sub-system should be eladifrat the file system,
and TSD API should be used for block allocations. The file @ystoutine that
estimates free-space, should call theT_FREE disk API, instead of consulting its
own allocation structures.

3. Whenever file systems add new pointers to their meta-daaTE PTR disk prim-
itive should be called to create a TSD pointer. Similarlg BELETE_PTR primitive
has to be called when pointers are removed from the file system

In the next two sub-sections we describe the modificatioaswle made to the Ext2
and the VFAT file systems under Linux, to support type-sasgsli

3.3.1 Ext2TSD

We modified the Linux Ext2 file system to support type-saf&stisve call the modified
file systemExt2TSD The Ext2 file system groups together a fixed number of se@lent
blocks into a block group and the file system is managed adess#rblock groups. This
is done to keep related blocks together. Each block groupagmna copy of the super
block, inode and block allocation data-structures, andribde blocks. The inode table is
a contiguous array of blocks in the block group that contairdisk inodes.

To modify Ext2 to support TSDs, we removed the notion of blgoups from Ext2.
Since allocations and de-allocations are done by usingidieAPI, the file system need
not group blocks based on their order. However, to perforay @ode allocation in tune
with Ext2, we maintain inode groups which we cealEGMENTS Each isegment contains
a segment descriptor that has an inode bitmap to track théeuof free inodes in that
isegment. The inode allocation algorithm of Ext2TSD is sawn¢hat of Ext2. Thekf s
user program of Ext2TSD writes the super block, and allactte inode segment descrip-
tor blocks, and inode tables using the allocation API of tisik.dIt also creates pointers
from the super block to all blocks containing isegment desars and inodes tables.

The organization of file data in Ext2TSD follows the same @tite as Ext2. When
a new file data or indirect block is allocated, Ext2TSD calis oc_BLOCKS with the
corresponding inode block or the indirect block as the egfee block. While truncating
a file, Ext2TSD just deletes the pointers in the indirect klbcanches in the right order
such that all outgoing pointers from the parent block to Itédcblocks are deleted before

18

deleting the incoming pointer to the parent block. Thus kéooelonging to truncated or
deleted files are automatically reclaimed by the disk.

In the Ext2 file system, each directory entry contains thelenaumber for the cor-
responding file or directory. This is a logical pointer reaship between the directory
block and the inode block. In our implementation of Ext2T8[@,create physical pointers
between a directory block and the inode blocks correspantdirthe inode numbers con-
tained in every directory entry in the directory block. Mfyiing the Ext2 file system to
support TSD was relatively simple. It took 8 days for us tdd&Ext2TSD starting from
a vanilla Ext2 file system. We removed 538 lines of code frortRExhich are mostly the
code required for block allocation and bitmap managemeng. adtled 90 lines of new
kernel code and modified 836 lines of existing code.

3.3.2 VFATTSD

The next file system we consider is VFAT, a file system withiosgn Windows. Specifi-
cally, we consider the Linux implementation of VFAT. We chde modify VFAT to sup-
port TSDs because it is sufficiently different in architeetfrom Ext2 and hence shows
the generality of the pointer level abstraction providedl8Ds. We call our modified file
systemVFATTSD

The VFAT file system contains an on-disk structure calledRie Allocation Table
(FAT). The FAT is a contiguous set of blocks in which each emriontains the logical
block number of the next block of a file or a directory. To get tiext block number
of a file, the file system consults the FAT entries correspamdd the previous block of
the file. Each file or directory’s first block is stored as pdrtiee directory entry in the
corresponding directory block. The FAT entry correspodia the last block of a file
contains arEOF marker. VFAT tracks free blocks by having a special markethim FAT
entry corresponding to the blocks.

In the context of TSDs, we need not use the FAT to track freeksioAll block alloca-
tions are done using the allocation API provided by a TSD. ifkies file system creation
program allocates and writes the FAT blocks using the disk AMbdifying the VFAT
file system to support TSDs was substantially simpler coegbén Ext2, as VFAT does
not manage data blocks hierarchically. We had to maintaistsintially lesser number of
pointers.

In VFAT, we created pointers from each directory block taddicks belonging to files
which have their directory entries in the directory blockadd FAT block points to the
block numbers contained in the entries present within. TBB Therefore tracks all blocks
belonging to files in the same directory block. Also, all theectory blocks and the FAT
blocks contain outgoing pointers. The disk can track thetall metadata blocks present
in the file system by just checking if a block is a data block ogfarence block.

Modifying the VFAT file system to support TSD was relativetyesghtforward. It took
4 days for us to build VFATTSD from the VFAT file system. We ad@S lines of code,
modified 26 lines of code, and deleted 71 lines of code. Thetelélcode belonged to the
free space management component of VFAT.

19

File System

Generic Block Layer

DPROTO Request Layer

Processor 1

RAID O] |RAID 1| | RAID 5
driver driver driver

Figure 3.2:DPROTO Architecture

3.4 A Software-Level Disk Prototyping Framework

In this section, we describe our generic disk functionalpototyping framework,
DPROTO, that we built for the Linux kernel 2.6.15.

We developed DPROTO as a pseudo-device driver that stackspoof one or more
lower-level disk or software RAID drivers, in a single magchi One of the main chal-
langes in developing DPROTO is isolating the resourceswores by components that are
supposed to go inside the disk firmware if it were a real im@etation. For example,
if the functionality being prototyped is a disk-level dataoression technique, the part
of DPROTO that performs compression has to consume resotiraeare completely iso-
lated from that used by applications and file systems, wtachifficult in a single machine
setup.

While developing DPROTO we aimed at isolating key resoyr€@3U and memory,
between disk-level functionality and higher-level apations. For CPU isolation, we use
a multiprocessor setup and ensure that disk-level funalityralways gets executed in an
isolated processor. For memory isolation, we implementeidalated preallocated mem-
ory pool and ensured that disk functionality never accessesory beyond the preallo-
cated range.

Figure 3.2 shows the architecture of DPROTO. We implemetitedpseudo-device
driver as two layer, the upper layer running in the contexheffile system, and the lower
layer running as a separate thread bound to an isolated CRK I/ requests generated
from the file system reach the upper layer of DPROTO, whiclsdldd request to a shared

20

gueue. The lower layer services requests from the queueveamdually passes it down to
physical storage. Any disk-level functionality such as poassion would be handled by
the lower-level service thread and hence runs in an isol@id. All memory allocations
done by both layers of DPROTO use the preallocated memory pberefore, DPROTO
requires specifying the total memory requirement for a gifterctionality before hand.

To test the performance of a disk-level functionality ptgped using DPROTO, the
comparison reference can be run with one processor disaddvith the appropriate
size of memory preallocated. For example, if a compressisk system is compared to
a regular disk system for a particular workload, the regdiak run of the workload has
to be done with one processor disabled and the preallocatedony equal to the memory
requirement of the compression disk. With this procedure,domparison becomes fair
and closely represents the results of a real implementation

Our implementation of DPROTO had 5,790 lines of new kernélecand 350 lines of
user-level code.

3.5 TSD Implementation

We implemented a prototype TSD using our DPROTO softwaretldisk prototyping
framework, in the Linux kernel 2.6.15. It contains 3,108knof kernel code. The TSD
layer receives all block requests, and redirects the conmaat and write requests to the
lower level device driver. The additional primitives rerpd for operations such as block
allocation and pointer management are implemented asrdroet | s.

We implementedTABLE and RTABLE as in-memory hash tables which gets written
out to disk at regular intervals of time through an asyncbrencommit thread. In imple-
menting theRTABLE, we add an optimization to reduce the number of entries ragiat
in the hash table. We add only those blocks whose referenos égreater than one. A
block which is allocated and which does not have an entryartABLE is deemed to have
a reference count of one and an unallocated block (as iretida theALLOC _BITMAP)
is deemed to have a reference count of zero. This significaaetiuces the size of our
RTABLE, because most disk blocks have reference counts of zeroe(eng., all data
blocks have reference counts zero or one).

Memory usage. In our prototype implementation we maintained all TSD dsttaictures
in memory. The space overheads associated with TSD ponateking and free-space
management is directly related to the number of file systemsksl on disk. We found
that the TSD pointer meta-data per file system block will beselto 20 bytes (with an
average of one incoming pointer per block). Assuming a fikteay block size of 4KB, the
total space overheads for TSDs totals upto 0.5% of the dik $n a real firmware-level
implementation of TSDs, the entire meta-data need not bataiaed in memory. At any
given time, the working-set of TSD pointers is limited to ttieectories and files being
accessed at any given time. Hence, we believe that it wouklbient if a fraction of
the TSD meta-data (about 10%) is cached in memory, and thefrdse meta-data can be
stored on secondary storage.

21

3.6 Evaluation

We evaluated the performance of our prototype TSD framewoitke context of Ext2TSD.
We ran general-purpose workloads and also micro-benclswarlour prototype and com-
pared them with unmodified Ext2 file system on a regular digkis Bection is organized
as follows: first we talk about our test platform, configuras, and procedures. Next, we
analyse the performance of the TSD framework with the Ex2Tie system.

3.6.1 Testinfrastructure

We conducted all tests on a 2.8GHz Xeon with 1GB RAM, and a Z5Q&ILogic SCSI
disk. We used Fedora Core 6, running a vanilla Linux 2.6.XBé&e To ensure a cold cache,
we unmounted all involved file systems between each test. avalt tests at least five
times and computed 95% confidence intervals for the measethgystem, user, and wait
times using the Studentdistribution. In each case, the half-widths of the inteswakre
less than 5% of the mean. Wait time is the elapsed time lesstiRrused and consists
mostly of I/O, but process scheduling can also affect it. A&rded disk statistics from
/ proc/ di skst at s for our test disk. We analysed the following detailed disiage
statistics while interpreting the results: the number @drd¢/O requestsr(0), number
of write I/O requestsWi 0), number of sectors read §ect), number of sectors written
(wsect), number of read requests mergedrér ge), number of write requests merged
(wrer ge), total time taken for read requestsuse), and the total time taken for write
requestsuse).

3.6.2 Benchmarks and configurations

Postmark We used Postmark v1.5 to generate an I/O-intensive workldadstmark
stresses the file system by performing a series of operatools as directory lookups,
creations, and deletions on small files [42]. Postmark igcally configured by specifying
a number of initial files, and a fixed humber wénsactions Postmark then creates the
initial pool of files, performs the fixed number of transao8pand removes any left over
files.

Kernel Compile To simulate a relatively CPU-intensive user workload, wenpded
the Linux kernel source code. We used a vanilla Linux 2.6.45%&l, and analyzed the
overheads of Ext2TSD, for theake ol dconfi g andmake operations combined.

Sprite LFS Benchmarks To isolate the overheads of individual file system operation
we ran the entire suite of Sprite LFS benchmarks [63]. Thet&hFS benchmarks con-
tains two sets of workloads, for meta-data and data op@&stidhe first set deals with
small files and tests, file creation, read, and file deletidre Jecond set operates on large
files and performs sequential and random reads and writes.

22

500

Wait ——
User ==X
System m—
400
)
©
[y
3 298.8 295.5
& 300 r —F— T 276.3
Py +
£
|_
- 200 r
[}
(%]
o
«
T}
100
0 — I
Ext2 Ext2NULL Ext2TSD

Figure 3.3:Postmark Results: 10,000 files, sizes 100KB to 200KB, 1Gr@@8actions.
Ext2NULL indicates the results for regular Ext2 over a NUldepdo-device driver.

3.6.3 Postmark Results

We ran the Postmark benchmark on three setups: (1) regutardwer a regular disk, (2)
regular Ext2 on DPROTO, and (3) Ext2TSD over our implemeéotabf TSD. We used
configured Postmark with two different configurations. le first configuration, we used
10,000 files with sizes ranging from 100KB to 200KB, and 10,8@nsactions. Figure 3.3
shows the overheads of DPROTO and the TSD infrastructuréhfsrconfiguration. As
evident from the figure, Ext2 over our prototyping infrastiure DPROTO had negligible
overheads compared to Ext2 over a regular disk. HoweverTE@{Rran 7% faster than
regular Ext2 inspite of a 1.3 times increase in system timee ihcrease in system time
is because of the devideoct | s that Ext2TSD calls for the pointer operations. From
the kernel disk I/O statistics, we found that the 10% de@easvait time for Ext2TSD
compared to regular Ext2 is caused by more requests gettanged at the device driver
layer. This is because, block allocation is performed by $8the case of Ext2TSD, and
there was better spatial locality compared to regular Ext2.

Figure 3.4 shows the results for a different configuratioRo$tmark. For this we used
1000 files with sizes ranging from 1MB to 3MB, and performe@®®@ransactions. In this
configuration, Ext2TSD had an elapsed time overhead of 5a®pared to regular Ext2.
The system time overhead was 1.9 times and wait time was S8érlédsan regular Ext2.
This shows that for larger files, the savings in I/O time beeaof better spatial locality is
lesser compared to smaller files.

23

800

Wait
User
700 F System s
o 600
2
8 500 | 468.0 469.6 4951
2} t i
2 400 |
E
® 300 f
2]
o
©
w200
100 |
0 — . l
Ext2 Ext2NULL Ext2TSD

Figure 3.4:Postmark Results: 1000 files, sizes 1MB to 3MB, 5000 traisectExt2NULL
indicates the results for regular Ext2 over a NULL pseuduickedriver.

500 -
Wait 1
User
System m—
400
)
©
5
o 300.4 305.2
8 300 | 296.5
(]
£
|_
- 200 r
(D)
[2]
o
<
T}
100 r
. N N -
Ext2 Ext2NULL Ext2TSD

Figure 3.5:Kernel Compile Results. Ext2NULL indicates the resultsdgular Ext2 over
a NULL pseudo-device driver.

24

3.6.4 Kernel Compile Results

Results for the kernel compilation benchmark is shown irufég3.5. Ext2TSD had a
small elapsed time overhead of 1.5% compared to regular. EXti& was caused by a 7%
increase in system time and 60% increase in wait time. Thesyime increase in this
case is smaller compared to the Postmark results becauss kempile is a predominantly
CPU-intensive workload and hence has much lesser numbeirtgp operations. The wait
time increase is because the main compilation thread waithé DPROTO disk thread to
complete pointer operations. The wait time increase is mavaounced here because the
time interval between I/O is larger than that of Postmark.

3.6.5 Sprite LFS Benchmark Results

We ran the entire suite of Sprite LFS benchmarks on Ext2 ovegalar disk, and Ext2TSD
over our prototype TSD.

Meta-data benchmarks To generate a small file creation workload, we created
1,000,000 files, with size 4KB each, in 1,000 sub-directorter reads, we remounted the
file system and read all the 1,000,000 files we created. Fetekelwe unlinked all files.

250
Elapsed —
User oo
System m—
200
)
©
8 153.5
S 144.2
@ 150 i
()
£
|_
- 100
[}
(%]
o
«
T}
50
0
Ext2 Ext2TSD

Figure 3.6:Sprite LFS benchmarks: Create results

Figure 3.6 shows the overheads of Ext2TSD. Ext2TSD had gsethtime overhead
of 6.4% compared to regular Ext2. This is because of a 61%e#&s& in system time.
The system time increase is because of the pointer opesa®this workload consists of
intensive meta-data write operations. The wait time matalysed by 1/O, reduced by 22%
because the TSD allocation policy is favorable for smalkfile

25

700

Elapsed —
User ooy
600 [System m—
m
©T 500 r
5 4610 447.0
(&
(]
£ 400
(O]
£
= 300 F
©
(]
=1
© 200 r
w
100
0 | —
Ext2 Ext2TSD

Figure 3.7:Sprite LFS benchmarks: Read results

Figure 3.7 shows the results of the read workload. Ext2TSffibpaed 3% better than
regular Ext2. The system time reduced by 5% because of twspnsa First, there are
no pointer operations in a read workload. Second, the isolaechnique in DPROTO
offloads part of call stack of I/O operations such as loweel &CSI driver calls, to the
DPROTO disk thread.

The delete workload results shown in Figure 3.8 shows treaethpsed time overhead
of Ext2TSD is 23% compared to regular Ext2. This is causedibse of a 2.1 times
increase in system time. This increase is because of a langder of pointer deletion
operations happening within a short period of time.

Overall, even under extremely meta-data intensive woddo#he elapsed time over-
heads are moderate. In most common environments such a&tantensive workloads
are unlikely.

Data benchmarks For generating Sprite LFS data benchmark workloads, we ased
large file of size 4GB. For random workloads we performed @0,6andom 4K reads
or writes. To eliminate cache effects, we generated a dafgliree list of random page
numbers. For sequential workloads, we performed 1,000s@@@ential 4K reads on the
file.

Figure 3.9 shows the results for the random read workload2'ESD had no visible
overheads for this. As this is a read workload, it generategainter operations. For
random write, as shown in Figure 3.10, Ext2TSD had an elapsezloverhead of 6.7%.
This is mainly caused by a 6.7% increase in wait time. The tiai increase is because
the main benchmark thread had to wait for the DPROTO diskathte service pointer
operations.

Figure 3.11 shows the results for sequential read. Therdiffee in elapsed time

26

200

Elapsed —
User

System —

» 150 r

©

c

S}

O

@

N2

g 100 | 961.7
- 78.3
@

[%2)

Q.

]

w 50 r

Ext2 Ext2TSD

Figure 3.8:Sprite LFS benchmarks: Unlink results

Wait ——
140 r User oonsy
System m—
120
)
2 101.6 102.2
o 100
[&]
(D)
9
oy 80
£
|_
o 60
[}
(%]
&
0 40
20
0 Il Il
Ext2 Ext2TSD

Figure 3.9:Sprite LFS benchmarks: Random read results

27

70

Wait ——
User oY
60 System m—
)
g2 507 44.7
3 41.8 I
Q T
QL 40
(]
£
- 30
©
(D)
3
c© 20
L
10 ¢
0 I I
Ext2 Ext2TSD

Figure 3.10:Sprite LFS benchmarks: Random write results

120 -
Wait
User oY

100 | System m—
3 80.2 78.0
c
o) 80 r I T
) T
Q
&L
g 60
=
o
3
2 40 r
K]
w

20 r

0 - .
Ext2 Ext2TSD

Figure 3.11:Sprite LFS benchmarks: Sequential read results

28

between Ext2TSD and regular Ext2 was negligible. Howeves, dystem overhead in
Ext2TSD was 2.3 times. This was offset by a 21% reduction iit tirae. As this is a
sequential workload, a very large number I/O operationevesecuted within a short time
interval. This resulted in making CPU overheads more wvsilhe CPU overheads were
due to lock contention for the request queue shared by the besichmark thread and the
DPROTO disk thread. Our implementation usagpan_| ock for this, and hence it shows
up as system time. The wait time decrease is because of bp#gal locality in the case
of Ext2TSD.

Figure 3.12 shows the results for sequential writes. Thelmas of Ext2TSD were
similar to sequential reads, as our sequential write warttlperformed overwrites of ex-
isting file data, resulting no additional pointer operasion

140 | Wait
User
System m—
120
)
2
3 100 905 92.4
(3]
N2
© 80 r
=
|_
o 60 r
]
[%2)
]
I 40
20
0 - .

Ext2 Ext2TSD

Figure 3.12:Sprite LFS benchmarks: Sequential write results

In summary, our evaluation shows that the overheads asedaordth our TSD disk
infrastructure and the Ext2TSD file system is quite mininaddut 2%) for normal user
workloads. This is shown by the results of our kernel contgitabenchmark. For more
I/O-intensive workloads such as Postmark and Sprite mata-denchmarks, Ext2TSD
shows overheads as high as 23%. We used such benchmarks\tthehworst case over-
heads of TSDs. However, such 1/0O-intensive workloads as®rmmmon in real scenarios.
Most of the system-time overheads were caused by pointeatipes issued by the file
system. This could be reduced by aggregating the operatindsending it to the disk
system in batches. While the allocation primitive has toyoeckronous, pointer creation
and deletion can be made asynchronous.

29

Chapter 4
Case Study: ACCESS

We describe how type-safety can enable a disk to providefsgturity properties than ex-
isting storage systems. We designed and implemented aessttuiage system called AC-
CESS A Capability ConsciousExtendedStorage Systen) using the TSD framework; we
then built a file system on top, called Ext2ACCESS. We firstivade the need for enforc-
ing disk-level capabilities, then present a detailed desfgACCESS. Finally, we describe
our prototype implementation of ACCESS and the implemémtaif Ext2ACCESS, a file
system that supports ACCESS.

Protecting data confidentiality and integrity during irdiens is crucial: attackers
should not be able to read or write on-disk data even if thag gaot privileges. One
solution is to use encryption [12,89]; this ensures thatuthérs cannot decipher the
data they steal. However, encryption does not protect th& flam being overwritten
or destroyed. An alternative is to use explicit disk-legapabilitiesto control access
to data [2,25]. By enforcing capabilities independentlylisk enables an additional
perimeter of security even if the OS is compromised. Otha&maged using disk-level
versioning that never overwrites blocks, thus enabling#oevery of pre-attack data [74].

ACCESS is a type-safe disk that uses pointer informationnforee implicit path-
basedcapabilities, obviating the need to maintain explicit daip@es for all blocks, yet
providing similar guarantees.

ACCESS has five design goals. (1) Provide an infrastructulienit the scope of confi-
dentiality breaches on data stored on local disks even wieeattacker has root privileges
or the OS and file systems are compromised. (2) The infrasieishould also enable pro-
tection of stored data against damage even in the event eh@rieintruder gaining access
to the raw disk interface. (3) Support efficient and easy cation of authentication keys,
which should not require costly re-encryptions upon retioca (4) Enable applications
to use the infrastructure to build strong and easy-to-usergg features. (5) Support data
recovery through administrative interfaces even whenenitbation tokens are lost.

4.1 Design

The primitive unit of storage in today’s commodity disks i>aed-size disk block. Au-
thenticating every block access using a capability is tatlgin terms of performance and

30

usability. Therefore, there needs to be some criteria byckwbiocks are grouped and au-
thenticated together. Since TSDs can differentiate betweemal data and pointers, they
can perform logical grouping of blocks based on the refezdslocks pointing to them. For

example, in Ext2 all data blocks pointed to by the same ictlibeock belong to the same

file.

ACCESS provides the following guarantee: a blaatannot be accessed unless a valid
reference blocly that points to this bloclk is accessed. This guarantee implies that pro-
tecting access to data simply translates to protectingsadoethe reference blocks. Such
grouping is also consistent with the fact that users ofteaingye files of related importance
into individual folders. Therefore, in ACCESS, a single abitity would be sufficient to
protect a logical working set of user files. Reducing the nendf capabilities required is
not only more efficient, but also more convenient for users.

In ACCESS, blocks can have two capability strings:esad and awr i t e capability
(we call theseexplicit capabilitie$. Blocks with associated explicit capabilities, which we
call protectedblocks, can be read or written only by providing the appratgricapability.
By performing an operation on a blodke f using a valid capability, the user gets an
implicit capabilityto perform the same operation on all blocks pointed tdiay, which
are not directly protected (capability inheritance). Ifatpcular reference block points
to another blockj with associated explicit capabilities, then the impli@apability ofi is
not sufficient to accesg the explicit capability ofj is needed to perform operations on it.

As all data and reference blocks are accessed using validepsistored on disk, root
blocks are used to bootstrap the operations. In ACCESSg threr three kinds of access
modes: (1) All protected blocks are accessed by providiegaibpropriate capability for
the operation. (2) Blocks which are not protected can ithtegir capability from an
authenticated parent block. (3) Root blocks can be accegsldut any reference block
by providing the appropriate capability, if they are praezet

4.1.1 ACCESS meta-data

ACCESS maintains a table nhame&dABLE indexed by the block number, to store the
blocks’r ead andwr i t e capabilities. During every block access it checks if thecklo
has akTABLE entry. If there is &K TABLE entry, the capability provided by the user is au-
thenticated against the stored capability before perfogtine operation. ACCESS tracks
the list of all reference blocks that are accessed sucdbssfa given period of time, and
uses it to authenticate accesses to the blocks that do netsawciated capabilities.

ACCESS also maintains a temporal access table calledLE which is indexed by
the reference block number. TheABLE has entries for all reference blocks whose asso-
ciated implicit capabilities have not timed out. The timad entries in the_.TABLE are
periodically purged.

