
Unionfs: User- and Community-Oriented Development
of a Unification File System

David Quigley, Josef Sipek, Charles P. Wright, and Erez Zadok
Stony Brook University

{dquigley,jsipek,cwright,ezk}@cs.sunysb.edu

Appears in the proceedings of the 2006 Ottawa Linux Symposium (OLS 2006)

Abstract

Unionfs is a stackable file system that virtually
merges a set of directories (called branches)
into a single logical view. Each branch is as-
signed a priority and may be either read-only
or read-write. When the highest priority branch
is writable, Unionfs provides copy-on-write se-
mantics for read-only branches. These copy-
on-write semantics have lead to widespread
use of Unionfs by LiveCD projects including
Knoppix and SLAX. In this paper we describe
our experiences distributing and maintaining
an out-of-kernel module since November 2004.
As of March 2006 Unionfs has been down-
loaded by over 6,700 unique users and is used
by over two dozen other projects. The total
number of Unionfs users, by extension, is in the
tens of thousands.

1 Introduction

Unionfs is a stackable file system that allows
users to specify a series of directories (also
known as branches) which are presented to
users as one virtual directory even though the
branches can come from different file systems.
This is commonly referred to as namespace

unification. Unionfs uses a simple priority sys-
tem which gives each branch a unique priority.
If a file exists in multiple branches, the user
sees only the copy in the higher-priority branch.
Unionfs allows some branches to be read-only,
but as long as the highest-priority branch is
read-write, Unionfs uses copy-on-write seman-
tics to provide an illusion that all branches are
writable. This feature allows Live-CD develop-
ers to give their users a writable system based
on read-only media.

There are many uses for namespace unifica-
tion. The two most common uses are Live-
CDs and diskless/NFS-root clients. On Live-
CDs, by definition, the data is stored on a read-
only medium. However, it is very convenient
for users to be able to modify the data. Uni-
fying the read-only CD with a writable RAM
disk gives the user the illusion of being able to
modify the CD. Maintaining an identical sys-
tem configuration across multiple diskless sys-
tems is another application of Unionfs. One
simply needs to build a read-only system im-
age, and create a union for each diskless node.

Unionfs is based on the FiST stackable file sys-
tem templates, which provide support for lay-
ering over a single directory [12]. As shown
in Figure 1(a), the kernel’s VFS is responsi-
ble for dispatching file-system–related system

1



NFS

nfs_rename()

FiST

User Process
rename()

vfs_rename()

Virtual File System

Ke
rn

el
U

se
r

fist_rename()

(a) Wrapfs layers over a single directory.

Unionfs

... NFStmpfs
tmpfs_rename() nfs_rename()

RORW

User Process
rename()

vfs_rename()

unionfs_rename()

Virtual File System

Ke
rn

el
U

se
r

(b) Unionfs layers over multiple directories.

Figure 1: User processes issue system calls, which the kernel’s virtual file system (VFS) directs to stackable
file systems. Stackable file systems in turn pass the calls down to lower-level file systems (e.g., tmpfs or NFS).

calls to the appropriate file system. To the VFS,
a stackable file system appears as if it were a
standard file system, but instead of storing or
retrieving data, a stackable file system passes
calls down to lower-level file systems that are
responsible for data storage and retrieval. In
this scenario, NFS is used as the lower-level
file system, but any file system can be used
to store the data (e.g., Ext2, Ext3, Reiserfs,
SQUASHFS, isofs, and tmpfs). To the lower-
level file systems, a stackable file system ap-
pears as if it were the VFS. This makes stack-
able file system development difficult, because
the file system must adhere to the conventions
both of file systems (for processing VFS calls)
and of the VFS (for making VFS calls).

As shown in Figure 1(b), Unionfs extends the
FiST templates to layer over multiple direc-
tories, unify directory contents, and perform
copy-on-write. In this example, Unionfs is
layered over two branches: (1) a read-write
tmpfs file system and (2) a read-only NFS file
system. The contents of these file systems are
virtually merged, and if operations on the NFS
file system return the read-only file system er-
ror code (EROFS) then Unionfs transparently
copies the files to the tmpfs branch.

We originally released Unionfs in November
2004, after roughly 18 months of development
as a research project [10, 11]. We released
Unionfs as a standalone kernel module because
that was the most expedient way for users to
begin using it and it required less initial ef-
fort on our part. Unionfs was quickly adopted
by several LiveCDs such as SLAX [7] (De-
cember 2004) and Knoppix [5] (March 2005).
As of March 2006, Unionfs has been down-
loaded by over 6,700 users from 81 countries
and is distributed as part of other projects. Our
mailing list currently has 336 subscribers with
53 of them subscribed to our CVS update list.
Unionfs is an integral part of several LiveCDs,
so the actual number of Unionfs users is much
larger.

Maintaining Unionfs out side of the kernel has
both benefits and complications. By maintain-
ing the tree out side of the kernel, our user
base is expanded: users can still use their ven-
dor’s kernel, and we are able to support several
kernel versions. We were also able to release
Unionfs more frequently than the kernel. How-
ever, this makes our code more complex since
we must deal with changing interfaces between
kernel versions. It also raises questions about

2



the point at which support for a particular older
kernel version should be dropped. At this point,
Unionfs has become established enough that
we are moving towards a release that is ready
for mainline kernel submission.

Unionfs has complex allocation schemes (par-
ticularly for dentry and inode objects), and
makes more use of kmalloc than other file
systems. One hurdle we had to overcome
was lack of useful memory-allocation debug-
ging support. The memory-allocation debug-
ging code in recent -mm kernels does not pro-
vide sufficient debugging information. In our
approach, we log kmalloc and dentry alloca-
tions, and then post-process the log to locate
memory leaks and other errors.

In our efforts to move toward kernel inclusion
we have come across many aspects that conflict
with maintaining an out-of-kernel module. One
of the main issues is the ability to separate re-
search code from practical code. Features such
as persistent inodes and atomically performing
certain operations increase code complexity,
conflicting with the mantra “less code is better
code.” We also had to change the way we sepa-
rate file system components to provide simpler
and more easily maintainable code. In addition
to this, we also have to keep up with changes in
kernel interfaces such as the change of locking
primitives introduced in Linux 2.6.16.

The rest of this paper is organized as follows.
In Section 2 we describe Unionfs use cases. In
Section 3 we describe the challenges of main-
taining an out-of-tree module. In Section 4 we
describe some limitations of Unionfs. In Sec-
tion 5 we present a brief performance evalua-
tion of Unionfs. Finally, we conclude in Sec-
tion 6.

2 Use Cases

We have identified three primary use cases for
Unionfs. All of these common use cases lever-
age Unionfs’s copy-on-write semantics. The
first and most prevalent use of Unionfs is in
LiveCDs. The second is using Unionfs to pro-
vide a common base for several NFS-mounted
machines. The third is to use Unionfs for snap-
shotting.

LiveCDs. LiveCDs allow users to boot Linux
without modifying any data on a hard disk.
This has several advantages:

• Users can try Linux without committing to
it [5, 7].

• Special-purpose open-source software can
be distributed to non-technical users (e.g.,
for music composition [4]).

• System administrators can rescue ma-
chines more easily [2].

• Many similar machines can be set up with-
out installing software (e.g., in a cluster
environment [9], or at events that require
certain software).

The simplest use of Unionfs for LiveCDs uni-
fies a standard read-only ISO9660 file system
with a higher-priority read-write tmpfs file
system. Current versions of Knoppix [5] use
such a configuration, which allows users to in-
stall and reconfigure programs.

Knoppix begins its boot sequence by loading
an initial RAM disk (initrd) image of an
Ext2 file system and then executing a shell
script called /linuxrc. The linuxrc script
first mounts the /proc and /sys file systems.
Next, Knoppix loads various device drivers