4.1.2 Preventing replay attacks

In ACCESS, data needs to be protected even in situationsawherOS is compromised.
Passing clear-text capabilities through the OS interfamddclead to replay attacks by a
silent intruder who eavesdrops capabilities. To proteairsgj this, ACCESS associates a

31

sequence number with capability tokens. To read a protdited, the user has to provide
a HMAC checksum of the capability’(,) concatenated with a sequence numltsg) (H,,
=HMAC(C,+ S, C,)). This can be generated using an external key card or a heldd-h
device that shares sequence numbers with the ACCESS disdnsy&ach user has one
of these external devices, and ACCESS tracks sequence naifobeach user’s external
device. Upon receivind?, for a block, ACCESS retrieves the capability token for that
block from thek TABLE and compute$/ s = HMAC(Ca+S4,C4), whereC4 andS, are
the capability and sequence number for the block, and aretenaed by ACCESS. If7,,
andH 4 do not match, ACCESS denies access. Skews in sequence rsuandéiandled by
allowing a window of valid sequence numbers at any given time

4.1.3 ACCESS operation

During every reference block access, an optional timedetval (Interval) can be pro-
vided, during which the implicit capabilities associatehvthat reference block will be
active. Whenever a reference bloBk f is accessed successfully, @aBLE entry is added
for it. This entry stays untilnterval expires. It is during this period of time, that we call
thetemporal windowall child blocks of Re f which are not protected inherit the implicit
capability of accessingef. Once the timeout interval expires, all further accessaldo
child blocks are denied. This condition should be captungdhle upper level software,
which should prompt the user for the capability token, arehthall the disk primitive to
renew the timeout interval fake f. The value off nterval can be set based on the security
and convenience requirements. Long-running applicatioatsare not interactive in nature
should choose larger timeout intervals.

At any instant of time when the OS is compromised, the suldfdatocks whose tem-
poral window is active will be vulnerable to attack. This sabwould be a small fraction
of the entire disk data. The amount of data vulnerable dutiSgcompromises can be re-
duced by choosing short timeout intervals. One can alseftire timeout of the temporal
window using theeORCE. TIMEOUT disk primitive described below.

To read a data block in ACCESS, the base pointer should befisadrom one of
the root blocks, by presenting the appropriate capabilitghe access of the root block
is successful, ACCESS will add an entry for the root blockha tTABLE. Once this is
done, all blocks pointed to by the root block that do not hassmaiated capabilities can be
accessed until theTABLE entry times out. In the context of a file system, the initiatro
block read would be its super block, and this occurs dunmgnt . The temporal locality
of the initial super block access is used as an implicit caipabor accessing subsequent
blocks. Whenever an implicit capability for a block needdeoverified, the disk checks
if the reference block passed by the upper level softwareahasABLE entry for it. If
an entry does not exist, ACCESS denies access to the blodke Heference block has
anLTABLE entry, ACCESS looks up theTABLE to find if the reference block indeed has
a pointer to the block whose implicit capability needs to béfied. The reference block
passed by the upper level software is only used for optirgipjarformance during the
temporal lookup.

For blocks with associated capabilities, the appropriatgability string must be pro-
vided. Each reference block can have its own read and wriehibties depending on the

32

owner of that reference block. For example, an indirectblafca particular user’s file will
have that user’s capabilities, and cannot be read by anythee thhan that person.

4.1.4 ACCESS API

To design the ACCESS API, we extended the TSD API (Sectioh\8ith capabilities,
and added new primitives for managing capabilities andaute Note that some of the
primitives described below let the file system specify thiemence block through which
the implicit capability chain is established. However, as describe later, this is only
used as a hint by the disk system for performance reasonsESSOnaintains its own
structures that validate whether the specified referenoekblas indeed accessed, and it
has a pointer to the actual block being accessed. In thioseshen we refer to read or
write capabilities we mean the HMAC of the corresponding capabilities and aesece
number.

1. SET_.CAPLEN(Length): Sets the length of capability tokens. This setting is globa

2. ALLOC_BLOCKS(Ref, Ref,orCy, Count): Operates similar to the TSDaL-
LOC_BLOCKS primitive with the following two changes. (1) IRef is protected the
call takes the write capability akef, C,,; (2) otherwise, the call takes the reference
block Ref, of Ref, to verify that the caller has write accessRef.

3. ALLOC_CONTIG_BLOCKS(Ref, Ref,orC,, Count): Same as theLLOC_BLOCKS
primitive, but allocates contiguous blocks.

4. READ(Bno, ReforC,,, Timeout): Reads the block represented By.o. Ref is
the reference block that has a pointerBao. C,., is either the read or the write
capability of blockBno. The second argument of this primitive must Bef if
Bno is not protected for read, and must®g, if Bno is protectedT'imeout is the
timeout interval.

5. WRITE(Bno, Re forC,, timeout): Writes the block represented t§no. C,, is the
write capability of Bno. Other semantics are similar READ.

6. CREATE PTR(Src, Dest, Re fsorCly,, CayorRefs,): Creates a pointer from block
Srec to block Dest. If Src or Dest are protected, their capabilities have to be pro-
vided. For blocks which are not protected, the caller mueviole valid reference
blocks which point toSrc and Dest. Note that although the pointer is created only
from the source block, we need the write capability for thstohation block as well;
without this requirement, one can create a pointer to anitrarp block and gain
implicit write capabilities on that block.

7. DELETE_PTR(STc, Dest, Ref,orCy,): Deletes a pointer from blockrc to block
Dest. Write credentials folSrc has to be provided.

8. KEY_CONTROL(Bno, Cyy, Cprr, Crw, Ref): This sets, unsets, or changes the read
and write capabilities associated with the bldéko. C,,, is the old write capability

33

of Bno. C,, andC,,, are the new read and write capabilities respectively. A ref-
erence blockRef that has a pointer t&no needs to be passed only while setting
the write key for a block that did not have a write capabiligfdre. For all other
operations, like unsetting keys or changing keysf need not be specified because
C,., can be used for authentication.

9. RENEW_CAPABILITY (Ref, C,.,,, Interval): Renews the capability for a given ref-
erence block.C,., is the read or write key associated wiitef. Interval is the
timeout interval for the renewal.

10. FORCE TIMEOUT(Ref): Times out the implicit capabilities associated with refer
ence blockRef.

11. SET_BLOCKSIZE andGET_FREE TSD primitives (Section 3.2) can be called through
the secure administrative interface discussed in Secti®n 4

4.2 Path-Based Capabilities

Capability systems often use capabilities at the grartylafiobjects(e.g., physical disk
blocks, or memory pages); each object is associated wittpabiléy that needs to be
presented to gain access.

In contrast, the implicit capabilities used by ACCESS path-level In other words,
they authenticate an access based on the path through vieicdctess was made. This
mechanism of authenticating paths instead of individugab is quite powerful in en-
abling applications to encode arbitrary trust relatiopshin those paths. For example, a
database system could have a policy of allowing any userdesaca specific row in a ta-
ble by doing an index lookup of a 64-bit key, but restrict scahthe entire table only to
privileged users. With per-block (or per-row) capabiliti¢his policy cannot be enforced at
the disk unless the disk is aware of the scan and index loogapations. With path-based
capabilities, the database system could simply encod@dhisy by constructing two sep-
arate pointer chains: one going from each block in the tabteé next, and another from
the index block to the corresponding table block—and juseldifferent keys for the start
of both these chains. Thus, the same on-disk data item carffeeedtiated for different
application-levebperations, while the disk is oblivious to these operations

Another benefit of the path-based capability abstractighasit enables richer modes
of sharing in a file system context. Let's assume therenausers in a file system and
each user shares a subset of files with another user. Withiorzal encryption or per-
object capability systems, users has to use a separate kewndh other user that shares
their files; this is clearly a key management nightmare (\aitbitrary sharing, we would
needn? keys). In our model, users can use the same key regardlessiofimany users
share pieces of their data. To enable another user to shdeg allfthat needs to be done
is a separate link be created from the other user’s diredtotiis specific file. The link
operation needs to take capabilities of both users, but tireceperation is complete, the
very fact that the pointer linkage exists will enable thergig but at the same time limit
the sharing to only those pieces of data explicitly shared.

34

4.3 Key Revocation and Data Recovery

ACCESS enables efficient and easy key revocation. In normalyption based security
systems, key revocation could become pretty costly in pitagoto the size of the data, as
all data have to be decrypted and re-encrypted with the ngw\kgh ACCESS, one just
changes the capability for the reference blocks instealdeoéhtire set of data blocks. Data
need not be modified at all while revoking capabilities. Tikisne of the main advantages
of ACCESS compared to traditional encryption-based sgcayistems.

Secure key backup is a major task in any encryption-basea platection system.
Once an encryption key is lost, usually the data is fully lastd cannot be recovered.
This is ironical because a mechanism used for protecting @esults in making the data
inaccessible. ACCESS does not have this major problem. Batat encrypted at all,
and hence even if keys are lost, data can be retrieved or ffserkay be reset using the
administrative interface described below.

Often system administrators need to perform backup and moirasitrative operations
for which the restricted ACCESS interface might not be sigfit ACCESS will have a
secure administrative interface, which could be throughex®l hardware port requiring
physical access, in combination with a master key. Usingsdueire administrative inter-
face, the administrator can backup files, delete unimpbfiies, etc., because the data is
not stored internally in encrypted format.

4.4 ACCESS Prototype

We extended our TSD prototype to implement ACCESS. We implaed additional hash
tables for storing th&TABLE andLTABLE required for tracking capabilities and tempo-
ral access locality respectively. All in-memory hash tabheere periodically committed
to disk through an asynchronous commit thread. The allonaind pointer management
i oct| sin TSD were modified to take capabilities or reference kdoa& additional ar-
guments. We implemented the&Y_CONTROL primitive as a new oct | in our pseudo-
device driver.

To authenticate theead andwr i t e operations, we implemented a newct | ,
KEY_INPUT. We did this to simplify our implementation and not modifetgeneric block
driver. TheKEY_INPUT i oct | takes the block number and the capabilities (or reference
blocks) as arguments. The upper level software shouldtdall bct | before every read or
write operation to authenticate the access. Internalgydikk validates the credentials pro-
vided during the oct | and stores the success or failure state of the authenticatiben
a read or write request is received, ACCESS checks the stéite @reviousKey _INPUT
for the particular block to allow or disallow access. Onceess is allowed for an opera-
tion, the success state is reset. When a watig _INPUT is not followed by a subsequent
read or write for the block (e.g., due to software bugs), weetbut the success state after
a certain time interval. This method of usingianct | for sending the credentials greatly
simplified our prototype implementation, as we did not havenbdify the generic block
driver interfaces to send additional arguments during &ael rand write operations.

35

4.5 The Ext2ZACCESS File System

We modified the Ext2TSD file system described in Section 3@support ACCESS; we
call the new file systerExt2ACCESSTo demonstrate a usage model of ACCESS disks,
we protected only the inode blocks of Ext2ACCESS with readl\&rite capabilities. All
other data blocks and indirect blocks had implicit cap#bai inherited from their inode
blocks. This way users can have a single read or write capatuit accessing a whole file.
An alternative approach may be to protect only directondmblocks. ACCESS provides
an infrastructure for implementing security at differeewéls, which upper level software
can use as needed.

To implement per-file capabilities, we modified the Ext2 iaalocation algorithm.
Ext2 stores several inodes in a single block; so in Ext2ACERB® needed to ensure that
an inode block has only those inodes that share the sameilitigmbTo handle this, we
associated &apability tablewith every isegment (Section 3.3.1). The capability table
persistently stores the checksums of the capabilities @fyevmode block in the particular
isegment. Whenever a new inode needs to be allocated, amesegs chosen using the
inode allocation algorithm of Ext2, and then the isegmersicanned for an inode block
with a matching capability for the new inode to be created.rtfatching block is found, the
inode is allocated in that block, otherwise a free block igsgn from the isegment. When
a new block is chosen, the capability checksum for that bisalpdated in the capability
table. If there are no free blocks left in the isegment, tigpadhm searches forward in the
remaining isegments.

Ext2ACCESS has two file systenoct | s, calledSET_.KEY andUNSET_KEY, which
can be used by user processes to set and unset capabilitideso Thesd oct | s take
the pathname as an argument. When users need to create aateetqu file, they have to
call theset key i oct| before the create. Ext2ACCESS then associates the capabili
with the newly created pathname, and then performs inodeation appropriately. For
subsequent operations on the file, the user has to providegiiecapability before the
operations. The life of a user’s key in kernel memory can beidi#sl by the user. For
example, a user can call tls=T KEY i oct | before an operation and then immediately
call theUNSET.KEY i oct | after the operation is completed to erase the capabilityifro
kernel memory; in this case the life of the key in kernel meynigrlimited to a single
operation. Ext2ACCESS uses thkeY_INPUT devicei oct | of ACCESS to send the
user’s key before reading an inode block. For all other dpaksends the corresponding
reference block as an implicit capability, for temporaltarttication.

Anissue that arises in Ext2ACCESS is that general file systeta-data such as super
block and descriptors need to be written to all the time (agmtle must have their capabil-
ities in memory). This can potentially make them vulnerablmodifications by attackers.
We address this vulnerability by mapping these blocks td bbmcks and enforce that no
pointer creations or deletions can be made to root blocksmxbrough an administrative
interface. Accordinglynkf s creates set of pointers to the relevant inode bitmap and iseg
ment descriptor blocks, but this cannot change after thatisTwe ensure confidentiality
and write protection of all protected user files and diraetar

Although the above solution protects user data during kdtabe contents of the meta-
data blocks themselves could be modified (for example, fleeklzount, inode allocation

36

status, etc). Although most of this information can be retarcted by querying the pointer
structure from the disk, certain pieces of information aaednto reconstruct. Our current
implementation does not handle this scenario, but thergateus solutions to this prob-
lem. First, we could impose that the disk perform periodiapshotting of root blocks;
since these are very few in number, the overhead of snajpsipettll be minimal. This
enables an administrator to recover those root blocks teaiqus snapshot in the event
of an attacker modifying these blocks. Alternatively, soaneount of NVRAM could be
used to buffer writes to these global metadata blocks andgieally (say once a day) an
administrator “commits” these blocks to disk using a spema@ability after verifying its
integrity.

4.6 Evaluation

We evaluated the performance of ACCESS using our Ext2ACCit& System. We com-
pared Ext2ACCESS with a regular Ext2 file system mounted ayalar disk. The hard-
ware setup we used was same as that for evaluating the TSa3tinfcture, described in
Section 3.6. We ran three different workloads: Postmarkpéecompilation, and Sprite
LFS meta-data benchmark. We discuss the results of ourati@ibelow:

4.6.1 Postmark Results

600 -
Wait C—
User =X
500 - System m—
g
S 400 | 395.2
[&]
(D]
L 319.7
g 300
£
©
?
@ 200 r
<
w
100
0 ||
Ext2 Ext2ACCESS

Figure 4.1:Postmark Results for ACCESS

Figure 4.1 shows the results for Postmark. For this benckywvee configured Post-
mark with 10,000 files of sizes ranging from 100KB to 200KB¢ d®,000 transactions.
Ext2ACCESS performed 19% better than regular Ext2, maielaoise of a 24% decrease

37

in I/O time. The difference in I/O time in this case is morertthat of Ext2TSD vs. regular
Ext2 discussed in Section 3.6 because ACCESS pre-allogaiss memory than regular
TSD for its data-structures. This results in reduced cactemaking the impact of spa-
tial locality more pronounced. The system time for Ext2ACEEwas 3 times more than
that of regular Ext2 mainly because of pointer and key mamagei oct | s issued by
Ext2ACCESS.

4.6.2 Kernel Compile Results

500 -
Wait C—
User ==X
System m—
400
)
2
8 295.6 311.9
g 300 f >
()
£
|_
- 200 r
[}
(%]
o
«
T}
100
. N §
Ext2 Ext2ACCESS

Figure 4.2:Kernel Compile Results for ACCESS

Figure 4.2 shows the kernel compilation results for Ext2A&3S. As evident from the
figure, the overall elapsed time overhead of Ext2ACCESS Wasémpared to regular
Ext2. This is caused by a 29% increase in system time and ragstincrease in wait
time. The wait time increase in this case is because the datigoi thread waits for the
disk thread to service the key management and pointer opesatThe wait time is more
pronounced in this benchmark compared to Postmark, bedasel compilation has a
small I/0O component by virtue of its CPU-intensive nature.

4.6.3 Sprite LFS Benchmark Results

We ran the Sprite LFS meta-data benchmarks consisting ariélating, reading, and file
deletion. We used the same setup as described in Section 3.6.

Figure 4.3 shows the results for the file creation phase. AZCESS had an elapsed
time overhead of 10%. The system time overhead was 110% ynzanked due to a large
number of pointer and key management operations. As thigngta-data I/O-intensive

38

300

Elapsed —
User X
250 |- System —
o
2
o 200 r 185.8
o] 169.0
2 f
g 150 |
=
©
%
2 100
ke
w
N i
0
Ext2 Ext2ACCESS

Figure 4.3:Sprite LFS benchmark: Create results for ACCESS

workload, the system time increase is more pronounced. ®ietime for Ext2ACCESS
reduced by 34% because of better spatial locality.

As shown in Figure 4.4, the elapsed time overheads for EX2BES for the read
phase was negligible. However, there is a 22% increase iersy8me caused by key
managementoct | s. The system time increase is smaller compared to the qobake,
as this is a read-only benchmark and hence pointer opegatiomot occur.

Figure 4.5 shows the overheads of Ext2ACCESS for the deletsgof the Sprite LFS
meta-data benchmarks. The elapsed time overhead was 19%acento regular Ext2.
This is because of a 149% increase in system time. The systeniricrease is because of
a large number of pointer deletion operations within a shiote interval, as filaunl i nk
operations results in a smaller amount of 1/O.

Overall, ACCESS has more system time overheads comparegjtdar TSD. This
is mainly because of additional key managementt| s such asKEY_INPUT that
Ext2ACCESS had to call while reading meta-data. For nornsal workloads (such as
kernel compilation), ACCESS has a small overhead of 5%.

39

200

Elapsed —
User oo

System
@» 150 r
©
c
o
O
(3]
% 103.8
£ 100 r B
= 87.0
©
]
[%2)
Q.
a
w 50 r

0 | .
Ext2 Ext2ACCESS

Figure 4.4:Sprite LFS benchmark: Read results for ACCESS

200
Elapsed —
User oY

System —
o 150 r
©
c
o
(&
(]
% 10§.8
c 100 r B
= 87.0
o
(]
(%]
Q.
K]
w 50

0 I i
Ext2 Ext2ACCESS

Figure 4.5:Sprite LFS benchmark: Delete results for ACCESS

40

Chapter 5

Case Study: Disk-level Data Consistency

A key challenge in persistent data storage on disk is enguhaconsistencyf data in
the face of crashes. In many cases, on-disk data is unusalelestit conforms to certain
software-specific invariants that define its consistenayr éxample, an on-disk B-Tree
with dangling pointers in some of its nodes cannot be useddaté data items. Simi-
larly, in a file system, a directory pointing to invalid or dlogated inodes constitutes a
consistency violation.

Given the importance of consistency, most file systems amer gbftware that manage
on-disk storage incorporate mechanisms to ensure on-dissistency. While some tech-
niques involve optimistically updating on-disk state ahelrtfixing consistency violations
based on a disk scan (e.§.sck), more modern techniques such as journalling [27] or
Soft updates [24] involve constraining updates in such ativaiyconsistency is enforced.
These mechanisms are quite complex; for example, modersylliems owe a significant
portion of their complexity to satisfying this requirement

This traditional approach to managing consistency egtatthe file system or software
is fraught with two key weaknesses. First, the disk systeoompletely oblivious to the
consistency of the data it stores, which constrains thegrahfunctionality it can provide.
For example, today’s block-based disk systems cannot ipergonsistent snapshotting of
data. Snapshotting is a popular and useful feature in thragandustry, but consistent
shapshotting has so far been restricted only to storagermsgsexporting a richer NFS-
like interface [32]. Similarly, modern storage systemsf@en backup and asynchronous
remote mirroring [39]; consistency-awareness at the gtavel can increase the utility
of these techniques.

A second problem with the current approach to consistenayag@ment is that every
file system and every software layer that manages on-diskiddorced to duplicate the
mechanisms needed to enforce consistency. This raiseatlieriimplementing any disk-
resident data structures. Although applications can usergetransactional libraries, it
often requires restructuring the application to be awargasfsactions and tracking trans-
action context across concurrent, asynchronous opegatiéior example, although the
journalling block device (JBD) layer in Ext3 provides a tsagtional interface, the Ext3
codebase had to go through a substantial amount of restingto actually use JBD [81].

To address these problems, we pregeDE-Disk anAutomaticConsistencyenforcing
Disk, a disk system that preserves the semantic consistéistyred data. In our approach,

41

the disk system takes responsibility for consistency meamamnt, and thus is empowered
to provide consistency-aware functionality such as snaitisiy. Applications simply in-
form the disk about the relationship between various bldbks the application already
knows about. Specifically, we advocate usinfype-Safe DiskTSD) [68], a disk system
that is aware of the pointer relationship between blockgetioconsistency, with minimal
modifications at the software-level.

Our disk-level consistency mechanism enforces the fohgwionstraint: the on-disk
version of data should always be consistent. To accomphish tve need to discover
semantically consistent groups of blocks and commit thesmatally to the disk when
they are written by higher level software such as the fileesyst All inconsistent block
updates should be buffered inside the disk until they becoomsistent. For example,
when a new file is created, the corresponding directory bknud the inode block have
to be updated. When just one of the writes arrives at the diskdicates an inconsistent
update. In that case, we need to buffer the update until ttensiblock write also arrives.
When both the directory block and inode block writes haveredrat the disk, we need to
ensure (at the disk level) that both these blocks are comduéttomically to stable storage.

In this section, we describe the main aspects of our dis&Heansistency mechanism.
First, we discuss some related work. Second, we describeulpolate dependencies be-
tween blocks can be inferred from pointers. Third, we présem enhanced pointer in-
terface that make dependency inference robust. Fourth,eseritbe the consistency en-
forcement process a key issue in disk-level consistenayreament. We finally detail our
prototype implementation of the system, and discuss somigalions of pointer-driven
consistency.

5.1 Inferring Dependencies from Pointers

Determining semantic relationships between blocks at thlke lével requires additional
information exchange between the software layer and the dmday’s block-based disks
treat all stored information as opaque data and they do na kaowledge of data se-
mantics. For example, today’s disks cannot differentig®vieen a data and meta-data
block in a file system. We leverage the idea of Type-Safe D{FI8Ds) [68], to obtain
pointer-relationships between blocks as maintained byitjeer level software.

Pointers at the disk level not only convey structural infation about data items stored
on disk, but also they enable the disk to infer dynamic refeghips between blocks that
get updated. For example, when a new bladk allocated and a pointer is created to it
from another block, botha andb depend on each other. If the system crashes when just
one of the blocks is updated, the disk is left in an inconetstate. This is because, if only
block a is updated, it would be pointing to a block with junk data (et written), and if
only b is updated, it becomes unreachable as there would be no inggminters to it.

The existing TSD interface consists of primitives for aliion and pointer operations
as discussed in Section 3.2. We discuss how each TSD pranc#iv be used to infer update
dependencies.

The allocation primitive internally creates a pointer t@ thewly allocated block, in
the reference block passed. This operation relates twdkbldbe newly allocated block

42

and the reference block. Updating one of the blocks alorerlgiéeaves the system in an
inconsistent state; hence these two blocks constituteendigmcy constraint and they have
to be committed atomically to stable storage.