3



(e.g., SCSI, IDE, USB, FireWire) and mounts
a compressed ISO9660 image on /KNOPPIX.
After the Knoppix image is mounted, the
Unionfs module is loaded. Next a tmpfs
file system is mounted on /ramdisk. Once
Unionfs is mounted, this RAM disk becomes
the destination for all of the changes to the CD-
ROM. Next, the directory /UNIONFS is cre-
ated and Unionfs is mounted on that directory
with the following command:

mount -t unionfs \
-o dirs=/ramdisk=rw:/KNOPPIX=ro \
/UNIONFS /UNIONFS

The -t unionfs argument tells the mount
program that the file system type is Unionfs.
The -o dirs=/ramdisk=rw,/KNOPPIX=ro

option specifies the directories that make up the
union. Directories are listed in a order of pri-
ority, starting with the highest. In this case,
the highest-priority directory is /ramdisk,
which is read-write. The /ramdisk directory
is unified with /KNOPPIX, which is read-only.
The first /UNIONFS argument is a placeholder
for the device name in /proc/mounts, and
the second /UNIONFS argument is the lo-
cation where Unionfs is mounted. Finally,
linuxrc makes symbolic links from the root
directory to /UNIONFS. For example, /home
is a link to /UNIONFS/home. At this point
the linuxrc script exits, and init is exe-
cuted.

Other LiveCDs (notably SLAX [7]) use
Unionfs both for its copy-on-write semantics
and as a package manager. A SLAX distri-
bution consists of several modules, which are
essentially SQUASHFS file system images [6].
On boot, the selected modules are unified to
create a single file system view. Unifying the
file systems makes it simple to add or remove
packages from the LiveCD, without regener-
ating entire file system images. In addition

to the SQUASHFS images, the highest-priority
branch is a read-write tmpfs which provides
the illusion that the CD is read-write.

SLAX uses the pivot_root system call so
that the root file system is indeed Unionfs,
whereas Knoppix creates symbolic links to
provide the illusion of a Unionfs-rooted CD.
SLAX also begins its boot sequence by load-
ing an Ext2 initrd image and executing
linuxrc, which mounts /proc and /sys.
Next, SLAX mounts tmpfs on /memory. The
next step is to mount Unionfs on /union with
a single branch /memory/changes using
the following command:

mount -t unionfs \
-o dirs=/memory/changes=rw
unionfs /union

Aside from the branch configuration, the ma-
jor difference between this command and the
one from Knoppix is that instead of us-
ing /UNIONFS as a placeholder, the text
unionfs is used instead. We recommend this
approach (or better yet, the string none), be-
cause it is less likely to be confused with an
actual path or argument.

After mounting the mostly empty Unionfs,
SLAX performs hardware detection. The next
step is to load the SLAX modules, which are
equivalent to packages. The first step in loading
a module is to mount the SQUASHFS image on
/memory/images. After the SQUASHFS
image is mounted, SLAX calls our unionctl
to insert the module into the Union. The fol-
lowing command is used to insert SLAX’s ker-
nel module:

unionctl /union --add \
--after 0 --mode ro \
/memory/images/01_kernel

4



rootfs / rootfs rw 0 0

/dev/root /mnt/live ext2 rw,nogrpid 0 0

/proc /mnt/live/proc proc rw 0 0

tmpfs /mnt/live/memory tmpfs rw 0 0

unionfs / unionfs rw,dirs=/mnt/live/memory/changes=rw:...:/mnt/live/

→memory/images/02_core.mo=ro:/mnt/live/memory/images/01_kernel.mo=ro

→ 0 0

/dev/hdb /mnt/live/mnt/hdb iso9660 ro 0 0

/dev/hdb /boot iso9660 ro 0 0

/dev/loop0 /mnt/live/memory/images/01_kernel.mo squashfs ro 0 0

/dev/loop2 /mnt/live/memory/images/02_core.mo squashfs ro 0 0

. . .

Figure 2: The /proc/mounts file on SLAX after linuxrc is executed. Note that the Unionfs line has
been split (denoted by→). For brevity, we exclude seven additional SLAX packages.

The --after 0 argument instructs
Unionfs to insert the new directory,
/memory/images/01_kernel, af-
ter the first branch, and the --mode ro
argument instructs Unionfs to mark this
branch read-only. This process is re-
peated for each module. SLAX then
creates /union/proc, /union/sys,
/union/dev, /union/tmp, and
/union/mnt/live. SLAX then changes
the present working directory to /union and
unmounts /sys. Next, Unionfs is made the
root file system using pivot_root:

pivot_root . mnt/live

This command makes Unionfs the root file sys-
tem, and remounts the initial RAM disk on
/union/mnt/live. Finally, SLAX starts
init using Unionfs as the root file system:

/usr/bin/chroot . sbin/init

After this procedure, SLAX produces the
/proc/mounts file seen in Figure 2.