The pointer creation primitive creates a pointer from ang asbitrary allocated blocks.
In this case, the source blookustbe written subsequent to the pointer creation operation
to write the new pointer value in it. However, the destinatidock need not necessarily be
written, as the it is a previously allocated block. For exéamwhile creating a new file in
the Ext2 file system, a pointer gets created from the dirgditwck to an already allocated
inode block that contains the inode of the new file. In thigcasth these blocks constitute
a dependency. This is because the directory block has todegtegbwith the new pointer
to the inode block, and the inode block has to be updated vailid information about
the newly created file. Failure to commit the latter will réso a directory entry pointing
to an invalid inode. As a counter example, if we consider aroom index-based storage
structure, a set of index blocks point to data block. In tlise; duplicating an index block
for reliability reasons would result in creation of new piairs from the duplicated index
block to the existing data blocks. Here only the index bloekats to be written and not the
data blocks. Therefore, the pointer creation primitivevinled by TSD does not convey
enough information to decide whether or not the source astirdgion blocks constitute a
dependency.

A pointer deletion operation deletes an existing pointenfiblocka to blocks. This
operation has a special case: if the deleted pointer is gténeoming pointer to block,
we garbage colledi and it can be re-allocated during future allocation reguiebt both
cases, it is clear that bloekhas to be written subsequent to this operation for it to reflec
the pointer deletion. The destination bldckn the case of garbage collection need not be
written. However, it does constitute a dependencynust not be re-allocated until is
written. For example, when the last pointer from an inodeblim a data block is deleted
during at r uncat e operation, re-allocating the data block to another inodereethe
old inode is written could result in a state where the old mpdints to the contents of a
different file. In the normal case of a pointer deletion whgagbage collection does not
occur, we cannot infer whether the source and destinatiostitate a dependency for the
same reason as explained in the case of pointer creation.

5.2 An Enhanced Pointer Interface

As described in the previous section, the pointer API exqabldy a TSD do not always
convey enough information to make correct inferences inreege manner. In this work,
we fine-tune the TSD API to make it more complete in terms ofvegimg pointer infor-
mation.

We introduce the notion of aub-blockin a TSD. We use sub-blocks to formalize
allocatableunits inside a block, as maintained by the higher-levelgafé. For example,
in Ext2 each inode block can contain several inodes, eadteati tilllocated and freed at the
software level. Although formalizing these units in a psecmanner requires knowledge
about the unit size and offsets inside a block, we just neadlementary knowledge of
sub-blocks to infer dependencies. For example, to decidsveln or not a create or delete

43

pointer operation constitutes a dependency we just needdw K that pointer points to
a sub-block. This intuition is based on the fact that, to @nes pointer consistency we
need to guarantee two properties: first, no pointer pointsnwritten (junk) units, and
second, no allocated units become unreachable. In oueiméermechanism we make use
of additional disk primitives for creating and deleting piars to sub-blocks. Note that the
disk need not track information about sub-blocks, but it juseds to dynamically know
sub-block pointer operations by way of explicit primitivddigher-level software call the
respective sub-block primitives while creating and delgointers to newly allocated or
freed sub-blocks. For example, Ext2 has to call a sub-blagktpr creation primitive to
create a pointer between a directory block and inode blodleveneating a file. From this
we can infer that the directory and inode blocks form a depang constraint.

We present an extended pointer interface to TSDs that eagptuost cases of depen-
dency inferences. In the primitives described below, theupatert refers to a logical
timestamp value for the operation. This is to let the diskvkabout the temporal ordering
of operations as they are issued by the higher level softwidre purpose and usage of this
parameter is discussed in detail later in this section.

1. READ(Blockno): Block read primitive.
2. WRITE(Blockno, t): Block write primitive.

3. ALLOC_BLOCK(Ref, t): Allocates a new block from the disk-maintained free-
block list and creates a pointer to it iRef. Both Ref anda constitute a write
dependency constraint.

4. CREATE_PTR(STrc, Dest, t): Creates a new pointer frov-c to Dest. This primitive
does not create any dependency.

5. DELETE_PTR(ST¢, Dest, t): Deletes an existing pointer froisirc to Dest. If this
is the last incoming pointer tdest, Dest is garbage collected (marked free) and it
creates a new dependency between the writgérofand the re-allocation abest.

6. MOVE_PTR(Src, Dest, Newsrc, t): Moves the source block of an existing pointer
from Src to Newsrc. This operation results in creation of a new dependency for
the writes ofSrc and Newsrc. This primitive is useful for handle cases such as a
r ename operation in a file system, or a B-tree node split where poémeed to be
moved from one block to another.

7. ALLOC_SUB_BLOCK(Ref, Target, t): Creates a new pointer between bloBk f
and blockT'arget. Target is a block that contains multiple allocatable software-
level structures. This primitive is called when a softwéeeel structure inl"arget
is allocated. This disk does not track these structures.s Treates a new write
dependency betweeRe f andTarget. The disk differentiates this primitive from
the CREATE_PTR primitive only to infer dependencies.

8. FREE.SUB_.BLOCK_PTR(Ref, Target, t): Deletes an existing pointer betwe&a f
and Target. Target is a block that contains multiple allocatable softwareslev

44

structures. This primitive is called when a software-lestalicture inl'arget is freed.

If this operation deletes the last incoming pointer to bldek get, T'ar get is garbage
collected and a new dependency is created betvfeginupdate and re-allocation of
Target. If the pointer deleted is not the last incoming pointeriterget, a new
dependency is created for the updatdieff andT arget.

5.3 Consistency Enforcement

In this Section we detail how an ACE-disk guarantees comsisiata commits to stable
storage. Figure 5.1 shows the overall architecture of an-AGE.

File System / Software Layer v
S
Q = E x| 4 2
o| wl S| ¥ & B DS p
5 E ol owl 05
x z| Q < bl > o @
(@) wi)/ o | |
J x| W = O w
O] O Oo| W
< 4|
<—(' L
Dependency Manager < > Cache
A A ¢
\ \ L
O
In Place Data Journal Swap Group

Index

Figure 5.1:Architecture of an ACE-disk

An ACE-disk consists of five main components: Bpendency buffea buffer layer
made of high-speed memory where inconsistent block updagebuffered until the cor-
responding dependency becomes consistertiut®r swap space swap area in the disk
which is used to swap out inconsistent buffer data when tbleecss full; (3)journal space
an area on disk which is used to ensure atomic update of eddependencies; (gyoup
manager which tracks the pointer operations and constructs degrsids;group index
a data-structure used by the group manager to store diglepgndencies and the blocks
affected by each of those dependencies. The buffer laysrtath as a read and write
cache, and gets invalidated during power down of the diskin&bnsistent block updates
are buffered in the cache to ensure that the state of datdstoplace is always consistent.

45

The swap space is used when the number of inconsistent ldacked the size of the high
speed buffer memory.

When an ACE-disk infers a dependency during a pointer ojperat associatesgroup
object with that dependency. This group object containermétion about the set of blocks
that are affected by that dependency. We use the tgroup objectanddependency group
interchangeably in the rest of the report to refer to a lidtlotks that needs to be commit-
ted atomically to stable storage to ensure consistengyoAp entryrefers to a member of
a group which contains a block number and the time at whiclag added. When a block
is written after it is added to a dependency group, the corresponding group fem that
block is marked “ready.” When all entries in a dependencygrare ready, the group is
said to beresolved and all blocks associated with it can be committed atortyi¢althe
disk.

In a simple case, when the first pointer operation happengliskacausing a depen-
dency creation between two blocksindb, a new dependency groudpis created and both
the blocks are added to it. When write requests for kiomdb have arrived at the disk,
the dependency grou@ is said to beesolvedand all the blocks i can be committed
atomically to the disk. However, if another pointer operathappens befor€@ is resolved
introducing a dependency between bloékandc, the operatiorextendshe existing de-
pendency group. This is because, one of the blocks in the ep&rdiency (block) is
already part of an existing dependency. Thus, in this soeeéwck ¢ should be added to
groupG as well. Therefore, whenever there is a new dependencydnted between any
two blocksz andy by way of a pointer operation, one of the following three @t are
taken:

1. If bothz andy are not part of any existing dependencies, a new dependeoap g
is created and andy are added to it.

2. If only one ofz or y is associated with an existing dependency gréyphen both
blocks are associated with and are marked “not ready.”

3. If bothz andy are already associated with the same gréyphen no group action
needs to be taken. However, the entries in the group pentaiio blocksz andy
have to be marked “not ready” as a new constraint is addeddasetiwhe two blocks.

4. If bothx andy are associated with different grou@s andG-, thenG; andG, are
merged and the entries far andy are marked “not ready”

As pointer operations construct dependencies betweerkgldagher-level software
must ensure that the pointer management primitives aredssuthe diskbeforethe source
and destination blocks are updated. This constraint isiaitiyl enforced for the block
allocation primitive as a block cannot be updated before @liocated. However for the
pointer creation and deletion primitives, higher-levetwsare has to ensure that it follows
this ordering rule. For example, whercaeat e happens in Ext2, the sub-block pointer
creation primitive has to be issued for the directory andiibee blocks before the contents
of the blocks are updated.

46

5.3.1 Temporal Ordering of Operations

ACE-disk’s consistency mechanism relies on the tempotatiomships between opera-
tions seen at the disk level. For example, an entry in a degeydgroup is marked ready
when a write arrives after the dependency creation. Howavéoday's modern operating
systems and disks, operations can be re-ordered at any IEselexample, file systems
today predominantly perform asynchronous I/O where blockes are buffered at the
software level and are flushed to the disk in regular intaredltime. Moreover, modern
disk device drivers re-order or merge disk requests befsaing to the disk for perfor-
mance reasons. These factors make the temporal orderineddtoons that the disk sees
completely different from the order that the higher-levaftware issued. Therefore, unless
additional ordering information is communicated from tloéware-level, the disk cannot
obtain the precise temporal order of operations.

ACE-disk solves this problem by introducing two constraiah the operations: (a) all
pointer primitives take place synchronously and (b) allragiens have associated logical
timestamps. These two constraints enable the disk to optairise temporal ordering of
the operations. Although synchronous pointer operatioay affect performance, it is
mitigated by the fact that these operations do not resultdokdl/O inside the disk, in the
critical path. Timestamps in this case are logical. For gxarthey can be a monotonically
increasing sequence number. Whenever higher-level sadtisaues a pointer operation,
it has to pass a sequence number along with it. Similarly vihenn-memory copy of a
disk block is updated by the software, a sequence humbemhas associated with the
buffer for that block. Whenever a pointer operation introésia dependency, its sequence
number is associated with the corresponding group entfibs.entries are marked ready
only when a subsequent write arrives with sequence numieaterthan the stored one.
Note that introducing sequence numbers with block I/O djra is simple—we have
modified the Linux kernel to support sequence numbers aldtigbmffers whenever they
are dirtied. This modification was trivial and required cbeng just 50 lines of code.

When a dependency group is resolved all blocks in the grosgdvde committed in
place atomically. A power failure while committing a dependy group should not leave
the in place data in an inconsistent state. ACE-disk usegg@rig mechanism to ensure
this. All blocks in a resolved groups are first written to a kxgd synced with a commit
identifier before the in place commit happens. The log isatted when the in place
commit is complete. After a crash, an ACE-disk checks theftmgalid group data and
replays them. The log contains separate journals for eapbmikency group and hence
each of them are replayed after the crash to bring the systenconsistent state.

5.4 Bounding Commit Interval

The amount of data lost during a crash depends on the inteetalkeen the instant a block
write arrives at the disk and the time when it is actually catted to stable storage. In
an ACE-disk, inconsistent block data gets buffered unélehtire dependency group is re-
solved. ACE-disk’s mechanism of managing dependency graillpw extending a group
whenever pointer operations happen from or to a member ofythep. Thus, during

a7

normal operation, a dependency group could potentiallyegetnded repeatedly during
a continuous workload that performs pointer operations. éxample, in Ext2, for a re-
cursive directory creation workload, the entire working s®uld form part of the same
dependency group as all blocks branch out from the inode efabt directory. More-
over, as pointer operations always precede the block wpiggaiions, a dependency group
could never get resolved for a continuous workload. Thisisanse before the time when
all blocks in a group are marked ready, the group could benelet@ several times with new
blocks or new dependencies for the existing blocks. Thigltesn two problems. First,
large amounts of data may get lost in the event of a crashgadtinthe on-disk state is con-
sistent. Second, excessively long dependency groupsreciuifering of a large number
of blocks and hence impose onerous space requirements.

Bounding the interval between dependency commits is ahgilhg particularly at the
disk level because the disk has no knowledge about inteateedersions of block data that
are known to the higher-level software. This is because migéier-level software buffer
writes and hence the versions of block data that reach tlkecdisld be a small subset of
total number of versions that the software knows about. kangple, if a file is created
in Ext2, an inode block is modified. Before the inode blocktevis issued to the disk, if
another file is created whose inode is in the same block, tlesties only the version of
the block updated with both inodes. Therefore, the disk chepawn a new dependency
group during a pointer operation for a block, when the emgstgroup containing a block
has reached a time threshold.

Blocking pointer operations at the disk level until an exigtdependency is commit-
ted could be a solution to the bounding problem, but requadgcal modifications to the
higher-level software to support it. This is because saftvgich as file systems perform
locking of data-structures at an operation level. When atgoioperation blocks, the file
system could sleep after grabbing a lock on the data-strietdnich reside on a block
that needs to be committed for some dependency to resolis.cdbld result in a dead-
lock as the block containing the data-structure cannot lbenaitted until the operation in
execution completes.

An ACE disk solves this problem by having new error modes fainfer creation op-
erations. The allocation and pointer management prinstdald optionally return one of
the following errors to the higher-level softwar®YNC_BOTH, SYNC_SRC, Or SYNC_DEST.
As the names indicate, the disk can fail a pointer operatnohciioose to request the higher
level software to write the source, destination, or botlcktéoassociated with that opera-
tion. Upon receiving one of these errors the software sh@mdde a write of the current
version of the corresponding blocks, and then retry thetpoimperation. At the disk level,
whenever a dependency group is unresolved beyond a timehtickit isfrozen When-
ever new dependencies are created for a block that is algatlpf a frozen group and in
an “not ready” state, the disk returns one of three errorstineed above, depending on
whether the block is the source, destination, or when balstiurce and destination blocks
exist in frozen groups in “not ready” state. This way of feigithe software to commit the
intermediate version of the data helps the disk to spawn rpemidency groups for blocks
that are already ready in a frozen group. An ACE-disk enstiratsat a block is never part
of more than two groups at a time, the older of which is froZ€his is done by ensuring

48

that a group is not frozen until all blocks in the group are patt of any other frozen
group. This method ensures commit of dependency groupsimitith the block write

interval of the higher level software. We verified the cotnass of our bounding solution
by implementing this in the Ext2 file system. Each every cdsecommit interval of the

dependency groups were in tune with that of the softward lexite-back interval.

5.5 Implementation

We implemented a prototype ACE-disk as a pseudo-devicednvhe Linux kernel 2.6.15

that stacks on top of an existing disk block driver. The psedeVice driver layer receives
all block requests, and redirects the common read and vetfeeasts to the lower level de-
vice driver after the required processing. The additiomahfives required for operations
such as block allocation and pointer management are impitades driver oct | s.

To enable sequence numbers with block I/O requests, we addewd field to the buffer
header object and threequest token object in the Linux kernel. Whenever a buffer is
marked dirty, we generate a sequence number and updatéhi iouffer header. When a
write is issued for a buffer, the sequence number is carnvedto ther equest object and
hence available to the ACE-disk pseudo-device driver. 8egel numbers are generated
by an atomic increment of a counter value. The same counhge V& used during pointer
operations and modifying buffers. Our prototype ACE-disktained 6900 lines of kernel
code of which 3060 lines of code were reused from the existiBD prototype.

5.6 Limitations of Pointer-driven Consistency

While the update dependency information conveyed by pmntequite rich and as we
show, sufficient to enforce consistency, it has some limnoitsstwhen compared to the more
general notion of transactional consistency. Specifictiily dependency information con-
veyed by pointers is limited to a pair of blocks; e.g. if a geimis created between two
blocks, the two blocks will be updated atomically. Howewarr mechanism cannot sup-
port atomic commits of an arbitrary group of blocks. For exéenon creation of a new
directory (i.e. mkdir) in ext2, a pointer is created from therent directory block to the
inode of the child directory, and the inode initialized. fiteenew block is allocated for the
child directory and a pointer created between the child énaild the child directory’s new
data block. With a transactional system, these three blalkbe committed atomically.
But in our case, the first pointer creation and the initiadiz®@de could be committed be-
fore the second pointer creation. As a result, a directoog@énmay end up with a state
where it has no blocks at all, which is an apparent violatibcomsistency.

However, we argue that this consistency problem falls uada#aiss obnline-patchable
consistency violations. For example, just by looking atithigalized directory inode with
no pointers, it is unambiguous that a crash happened justd#fe new directory’s block
got allocated, so it's safe to immediately allocate a newlbfor the directory and assign it
to the inode. Note that in contrast, a more “real” consisggaroblem would be a directory
pointing to the wrong inode, perhaps a regular file inode,r@litds not obvious what the

49

correct state should be. Pointer consistency could leaddb sansient online-patchable
consistency violations the violation is readily and unagwiously identifiable and the fix
for that is obvious as well. Most importantly, the fix to suctialation islocal, in that it
does not require looking at the global state of the file systfm believe that the pointer-
derived consistency semantics is thus a useful and simpletterpart to the more general
transactional consistency.

5.7 Evaluation

We evaluated the performance of our prototype ACE-diskgi&ixt2ACE. We ran both a
general purpose workload and a micro-benchmarks on oureimg@htation and compared
it with a regular Ext2 and Ext3 file systems running on a nordisk. We compared our
system with Ext3 because it is a journalling file system thiat/jgles similar consistency
guarantees as ACE-disk at the software level. For all beacksnwe used Ext3 in its
default journalling mode (ordered writes mode). In this mdite meta-data alone is jour-
nalled and it is written to the journal only after the corresding data blocks are written
directly in place.

For all benchmarks we included the file system unmount timauincalculation. This
is because ACE-disk commits dependency groups asynclsbynosing separate kernel
threads, and a file system unmount procedure blocks untdwtanding threads have
completed their commit operation. This is relevant evemfunmal Ext2 and Ext3 as they
commit all outstanding dirty data during an unmount.

5.7.1 Postmark Results

We configured Postmark to create 30,000 files whose sizesngfirgm 512 bytes to 10
KB, and perform 250,000 operations in 200 directories. Wuaskload particularly stresses
the ACE-disk as a large number of dependencies get creatbesolved during the meta-
data operations. The time taken for the Postmark benchmaikt2, Ext3, and Ext2ACE
are shown in Figure 5.2.

600 L Wait C——3
User X3 533.4
- System m— T
£ 500
c
o
[8)
§ 400
£ 275.3
i 300 I.
©
aé 200 L 197.5
©
w
100 |
0 m— [
Ext2 Ext3 Ext2ACE

Figure 5.2:Postmark Results for ACE-Disk

50

Ext2ACE on top of ACE-disk had an elapsed time overhead of 46ftpared to reg-
ular Ext2 on a normal disk. Although the system time incraase6 times relatively, this
has not contributed much to the elapsed time overhead. Atonex earlier, this overhead
is because of dependency tracking during every block writé @ointer operations. The
wait time increase (32%) is predominantly because all ldcule written out twice in the
case of an ACE-disk to ensure atomic commits of dependeraypgt All block data is
written out to the journal first and after the journal is systhcan-place commits happen.
Ext3 ran almost twice as slow as Ext2 because of its ordergtgtling mode. Ext2ACE
is faster than Ext3 in this case because ACE-disk journdils thata and meta-data blocks
and for a small file workload such as Postmark, random wriggsgnverted to sequential
ones. The in-place commit of data in ACE-disk happens in gna@sonous manner.

70

Wait —3 61.1
60 User ooy 58.3 58.7 .
| System m— =t

50

40

30

20

Elapsed Time (seconds)

10 |

0
Ext2 Ext3 Ext2ACE

Figure 5.3:0penssh Compile Results for ACE-Disk

5.7.2 Compile Benchmark Results

To simulate a relatively CPU-intensive user workload, wepded the OpenSSH source
code. We used OpenSSH version 4.5, and analyzed the overbE&at3 and Ext2ACE
for theunt ar, conf i gur e, andnake stages combined. These operations in combina-
tion constitute a significant amount of CPU and 1/O operatiorhe results for OpenSSH
compilation is shown in Figure 5.3.

The times taken by Ext2 and Ext3 for the compilation workl@ad almost similar.
This is because this is a mostly CPU-intensive workload.2B&E had an elapsed time
overhead of 5% compared to Ext2 and Ext3. This is becauseaftinease in wait time (1
sec vs. 3.4 secs). The increase in wait time is caused by thlecGRtext switches between
the main compilation process and the asynchronous depeypndemmit threads of ACE-
disk. Since this is a CPU-intensive workload, the contextgwtime is more pronounced
than Postmark. In a real environment, as the dependency tterare performed inside
the disk, this context switch overhead would not be seen.syeem time overhead is not
significant for Ext2ACE in this case because there are wehtifew I/O operations that
require processing to track dependencies.

51

Wait ——
250 User ==X
System mmmmm 2118 215.2 217.6

200

150

100 -

Elapsed Time (seconds)

50

Ext2 Ext3 Ext2ACE

Figure 5.4:Create Micro-Benchmark Results for ACE-Disk

5.7.3 Micro-benchmarks

We ran two micro-benchmarks to obtain the overheads ottheat e andunl i nk file
system operations. We evaluated these two operations $etath of them exercise the
ACE-disk’s dependency trackers and consistency enfornemechanism. For the create
workload, we created 500 directories with 1,000 files eatdlitey to 500,000 files. For the
unlink workload, we removed all created files and direcwri€he results of ther eat e
andunl i nk workloads are shown in Figures 5.4 and 5.5, respectively.

Wait ——
250 User =<1
System mmmmm 216.6 217.6 219.2
I |

200

150 -

100

Elapsed Time (seconds)

a
o
T

Ext2 Ext3 Ext2ACE
Figure 5.5:Unlink Micro-Benchmark Results for ACE-Disk

For thecr eat e workload, Ext2ACE had an overhead 2.7% compared to Ext2s Thi
is mostly caused by the increase in wait time due to the amditil/O operations writing
out block data twice for ensuring atomicity in block commior theunl i nk workload
the results of Ext2ACE is similar to Ext2 and Ext3@sl i nk results in smaller number
of writes than creates, because freed blocks are not wiitéme disk.

Overall ACE-disks have small overheads for normal user Voadts. When the work-
load is highly 1/0O-intensive, more information needs to taeked by the disk to manage
dependencies. This results in more CPU time which is miéddty the fact that the disk
uses its own isolated CPU in a real environment.

52

Chapter 6

Case Study: Discriminating
Hierarchical Storage System

Modern large storage systems are virtually supercomputetypical high-end storage
system from EMC [16] or NetApp [37] has hundreds of processtens of gigabytes
of RAM and hundreds of disks. In tune with the increasing pesing power available
at the storage systems, their functional sophisticatiandiso increased. Today, storage
systems employ various forms of RAID for reliability and figmance, use non-volatile
RAM to absorb write latency, perform dynamic block migratior load balancing, and so
on [16, 88].

Although storage systems have evolved significantly in seofithe range of function-
ality they provide, they are still constrained due to onediamental limitation: they have
little or no information about the system layers above tlsat thhe storage system, and thus
view data simply as a flat stream of bytes. For example, thegaddknow what pieces
of data are more important than others, what pieces areylikebe accessed randomly
vs. sequentially, etc. Although a lot of storage-level gpiels such as RAID level, caching
policy, etc. can be tuned for specific kinds of usage, a ty@gimaage system cannot fully
exploit this potential because it deals with a myriad of ilet@ved types of data each with
different access characteristics, and has very littlermfttion to separate these types from
each other.

In this section, we present DHIS (pronouncedtas), a DiscriminatingHierarchical
Storage system, that uses various hints specified from theehigyers about the type of
the data to select custom policies for managing the datdy asdhe exact RAID level,
cacheability of the data in NVRAM etc. DHIS also uses infotima on the logical rela-
tionship between blocks conveyed in the form of logical peig[68] to extrapolate its type
information from one identifying block to its descendany. being able to discriminate
between data with varying requirements, DHIS is able tordaconflicting goals such as
performance and reliability much more efficiently than ttadhal storage systems.