NFS-mounted machines. Another use of
Unionfs is to simplify the administration of
diskless machines. A set of machines can share
a single read-only NFS root file system. This
enables administrators to maintain a common
image for all of the machines. This root file sys-
tem is then unified with a higher-priority read-
write branch so that users can customize the
machine or save data. If persistence is not re-
quired, then a tmpfs file system can be used as
the highest priority branch. If persistence is re-
quired, then a read-write NFS mount or a local
disk could be used for the user’s files.

Figure 3 shows a sample NFS
/etc/exports file for a diskless client
configuration. To ensure that none of the
clients can tamper with the shared binaries
on the server, we export the /bin directory
read-only. We then export the persistent
storage folder for each client individually. This
ensures that one client cannot tamper with the
persistent folder of another.

Figure 4 shows the commands used to create
a union from a shared binary directory and to
provide a persistent backing store for that di-
rectory on a second NFS mount. The first com-
mand mounts /bin for our client. The next
command mounts the persistent data store for

5



/bin client1(ro) client2(ro)

/store/client1 client1(rw)

/store/client2 client2(rw)

Figure 3: The contents of /etc/exports on the server which contains the clients’ binaries.

mount -t nfs server:/bin /mnt/nfsbins

mount -t nfs server:/store/‘hostname -s‘ /mnt/persist

mount -t unionfs none /bin -o dirs=/mnt/persist:/mnt/nfsbins=nfsro

Figure 4: Creating a union with two NFS-based shares for binaries and persistent data.

our client based on its hostname. Finally, we
create a union containing the exported /bin
and /store/‘hostname -s‘ directories
and mount it at /bin on our local client. To
have a full system that is exported via NFS, one
simply exports / instead of just /bin. This
permits a full system to be exported to the disk-
less clients. However, such a set requires the
additional steps present in LiveCDs which al-
lows you to use /proc and /dev.

Snapshotting. The previous usage scenarios
all assumed that one or more components of
the union were read-only by necessity (either
enforced by hardware limitations or the NFS
server). Unionfs can also provide copy-on-
write semantics by logically marking a physi-
cally read-write branch as read-only. This en-
ables Unionfs to be used for file system snap-
shots. To create a snapshot, the unionctl
tool is used to invoke branch management
ioctls that dynamically modify the union
without unmounting and remounting Unionfs.
First, unionctl is used to add a new high-
priority branch. For example, the following
command adds /snaps/1 as the highest pri-
ority branch to a union mounted on /union:

unionctl /union --add /snaps/1

Next, unionctl is called for each existing
branch to mark them as read-only. The follow-
ing command will mark the branch /snaps/0
read-only:

unionctl /union --mode /snaps/0 ro

Any changes made to the file system take place
only in the read-write branch. Because the
read-write branch has a higher priority than all
the other branches, users see the updated con-
tents.

3 Challenges

While developing Unionfs we encountered sev-
eral issues that we feel developers should ad-
dress before they decide whether or not to aim
for kernel inclusion. Backward compatibility,
changes in kernel interfaces, and experimental
code are three such issues. In section 3.1, we
consider the advantages and disadvantages of
maintaining a module outside of the mainline
kernel. In section 3.2, we discuss the implica-
tions of developing a module that is aiming for
inclusion in the mainline Linux kernel.

6



3.1 Developing an out of kernel module

When first releasing Unionfs, we wanted to
ensure that as many people as possible could
use it. To accommodate this, we attempted to
provide backward compatibility with past ker-
nel versions. Initially, when Unionfs supported
Linux 2.4 it was easy to keep up with chang-
ing kernels, since most of the changes between
kernel versions were bug fixes.