To make informed choices on the exact layout and cachingipslio use for a spe-
cific piece of data, DHIS enables the layers above to anntutgieal chunks of data with
attributeson the data. For instance, the file system can specify thatemdile (identi-
fied by the top-level inode block for the file) will be mostlytgect to small random writes.
Given this attribute associated with the file, DHIS would makre to not place the file in a

53

RAID-5 format, given the “small-write” performance penaitcurred in RAID-5; instead,
it may choose to place it in RAID-1 (mirroring) format.

There are five attributes that DHIS supports: importancéefttata (which determines
how reliably the data should be stored), the normal accatiesp on the data (i.e., random
or sequential), the expected popularity of the data (i.et,dn cold), whether the data is
read-mostly or write-mostly, and finally, the expectedtiifee of the data (i.e., whether
it corresponds to a temporary file). Based on these five ate#) DHIS decides on the
specific redundancy and reliability scheme to use for tha,datd the various forms of
caching to use (e.g., whether to cache the data in NVRAM drqpes a faster Flash storage
layer) such that the best performance/reliability tradfeis obtained. Specifically, the
current implementation of DHIS utilizes these attributesititomatically select the RAID
level a piece of data goes to, and to decide which pieces aftdatache in NVRAM.

We evaluate DHIS using our software-level disk prototydnagnework. Using this we
evaluate the various discriminating policies of DHIS andhdestrate their effectiveness.
We show that DHIS can achieve significant performance winexpjoiting higher-level
attributes. We show that the flexibility to choose RAID-Iisven a per-file basis provides
significant benefits in performance, compared to the onefdiz-all solution normally em-
ployed in today’s systems. We also show that by intelligawhing of data that is subject to
frequent random writes (e.g., meta-data blocks in a fileesgin NVRAM, DHIS greatly
improves overall system performance.

The rest of this section is organized as follows: in the nexkt-section, we discuss
the background of modern storage systems and type-awamgstoln Section 6.1, we
describe the design details of DHIS and show the kind of dgtitrons that DHIS enables.
Section 6.4 presents our disk protototyping framework amdpoototype implementation
of DHIS. We evaluate our prototyping framework and our inmpématation of DHIS in
Section 6.5.

6.1 Design

In this section, we describe the design of DHIS in detail aisdubs the optimizations that

DHIS achieves by using higher-level attributes on data. Vet diescribe the type-aware
hierarchical storage setup that DHIS incorporates andilierg features. We then present
the set of well-defined higher-level attributes that DHI®surts, and finally we show the

kind of optimizations that these attributes enable.

6.1.1 A Hierarchical Storage Architecture

DHIS’s architecture comprises volatile and NVRAM, as wellseveral individual disks
aggregated using standard RAID levels. In our design, wegodarly consider the three
most commonly used RAID levels: RAIDO (striping without tedlancy), RAID1 (mir-
roring), and RAID5 (striping with a parity block per stripe)lhese three RAID levels
have varying characteristics in terms of performanceabglity, and cost per gigabyte. We
aim to use these resources within a single storage systemmandge them efficiently in a
transparent manner using higher-level hints about dataecess semantics. DHIS exports

54

a flat namespace to higher-level storage software such as/fitems, and aggregates the
storage capacity available in the different RAID levelemilly. The architecture we use
while designing DHIS is shown in Figure 6.1.

File System

TSD Interface

4 N\
DHIS
Address Virtualization Layer
RAM RAID O RAID 1 RAID 5
< <) <) < Y
URAM x| 5[] A Cafs o [e
= = I R e o
| 5 ol)

Figure 6.1:DHIS Setup

In the rest of this section, we detail the basic design aspgaperating such a hierar-
chical storage system in a type-aware storage setup.

Virtualizing the Block Layer Namespace Although DHIS manages several disks and
RAID levels internally, it appears like a single disk systerhigher-level software. For this
purpose, it maintains a block-address virtualization fdliat contains an address transla-
tion table, TTABLE, which maps the global logical block namespace to individiisk-
specific addresses. A physical address contains two padliskar device identifier (e.g.,
an internal RAID device), and a physical block number wittiiat device. Th@ TABLE

is looked up for every I/O request, and is updated whenewaakislneed to be re-mapped
to different devices. DHIS stores tA@ABLE and other book-keeping structures in non-
volatile RAM and periodically writes them to the disk. Noket inbuilt non-volatile mem-
ory has been quite common in high-end storage devices foila\vamd recently it is being
used even for regular hard drives [76].

Block Allocation DHIS performs free-space management at the firmware |évaieby
freeing higher-level applications from maintaining infaaition solely for placement of data
on disk. Block allocation is done using an explialtl oc bl ock disk primitive. This is
important for two reasons. First, higher-level softwaremaware of internal disk charac-
teristics and hence cannot make correct decisions abocit kloality especially when the
storage system has a complex hierarchy of disk media intgrik@r example, an Ext2 file
system’s allocation algorithm assumes that blocks whogiedbblock numbers are con-
tiguous are physically contiguous as well. This may not be tn a hierarchical storage

55

system. Second, by managing free-space on disk, DHIS cadoigipknowledge of block-
liveness to proactively perform operations such as agiyessplication of hot read-only
data, to improve performance and reliability. The bloclo&dtion API optionally takes a
hint block number to allocate the new block closer to it.

One of the main design goals of DHIS is to enable placementt# Hlocks at the
right RAID-level based on higher level data charactersstioch as access patterns, relative
importance, etc. Therefore, whenever a block is allocateithé higher-level, the disk has
to assign a logical block number for it in the global block rempace, and then allocate
a physical block in one of the RAID devices. To enable this,|®khaintains an alloca-
tion bitmap for the logical namespace and separate bitn@aps/ery underlying physical
device. The block-allocation primitive performs two stepse to allocate logical block
number and the second for a physical block number in one dbther disks. ATTABLE
entry is added whenever a new block is allocated.

6.1.2 Pointer-Based Optimizations

Just like a TSD, DHIS tracks pointer information across k#c DHIS includes disk
primitives, CREATE PTR(srcbl k, destbl k) and DELETEPTR(srcbl k,
dest bl k) that higher-level software can use to communicate to DHI&neler a
logical pointer is created or deleted. DHIS maintains alinpers with respect to the
global logical block namespace, and not the physical blothsgs allows DHIS to relocate
physical blocks transparently without affecting the stipeinter information.

By using pointer knowledge, DHIS performs three key optetians as follows:

1. All higher-level meta-data blocks (identified as thoseiing outgoing pointers) are
placed in the RAID level of highest reliability and best rangtaccess performance.
This is because meta-data blocks are more important andsextenore frequently
compared to regular data blocks. In our setup, we use RAIDthfe purpose. Note
that as the physical destination of blocks are determinéuedime of allocation, we
do not have information about outgoing pointers for a newdated block and hence
we cannot differentiate between data and meta-data for dyrelocated block.
Only when the first outgoing pointer is created from a blocKIB can identify it
as a meta-data block. Therefore, DHIS performs dynamicetion of meta-data
blocks to RAID1 as and when the first pointer is created fronoak

2. As meta-data blocks need to be written to disk frequerdtyréliability reasons,
DHIS attempts to absorb the write latency of these blocks dghing writes in
NVRAM. As meta-data blocks constitute a small percentagéheftotal size of
storage, NVRAM caching is beneficial. DHIS flushes out the MWRcontents
to RAID1 in configurable periodic intervals of time and alsbem the device is idle.

3. DHIS exploits its knowledge about block-liveness (d#f#iating between used and
unused blocks) to remove dead blocks (those freed by theyites) from the
NVRAM cache and the regular disk cache, for improving theheaatilization.

56

6.2 Attributes

In this section we describe the set of hints or attributes lilgher-level software such as
file systems can associate with disk blocks in DHIS. Notekhatvledge about pointers at
the disk level allows DHIS to inherit attributes of a metdadialock to the sub-tree of data
blocks that it points to. For example, to set an attributeaféle, a file system just needs to
set an inheritable attribute to the per-file meta-data blaokl DHIS automatically inherits
the attribute to all blocks belonging to that file.

There have been previous efforts to infer the charactesisti blocks at the disk level
without an explicit interface, by using history of accesf&] or block correlations [46].
However, these methods are quite limited in the range ofecharistics they can infer, and
often end up being too complex. For example, although it ssjibe to identify hot and
cold blocks using access history, information such as tla¢ive importance of blocks with
respect to higher-level applications cannot be inferresilgar herefore, DHIS provides an
explicit interface for communicating a set of well-defingdth or attributes that can be set
by higher-level software such as file systems.

6.2.1 Attribute Interface

Higher-level software can set attributes using an expdiisik primitive,DHI S_.SETATTR,

by passing a bitmap representing the attributes. Note thidtges in DHIS are normally
set to meta-data blocks, and they qualify the charactesistiall blocks in the pointer tree
starting from that block. For example, if an Ext2 file systeeeds to specify the access
pattern for a file, it needs to set an appropriate attributdéocorresponding inode block.
DHIS automatically groups blocks in the sub-tree and assesithe attribute to all such
blocks. The following are the attributes that DHIS supports

¢ | MPORTANCE: Determines the relative importance of a data item. CulyddHIS
supports this as a boolean attribute which indicates thatdity is more important
than others. This can potentially be extended to supporte ffiee-grained levels
based on the diversity in internal storage hardware. Apfibois can set this attribute
for source files or documents that need to be preserved wihithest level of
reliability.

e ACCESS_PATTERN: Determines if the set of blocks (belonging to the sub-triea o
meta-data block) will be accessed at random or sequentig. aktribute takes three
values: not set, random, or sequential. Applications cathgeattribute to files they
own based on their access pattern. For example, a simpkafadation of files based
on their types can enable a file system to mark video files asesigl and database
index files as random.

e HOT/ COLD: Specifies the frequency in which the particular data iterth bg ac-
cessed. This takes either of these three values: not segibtold. Generally ap-
plications can set archival data as cold and frequently igadfles such as database
write-ahead log files as hot.

57

e READ- MOST/ WRI TE- MOST: Indicates whether a data item will be mostly read or
written. For example, binary files such abi n/ | s in Unix will be mostly read
and will be updated only infrequently. Similarly, file syst¢ournals or database log
files will predominantly be written.

e TEMPCRARY: This is a boolean attribute that indicates whether a data is tem-
porary (i.e., short-lived) in nature. For example, objeletsfigenerated by compilers
and intermediate files generated by applications such asldaat managers can be
classified as temporary.

Storage software such as file systems can set attributespfooariate meta-data
blocks, using application-specific information. For exdmfile systems can export an
interface to user applications to set attributes at thegeaity of files or directories. In
such cases, file systems have the responsibility to tramslimgical abstractions (such as
files) into corresponding meta-data blocks and to pass thbwes to DHIS. For example,
an Ext2 file system can export aroct | that user applications can use to set attributes
to a file identified by a path name. Ext2 can then issid3BS_SETATTR call with the
attribute, for the inode block corresponding to the path @am

6.2.2 The Ext2DHIS File System

We have developed an attributes-aware file system to supptig, as an extended form of
the Ext2TSD file system [68]. Ext2TSD is a modified Ext2 fileteys that supports TSD
devices. There are two main differences between a regul2rfit system and Ext2TSD.
First, Ext2TSD does not perform free-space managementabmchtes blocks using the
TSD disk API. Second, whenever a new pointer is added or rechfir a meta-data block
(such as an inode), Ext2TSD issues the correspon@GREATE_PTR or DELETE_PTR
calls to the disk to communicate the pointer.

We have developed Ext2DHIS as an extended Ext2TSD file syStatrincludes an
ioctl interface for user applications to set attributes lesfor directories. Ext2DHIS issues
DHI S_SETATTRcalls to the storage system whenever attributes need t@ seanged. In
addition to this, we have developed a simple scheme to setdtfisbutes automatically for
known file name extensions, at the file system level. For exargxt2DHIS automatically
marks files with extensionsc, . cpp, etc., as important as these may be source files.
This provides a simple means to set basic attributes witth@uheed to modify user-level
applications.

6.3 Attribute-Based Optimizations

In this section, we describe the optimizations that DHISi&as using the well-defined
set of attributes listed above. First, we present the metedse to choose the right RAID
level for a given data item. Second, we describe how betteRAM utilization can be

done by choosing the right candidates to cache. Third, waild&iw information about

temporary files can aid in reducing disk fragmentation.

58

6.3.1 Choosing Optimal RAID Level

The three RAID levels that DHIS manages have different parémce and reliability char-
acteristics. In this section, we first describe the key attarestics of RAID levels in DHIS
and then we detail the policies DHIS adopts to choose thé R@HD level to place data.

Characteristics of RAID Levels RAIDO performs plain striping across several disks
without any redundancy and hence it has the lowest reltglbével among the three. How-
ever, in terms of performance, RAIDO is good for sequentia eandom read-write work-
loads. This is mainly because I/O operations get paradldlacross the individual disks
when data is striped. In terms of cost per gigabyte, RAIDMhésdheapest as there is no
redundancy and the storage capacity is the sum of the indiViisk capacities.

RAID1 mirrors data across two disks. As two disks contaimtdml data at all times,
data reliability is better as it can tolerate a single diskufa. In terms of performance,
RAID1 has similar characteristics for both sequential amodom 1/0. Reads are faster
than writes as reads can be parallized across the two diskie Bpeed is in tune with
that of a single disk, because for every write, both diskehawe updated, but in parallel.
RAID1 has the highest cost per gigabyte as the total capatttye drives is halved due to
mirroring.

RAIDS5 stripes both data and parity information across tlara@ore drives. In principle
itis similar to having a single dedicated parity drive, batipy blocks are distributed across
all drives RAID5 can recover from single disk failures antibe has comparable reliability
to RAID1. Read performance in RAID5 is similar to that of RAIDHowever, for small
random writes RAID5 performs poorly. This is because for kmvdtes that do not span
a complete stripe, computation of new parity involves regdhe old contents of the data
block and the parity block. In terms of cost per gigabyte, BAls the second best among
the three, as there is a single parity block for a stripe.

RAID Placement Policies In addition to placing all meta-data blocks in RAID1 (as de-
scribed in Section 6.1.2), DHIS also adopts placement igslicased on higher-level at-
tributes. Table 6.1 shows the placement policies that DHikgpts for each combination
of attributes. The principles that we use to decide the RAdZI for a data item are in
tune with the performance and reliability characteristissociated with each RAID level
as described above. Note that for data thatN®ORTANT and COLD we use RAIDS ir-
respective of its access pattern and read-write charatitsribecause they are going to be
accessed rarely and hence performance is not a significaot.fa

6.3.2 Choosing Candidates for NVRAM caching

DHIS chooses candidates for NVRAM caching to maximize thenloer of absorbed
writes through NVRAM. It chooses all meta-data blocks asdadates as described in
Section 6.1.2, because meta-data blocks are frequenttiewrand have random access
patterns. Similarly, it also chooses blocks with the corabon of attributesHOT,

VRl TE- MOST, and RANDOM as these are expected to benefit the most from NVRAM

59

| MPORTANT | ACCESS_.PATTERN | READ/ WRI TE- MOST HOT/ COLD | RAID Levels

No Any Any Any 0,51
Yes Any Any Cold 51,0
Yes Not set Not set Not set or Hot 51,0
Yes Random Not-set or Write-most Not set or Hot 1,50
Yes Random Read-most Not set or Hot 51,0
Yes Sequential Any NotsetorHot 5,1,0

Table 6.1:RAID placement heuristics. The order of RAID levels listethe last column
is the desired order for each combination of attributes. BHities the next level when
allocation fails in one of the levels.

caching. We do not choose sequential workloads as candidatkin general they do not
benefit much from caching.

DHIS manages NVRAM buffers using a simple mechanism thatesevrites when
the corresponding block is a candidate, and a asynchrorroasss that flushes NVRAM
buffers to disk whenever the disk is idle. When all buffershea NVRAM are dirty, DHIS
passes all subsequent writes to other candidates direatligk, until NVRAM buffers are
flushed out.

6.3.3 Reducing Disk Fragmentation

A fragmented disk can yield poor performance for large fitest tire accessed sequentially.
This is because, when there are only fragments of free-dpéider allocation, large files
may end up spread out across the disk resulting in unnegedisirseeks. Temporary files
that get created and deleted within short intervals of timél@d exacerbate disk fragmen-
tation thereby seriously affecting the performance oféditgs under some scenarios.

DHIS deals with temporary files in a different manner redgattisk fragmentation.
As DHIS is responsible for free-space management, it akscapace for block groups
with the TEMPORARY attribute set, in a segregated portion (group of blocks atehd
of the device) of RAID level 0. For blocks that are not temppr®HIS never allocates
space from this segregated area. This ensures that tepddesr that get created and
deleted never interfers with the allocation of regular filggereby significantly reducing
disk fragmentation.

6.4 Prototype Implementation

We implemented a protoype of DHIS using our disk prototydnagnework. We preallo-
cated the size of each of our data-structuf@ABLE, NVRAM cache, allocation bitmaps,
attribute and pointer management structures, and requesieg as a function of the total
storage capacity. For the three RAID levels, we stacked DRRROn top of the regular
Linux software RAID drivers for RAIDO, RAID1, and RAID5. Ouwprototype of DHIS
had 2,150 lines of kernel code in addition to DPROTO.

60

6.5 Evaluation

We evaluated the performance of our prototype implemesnadf DHIS to get an estimate
of the benefits achieved by attribute-based RAID placemedtNMVRAM caching. We
first present our evaluation setup and describe the benélsitteat we used. We then show
evaluation results for DHIS’s RAID placement and NVRAM cexghmechanisms.

6.5.1 Evaluation Setup

For all benchmarks, we used a 2.8GHz Xeon with 1GB RAM, and @GE5 LSILogic
SCSI disks. We used Fedora Core 6, running a vanilla 2.6.ar%eke

To ensure a cold cache between benchmark runs, we unmoudhiegbéved file sys-
tems between each test. We ran all tests at least five timescemputed 95% confidence
intervals for the mean elapsed, system, user, and wait tirsieg the Student-distribu-
tion. In each case, the half-widths of the intervals were than 5% of the mean. Wait time
is the elapsed time less CPU time used and consists mosti§ pbuit process scheduling
can also affect it.

We observed disk statistics frofmpr oc/ di skst at s for each of our benchmarks
and used it to verify the reasons behind our results. Didtissitzs provide the following
information observed by the disk for each benchmark we ramlver of read I/O requests
(ri o), number of write 1/0 requestsv 0), number of sectors read $ect), number of
sectors written\sect), number of read requests mergedrér ge), number of write
requests mergedvrer ge), total time taken for read requestsuse), and the total time
taken for write requestsyuse).

6.5.2 Benchmarks and Configurations

We used Postmark [82], a popular file system benchmarking timtest the performance
of our prototypes. Postmark is I/O-intensive and stredseéile system by creating a large
number of small files and then performing a series of file systperations such as direc-
tory lookups, creations, and deletions on them. A large remobsmall files is common in
electronic mail and news servers where multiple users ar@araly modifying small files.
Postmark mostly generates a combination of small randodsraad writes, and hence we
use this for testing performance of our implementationglenrrandom workloads. The
working set of a Postmark benchmark is determined by the mumbfiles to be created
initially, and their size range. For all runs of Postmark weedi file sizes ranging from
400KB to 600KB. We have mentioned the exact configurationostfark used for each
test, along with the respective test results.

We also ran a series of micro-benchmarks to test the chaistate that Postmark does
not cover. For example, Postmark does not evaluate sequé@tiperformance and over-
heads for large file workloads. Micro-benchmarks also igothe overheads for specific
operations, and hence gives a clearer picture of the oveshééle developed a user-level
tool that performs generates one of the following workloadsdom read, random write,
sequential read, and sequential write. For all runs, we dgdiread or writes on a sin-
gle 1.5GB file. For the sequential benchmarks (read and)write performed sequential

61

Wait ———
500 r User =3
System m—

400 | 373.1 386.8

300

Elapsed Time (seconds)

r Ext2 DPROTO

Figure 6.2:Postmark results for DPROTO vs. regular disk

700

Wait C——
User ==Y
600 - System m—
€ 500 463.4 4663
g r BS
8 a0}
[)
£
= 300 -
el
Q
2
© 200
m]
100 r
0 ||
DPROTO DHIS

Figure 6.3: Postmark results for Ext2DHIS over DHIS compared to Ext2r quain
DPROTO

4K 1/0 on the 1.5GB file 5 times totalling to 7.5GB of I/O. Fomdom read and write
benchmarks, we performed 20,000 and 150,000 4K 1/O resbgti

6.5.3 DHIS Results

We evaluated the performance of our prototype implemesmaif DHIS and our optimiza-
tions for RAID placement and NVRAM caching.

Figure 6.3 shows the overheads of DHIS over regular DPROT®. cdhfigured
DPROTO to preallocate the same amount of memory that DHISined| for storing its
data-structures (128MB). Although the elapsed times fah Ibons are similar, DHIS has
higher system time (13 secs vs. 49 secs) and lower wait tim@ $&cs vs. 416 secs)
compared to regular DPROTO. The system time increase isibea# two reasons. First,
Ext2DHIS issues ioctls to the pseudo-device driver to comicate pointer information,
contributing the major component of system time. Seconel sttared queue is protected
by a spin lock and hence minor contention causes a busy vgaitirgy in increased system
time. The reduced wait time is because of better spatialitgazaused by the disk-level
block allocation scheme used by DHIS (compared to file-systevel allocation in Ext2)

62

700

Wait ——
User ==Y
600 | System 515
R 502.4
(%]
g 500 - +
2 400.3
£ 400 Ea
[)
£
300 270.8
el
Q
a
© 200
m]
100
O .

RAIDO RAID1 RAIDS5 DHIS

Figure 6.4: Postmark results for Ext2DHIS over DHIS compared to Ext2r quain
DPROTO on RAID1 and RAID5

which co-locates blocks in a greedy fashion without takimg account future file growth.

6.5.4 RAID Placement Optimizations

To evaluate the benefits of the RAID placement optimizatipeisormed by DHIS, we
used Postmark and micro-benchmarks. For all benchmarksbserved the time taken
for the workload on regular DPROTO stacked over individudllR1 and RAIDS de-
vices and compared them with DHIS. While running the worklloaer DHIS we set the

| MPORTANT andACCESS_PATTERN attributes set, so that DHIS would place them in the
optimal RAID level.

As Postmark generates mostly a random workload, we ran it RANDOM attribute
set. For micro-benchmarks, we set SiEQUENTI AL andRANDOMattributes respectively
for sequential and random reads and writes.

Figure 6.4 shows the Postmark results for DHIS compared B@FO on individual
RAID1 and RAIDS5. As evident from the figure, DHIS performs s#o to regular RAID1
as it placed the Postmark working set on its RAID1 hierardyllS has an elapsed time
overhead of 25% compared to regular RAID1 although DHIS gdaall data on RAID1,
for this benchmark. This is because of two reasons. FirdtrRark is creates and deletes a
large number of files and hence results in a large amount ot@odperations and attribute
updates. This results in increased system time (13 sec®wec$) as seen from the figure.
Second, as pointer operations are synchronous in natug,bllock until the DPROTO
service thread handles them. This results in increasedtinegt (386 secs vs. 452 secs).
The overheads are more pronounced for the Postmark worldeeduse Postmark is an
extreme case of I/0-intensive workload. In most common Veatts DHIS performs much
more closer to the RAID1 for random workloads (as shown imtieo-benchmark results
below).