In December of 2004, Unionfs was ported to
Linux 2.6 which introduced additional com-
plications. VFS changes between 2.4 and 2.6
(e.g., file pointer update semantics and lock-
ing mechanisms) required #ifdefed sections
of code to provide backward compatibility with
Linux 2.4. In addition, since we were support-
ing Linux 2.6, we had to be conscious of the
fact that the 2.6 kernel interfaces could change
between versions.

The benefit of supporting multiple kernel ver-
sions was that we could enable the use of
Unionfs on many different platforms. Although
LiveCD creators mostly preferred Linux 2.6
kernels, we found that some of them were
still working with 2.4. In addition, several
people were using Unionfs for embedded de-
vices, which at the time tended to use 2.4 ker-
nels. However, providing backward compati-
bility came with a few disadvantages and raised
the question of how far back we would go. Be-
cause there is no standard kernel for LiveCD
developers, there were bug reports and compat-
ibility issues across many different kernel ver-
sions.

Although Unionfs supported multiple kernel
versions, we had to choose which versions to
focus on. We increased the minimum kernel
version Unionfs required if: (1) it would make
us #ifdef code that was already #ifdefed
for backward compatibility, or (2) if it made
the code overly complex. After Unionfs was

ported to Linux 2.6, we found ourselves re-
peatedly raising the minimum kernel version
due to the large number of interface-breaking
changes. For example, 2.6.11 introduced the
unlocked_ioctl operation. The most inva-
sive change has been 2.6.16’s new mutex sys-
tem. Even though we have stopped support-
ing backward compatibility, users often submit
backward-compatibility patches which we ap-
ply but do not support.

Along with backward compatibility came in-
creased code complexity. Although backward
compatibility does not generally add much
code, the readability of the code decreased
since we kept many sections of #ifdefed
code. Moreover, it made debugging more dif-
ficult as Unionfs could run in more environ-
ments. In February of 2005, we decided to drop
support for Linux 2.4 to reduce the size and
complexity of the code. By placing the restric-
tion that Unionfs will only support Linux 2.6,
we were able to cut our code base by roughly
5%. Although this is not a large percentage,
this increased maintainability greatly since it
lowered the number of environments that we
had to maintain and test against. By removing
Linux 2.4 from our list of supported kernels, we
eliminated eleven different kernel versions that
we were supporting. This also allowed us to
remove a number of bugs that were related to
issues with backward compatibility and which
applied to Linux 2.4 only. Before dropping sup-
port for a specific kernel version, we release a
final version of Unionfs that supports that ker-
nel version.

Even though we removed 2.4 support from
Unionfs, it did not end the problems of back-
ward compatibility. With Linux 2.6, a new de-
velopment process was introduced where code
and interface changes that would previously
have been introduced in a development ker-
nel are placed into the stable branch. Linux
2.6.16 introduced a new set of locking mech-

7



anisms where semaphores were replaced with
mutexes. Although this is one of the larger
changes we have seen, there are many such
changes that force us to deal with backward
compatibility within the 2.6 branch itself. This
led us to decide in February of 2006 to drop
backward compatibility completely and only
work with the latest release candidate so that
we can closely follow the kernel on our path to
inclusion. Since we make a release of Unionfs
before every major change we still have work-
ing copies of Unionfs for Linux 2.4 and earlier
versions of Linux 2.6.

3.2 Kernel Inclusion

In our efforts to prepare Unionfs to be submit-
ted to the kernel mailing list for discussion, we
had to address three major issues. First, due
to the incremental nature of Unionfs’s develop-
ment, the code base needed large amounts of re-
organization to conform to kernel coding con-
ventions. Second, Unionfs user-space utilities
use older methods for interfacing with the ker-
nel that needed to be replaced by newer more
desired methods, such as the use of configfs
and sysfs. Finally, features that were placed
in Unionfs for research interests needed to be
removed to make the code base more practical.

Since the Linux kernel is a massive project with
people contributing code to every component,
there are very strict guidelines for the way code
should be organized and formatted. While re-
viewing the code base for Unionfs, we realized
that some of the functions were unnecessarily
long. Even now, due to the complex fan-out
nature of Unionfs, many of the functions are
longer than we would like due to loops and con-
ditionals.