Figure 6.5 shows the micro-benchmark results for RAID ptaeet. As shown in the
graphs, under all cases, DHIS performs close to the fastésedwo RAID levels. Note
that for the sequential write workload, DHIS performs 16%tdérethan RAID5. This is
because DHIS places all meta-data blocks in RAID1 for mazimgireliability and better

63

200

(c) Random Read Benchmark

300

Wait ——— Wait ———
User =Y User =Y
System — 250 | System mmmmm 239.7
— L 145.6 — 214.5
§ 10] § B 190.4
g g 200 ‘
3 1096 1125 3
g 100t g 150t
= =
kel k] 107.1
Q [}
2 56.2 2 100 |
[] []
w 50 w
50
0 i 0 I
RAIDO RAID1 RAID5 DHIS RAIDO RAID1 RAID5 DHIS
(a) Sequential Read Benchmark (b) Sequential Write Benchmark
250 - 500 -
Wait —— Wait —
User ==ssY User o=y 428.7
System m— System m— —
200 400
8 175.1 8
S 154.5 152.5 S
g 150 147.0] . g 300
Y Y 2455 2483
£ £
= =
- 100 - 200+ 185.8
(7] (7]
[%2] [%2]
(=X o
© ©
]]
50 100 +
RAIDO RAID1 RAID5 DHIS RAIDO RAID1 RAID5 DHIS

(d) Random Write Benchmark

Figure 6.5:Microbenchmark results for DHIS. For each benchmark we sti@time taken
for regular DPROTO directly over RAID1 and RAIDS5, and congzhthem with DHIS with
access pattern attributes

64

performance (as meta-data blocks will mostly be accesseghdbm). By placing meta-
data blocks in RAID1, DHIS has better sequential write ctimastics, as random meta-
data updates (such as updating the inode) gets absorbedIBDiRvhile writing to a large

sequential file on RAIDS.
Therefore, by setting appropriate attributes about acpatierns, DHIS can be made

to perform substantially better than traditional storaggteams that place data without the
knowledge of their access patterns.

65

[N
N
o

Wait ——
User =3

| System m—
88.5

=
o
o

80

60 55.7

40

Elapsed Time (seconds)

20

r DPROTO DHIS

Figure 6.6: Postmark results for Ext2DHIS over DHIS with selective NWRéaching
enabled compared to Ext2DHIS over DPROTO

6.5.5 NVRAM Caching

To evaluate the benefits of caching selected candidates RAW, we compared DHIS
with regular DPROTO with file systems mounted in synchronoesle. DHIS choose all
meta-data blocks as candidates for NVRAM caching and hesrca $ynchronous work-
load most of the meta-data block writes will be absorbed byRRWI. Figure 6.6 shows the
benefits of selective NVRAM caching. For this run, we confegliPostmark to create 1000
files with sizes ranging from 10KB to 20KB, and 2000 operatioWe used this smaller
configuration as we ran this workload with synchronous maidiie file system. As seen
from the figure caching meta-data selectively in NVRAM campiove write performance
significantly (37%)for random I/O-intensive workloads.

66

Chapter 7

Case Study: Secure Deletion

In this section we describe our next case study: a disk sygtatmutomatically performs
secure deletion of blocks that are freed. We begin with & Ionigtivation and then move
on to the design and implementation of @ecure Deletion Type-Safe DKDTSD).

7.1 Motivation

Data security often includes the ability to delete data ghahit cannot be recovered [9, 30,
61]. Several software-level mechanisms exist today thigtelelisk data securely [40, 58].
However, these mechanisms are fundamentally insecure ar@thpgo disk-level mecha-
nisms [69], because the former do not have knowledge of ditknals and therefore
cannot guarantee that deleted data is overwritten.

7.2 Design

Since a TSD automatically tracks blocks that are not uset@djmibg liveness information
about blocks is simple as described in Section 3.2. Wherselyck is garbage collected,
an SDTSD just needs to securely delete the block by ovengritione or more times. The
SDTSD must also ensure that a garbage collected block tnat iget securely deleted is
not re-allocated; an SDTSD achieves this by deferring traateof theaLLOC _BITMAP
until a block is securely deleted.

To improve performance, an SDTSD overwrites blocks in beschBlocks that are
garbage collected are automatically added to a securéiatelest. This list is periodically
flushed and the blocks to be securely deleted are sorteddaeséial access. Once a batch
of blocks is overwritten multiple times, the.LOoC_BITMAP is updated to mark all those
blocks as free.

7.3 Prototype implementation

We extended our prototype TSD framework described in Se@&ib to implement secure-
deletion functionality. Whenever a block is garbage caéldcwe add the block number to

67

a list. An asynchronous kernel thread wakes up every seafidsh the list into a buffer,
sort it, and perform overwrites. The number of overwrites lpleck is configurable. We
added 403 lines of kernel code to our existing TSD prototype.

7.4 Evaluation

20

Wait ——

User i==X3 16.5
o System m—
BT 12.2
@ 11.8 ’
@
g 10f
£
=}
Q
%]
g sr
w

0
Ext2 Ext2TSD SDTSD

Figure 7.1:Unlink micro-benchmark results for SDTSD

To evaluate the performance of SDTSD, we ran an unlink mii@oehmark. Figure 7.1
shows the results of this benchmark. The 1/0 overhead of SDdr Ext2TSD was 40%
compared to regular Ext2, mainly because of the additiol@akchused by overwrites for
secure deletion.

68

Chapter 8

Context-Aware 1/O Infrastructure

In this chapter, we present the concepCaintext-Aware I/GCAIO), a simple and generic
way for applications to convey arbitrary information abtheir I/O behavior and relation-
ships, without worrying about how the information will beegsby the storage stack. In
CAIO, an application-levetontextis propagated along with an 1/0O operation across the
entire storage stack, in an end-to-end fashion. An apjphicdevel context is represented
by one or morecontext identifiersFor example, a database application can have a unique
identifier that it can propagate along with every I/O it gextes, such that any storage layer
can easily group all I/O generated by the database applicatihis also enables the lower
layers of the storage stack to associate the data corresuptadthe 1/0 with higher-level
contexts and easily track the application’s working-set.

In addition to working-set identification, application ¢exts also enable a new class
of functionality that uses application-1/O relationshigsich as easy and flexible perfor-
mance isolation in large-scale distributed storage, amgss:pattern aware caching and
prefetching within the storage hardware.

To make CAIO a generic framework, we decouple giemerationof application-level
information from how the information issedwithin the storage stack. Most hint-based
proposals to address the problem of information-gap in tet pave tied these together.
For example, in hint-based prefetching systems, the agpic provides hints of its future
access, but the hints are specifically designed with prigfegan mind. The problem with
such function-specific hints is that they require coordoraand agreement between the
layers involved. In a multi-vendor setup, such coordinati@nslates into industry-wide
consensus on the interface, a standardization processkegtyears. In addition, such an
approach cannot scale in an end-to-end manner to the rayéiréd storage stacks that we
have today.

Decoupling the generator and consumer of the context irdtion leads to an interest-
ing challenge: when the application could conceivably useenthan one possible granu-
larity of grouping 1/0O, how can it decide which one to use wtiking oblivious to how the
grouping is interpreted by the lower level? For example,talkase application can group
the I/O requests it generates based on the database usansé®nsaction, or query on
behalf of which the 1/O is issued; but the lower layers aravadnlis to the granularity of
the context. To solve this issue, contexts in CAIO laierarchical With hierarchical con-
texts, higher layers can encode multiple granularitiesrofiging, and the lower layers can

69

decide which granularity is the best for the particular fumgality that they provide.

Even in a hierarchical context, individual levels in therarehy remain completely
opaque to the storage stack. For implementing functiontiet needs more information
about what these levels in the context mean, contexts cammatedfflineat any specific
layer. In such cases, CAIO contexts will be used only as ngfidantifiers to associate
higher-level semantics.

We illustrate the generality and power of the context alositva by prototyping and
evaluating two case studies. Our first case study is an atitomarking set identifier,
WorkSIDE which operates at the block-based storage hardware Mgk SIDE automat-
ically tracks the data working set required for an applmattontext to run to completion.
WorkSIDE correlates contexts with the 1/O and the corresiia data they access, thus
obtaining a complete view of the entire set of data itemstti&particular application con-
text requires. This working set can then be preloaded asopppte in order to improve
performance and availability, or to enable power optim@ad. The second case study is a
context-aware cache-placement algorithm within the disit automatically tracks which
application-level contexts exhibit sequential strearmangess pattern and avoids caching
requests with that context. We demonstrate the usefulridsgioof our case-studies using
prototype implementations we built for the Linux kerneldaevaluate various workloads.

The rest of this chapter is organized as follows. In Sectidn& discuss the utility of
CAIO by presenting a few potential applications. In SecBa&we present a taxonomy of
the various kinds of contexts in storage. We detail how weegaize the CAIO interface
in Section 8.3. In Section 8.4, we describe CAIO design ampdiegtion support.

8.1 The Utility of Context-Aware 1/O

In this section we describe several usage scenarios thatatetracking context informa-
tion in the different layers of the storage stack. Many ofsthetilities cannot be imple-
mented effectively without explicitly propagating apg@lion-level contexts. In Sections 9
and 10, we demonstrate our implementation of the first twgesaenarios described be-
low.

Working-set Aware Features Identifying working sets of data for individual applica-
tions at the lower layers of the storage stack, enablesestieig functionality such as
application-aware prefetching [60], power-savings [8)], $elective recovery of failed

hardware [50], and improved data availability [70]. We dész our implementation of

a disk-level working-set identifier and its usefulness itadeinder Section 9.

Adaptive Caching and Prefetching The efficacy of caching and prefetching depends
on the ability to identify access patterns. Context can knabhching and prefetching
mechanisms to adapt their policies based on access patt8extion 10 describes our
implementation of a context-aware disk-level caching na@ctm.

70

Application-Aware Performance Isolation Scheduling algorithms at different levels of
the storage stack can leverage application-level contexdsheduling decisions. For ex-
ample, fair share disk schedulers can enforce fairnessltmaskigher level logical tasks as
against OS processes. Application-based resource @ola#s been previously explored
in the context of a single OS in Resource Containers [22]. t€da can enable flexible
resource isolation in an end-to-end fashion even in disteith storage.

Optimized Data Layout File systems can use higher level contexts as hints for @btim
data placement on disk. Co-locating files and directorieaterd in the same context could
be beneficial under certain scenarios to achieve betteiafmatality during reads.

Improved Accounting Context information associated with 1/O operations caratijye
help in 1/O trace analysis. Trace analysis for resource wagion can be more accurate
when it makes use of logical contexts pertaining to precigbdr-level tasks. Contexts
can also provide valuable hints about the dependencie©obperations and the causal
relationships between them, for trace-based intrusioediein systems [43].

8.2 Context Types

Context in storage is quite useful as seen from the kind aftfonality it enables (described
in Section 8.1). We now defineontextas follows: A context in storage is a reference or
identification used to group, on some basis, several I/O atpars or data

We now describe the types of contexts that are relevant tagto

8.2.1 Data-bound vs. Access-bound

The two primary entities in storage are (a) data, and (b) [d€rations on data. Context in
storage is mainly used for grouping several such data itanW©ooperations. Therefore
we classify context in storage broadly into two types: datand and access bound.

A context is said to béata-boundf it can be used to group several data items stored
on disk, based on some metric. This grouping is independetiieoway the data is ac-
cessed. For example, a data-bound context can group akslmelonging to the same
database table or file. Data-bound contexts can group datallwa arbitrary criteria such
as logical abstractions (files, directories, databasesalelc.), owning application or user,
security domains, and so on. Data-bound contexts can betasgmmmunicate higher-
level data-structures to the disk, and enable functionalich as fault-isolated placement
in RAID [70].

Note that the notion of data-bound contexts is similar incagt with other abstrac-
tions such as type-aware storage (Section 3) or objecdbaserface [53]. These other
abstractions can be used as an alternative to data-boutektan

Access-boundontexts relate operations rather than the data pertatoitigem. For
example, an access-bound context can group all block wpiegations resulting from a
single database query. Access-bound contexts enable metidnality that solely depend

71

DB Session A Dat abase X
hone
Transaction B Table Y
j ohn
Query C Record Z
abc. t xt

(@) (b) (€)

Figure 8.1: Examples of how hierarchical contexts can be constructer). skows an
access-bound context hierarchy. (b) and (c) show data-th@ontext hierarchies.

on the characteristics of individual I/0 requests. The gaghnd prefetching functionality
described in Section 8.1 requires access-bound contexts.

Figure 8.1 shows a few examples of context hierarchies.réigii(a) shows a possible
access-bound hierarchy for a database application. Eduigb) and 8.1(c) show data-
bound context hierarchies that communicate data absirecti

8.2.2 Repeatable vs. Non-Repeatable

The lifetime of a context identifier is defined by the applicatthat generates it. When
a single context identifier is used every time to refer to aipalar logical context, we
call it a repeatablecontext. For example, when a context is used to group filesinvan
access-control domain, the same identifier has to be rewsegténe when operations are
performed on that domain. Applications have to generath soatexts using a determin-
istic method and may maintain persistent states to tractegzs

Non-repeatableontexts have transient identifiers. For example, ffia is used as
a context identifier to group 1/0O operations generated byraquéar program, every time
the program runs, the identifier becomes different, altiithg logical context remains the
same. Non-repeatable contexts do not require any statertalmgained at the application-
level.

8.3 Generalizing the Interface

In this section, we describe how we can cope with arbitramyte&xt generation process
at the application-level, and achieve independence betwee generation and usage of
application-contexts. We also describe how lower layerthefstorage stack can extend
contexts or correlate across different context types.

72

Hierarchical Contexts To achieve generality in the CAIO interface, the contextegan
tion process at the application-level must not make anyrapsans about how the lower
layers use the context. However, at the application-lebelre may be several different
ways to generate a context, each useful for different kirfdsimctionality at the lower
layers. A single application-wide context identifier an Ised to easily group all data
required by the application, whereas more fine-grainedecandentifiers within an appli-
cation help communicate different streams of 1/0 requestegated by sub-components of
within same application. For example, a single DBMS-widetegt can be used to group
all /0 and data that the DBMS manages. This enables furalitgrsuch as working-set
identification for the entire DBMS. On the other hand, a peadase session-level context
can be used for easy performance isolation between datalsasesessions. We use the
termcontext granularityto refer to the different possible ways to generate contextsn

an application.

Therefore, for generalizing the interface without hampegrthe kind of functional-
ity it enables, we evolve a context scheme where the apjgitaan encode all possible
granularities as a single context, passing daontext hierarchieg¢for access-bound and
data-bound) rather than a single identifier. For exampleBMB can generate access-
bound contexts in granularities such as sessions, traasacand individual queries, and
data-bound contexts in granularities such as databasdss tand records.

Lower layers of the storage stack can use hierarchical gtswathout making assump-
tions about what each of the levels in the hierarchy mean.ekample, a caching layer
that wants to classify some context to exclude caching,(eeguential contexts) can track
the statistics on sequentiality at each level of the corfteettarchy, and then choose the
highest level that exhibits homogeneity in the access pat®epending on the specific
behavior the layer is looking at (e.g., sequentiality, etated access of the same pieces
of data), the definition of homogeneity changes. Hieraahiontexts enable decoupling
the application from worrying about which behavioral prdfees the lower layers are in-
terested in; instead the application just conveys its statd the lower layers make their
independent decisions on the notion of homogeneity they about, based on the layers’
own per-context statistics.

Note that for a context hierarchy chain in CAIO to be meanihgévery context in
the chain should qualify a logical subset of the access a damain qualified by its
parent context. For example, a per-query context identherbe a child of the transaction
identifier in which the query is a part. However, a contexnitféer that qualifies the class
of all sel ect queriesin a DBMS cannot be a child of any particular trarieadtientifier,
assel ect queries can be part of any transaction.

Annotating Contexts with Semantics Certain functionality may require more informa-
tion about what each level in the hierarchy means, at somefgpkayer in the storage
stack. For example, a context-based proportional-shakestheduler needs share propor-
tions to be associated with levels in the context hierarétoy. this purposeffline mech-
anisms can be used to annotate context identifiers with ifumadity specific information.
For example, applications can co-ordinate with a specitcsfiistem through offlinectls

to associate locality hints with stored context identifieiote that these annotations are

73

not part of the CAIO infrastructure, but can be done sepbrattween any two layers that
needs to coordinate to implement a specific functionalityhe example of a proportional-
share disk scheduler, the application and the disk schedakt to co-ordinate offline to
annotate context levels with share proportions.

Context Transformation With hierarchical contexts, any layer in the storage stak c
add new levels to the context chain, as long as the subseianve preserved. For access-
bound contexts, the subset relationship is maintained aparation propagates from top

to bottom. For example, selectquery generated from a database gets transformed into
one or more file read operations at the file system, and thémeiuiransformed into several
block read operations at the device driver or the disk IeVberefore, any layer in the stack
can add new levels to communicate grouping of sub-opemtbtheir level.

However, for data-bound contexts, subset relationshipiiddr to ensure across layers.
This is because the data abstractions used by higher layensuy cases are not super-
sets of the lower level abstractions. For example, an agiphic can store several B-trees
within a single file, and hence there is no subset relatigrisbiween the abstractions used
by this application and that of the file system. Thereforeegenransformation of data-
bound contexts across layers is harder to achieve; but l@ayers can associate new data-
bound context hierarchies with 1/O, if the application does pass a data-bound context.
We impose a constraint that intermediate layers should ddtew levels to data-bound
contexts, unless the higher-level layer did not specifyraext of its own.

Correlating Across Context Types Data-bound and access-bound contexts passed by
the application can be completely independent of each @thémeed not necessarily in-
dicate association between the operation and the datanat@se This makes generation

of contexts at the application-level much less complicakéalvever, lower layers that use
these contexts can maintain their own history informatibcomtexts, and correlating data-
bound and access-bound contexts. Correlating contexs tgpables useful functionality.
For example, identifying the working set of data accessedrbgiccess-bound context can
be useful for implementing interesting optimizations asaiéed in our first case-study
detailed under Section 9.

8.4 CAIO Design

End-to-end association of context with I/O requires passipplication-generated context
with every I/O operation throughout its lifetime. We evoladramework through which
context can be passed from an application all the way dowhestorage hardware (e.g.,
a disk). In this section, we describe the changes requirdtegcstorage stack and user
applications, to support contexts.

We propagate context in the storage stack by meaosriext objectsA context object
contains upto two context chains, one each for data-boudderess-bound types. These
context types are based on the discussion under SectionC&atext objects also carry
information about the repeatability of the context chaRepeatability is at the granularity

74

of an entire chain and not the individual context identifigithin a chain. The structure of
a context object is shown in Listing 8.1.

struct caiacontext {

int databound[MAXDATA_LEVELS];

int accessbound[MAXACCESSLEVELS];

short datalevels;

short accesslevels;

int flags;
}s
Listing 8.1: Structure of a context object. The fields di&zels and accedgvels indicate
the number of levels in the data and access-bound conteixtchHaags contain informa-
tion about repeatability and inheritance properties ([ad.4.1) for the context.

8.4.1 Associating Contexts With 1/0

The CAIO framework contains a user library that exports ireg to construct context

objects and add new levels of hierarchy to existing contbjeas. User applications can
generate context objects through these routines and assdbem with 1/0 operations.

Our framework provides three different ways for user amgilmns to associate contexts
with I/O operations. They are, (a) an extended system daltfacce (b) group contexts and
(c) context inheritance. We detail each of these mechariisiosy.

An Extended System Call Interface We have an extended system call interface that
passes context objects along with storage primitives sicbpen, read, wite,

unl i nk, etc. Each of these I/O system calls include an additiorgliraent for the
context object. The framework also includes a wrapper tipfar user applications to call
these new system calls. Listing 8.2 shows an usage scepatioef extended system call
interface. Note that when there is a single context objettribeds to be passed for several
system callsgroup contextgan be used for better performance, as described below.

Group Contexts For applications that need to perform a several I/O opemnatigith a
single context object, we provide a new system call forsgtind unsetting contexts into
the kernel. The scope of this association is just the spebifead of execution. Therefore
applications can first set a context and then issue any nuafilvegular 1/0 system calls
(such asopen or r ead), and the corresponding context object will be associatéd w
every operation.

Context Inheritance To support easy usage of contexts in cases where the snggliest
ularity is a process, our framework includes a context itaece mechanism using which
any process can set armheritable contexinto the kernel. All child processes and threads
of such a process will then inherit the same context hiesaidle developed this feature so

75

that there would be no modifications required to applicatishose lowest context granu-
larity is a process. For example, if a project compilaticskteequires several applications
such agycc, | d, bi nuti | s etc., the entire compilation task can be run through a shell
that has an inheritable context set, instead of modifyireneapplication to pass contexts.

int fd; char buf[128];
struct caiacontext xcontext;

I+ Allocates and sets toplevel databound
x and accessbound identifers as
context = caiacreatecontext(1, 1);

/+ Adds a new level to the access/data
x hierarchy with identifier 2 x/
caio_add_level(context, 2, 2);

[+ CAIO system call interfacex/

fd = caio_.open (”/home/joe/abc.txt”,
O_RDONLY, &context);

err = caio.read (fd, buf, 128, &context);

caio_close (fd, &context);

Listing 8.2: Passing contexts from the user-level using@#dO extended system call
interface. Note that in this case group context (describeSiection 8.4.1) can be used as
well, because a single context object is used for all calls.

8.4.2 Context Propagation

In CAIO, each layer receives contexts from the layer abovkepasses it to the layer below
after using them if applicable. Note that a single operatbm particular layer could
translate into multiple operations in the layers below. &mmple, a file create operation
at the file system level could result in multiple block wriequests to the device driver.
Therefore it is each layer’s responsibility to propagatetegt objects appropriately to the
layer below. In cases where there are more virtualizatigarasuch as software RAID or
logical volume managers (LVMs), such layers should be awamntexts and propagate
them below. Any layer can choose to store contexts in its awurctires for its needs,
before passing them down.

Hardware Interface Extensions To propagate contexts end-to-end, we extend storage
hardware interfaces to pass generic context objects aldhgwery I/O request. For exam-
ple, the SCSI/IDE ead andwr i t e primitives take context objects. There are a number
of proposals in the past that suggest interface extensiodisk systems for communicat-
ing higher-level semantic information [17, 49, 53, 68]. Vidiéve that the generality of the
CAIO interface would make it easier for disk vendors to adopt

76

Dealing with Operation coalescence Multiple logically independent 1/O operations
may be coalesced into one at any layer in the stack. For exampulitiple file write
operations to the contents of the same file block could resuét single block I/O at
the disk level due to write buffering. To handle such casessupport multiple context
objects to be associated with a single lower level I/O. Layhat receive these contexts
must process them one by one as if they were from differenbg€rations.

Storing Contexts Repeatable contexts may need to be stored by layers to ineptem
optimizations that involve tracking context history, or@ating different context types.
We developed @ont ext - st or e in-memory data-structure as part of our framework
to enable easy storage of context hierarchies at any laydreaftorage stack. A context
store manages context hierarchy in a tree structure in wéach node represents a context
identifier of a specific level in the hierarchy identified by depth in the tree. Each tree
node also includes private datafield where information about that specific chain can
be stored. The context-store structure provides prinstiee common operations such as
adding new chains and updating private data.

8.4.3 Linux Implementation

We implemented our CAIO framework in the Linux kernel 2.6.1\%e added new sys-
tem calls for context-aware file I/O operations and impletaedra user-level library for
applications to easily use the new system call interface.idw system calls allowed con-
text objects to be passed witipen, read, wite, pread, pwite,cl ose, nkdir,
unl i nk, ridi r andr eaddi r operations. We modified the following objects to add
a new field to store contexts. (&psk_struct which represents a running process or
thread. (b)buf f er _head which represents a block buffer in memory. {@)o which
represents an 1/O to a block device. Tiwef f er .head andbi o objects can optionally
contain a list of contexts during operation coalescence.

We implemented the new system calls as wrappers to the uffiswdistem call han-
dlers for the operations. The wrapper system calls set theegbobject in theur r ent
task object before calling the unmodified handlers. Not¢ tthe wrapper calls unset the
context upon completion of a system call, so that the scope mdssed context would
be just that system call. The different layers in the OS tbatise the I/O operation use
the context object from theur r ent task object and propagate it to the corresponding
buf f er _.head andbi o objects appropriately. As thteask _st r uct object is unique to
a particular process or thread, this method works for nrbieess workloads as well.

For group contexts, we added a new system call which assigresrmves the corre-
sponding context in the currehask st r uct object. For inheritable contexts, we mod-
ified thef or k system call to copy the context object of the parent, to thleeft process.
We also implemented the context-store data-structureraefthe kernel so that any layer
such as the file system or device driver can maintain its ooest

Overall, the modifications required to implement the CAl@nfrework were small. We
added only 350 lines of new kernel code and 150 lines of uwsastcode.

77

8.4.4 Application Support

The method of generating contexts at the application-légpends on specific application
architectures. In general, if an application can clasdyactivities into distinct logical
tasks, and (or) if it can group data it uses based on someiaritecan generate contexts
in a meaningful manner. Based on the kind of application,giaularity and type of
contexts it can generate can vary. Some low level applicatsnich as Unix utilities (e.g.,
| s, cat, etc.) can just provide an interface to the caller to pass$ects (e,g., command
line arguments). We have modified some basic utility prograoth agp, cat , andl s to
accept contexts as command line arguments. This enablgberhevel caller application
(e.g., a shell script) to group all its operations under #draea context.

Context-Aware MySqgl We have modified the MySqgl DBMS [57] with InnoDB [38] as
the storage engine, to generate and propagate contexts@is/granularities. MySql has
the notion of database client connections which can ob&wice from the DBMS. Each
client connection gets serviced by a separate MySq| thraad ,can run several transac-
tions and queries. We modified MySql to pass contexts at timeseularities in the form of
a hierarchy: connection-level, transaction-level, anthgle query-level. Overall the mod-
ifications required to propagate contexts across the vatiyers of MySql and InnoDB
were simple. We added only 30 lines of new code and modifiediBd5 of existing code,
mostly for passing an additional argument for a number offioms. We use our Context-
Aware MySql as an application to evaluate our framework ammes of the case-studies
described in Sections 9 and 10.

8.4.5 Evaluation

We evaluated the overheads associated with passing coijexts across the storage stack
for all file system operations. In this section we first ddseiour test setup and the details
of the experiments we ran. Note that the setup describedsrséttion applies to all our
benchmarks presented under Sections 9 and 10 as well.

We conducted all tests on a 2.8GHz Xeon with 1GB RAM, and a 74GHKrpm,
Ultra-320 SCSI disk. We used Fedora Core 6, running a Lin6x13. kernel. To ensure
a cold cache, we unmounted all involved file systems betwaeh test. We ran all tests
at least five times and computed 95% confidence intervaldhntean elapsed, system,
user, and wait times using the Studemdistribution. In each case, the half-widths of the
intervals were less than 5% of the mean.

Experiments
In this section we describe the set of experiments and tbaiigurations that we used for
evaluating the CAIO and the case-studies.

Postmark For an I/O-intensive workload, we used Postmark [82], a periile system
benchmarking tool. Postmark stresses the file system bgnpeirig a series of file system
operations such as directory lookups, creations, andidekeon small files.

78

Regular CAIO
Response Time (s) Response Time (s)
Delivery 0.096 0.109
New Order 0.039 0.064
Order Status 0.033 0.29
Payment 0.000 0.000
Stock Level 0.169 0.524
Throughput (tpmC) 67.13 64.35

Table 8.1:TPC-C Benchmark results for the CAIO framework

TPC-C TPC-C [79]is an On-Line Transaction Processing (OLTP) bemark that per-
forms small 4 KB random reads and writes. Two-thirds of tl@@slare reads. We set up
TPC-C with 50 warehouses and 20 clients. We compare our xivateare MySql run-
ning on our CAIO framework with regular MySql running on a unkernel. The metric
for evaluating TPC-C performance is the number of traneasticompleted per minute
(tpmC). We report tpmC numbers for each benchmark.

Results

100 - 180 -
Wait ———1 Wait ——3
User 55X User ==~

System — 160 [System m— 1455

0 | 138.9 }
140 T

69.8

~
—— 9
©

120 +

60 -
100

80 |
40 |

Elapsed Time (seconds)
Elapsed Time (seconds)

60 -

20 | 40

0 0
Vanilla CAIO Vanilla CAIO

(a) 50,000 Operations (b) 100,000 Operations

Figure 8.2:Postmark Results for CAIO Framework

Figure 8.2 shows the overheads of our CAIO framework for iask for two different
number of operations. As seen from the figure the overallsgldpgime overheads were
small (2% to 4%) compared to regular I/O. This overhead isntgdbecause of the addi-
tional user-to-kernel copies for communicating contexeots from applications.

TPC-C Results The TPC benchmark results for regular MySQL and our modified
context-aware MySQL ran over the CAIO kernel is shown in &Bl1. The workload
loads tables into a Mysql server at start-up and runs a miuefigs on these tables for a

79

user defined time. We configured the benchmark to run with fiaeetvouses and created
two client connection which ran queries on all five warehsu®e ten minutes. As seen
from throughput and response time numbers, overheads &A@ framework is quite

small.

80

Chapter 9
Case Study: Working Set Identifier

Our first case study is the automatMork ing Set IDE ntifier (WorkSIDE. WorkSIDE that
uses both access-bound and data-bound contexts to autaltyatifer the minimum set of
data items required to be available in order for an applicefor a specific instance of an
application) to run to completion.

9.1 Motivation

This ability to accurately identify working sets of applima contexts at a fine grained
level has various kinds of applications.

Performance The working set of the application can be preloaded into amfiaster but
smaller memory hierarchy (e.g., a flash storage layer thatiges about 100x better ran-
dom access read performance), thus essentially shieldénggplication from performance
variability due to disk access.

Availability WorkSIDE enables fault-isolated placement of applicatimnking sets en-
abling truly graceful degradation during multiple disklfaes similar to D-GRAID [70].
While D-GRAID could just co-locate files or directories, W&IDE can co-locate higher-
level application working-sets within failure domains.

Power Savings Many recent systems have looked at saving power by switcbihg
subset of disks in a large RAID array in such a way that apftioa can still function
properly without the switched-off disks [87, 90]. Thesetsyss go to great complexity to
identify the subset of data that is currently under use, lyesé technigques are most often
approximate and too coarse-grained. Being more informedtaie application’s access
patterns and data abstractions, WorkSIDE can do a bettetjsibch power optimizations
by being more aggressive and more accurate.

Disconnected operation Another usage scenario for WorkSIDE is when the user wants
to preload the working set for a specific application coniaxical storage for discon-
nected operation, say, in a mobile environment. This esabtala-like hoarding [44], but

81

can be much more accurate, fine-grained and automated. Borpdg, if the user works
only on a specific build target in a large body of source codl&, the subset of source files
(and the metadata) needed for the target can be autompficalbaded to local storage.

The key to WorkSIDE is its ability to correlate a repeataldeess context with the data
context it accesses. WorkSIDE achieves this by associafitigeach node of the access
context hierarchy, the aggregated set of data items thad@essed by that context. Se-
mantic aggregation of such data is possible because datadlmmntexts are hierarchical
in nature conveying data abstractions in several granidarfsuch as files or directories).
Tracking working set at an aggregated level enables mucplsimand reliable tracking of
repeatability. For instance, if an application touchefedént parts of a file in its different
runs, block-level tracking may not find much of a repeatahilivhereas tracking at the
file-level would indicate the pattern. Since the data canérarchy essentially contains
information of the entire data abstraction tree, it cankiidts information at various gran-
ularities, and decide on which granularity provides thet regle-off between the amount
of data to be preloaded and ensuring completeness for thieatpm.

9.2 Design

To determine the working set of a higher level logical taskyk$IDE has to track history
of both data-bound and access-bound contexts for every ta&kdesigned WorkSIDE
as an on-disk mechanism to demonstrate its working as palfteofirmware of a high-
end block-based RAID storage system. WorkSIDE can potgngaist at any layer of
the storage stack such as the file system or the device driv@ough our design, we
show that even in the lowest layer of the storage stack (tragé hardware), working set
identification can be done to an acceptable level of accutAmyugh context-aware 1/O.

For WorkSIDE to correctly determine the working set of datad given access-bound
context, the higher application has to pass data contextsrtonunicate the semantic or-
ganization of data. This can relate to on-disk structuret &8 B-trees, database tables,
files, and directories. In this section, we first detail howess-bound contexts can be as-
sociated with corresponding data-bound contexts. We tiszusls a few policies that can
be adopted to determine the granularity of the working set given context. Lastly, we
present our prototype implementation of WorkSIDE.

9.2.1 Associating Access with Data

WorkSIDE maintains two context stores (described in Sed8a!) to track access-bound
and data-bound contexts respectively. Each store hasxtdreaes to represent the hierar-
chy. We call tree nodes in the access and data stor&sa@ss-Context Nodé&CNs) and
Data Context Node@CNSs) respectively. Note that, as data-bound context isiynased
to communicate the semantic structure of data, it need nce#ssarily be passed by the
higher-level application for every 1/0O request. For exaepl a DBMS uses théabl e
andr ecor d abstractions as data-bound contexts, it may pass the ¢dnésarchy only
when such abstractions are created (e.g., a table creatiargdated (e.g., a new record
insertion). For example, the DBMS need not pass data-boonttxkts for evensel ect

82

guery. To handle this condition, WorkSIDE may have to mapeasdound contexts ac-
companying a block 1/O request with a pre-existing datarlsbcontext hierarchy.

The following are the contents of a DCN: (a) A context ideatifi(b) The number of
blocks in the entire sub-tree with the node as root. (c) Adfdblock numbers associated
with the context (if it is a leaf node). Every time a block I/@shan accompanying data-
bound context chain, the corresponding block number is dddehe leaf DCN of the
chain. (d) A list of pointers to its child nodes. (e) A backiper to its parent node. This
is used to increment the number of blocks in every parentgatba chain when there is a
new addition to a leaf node.

While adding a node to the tree, we enforce $irggle parentconstraint, where every
node must have at most one parent. When there is a context phased, that violates
this condition, we truncate the chain after the spuriousenwtiile adding it to the tree.
In almost all common cases, this would not affect the acquofithe data-bound context
tree, as most data-abstractions already follow this rube eikample, a single block cannot
belong to more than one file (except in rare cases such asriardh Ext2).

WorkSIDE also maintains a hash tabkpTABLE, to map block numbers to the cor-
responding leaf nodes in the data context tree. BbeaBLE is used to lookup the data
context for any block when an I/0O request to it does not havassociated data-bound
context. Upon receiving a block I/O request with a accessadacontext, WorkSIDE can
map the corresponding block number to any level of abstradt the data-bound hier-
archy by just traversing through the parent back-pointersaich node in the data context
tree.

In the next section, we describe how this infrastructuraugnaented with association
policies to determine the optimal granularity of assooigth data-bound working set for a
given access-bound context.

9.2.2 Working Set Identification

Identifying the working set for a given node in the accesaruabcontext tree involves
associating that ACN with one or more DCNs. Therefore eveBNAN the access store
contains pointers to one or more DCNSs.

Greatest-Common-Prefix Mode We designed WorkSIDE to operate under two differ-
ent modes for choosing the appropriate DCN for a given ACNhmfirst (and simple)
mode, which we call th&reatest Common Pref(cCP) mode, WorkSIDE maintains ut-
most one DCN per ACN. Whenever there is an 1/O in the contestnoACN, the request
block number is looked up in tr@DTABLE to find the leaf DCN to which the block num-
ber is associated. The leaf DCN is associated with the ACheIfACN did not previously
have a DCN associated. If not, the greatest common prefix motthe tree (starting from
the root) for the new leaf DCN and the previously associat&NDs computed (using
the parent back-pointers) and associated with the ACN. Tdrking-set is enumerated by
just traversing the sub-tree starting from the associat€étl DI'his method of enumerating
the working set for an ACN ensures completeness, but undee szenarios there could
be a significant number of falsely associated blocks. Fomgka, if an access context

83

reads files home/ j ohn/ pl an. t xt and/ honme/j ohn/ private/list.txt, the
GCP method of association would include the entire contehtshone/ j ohn/ in the
working set of A. A variant of the GCP mode mitigates this problem under soocee s
narios by tracking the longest depth to traverse while ematimgy blocks, along with
the ACN. With this, the working set off would just include files up to depth level 3
(/ hore/ j ohn/ pri vat e).

Multi-DCN Mode In the second mode, which we call thElulti-DCN mode
WorkSIDE tracks a list of DCNs per ACN. Every ACN has a list aiplicate elim-
inated pointers to parent DCNs. To enumerate the workingfaet given ACN,
the following procedure is used: for each DCN associatetl, blicks belonging
to their immediate children are included. For example, if &GN B reads files
[/ home/ j ohn/ pl an. txt and / hone/john/private/list.txt, DCNs for
/ honme/ j ohn and / hone/ j ohn/ pri vat e will be associated withB. While
enumerating the working set a8, all files (not sub-directories) undémone/j ohn
and/ horre/ j ohn/ pri vat e will be included. Therefore, the multi-DCN mode of
association provides more accurate identification of waglsets. However, this method
needs to track more information per ACN. In the procedurediesd above, we choose
the hierarchy one level above the leaf DCN for every blockeasc However, the number
of such levels can be configurable based on specific systemwanktbad requirements.
WorkSIDE can also track information required for both GCRI amulti-DCN modes
simultaneously (every ACN can have both the list of parenNS@nd a single GCP node).
Based on the kind of usage scenario for the working set, eratioe process can be de-
cided dynamically to choose the optimal granularity.

9.2.3 Prefetcher

We developed an on-disk prefetching tool that uses WorkSib&umerate the working
set of access-bound contexts and prefetch them into a ftstege. For prefetching, we
tracked the repeatability of the working set of each ACN, &ndrepeatable ACNs, we
prefetch and serve the entire working set from the fasteag®medium. Currently we
use RAM to cache prefetched working sets, but this could beemfast secondary storage
device such as flash. While deciding whether to prefetch &iwgrset, we take into
consideration the size of the working set and the availgdes in the prefetch cache. In
our design, we use a simple scheme where we prefetch workisdess than half the size
of the prefetch cache subject to remaining space avathailithe cache. More advanced
algorithms such as best-fit and worst-fit can also be impléeakio decide the appropriate
working sets to prefetch.

To evaluate our working-set aware prefetcher, we compimeel modules in the
Linux kernel source, and2f spr ogs package [80], with inheritable contexts. We found
that once working-sets were identified by WorkSIDE and poifed into RAM by our
prefetcher, there were no requests sent to the disk duregampile workload. There-
fore, working-set aware prefetching of data enables tgroiidisk drives (and hence save
power) in the case of repeatable workloads.

84

User Applications
'

File Systems

|
WorkSIDE Pseudo—device Driver

Context Working set
Store Manager

|
Disk device drivers

m
Figure 9.1: Prototype implementation of WorkSIDE in the Linux kernehe Pprefetcher
component in WorkSIDE prefetches common working-setsriatoory to save power.

Prefetcher

9.3 Implementation

We implemented a prototype of WorkSIDE and our prefetchig) fis a pseudo-device
driverin Linux kernel 2.6.15 that stacks on top of an exigtilisk block driver. The pseudo-
device driver receives all block requests, and redire@stmmon read and write requests
to the lower level device driver, after storing context imf@tion that needs to be tracked.
Our prototype of WorkSIDE included both the GCP and multiND@odes of associating
data-bound contexts. It contains 3020 lines of new kerndkecoFigure 9.1 shows the
architecture of our prototype.

For testing WorkSIDE, we also modified the VFS layer of theuxirkernel to encode
the pathname of the entity being operated (file or directatghg with every lower level
I/O request. File system meta-data blocks such as supeklbdmaps and directory
blocks have to be dealt with separately, as they may notqodatly belong to a specific
application. To handle such blocks, we modified the Linux2Bie system to associate
a generic “common” context which can be interpreted by aggias one that is not as-
sociated with any particular access-bound context. Weocalmodified Ext2 file system,
Ext2C.

9.4 Evaluation

We evaluated the correctness and performance of our ppeatgplementation of Work-
SIDE. For correctness we used a Linux kernel module buildgss, and for performance,

85

Module # Directories # Files | # Blocks (4k)
Ext2 14 315 1149
Ext3 14 328 1452

ReiserFS 14 328 1432
NTFS 14 320 1769

Table 9.1: Compilation Working Set Statistics
we used the Postmark benchmark described under Section 8.4.

9.4.1 Completeness of the working-set

To verify the completeness of the working-sets identifiedNyrkSIDE, we implemented
a prefetch cache layer beneath the file system that prefetbleewnorking-set for selected
access-bound contexts. We then simulated a disk crash ajjoséng disk I/O from our
pseudo-device driver, and repeated the workloads for thesponding contexts. We per-
formed this for kernel modules compiles and several mi@odhmarks, and in all cases
the prefetch cache layer serviced all I/0 requests. Thisvshbat working-sets identified
by WorkSIDE are complete.

9.4.2 Kernel Modules Build

Our goal during this test was to evaluate the correctneskeobrking set identification
mechanism of WorkSIDE. We untarred a vanilla Linux 2.6.185nké on our Ext2C file
system mounted over our WorkSIDE pseudo-device driver. Méhis through a shell that
has an inheritable access-bound context set (describest 8edtion 8.4.1), with depth one.
We then remounted the file system to eliminate cache effeccsampiled the source-code
of a few file systems (Ext2, Ext3, Reiserfs, and Ntfs) underfts/ sub-directory of the
kernel source. While compiling each file system, we usecerdfit shells with different
second-level inheritable contexts set. All compilatioreyevdone with the same top-level
hierarchy of context, but for each compilation, the sectavel was different. Therefore,
we were able to track the working-set of each of the individaanpilations. Note that we
initialized the build process througméke i nst al | ” separately at the beginning, and
remounted the file system after each compilation. We ranéistsover WorkSIDE for both
GCP and multi-DCN modes of operation.

Under the GCP mode, we noticed that the working sets of evieglesfile system
compilation was identified as a the root of the kernel souree.t This is because, a file
system module compilation would refer to files underc! ude/ andf s/ and hence the
greatest common prefix node becomes the root of the kernstesou

When we ran the test under the multi-DCN mode, we saw WorkStegtify separate
working sets for each of the file system compilation conteXigble 9.1 shows the total
number of directories, files, and blocks associated withwtbeking set of each compila-
tion. We identified these by dumping the entire access-baontext tree of WorkSIDE
and their associated DCNs. In each compilation contextgdreerated object files were

86

Wait —3

250 - User .=
System m—
200
17?.5 173.1 1716.9

150

100

Elapsed Time (seconds)

50 |

ol eees 200 O S 00 D |

Vanilla GCP MDCN

Figure 9.2: Postmark Results for WorkSIDE (200 Sub-directories, aD,Blles, and
200,000 Transactions.). This shows the overheads assdaoiath the process of working-
set identification at the disk-level.

also included in the working set as the same inheritablesstmias passed for write oper-
ations as well.

We also used the Multi-DCN mode of WorkSIDE to calculate tharking-sets for
kernel compilation withraeke al | noconfi g andmake al | yesconfi g. For com-
pilation usingmake allnoconfigthe size of the working-set came out to 32.6MB. Fake
al | yesconfi g, the working-set size was 3GB. As the object files during citattipn
are created from the same context, they were included in thrkimg-set.

9.4.3 Postmark

To evaluate the performance overheads of WorkSIDE, we usddCaintensive bench-
mark, Postmark. We ran our modified Postmark that passesxtastjects with each I/O
request, over WorkSIDE in its two modes, and compared it vagular Postmark running
on top of a normal disk. For the regular Postmark we used uifireddExt2 as the file
system and for WorkSIDE evaluation, we used our modified ExXtl2 system. Figure 9.2
shows the overheads of WorkSIDE compared to regular disks.

WorkSIDE under the GCP mode of operation had an elapsed tuadead of 1.5%
compared to regular disk. The overhead mainly consists stesy time (12%) caused
because of updating context trees and tracking greatesnhoorprefixes. Under the multi-
DCN mode of operation the elapsed time overhead was 3.7% a@upo a regular disk,
caused by a 20% increase in system time. The increase ineagstcompared to GCP
mode is because under the multi-DCN mode, WorkSIDE has ¢k traultiple data nodes
per access-node. If WorkSIDE is implemented in a real disicking context trees would
be done by the disk firmware and hence would not incur the hB&t GQverheads.

87

Chapter 10

Case Study: Context-Aware Caching

Modern large-scale storage systems have hundreds of degby built-in main mem-
ory [16], primarily for caching purposes. However, todagterage systems cannot adapt
their caching policies based on application-level worklwar data semantics, as they lack
information about higher level semantics. This is cause@myexcessively simple disk
interface [18, 70]. Application-aware caching policievd®een found to be quite useful
in the context of OS level caches [14]. Yet today’s disk systeannot even separate inde-
pendent I/O streams generated by two different applicatioraking it harder to implement
application-aware caching policies.

In this section we design and evalu&@entext-Aware CachécA-cachg, an on-disk
caching mechanism that differentiates independent I/€agts using logical contexts and
tunes its caching policies based on individual accessipatte

10.1 Design

We designedA-cacheas an on-disk LRU write-through cache layer. The goalsicache

is to identify sequential streams of I/O and disable cachiregy data, as mostly sequential
I/0 streams do not benefit from read caching. As we are inietlea the access-patterns
to tune the caching policy, this application uses accessibgontexts.

Architecture cA-cacheconsists of a set of dynamically-built context trees and RWL
cache. Each tree represents a group of hierarchical canteéit the same root context.
Each node represents the hierarchical context specifiglddyyeth from the root of the tree
to that node. Context trees are created or updated on eadhragaest that specifies an
access-bound context.

Classification of Contexts Each node in the tree contains the following information
about a particular context: (a) the inferred access-patier the particular context, (b)
the block number for the last read 1/O request required tcktsequentiality, and (c) two
counters that track the number of successive sequentiataartbm read requests in the
past. A context node is initialized as random-access upesation. Based on the last read
request and the current request, either the sequentiaé@atidom counter is incremented

88

and the other is reset. When the values of the counters exdbesshold the node is clas-
sified as sequential or random as appropriate. Note thateadl classified node could be
re-classified when its access pattern changes. Upon regeiny read request, the counters
in all nodes that are part of the current context are updateldize nodes are re-classified
if needed. We call the number of sequential read requesireghfor classifying a node
as sequential, thesequential thresholdThe sequential threshold is configurable, and can
range somewhere between 10 and 100. A sequential-accesssireeclassified as random
upon a single out-of-order read.

Caching Methodology Our classification scheme allows for different hierarchsels in
the same context chain to be classified differently. For gstamwo sub-contexts that are
part of the same parent may be doing sequential I/O in their lewels. However, since
the 1/0 from the sub-contexts could be received interleatreglparent would be classified
as random.cA-cachedoes not require context identifiers to be repeatable. Toereit
contains a mechanism to automatically forget contextsase timeout. We periodically
purge context tree entries that represent inactive cosi(@ithout any requests) beyond a
time threshold.

10.2 Evaluation

We implemented a prototype of our on-disk caching mechaasa pseudo-device driver
in the Linux 2.6.15 kernel similar to WorkSIDE. We maintairetcontext trees in mem-
ory and an asynchronous kernel thread wakes up periodit@alhyrge timed out context

entries. If the block is present in the LRU cache, the psaleloee driver services the re-
guest from the cache, thereby avoiding a request to the Imwvel. Otherwise, the request
is directed to the lower level and the cache is updated on tiap of the request, if the

request belongs to a random-access context.

Read Micro-benchmark To evaluatecA-cache we ran a micro-benchmark that gen-
erates synthetic random and sequential read workloaddtsime@usly and calculated the
overall throughput of the random workload. We compared tneughput results o€A-
cachewith a vanilla LRU cache layer which treats all contexts dlyu8oth cA-cacheand
vanilla LRU cache used 4MB of cache (1,024 4KB pages) forlibischmark.

We ran a user program that generates workloads shown ind-igud.. The user pro-
gram has four execution contexts (threads), A, B, C, and 2kvhse their own files for 1/0O.
Thread A reads a 4GB file sequentially with contékt2-5} (see Figure 10.1). Thread B
reads a 4GB file sequentially, but it uses contédts3-7} and{1-3-8} for alternate reads.
Thread C is identical to thread B, but it uses contehits4-9} and {1-4-10}. Thread D
reads random locations from a 4GB file using confex-6}. For thread D, we use a ran-
dom number generator that repeats itself every 1,024 r&dusthreads run until any one
of the sequential threads exits after reading 4GB of dataufrexperiment, the throughput
of the random workload when run under the vanilla LRU cachs &@98 MB per second,
whereas withcA-cache the throughput was 7.71 MB/Sec.

89

0 O Sequential
Q Random

Figure 10.1: Context tree used for CA-cache micro-benchmark. After otgran
benchmark, CA-cache classified the grayed nodes as segluemdi the rest as random.

MySQL Micro-benchmark For this benchmark, We created two identical talde®
andRAND in MySQL with 4,200,000 records each, and ran random andesg query
logs simultaneously. The tables were approximately 233M8ze. The sequential query
log contained &el ect * query on the table. For a random workload, we selected a
subset of the records at random and issued select queried bastheir record IDs. To
show the benefits of caching random streams alone, we reptdseandom query log
ten times. We also ran the sequential log in a loop till thedcan workload completed.
We determined the throughput of the random workload (nunolbeueries executed per
second) while the sequential workload was running in palalt was 266.13 queries per
second without selective caching, while it was 614.15 eseper second with selective
caching.

90

Chapter 11

Case-study: Context-Based Disk
Scheduler

Modern servers run hundreds or thousands of applicatiomsl&neously. Inevitably some
of these applications would have higher storage perfor@aaquirements compared to
others. Critical applications using a shared storage systeed to be insulated from the
impact of transient workload surges caused by other agpitss A well-known model to
approach this problem is to allocate a proportional sharessfurces [72, 83, 84, 86]. Such
an allocation of shares must be based on logical higher tagkk. However, today’s stor-
age stack cannot even distinguish between independeatrstref I/O requests emanating
from different logical tasks. Today, the file system canteeldO operations with threads
of execution (e.g., an OS process) while lower levels of theage stack cannot. However,
even threads of executions may not directly correlate watfidal tasks. For example, a
database server could have a thread pool that it uses tasegueries and which exact
thread services a query is not fixed. Therefore, in this gasgortional shares cannot to
assigned to the threads for achieving application-spgo#fitormance insulation.

In this section we presenContext-Aware Schedulefca-schedulg a flexible
proportional-share disk scheduler that uses applicd@gel logical contexts to identify
tasks and insulate performance for the tasks based on #@seurce shares.

11.1 Design

CA-schedule is a time-slice based proportional-share dibledder that uses resource
share allocations associated with individual logical eat#, to make scheduling decisions.
The share values for each logical context have to be presahlffline communication
channel between the applications and the schedokeschedule decides the next I/O re-
guest to be scheduled, based on the share proportion addignthe particular logical
context and the time each context has consunm@gtschedule ensures that a particular
context is given the proportion of disk-time whichasleastequal to its share value, pro-
vided the context has enough I/O traffic to make use of it. Ehisespective of how many
distinct contexts perform I/O simultaneously and the ratfrtheir workloads. For exam-
ple, if a particular context is assigned a 30% share valuepaiber how congested the disk

91

Q1 <+

Incoming I/O Stream A
Q2 v\
Q3 <+

Incoming I/O Stream B
04 A/ g

Figure 11.1:.CA-schedule operation when there are two contexts A anddB, wah shares
1/4 and 3/4 respectively.

is, the overall disk-time allocated for that context willl@ast be 30%.

CA-schedule maintains several request queues based on thdagity of proportions
needed. If the minimum granularity of a proportionlign, thenca-schedule maintains
n request queuescA-schedule uses equal time-slices to service each of thegeues.
However, based on the share value of a context, its requeststi@ed across several
queues. For example, if the value ofis 10, and the share level for contegtis 1/2
then the requests from that context are striped across fifexeht queues exclusively. If
we assume there are five other contexts each with sharelé@l this mechanism will
ensure that the requests of conteixwvill be serviced five times for every single time any
other context is serviced. The operationaaf-schedule is shown in Figure 11.1.

CA-schedule maintains a table to map context identifiers viigr share values. Upon
receiving a new request, it looks up the share value for it ahdks it to the appropriate
gueue. Note that it also keeps track of the queue to whichatstaréquest for a particular
context was added, so that it can determine the queue forekterequest from the same
context for striping purposes.

This method works for arbitrary values af which should be decided based on the
total number of distinct contexts and the minimum shareevéihat needs to be assigned.
Note thatcA-schedule only uses operation information and not the dati@iping to that
operation. Therefore, it uses access-bound or dual cantdane. It is useful to have
repeatable contexts fara-schedule, as otherwise, assigning share values have tonge d
every time a new context identifier is used.

11.2 Implementation

We implementedatA-schedule by modifying the existing fair-share scheduighe Linux
kernel version 2.6.15, popularly called as Complete Faie@ug (CFQ) scheduler. The
CFQ scheduler in Linux already supported time-slice basbgduling at a per-process
level based on Linux pid. However, it associated equal shiareall processes. We mod-
ified it to perform proportional-share scheduling by havangonstant number of queues
based on the value afand to stripe requests on the corresponding queues, baseton
ciated contexts. The modification was quite simple: we medifiO lines of existing code
and added 120 lines of new code to the scheduler.

92

(a) Sequential Read

Run 1 (Ops) Run 2 (Ops) Run 3 (Ops)
context A (1/8) Null 193k (144Kk) 142k (108Kk)
context B (5/8) 861k (861k) 728k (718k) 540k (538k)
context C (2/8) Null Null 298k (215k)

(b) Random Read
Run 1 Run 2 Run 3
Context A (1/8) Null 4k (4k) 3k (3k)
Context B (5/8)| 21k (21k)| 17k (17k)| 12k (13k)
Context C (2/8) Null Null 6k (5k)

Table 11.1: Read micro-benchmark for CA-schedule: Eachbroolin the table presents
the total number of 4KB reads performed in a five minute irder¥he values specified in
braces is the ideal number of reads that should have beeorped based on the share-
level for that context. Each row indicates a particular eabtrun in parallel with other
contexts in that column. A “Null” value in a column indicatdeat the process for that
context was not run in parallel.

11.3 Evaluation

We evaluatedcA-schedule for random and sequential 1/0 operations. Wenasduhree
different contexts A, B, and C for all tests with share valugs 5/8, and2/8 respectively.
We describe the results for read and write workloads below.

Read Micro-benchmark To evaluateca-schedule for reads, we ran 10 identical pro-
cesses for each context. For a sequential read workloadmrackss performed several
4KB sequential reads on their own file. We calculated thel tmianber of reads com-
pleted by the threads of each context every minute. We usatha metric to evaluate the
correctness of our proportional share scheduler. We meddte percentage slowdown
experienced by each context as other contexts were run allglaand compared it with
each context’s share allocation. To get the total capadithe system, we first ran one
context alone and measured the number of reads performedsafhinutes. We then ran
multiple contexts and calculated the slowdown experiermedach of them because of
other contexts. We then compared these slowdown percenteitfe the total capacity of
the system. For random read, we used the same number ofddigmtbcesses and each of
them performed random 4KB reads on their own files.

Table 11.1 shows the number of operations completed by ddbb oontexts when run
together with other contexts. Overall the total the slowd@xperienced by each context
is proportional to the share allocation.

Note that when there are no requests from a particular cgritexshare allocation for
that context will be proportionally distributed among ather active contexts. Therefore,
when contexts A and B are alone run without C, even if theiividdial share values are
1/8 and5/8 respectively, the effective proportion of resources alted for them would be
1/6 and5/6 respectively. This can be verified based on the values shovwahle 11.1.

93

(a) Sequential Write

Run 1 (Ops) Run 2 (Ops) Run 3 (Ops)
Context A (1/8) Null 248k (204k) 200k (153k)
Context B (5/8) 1.2M (1.2M) 938k (1.02M) 536k (765k)
Context C (2/8) Null Null 373k (306k)
(b) Random Write
Run 1 Run 2 Run 3

Context A (1/8) Null 13k (14k) | 10k (11k)

Context B (5/8)| 84k (84k) | 65k (70k)| 46k (53k)

Context C (2/8) Null Null 19k (21k)

Table 11.2: Write Micro-Benchmark for CA-Schedule

Context A (1/6) Context B (5/6)
Response Time (g Response Time (g

Transaction 187 109
Delivery 139 80

New Order 131 77

Order Status 135 78
Payment 160 97

Throughput (tpmC) 90.33 139.65

Table 11.3:Average response time for TPC-C Benchmark

Write Micro-benchmark To generate sequential and random write workloads, we used
3 threads per context, and each of them performed 4KB wrigeatpns on their own files.
To introduce synchrony in the workloads, each process padd anf sync on their files
periodically. We set the sync frequency as 1000 for seqakewtites and 50 for random
writes. The results for the write workload is shown in Table2l As we can see, the
percentage slowdown of each context is in proportion tohtgs allocation.

The read and write micro-benchmarks detailed above depatily parallel workload
environments as representative of large scale systemseHarder most parallel environ-
ments,CA-schedule provides accurate resource allocations.

TPC-C Benchmark We ran two instances of the TPC-C benchmark with two differ-
ent context identifiers, A and B, to evaluate-schedule under a relatively less parallel
I/O-intensive workload. Contexts A and B had share valuek/6fand5/6 respectively.
Table 11.3 shows the response time and throughput resulie benchmark. As seen from
the results, the performance of the contexts are not dirg@etiportional to the share val-
ues. This is because, each instance of TPC-C does not geea@igh 1/0 requests with
a given time to fill all the queues afa-schedule. Therefore, our prototype@f-schedule

is more beneficial for workloads that are heavily I/O intessi

94

Chapter 12
Related Work

In this chapter, we discuss related research for the coscegmhniques, and insights used
in our abstractions and the case-studies that we developed.

12.1 Briding the Information-gap in the Storage Stack

Several systems have been proposed with the overall goaidgfibg the information-gap
in the system stack. In this section, we classify existirggagch in this area into four
categories: extensible systems, richer abstractions;baised interfaces, and inference-
based systems. The related work for the case-studies fér a&astraction is discussed
under their respective sections.

12.1.1 Extensible Systems

Building extensible systems are a solution to the problemfofmation-gap in the storage
stack. Extensible operating systems [10, 65] allow appboa to implement their own
policies for traditional operating system tasks, by emgya safe execution environment
them. A related approach is the one taken by Exokernel [2Bichvadvocates building a
minimal operating system and have everything else be imghéed in application libraries.

The notion of extensibility has also been explored at thellware level. For example,
active disks [1, 62] enable applications to download code the disk that is run within
the disk controller. Such code can implement arbitraryrfifige of data based on applica-
tion level predicates, and even perform more sophisticapeatations such as search [45]
without actually transferring data out of the disk subsyst8criptable RPC [48] proposes
making the interface of a network file server extensible s thients can dynamically
implement flexible cache consistency and concurrency jeslic

All these systems provide a lot of control to the applicataol in the process, essen-
tially ties them together. For applications to actually saeh extensible layers, they need
to have a reasonably intricate understanding of the sydtam,making them complex to
design. Nevertheless, for applications that really rezjginch control and can utilize it
sensibly, these provide the right level of abstraction.

95

12.1.2 Hint-Based Interfaces

A more evolutionary approach that past research has expisite provide specific primi-
tives at the system level that the applications can use teeganformation to the operating
system. Informed prefetching [78] is an example of such &esys By enabling the ap-
plication to convey information on its future access pattéine operating system acquires
knowledge about the application that it uses to perform naedligent prefetching. An-
other example is the Logical disk [17], which provides areifdace for the applications to
encode locality hints by creating lists of blocks. Researsthave also looked at the flip-
side of the problem: provide information about the opeaggstem to the application so
that the application can make intelligent decisions. lefolkel [5], and icTCP [31] advocate
the approach of the operating system exporting a minimalueanof internal information
which the applications then use to tune their behavior.

Previous work has also looked at the idea of conveying agptin knowledge through
new abstractions. Perhaps the closest to our work is theoflRasource Containers [22],
which allows applications to group requests into a resoaocgainer which is then treated
as a logical principal for the purposes of resource isohatidowever, even Resource Con-
tainers were built with the specific goal of resource accimgnt

One commonality between many of these hint-based appreastbat the hints are
often tied to a specific kind of optimization or functionglitn other words, the information
being transferred is designed with a particular purpose imdm This in turn limits the
flexibility of such a system because each new class of fumality may require yet another
new primitive to be added to the interface.

12.1.3 Richer Abstractions

Our work is closely related to a large body of work examinireyninterfaces between
file systems and disk storage. For example, logical disksuecghe block-based inter-
face by exposing a list-based mechanism that file system®s wsevey grouping between
blocks [17]. The Universal File Server [11] has two layersenthe lower layer ex-
ists in the storage level, thereby conveying directory+&lationships to the storage layer.
More recent research has suggested the evolution of thegstamterface from the current
block-based form to a higher-level abstraction. ObjecdobStorage Device (OSD) is one
example [53]; in OSDs the disk manages variable-sized tbjestead of blocks. Object-
based disks handle block allocation within an object, hilltdsi not have information on
the relationships across objects. Another example is BoxiWd9]; Boxwood considers
making distributed file systems easier to develop by prongid distributed storage layer
that exports higher-level data structures such as B-TE€RAID [18] explores the utility
of exposing hardware specific information from a RAID devicghe higher layers such
as the file system.

These interfaces are designed with some specific applitsatioscenarios in mind. For
example, it is hard to implement a database in an objectebdisk. This illustrates that it
is hard to design a generic interface that is suitable fordewange of applications.

96

12.1.4 Inference-Based Systems

Inference-based systems take the extreme approach of gna@imodifications to inter-
faces, butnfer cross-layer information without explicit transfer for exfnation across the
layers.. Gray-box systems [4] is an early example of suchpancach. An application with
“gray-box” knowledge of the operating system attempt toliniily control the operating
system behavior by tuning its workload in such a way thatkésathe operating system to
a state that results in the desired policy. Another systeith dlong the same philosophy
is semantically-smart disks [70] in which the storage systefers knowledge about the
higher layers by carefully observing traffic patterns and@ating them to higher level
operations.

Although inference-based techniques are valuable fronvitgpoint of being easily
deployable and less intrusive, these approaches havetheiimitations because they are
heavily constrained in terms of not changing interfacess irhmany cases results in addi-
tional complexity, making it hard to reason about correstwhile also limiting the usage
of such inferred knowledge to less aggressive applicatiogiscan tolerate inaccuracy.

12.2 Interface Between File Systems and Disks

Our work is Type-Safe Disks is closely related to a large bafdyork examining new inter-
faces between file systems and storage. For example, lalista expand the block-based
interface by exposing a list-based mechanism that file systese to convey grouping be-
tween blocks [17]. The Universal File Server [11] has twaelawhere the lower layer ex-
ists in the storage level, thereby conveying directory+&lationships to the storage layer.
More recent research has suggested the evolution of theggtamterface from the current
block-based form to a higher-level abstraction. ObjecdobStorage Device (OSD) is one
example [53]; in OSDs the disk manages variable-sized tbjastead of blocks. Sim-
ilar to TSD, object-based disks handle block allocatiorhimitan object, but still do not
have information on the relationships across objects. Beroéxample is Boxwood [49];
Boxwood considers making distributed file systems easidetelop by providing a dis-
tributed storage layer that exports higher-level datacstmes such as B-Trees. Unlike
many of these interfaces, TSD considers backwards conilggitdnd ease of file system
modification as an important goal. By following the blocksbkd interface and augmenting
it with minimal hooks, we enable file systems to be more rgguhirtable to this interface,
as this paper demonstrates. Others examine the storageaetdy trying to keep the in-
terface constant, but move some intelligence into the disktesn. For example, the Loge
disk controller implemented eager-writing by writing tolatk closest to its disk arm [21].
The log-based programmable disk [85] extended this worHlirayifree-space compaction.
These systems, while being easily deployable by not reqiriterface change, are quite
limited in the functionality they extend to disks.

A more recent example of work on improving storage functlipavithout changing
the interface is Semantically-smart Disk Systems (SDSE) [Kn SDS enables rich func-
tionality by automatically tracking information about tfie system or DBMS using the
storage system, by carefully watching updates. Howevenaséic disks need to be tai-

97

lored to the specifics of the file system above. In additioaytimvolve a fair amount of
complexity to infer semantic information underneath asyooous file systems. As the
authors point out [69], SDS is valuable when the interfagenoabe changed, but serves
better as an evolutionary step towards an eventual change éxplicit interface such as
TSD.

12.3 Type-safety

The concept of type safety has been widely used in the cootgxbgramming languages.
Type-safe languages such as Java are known to make progngneasier by providing

automatic memory management. More importantly, they im@reecurity by restricting

memory access to legal data structures. Type-safe languesgea philosophy very sim-
ilar to our model: a capability to an encompassing data gtradmplies a capability to

all entities enclosed within it. Type-safety has also begiaed in the context of build-

ing secure operating systems. For example, the SPIN opgrayistem [10] enabled safe
kernel-level extensions by constraining them to be wriiteModula-3, a type-safe lan-
guage. Since the extension can only access objects it hdisiegpcess to, it cannot

change arbitrary kernel state. More recently, the Singiylaperating system [33] used a
similar approach, attempting to improve OS robustness aliahility by using type-safe

languages and clearly defined interfaces.

12.4 Capability-based Access Control

Network-Attached Secure Disks (NASDSs) incorporate cafgthased access control in
the context of distributed authentication using objecduhstorage [2, 25, 54]. Temporal
timeouts in ACCESS are related to caching capabilitiesduaitime interval in OSDs [6].
The notion of using a single capability to access a group otkd has been explored in
previous research [2, 29, 54].

In contrast to their object-level capability enforceme®GCESS uses implicit path-
based capabilities using pointer relationships betweeckisl

12.5 Notion of Context in Storage

The idea of tagging requests with identifiers has been eagliorthe context of distributed
systems for performance debugging, profiling, etc. Pinp[dif] and Magpie [8] are ex-
amples of systems in this category. Recently, Thereska pt@bosed applying a similar
idea in the context of distributed storage systems mainpé&sformance monitoring [77].
All these systems look at tagging requests in a causal chitiravecertain identifier so that
the entirepath of a logical request (which may involve multiple physicatwerk hops)
can be tracked. Researchers have also looked at impliofyring this causal knowledge
without explicit tagging [3, 28, 46] but it involves signiéint complexity compared to the
explicit tagging approach. These systems only operatemilie scope of one logical re-

98

guest and are targeted at a specific application. In cor@ad0) allows for a more general
expression of application level semantics to cater to a wadety of applications.

Previous work has also looked at conveying applicatiomllgwvouping through new
abstractions similar to our notion of context. Perhaps tbsest to our work is the idea
of Resource Containers [22], which allows applicationsrmug requests into a resource
container which is then treated as a logical principal fer pirposes of resource isolation
and accounting. However, similar to the systems discusbetea resource containers
were also built with the specific goal of resource accounting convey information on
one specific kind of grouping.

Our work on context-aware 1/O also fits into a class of otherkwan general solutions
for bridging the information gap across system layers. Witkis area mainly belongs in
three categories: extensible systems, hint-based isgsfand implicit techniques to infer
information or exert control. We discuss each of these.

12.6 File System Consistency

Consistency mechanisms for file systems have been explatedsively. Early file sys-
tems such as FFS [52] relied on a global scan of disk metad&tadonsistency problems.
This mechanism, called the file system consistency check)(fsas in popular use until
recently in the Linux Ext2 and Windows VFAT file systems. Hewe as increasing disk
sizes made such global scans more and more expensive, rfiolenéimechanisms have
become popular. Journalling, originally proposed as easlin the Cedar file system [27],
uses database like transactions for metadata updates riviiddesystems such as Ext3 and
Windows NTFS use journalling for file system consistency.other technique proposed
for file system consistency is Soft Updates [24, 51], whidleos updates carefully so that
pointer dependencies get updated in the right order. Safaigs is somewhat similar in
spirit to our approach since it is also pointer-based. Atiaddy recent study evaluated the
trade-offs between journalling and soft updates [66].

Database systems have for long used mechanisms for comgist€onsistency in
databases is enforced via transactions; the ARIES transabtased recovery mecha-
nism [56] is used quite widely in database systems. The hasimique is to group all
related updates into a single transaction that is then cttednio disk atomically, so that
the state remains consistent. As we described in Sectigtrarsactions are more general
and powerful than pointer-based consistency, but usingséetions requires a fair bit of
work at the application level. Our mechanism provides a smyet effective alternative
to transactions, although not as general.

Consistency at the disk level has been explored in the cbnfeemantically-smart
disks (SDS) [71]. In that paper, the authors implement jallimg underneath unmodified
Ext2 by utilizing inferred semantic knowledge. Howevertleir work, the disk system
had to be aware of the specific structures at the file systeal & thus was tied to a
specific file system. Further, it required a synchronous rofithe file system. Our work
explores enforcing consistency in a manner generic to thlednilevel software. However,
in the process, we require changing the file system or sofhahove to use the pointer
API. We therefore view both these approaches as complenyenta

99

Chapter 13

Conclusions

As Butler Lampson said, interface design is one the most texraspects of system de-
sign, while also being the most important. Interface desigihave traditionally embraced
the philosophy of minimalism—nhide as much information aftbe layers as possible, so
that the layers can innovate and evolve independently. agpsoach, despite all its merits,
has the downside of obscuring what a layer knows about itst&phus limiting function-
ality. At the other extreme, some systems have explored bawmpletely tie the layers
together, by having extensible layers, or exposing detaitormation about the inner se-
mantics of a layer. What we have explored in this thesis isddiaiground, where we send
a small amount of information across layers. By making theegation of the information
separate from how the information is used, we enable theddagebe independent of each
other, while still enabling arbitrary grouping and relatships to be conveyed across the
storage stack.

13.1 Lessons Learned

We now discuss four key lessons learnt through our expegignevolving and prototyping
our end-to-end abstractions and the case-studies. Werddhiese lessons would be useful
for future interface designers not only in the storage domhbut also more generally in
computer systems.

Lesson 1: Generalizing structural and operational inforntian in storage is
possible.

Our pointer abstraction shows that higher-level strucwech as files, directories,
database tables, or B-trees can be formalized in a genemmendy way of pointers.
The fundamental insight behind the pointer abstractioias today’s disk systems store
data in the form of fixed size blocks. Therefore, to implenmf@gher-level structures on
top of this simple abstraction, relationships have to bal#sthed between these individ-
ual blocks. Most file systems and other storage softwareytodantain these relationships
throughexplicitpointers. Even if pointers armplicit as in the case of extent-based storage
design, it is straightforward to generate them explicily Eommunicating to the storage
stack.

100

The context-aware storage abstraction provides a mearmsralize operationalin-
formation in addition to structural knowledge. By way of ta@echical context identifiers,
we show how application-level operational contexts canrmoded in a generic manner
even for complex storage applications such as databases.

Lesson 2: Requiring just implementation-level modificatie to existing in-
frastructures is a virtue in interface design.

Both our abstractions require only implementation-levetifications to existing soft-
ware layers. Our straightforward implementations of the2E8D and VFATTSD file
systems that support the type-aware storage abstractidicate that as long as there is
not a need to redesign existing infrastructures, interfa@nges are easy to be adopted
and deployed. The limited changes that we made to the MyS@lLttsLinux kernel to
support hierarchical contexts corroborate this fact.

Lesson 4: Annotating pointers or contexts with applicatidevel attributes
enables a wider range of functionality.

To support new features that need to be tuned for specificcgpioins or storage layers,
annotating generic information with optionatributesproves to be useful. Some of our
case-studies such as DHIS (Section 6) and CA-scheduleiB8éct) use such attributes.
These case-studies show that attributes need not be pdreohain interface, but can
be communicatedffline between specific layers. For example, the share proportion f
different contexts in our CA-schedule proportional-shdisgk scheduler is set offline by
the administrator, specifically in the disk scheduler layer

Lesson 3: Decoupling the generation of information from itssage has its
own limitations

Although our abstractions enable a wide-range of new fonetlity in the storage stack,
they cannot support certain kinds of features that requiegipe application-specific in-
formation. For example, although type-awareness enalhs do group blocks based
on pointers, disks cannot precisely identify if a particugaoup represents a file, direc-
tory, or a database table. Although it is true that a largesctaf new functionality can be
achieved without such such knowledge, some features tlegisrte use more fine-grained
application-specific information cannot be implementethwaiit help from applications.
Similarly, although context-aware storage encodes aflgjeaities of application contexts,
lower layers cannot identify what each level in the hiergmoteans, which may be needed
for certain functionality.

13.2 Future Work

In this section, we discuss potential future directionsxpl@re in the topic addressed by
this thesis. We first talk about how the general principleibelour abstractions can extend
more broadly in other domains. We then discuss two possilbtled directions to develop

new applications using our abstractions.

101

13.2.1 Generalizing Information in Other Domains

What we have explored in this thesis is how structural andaifmmal knowledge about
application data can be formalized and used to bridge tlwrmdtion-gap in the storage
stack. This general principle of formalizing the differgmbpertiesof application data is
relevant in other domains. For example, it could be intémggb explore if security polices
can be formalized in a minimal and generic manner and prdpdgacross the systems
stack to enable a new class of secure systems, where diffeggrs can independently
provide security features without explicit coordinatioarh applications.

13.2.2 Applications in Virtual Machine Environments

The growing popularity of virtual machine technology exdedes the problem of
information-gap in the systems stack, as it introduces rarolayer of virtualization.
Bridging the gap in this context enables highly useful oations and new functionality
at the virtual machine host. For example, if the host kersehware of structural
information about data in virtual machines, it can implemsecurity features such as
global anti-virus checking, intrusion detection, or ascesntrol, that cannot be bypassed
by any guest virtual machine.

13.2.3 Applications in Distributed Environments

Distributed environments present a similar scenario asiairmachines in the aspect of
information-gap. We believe that the notion of hierarchaantexts enables a wide range
of functionality in distributed systems. Starting fromasghtforward features such as dis-
tributed performance isolation, contexts can potentigllya long way in enabling more

complex and interesting functionality such as custom bdltg and consistency policies

and so on.

13.3 Summary

Overall, we find that type-awareness and context-awarenes® storage stack enables
an interesting set of new functionality and optimizatiow#th minimal modifications to
existing infrastructures. We believe that our abstractiexplore an interesting and effec-
tive design choice in the large spectrum of work on alteugainterfaces to storage. As
described in Section 13.2, we believe that the insightssdérin this thesis apply broadly
in several other systems domains.

102

Bibliography

[1] A. Acharya, M. Uysal, and J. Saltz. Active disks: programg model, algorithms
and evaluation. Ifcighth International Conference on Architectural SupgdortPro-
gramming Languages and Operating Systepages 81-91, San Jose, CA, October
1998.

[2] M. K. Aguilera, M. Ji, M. Lillibridge, J. MacCormick, E. @rtli, D. Andersen,
M. Burrows, T. Mann, and C. A. Thekkath. Block-level secufdr network-attached
disks. InProceedings of the Second USENIX Conference on File andd&diech-
nologies (FAST '03)pages 159-174, San Francisco, CA, March 2003. USENIX As-
sociation.

[3] M. K. Aguilera, J. C. Mogul, J. L. Wiener, P. Reynolds, aAd Muthitacharoen.
Performance debugging for distributed systems of blaclebokProceedings of the
19th ACM Symposium on Operating Systems Principles (SCHPplges 74-89,
Bolton Landing, NY, October 2003. ACM SIGOPS.

[4] A. C. Arpaci-Dusseau and R. H. Arpaci-Dusseau. Infoioratind Control in Gray-
Box Systems. IrProceedings of the 18th ACM Symposium on Operating Systems
Principles (SOSP '01)pages 43-56, Banff, Canada, October 2001. ACM.

[5] A. C. Arpaci-Dusseau, R. H. Arpaci-Dusseau, N. C. Burnét E. Denehy, T. J.
Engle, H. S. Gunawi, J. A. Nugent, and F. I. Popovici. Tramsiag policies into
mechanisms with Infokernel. IRroceedings of the 19th ACM Symposium on Oper-
ating Systems Principles (SOSP '0Bages 90-105, Bolton Landing, NY, October
2003. ACM SIGOPS.

[6] A. Azagury, V. Dreizin, M. Factor, E. Henis, D. Naor, N. hatzky, O. Rodeh,
J. Satran, A. Tavory, and L. Yerushalmi. Towards an objemtest InMass Storage
Systems and Technologies (MSSDP3.

[7] P. Barham, B. Dragovic, K. Fraser, S. Hand, T. Harris, A, R. Neugebauer, |. Pratt,
and A. Warfield. Xen and the Art of Virtualization. Proceedings of the 19th ACM
Symposium on Operating Systems Principles (SOSR [8)es 164-177, Bolton
Landing, NY, October 2003. ACM SIGOPS.

[8] P. Barham, R. Isaacs, R. Mortier, and D. Narayanan. Magg@nline modelling
and performance-aware systemsPimceedings of the 2003 ACM Workshop on Hot

103

Topics in Operating Systems (HotOS ,I¥ages 85-90, Lihue, Hawaii, May 2003.
USENIX Association.

[9] S. Bauer and N. B. Priyantha. Secure Data Deletion foukifile Systems. In
Proceedings of the 10th Usenix Security Sympospeges 153-164, Washington,
DC, August 2001. USENIX Association.

[10] B. Bershad, S. Savage, P. Pardyak, E. G. Sirer, D. BebkeFiuczynski, C. Cham-
bers, and S. Eggers. Extensibility, safety, and perforraanadhe SPIN operating
system. InProceedings of the 15th ACM Symposium on Operating Systetiples
(SOSP '95) pages 267—284, Copper Mountain Resort, CO, December 1¢94.
SIGOPS.

[11] A. D. Birrell and R. M. Needham. A universal file serven IEEE Transactions on
Software Engineeringyolume SE-6, pages 450-453, September 1980.

[12] M. Blaze. A cryptographic file system for Unix. I[Rroceedings of the first ACM
Conference on Computer and Communications Secyrdages 9-16, Fairfax, VA,
1993. ACM.

[13] B. Callaghan, B. Pawlowski, and P. Staubach. NFS Var8i@rotocol Specification.
Technical Report RFC 1813, Network Working Group, June 1995

[14] P. Cao, E. W. Felten, A. R. Karlin, and K. Li. Implemembatand performance of
integrated application-controlled file caching, prefétc and disk schedulingACM
Transactions on Computer Systeri¥(4):311-343, 1996.

[15] M. Chen, E. Kiciman, E. Fratkin, A. Fox, and E. Brewernpoint: Problem deter-
mination in large, dynamic, internet services. Rroceedings of the 2002 Interna-
tional Conference on Dependable Systems and Networks (D8R), ages 595—
604, Bethesda, MD, June 2002. IEEE Computer Society.

[16] EMC Corporation. Symmetrix 3000 and 5000 Enterpriser&je Systems. Product
description guide, 1999.

[17] W. de Jonge, M. F. Kaashoek, and W. C. Hsieh. The logisi: dA new approach
to improving file systems. IRroceedings of the 19th ACM Symposium on Operating
Systems Principles (SOSP 'Q08plton Landing, NY, October 2003. ACM SIGOPS.

[18] T. E. Denehy, A. C. Arpaci-Dusseau, and R. H. Arpaci-8aai. Bridging the in-
formation gap in storage protocol stacks. Pnoceedings of the Annual USENIX
Technical Conferen¢gages 177-190, Monterey, CA, June 2002. USENIX Associa-
tion.

[19] E. W. Dijkstra. The structure of the "THE”-multiprograning system. IrlCommuni-
cations of the ACMvolume 11, Issue 5, pages 341-346, May 1968.

104

[20] D. Engler, M. F. Kaashoek, and J. O’'Toole Jr. Exokerrfgh: operating system ar-
chitecture for application-level resource management.Pioceedings of the 15th
ACM Symposium on Operating System Principles (SOSPp@ges 251-266, Cop-
per Mountain Resort, CO, December 1995. ACM SIGOPS.

[21] R. English and A. Stepanov. Loge : A self-organizingkde®ntroller. HP Labs,
Technical ReportHPL91(179), 1991.

[22] G. Banga and P. Druschel and J. C. Mogul. Resource GmrtaiA New Facility for
Resource Management in Server SystemsProceedings of the Third Symposium
on Operating Systems Design and Implementation (OSDI 1929es 45-58, New
Orleans, LA, February 1999. ACM SIGOPS.

[23] G. R. Ganger. Blurring the Line Between OSes and Stoidgeices. Technical
Report CMU-CS-01-166, CMU, December 2001.

[24] G. R. Ganger, M. Kirk McKusick, C. A. N. Soules, and Y. NatP Soft updates: a
solution to the metadata update problem in file systef@M Trans. Comput. Syst.
18(2):127-153, 2000.

[25] G. A. Gibson, D. F. Nagle, K. Amiri, J. Butler, F. W. Chand. Gobioff, C. Hardin,
E. Riedel, D. Rochberg, and J. Zelenka. A cost-effectivghtbandwidth storage
architecture. IrProceedings of the Eighth International Conference on Aechural
Support for Programming Langauges and Operating Syste@RI®S-VIII) pages
92-103, New York, NY, December 1998. ACM.

[26] Michel Gien. Evolution of the CHORUS Open Micro-kermgichitecture. InPro-
ceedings of the IEEE Workshop on Future Trends in Distridh@emputing Systems
pages 28-30, Cheju Island, Korea, August 1995.

[27] D. K. Gifford, R. M. Needham, and M. D. Schroeder. The @elile SystemCom-
munications of the ACM31(3):288-298, 1988.

[28] C. Gniady, A. R. Butt, and Y. C. Hu. Program-counterdxhpattern classification in
buffer caching. InProceedings of the 6th Symposium on Operating SystemsrDesig
and Implementation (OSDI 2004pages 395-408, San Francisco, CA, December
2004. ACM SIGOPS.

[29] H. Gobioff. Security for a High Performance Commodity Storage Sub-
system PhD thesis, Carnegie Mellon University, May 1999. cite-
seer.ist.psu.edu/article/gobioff99security.html.

[30] P. Gutmann. Secure Deletion of Data from Magnetic anlidSstate Memory. In
Proceedings of the Sixth USENIX UNIX Security Sympaggages 77-90, San Jose,
CA, July 1996. USENIX Association.

[31] H. S. Gunawi and A. C. Arpaci-Dusseau and R. H. Arpacs§rau. Deploying Safe
User-Level Network Services with icTCP. RFroceedings of the 6th Symposium on

105

Operating Systems Design and Implementation (OSDI 20&ges 317-332, San
Francisco, CA, December 2004. ACM SIGOPS.

[32] D. Hitz, J. Lau, and M. Malcolm. File System Design for/dRS File Server Appli-
ance. InProceedings of the USENIX Winter Technical Conferepages 235-245,
San Francisco, CA, January 1994.

[33] G. Hunt, J. Laurus, M. Abadi, M. Aiken, P. Barham, M. Fdhich, C. Hawblitzel,
O. Hodson, S. Levi, N. Murphy, B. Steensgaard, D. Tarditiwdbber, and B. Zill. An
Overview of the Singularity Project. Technical Report M$R-2005-135, Microsoft
Research, 2005.

[34] IBM. IBM System Storage DS6800ht t p: // www 03. i bm com syst ens/
st or age/ di sk/ ds6000/ i ndex. ht m ,2007.

[35] IBM. IBM System Storage DS8000 Turbo.http://ww 03.1ibm com
syst ens/ st orage/ di sk/ ds8000/ i ndex. ht m , 2007.

[36] M. Icaza, |. Molnar, and G. Oxman. The linux RAID-1, 4, 6de. InLinuxExpg
Research Triangle Park, NC, April 1997.

[37] Network Appliance Inc. Network Appliance FAS6000 S Product Data Sheet,
2006.

[38] InnoDB. Innobase oy. www.innodb.com, 2007.

[39] M. Ji, A. Veitch, and J. Wilkes. Seneca: remote mirrgrdone write. InProceedings
of the Annual USENIX Technical ConferenSan Antonio, TX, June 2003. USENIX
Association.

[40] N. Joukov and E. Zadok. Adding Secure Deletion to Youvdfae File System.
In Proceedings of the third international IEEE Security Int@tge Workshop (SISW
2005) pages 63-70, San Francisco, CA, December 2005. IEEE Cempatiety.

[41] M. F. Kaashoek, D. R. Engler, G. R. Ganger, H. M. BriceRoHunt, D. Mazieres,
T. Pinckney, R. Grimm, J. Jannotti, and K. Mackenzie. Amilmn performance
and flexibility on exokernel systems. Froceedings of 16th ACM Symposium on
Operating Systems Principlgsages 52—65, October 1997.

[42] J. Katcher. PostMark: A new filesystem benchmark. TemirReport TR3022,
Network Appliance, 1997www. net app. conftech_| i brary/3022. htn .

[43] S. King and P. Chen. Backtracking Intrusions Pimceedings of the 19th ACM Sym-
posium on Operating Systems Principles (SOSP, 'B8)ton Landing, NY, October
2003. ACM SIGOPS.

[44] J. J. Kistler and M. Satyanarayanan. Disconnectedatioerin the Coda file system.
In Proceedings of 13th ACM Symposium on Operating Systemsipleg pages
213-225, Asilomar Conference Center, Pacific Grove, CA,oBet 1991. ACM
Press.

106

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

L. Huston and R. Sukthankar and R. Wickremesinghe an&atyanarayanan and
G. R. Ganger and E. Riedel and A. Ailamaki. Diamond: A StorAgehitecture for
Early Discard in Interactive Search. Rroceedings of the Third USENIX Conference
on File and Storage Technologies (FAST 20Q#8ges 73—-86, San Francisco, CA,
March/April 2004. USENIX Association.

Z. Li, Z. Chen, S. M. Srinivasan, and Y. Zhou. C-miner:r¥ig block correlations

in storage systems. IRAST '04: Proceedings of the 3rd USENIX Conference on
File and Storage Technologigsages 173—-186, Berkeley, CA, USA, 2004. USENIX
Association.

J. Liedtke. On micro-kernel construction. Rroceedings of the Symposium on Op-
erating Systems Principlepages 237-250, Copper Mountain, CO, December 1995.

M. Sivathanu and A. C. Arpaci-Dusseau and R. H. Arpaas8eau. Evolving RPC
for active storage. IfProceedings of the 10th Conference on Architectural Suppor
for Programming Languages and Operating Systems (ASPlfagé¢s 264276, San
Jose, CA, October 2002. ACM.

J. MacCormick, N. Murphy, M. Najork, C. Thekkath, andZhou. Boxwood: Ab-
stractions as the foundation for storage infrastructure.Ploceedings of the 6th
Symposium on Operating Systems Design and Implement&@i®DI(2004) pages
105-120, San Francisco, CA, December 2004. ACM SIGOPS.

K. Magoutis, M. Devarakonda, and K. Muniswamy-Reddyald@pagos: Automat-
ically discovering application-data relationships inwmetked systems. liProceed-
ings of the 10th IFIP/IEEE International Symposium on Inétgd Network Manage-
ment pages 701-704, Munich, Germany, May 2007. IEEE.

M. K. McKusick and G. R. Ganger. Soft Updates: A Techmidor Eliminating Most
Synchronous Writes in the Fast Filesystem.Pimceedings of the Annual USENIX
Technical Conference, FREENIX Tragkages 1-18, Monterey, CA, JUNE 1999.
USENIX Association.

M. K. McKusick, W. N. Joy, S. J. Leffler, and R. S. Fabry. @sf file system for
UNIX. ACM Transactions on Computer Syste@(8):181-197, August 1984.

M. Mesnier, G. R. Ganger, and E. Riedel. Object basegt IEEE Communica-
tions Magazing41, August 2003. ieeexplore.ieee.org.

E. Miller, W. Freeman, D. Long, and B. Reed. Strong sigdor network-attached
storage. INProceedings of the First USENIX Conference on File and $@reech-
nologies (FAST 2002pages 1-13, Monterey, CA, January 2002. USENIX Associa-
tion.

J. Mogul, I. Brakmo, D. Lowell, D. Subhraveti, and J. MeoUnveiling the transport,
2003.

107

[56] C. Mohan, D. Haderle, B. Lindsay, H. Pirahesh, and Pw&ech. ARIES: a transac-
tion recovery method supporting fine-granularity lockinglgartial rollbacks using
write-ahead loggingACM Trans. Database Sys1.7(1):94-162, 1992.

[57] MySQL AB. MySQL: The World’s Most Popular Open Source tBlaase. www.
mysql . or g, July 2005.

[58] Overwrite, Secure Deletion Softwamwv. kyuzz. or g/ antirez/overwite.

[59] D. Patterson, G. Gibson, and R. Katz. A case for redundamays of inexpensive
disks (RAID). InProceedings of the ACM SIGMQPpages 109-116, June 1988.

[60] R. Patterson, G. Gibson, E. Ginting, D. Stodolsky, ari¢elenka. Informed Prefetch-
ing and Caching. IfProceedings of the 15th ACM Symposium on Operating System
Principles (SOSP '95)ages 79-95, Copper Mountain Resort, CO, December 1995.
ACM SIGOPS.

[61] R. Perlman. Secure Deletion of Data.Rroceedings of the third international IEEE
Security In Storage Workshop (SISW 200S8an Francisco, CA, December 2005.
IEEE Computer Society.

[62] E. Riedel. Active disks: Remote execution for netwatkached storage. Technical
Report CMU-CS-99-177, Carnegie-Mellon University, Noumn1999.

[63] M. RosenblumThe Design and Implementation of a Log-structured File&yusPhD
thesis, Electrical Engineering and Computer Sciences, [tiben Science Division,
University of California, 1992.

[64] J. Satran, K. Meth, C. Sapuntzakis, M. ChadalapakaEar#Eidner. Internet small
computer systems interface (iISCSI). Technical Report RFZD3Network Working
Group, April 2004.

[65] M. Seltzer, Y. Endo, C. Small, and K. Smith. An introdioctto the architecture of the
VINO kernel. Technical Report TR-34-94, EECS Departmerandrd University,
1994,

[66] M. I. Seltzer, G. R. Ganger, M. K. McKusick, K. A. Smith, &. N. Soules, and
C. A. Stein. Journaling versus soft updates: Asynchronoetafdata protection in
file systems. IfProc. of the Annual USENIX Technical Conferenuages 71-84, San
Diego, CA, June 2000. USENIX Association.

[67] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, Came, M. Eisler, and
D. Noveck. NFS Version 4 Protocol. Technical Report RFC 358&iwork Working
Group, April 2003.

[68] G. Sivathanu, S. Sundararaman, and E. Zadok. Typeehsits. InProceedings of
the 7th Symposium on Operating Systems Design and ImplatioenOSDI 2006)
pages 15-28, Seattle, WA, November 2006. ACM SIGOPS.

108

[69] M. Sivathanu, L. N. Bairavasundaram, A. C. Arpaci-Dems, and R. H. Arpaci-
Dusseau. Life or death at block-level. Rroceedings of the 6th Symposium on
Operating Systems Design and Implementation (OSDI 20&#)es 379—-394, San
Francisco, CA, December 2004. ACM SIGOPS.

[70] M. Sivathanu, V. Prabhakaran, A. C. Arpaci-Dusseaud Bn H. Arpaci-Dusseau.
Improving storage system availability with D-GRAID. Rroceedings of the Third
USENIX Conference on File and Storage Technologies (FAS%#)2pages 15-30,
San Francisco, CA, March/April 2004. USENIX Association.

[71] M. Sivathanu, V. Prabhakaran, F. I. Popovici, T. E. D@neA. C. Arpaci-Dusseau,
and R. H. Arpaci-Dusseau. Semantically-Smart Disk SystemsProceedings of
the Second USENIX Conference on File and Storage Techesl@eAST '03)pages
73-88, San Francisco, CA, March 2003. USENIX Association.

[72] I. Stoica, H. Abdel-Wahab, K. Jeffay, S. Baruah, J. Gehiand C. G. Plaxton. A
proportional share resource allocation algorithm for +t&ale, time-shared systems.
In IEEE Real-Time Systems SymposiD@acember 1996.

[73] M. Stonebraker. Operating System Support for DataldéseagementCommunica-
tions of the ACM24(7):412—-418, July 1981.

[74] J. D. Strunk, G. R. Goodson, M. L. Scheinholtz, C. A. Nuts, and G. R. Ganger.
Self-securing storage: Protecting data in compromisetesys InProceedings of
the 4th Usenix Symposium on Operating System Design andrmeptation (OSDI
'00), pages 165-180, San Diego, CA, October 2000. USENIX AsBonia

[75] Sun Microsystems. NFS: Network file system protocolcsipeation. Technical Re-
port RFC 1094, Network Working Group, March 1989.

[76] Seagate Technology. n Momentus 5400 PSD Hybrid Hard d3riv htt p:
[I ww. seagat e. com ww/ en- us/ product s/ | apt ops/ nonent us/
nmoment us_5400_psd_hybri d/, 2007.

[77] E. Thereska, B. Salmon, J. Strunk, M. Wachs, M. Abd-Edk, J. Lopez, and G. R.
Ganger. Stardust: Tracking activity in a distributed st@aystem. IrProceedings
of the Joint International Conference on Measurement andiéfing of Computer
Systems (SIGMETRICS’Qages 3—-14, Saint Malo, France, June 2006. ACM.

[78] A. Tomkins, R. Patterson, and G. Gibson. Informed MBltocess Prefetching and
Caching. InProceedings of the 1997 ACM SIGMETRICS Conference on Measur
ment and Modeling of Computer Systemages 100-114, Seattle, WA, June 1997.
ACM SIGOPS.

[79] Transaction Processing Performance Council. TPC Berack C, Standard Specifi-
cation.www. t pc. or g/ t pcc, 2004.

[80] T. Ts'o. E2fsprogs: Ext2/3/4 filesystem utilities, Z00ht t p: / / e2f spr ogs.
sour cef orge. net.

109

[81]

[82]

[83]

[84]

[85]

[86]

[87]

[88]

[89]

[90]

S. Tweedie. Journaling the Linux ext2fs filesystem.LInuxExpo Conference Pro-
ceedingsMay 1998.

VERITAS Software. VERITAS file server edition performze brief: A Post-
Mark 1.11 benchmark comparison. Technical report, Vel8aiware Corporation,
June 1999.htt p://eval . veritas. conf webfil es/docs/fsedition-
post mar k. pdf .

M. Wachs, M. Abd-El-Malek, E. Thereska, and G. R. Gang&gon: Performance
insulation for shared storage serversPimceedings of the Fifth USENIX Conference
on File and Storage Technologies (FAST '0Fages 61-76, San Jose, CA, February
2007. USENIX Association.

C. Waldspurger. Lottery and Stride Scheduling: Flexible Proportional-8h&e-
source ManagementPhD thesis, Department of Electrical Engineering and Com-
puter Science, Massachusetts Institute of TechnologyeSdger 1995.

R. Y. Wang, T. E. Anderson, and D. A. Patterson. Virtua based file systems for

a programmable disk. IRroceedings of the Third Symposium on Operating Systems
Design and Implementation (OSDI 1998ages 29-44, New Orleans, LA, February
1999. ACM SIGOPS.

Y. Wang and A. Merchant. Proportional-share schedyfor distributed storage sys-
tems. InProceedings of the Fifth USENIX Conference on File and $g@igechnolo-
gies (FAST '07)pages 47-60, San Jose, CA, February 2007. USENIX Associati

C. Weddle, M. Oldham, J. Qian, A. A. Wang, P. Reiher, and&kGenning. PARAID:

A gear-shifting power-aware RAID. IRroceedings of the Fifth USENIX Conference
on File and Storage Technologies (FAST 'Q¥ages 245-260, San Jose, CA, February
2007. USENIX Association.

J. Wilkes, R. Golding, C. Staelin, and T. Sullivan. Th® MutoRAID Hierarchical
Storage SystemACM Transactions on Computer Systei¥(1):108-136, February
1996.

C. P. Wright, M. Martino, and E. Zadok. NCryptfs: A seeuand convenient cryp-
tographic file system. IProceedings of the Annual USENIX Technical Confergnce
pages 197-210, San Antonio, TX, June 2003. USENIX Assaciati

Q. Zhu, Z. Chen, L. Tan, Y. Zhou, K. Keeton, and J. Wilkésibernator: Helping
disk arrays sleep through the winter. Pmoceedings of the 20th ACM Symposium on
Operating Systems Principles (SOSP 0padges 177-190, Brighton, UK, October
2005. ACM Press.

110