When looking into the methods available for
a user-mode process to communicate with our
file system, we noticed one trend. Every time

a person introduces an ioctl, there is an ob-
jection and a suggestion to find a better way of
handling what is needed. Because Unionfs uses
several ioctls for adding branches, mark-
ing branches read-only, and identifying which
branch a file is on, we decided that other meth-
ods should be explored. The preferred methods
for modifying and viewing kernel object states
are configfs and sysfs. Although both are
good options, they both have shortcomings that
prevented us from using them.

In the case of configfs, the major concern
was that the module is optional. This issue
could be addressed by marking configfs to
be selected by Unionfs, but that ignores a larger
issue. Many of the users of Unionfs are us-
ing it in embedded devices and on LiveCDs.
If we use configfs to control Unionfs’s
configuration, we are forcing those users to
use a larger kernel image that exceeds their
memory and storage constraints. With sysfs
we came across the issue of not having any
file-system–related kernel objects defined by
sysfs. To use sysfs, we would have to de-
sign and implement a complete set of VFS ker-
nel objects for sysfs and submit them for ker-
nel inclusion in addition to Unionfs.

To solve our problem of using ioctls for
branch manipulation, we decided to use the re-
mount functionality that already exists in the
kernel. Remount allows one to change the con-
figuration of a mount while leaving its files
open so processes can continue to use the files
after the remount operation is complete. This
lets us provide the ability to change branch con-
figurations easily without the need for ioctls,
by parsing the new options that are passed in
and applying the differences between the new
and old options. However, this still requires us
to maintain two ioctls for querying files and
another for debugging.

As of this writing, we are addressing a problem
associated with crossing mount points within

8



a union. The most common occurrence of
this problem is when a LiveCD performs a
pivot_root or a chroot to a Unionfs
mounted path. Currently LiveCD developers
mount Unionfs and then they proceed to move
the mount points for /proc and /sys to
/unionfs/proc and /unionfs/sys, re-
spectively. After this they pivot_root to
the union so that proc and sys are visible.
The reason that this problem exists is that cur-
rently Unionfs stacks on top of the superblock
for each branch. This presents a problem be-
cause it does not give us access to the data
structures that permit us to cross mount points.
Our solution to this problem is to redo how
Unionfs stacks on top of the branches by stack-
ing on a dentry and a vfsmount structure.
This will give us the additional information that
is needed to build the structures necessary to
cross mount points. Even with the ability to
cross mount points, it is not advised to stack
on pseudo file systems such as sysfs and
procfs. Since sysfs and procfs are not
only accessed through Unionfs, but rather are
also manipulated directly by the kernel, incon-
sistencies can arise between the caches used by
Unionfs and these file systems.

Because Unionfs started as a research project,
it had many theoretically interesting features
from a design perspective, which users did not
need in practice. Unionfs contains functionality
for copyup, this occurs when a file that exists on
a read-only branch is modified. When the file
is modified Unionfs attempts to copy the file
up to the nearest read-write branch. Some of
the early features of Unionfs included several
copyup modes, which allowed copyup to take
the permissions of the current user, the original
permissions of the file, or a set of permissions
specified at mount time.

In addition, there were several delete modes
which performed one of three actions:

• delete=whiteout (default) locates
the first instance of the file and unlinks
only that instance. This mode differs from
delete=first in that it will create a
whiteout for that file in the branch it re-
moved the file from.

• delete=all finds every instance of the
file across all branches and unlink them.

• delete=first located the first in-
stance of the file and unlinked only that
instance without creating a whiteout.

In the case of the delete mount option we found
that no one was using the delete=first
and delete=all options and that the
delete=whiteout option was strongly pre-
ferred. Because our user base is pre-
dominantly composed of LiveCD develop-
ers, delete=first was removed and
delete=all is only present if Unionfs is
compiled with UNIONFS_DELETE_ALL de-
fined.

We also had several modes to describe permis-
sions with which a whiteout was to be cre-
ated. When a file is deleted Unionfs will cre-
ate a .wh.name file where name is the name
of the file. This tells Unionfs that it should
remove this file from the view presented to
the user. These options were removed since
we found that copyup=currentuser and
copyup=mounter went completely unused
by our users:

• copyup=preserve (default) creates
the new file with the same permissions that
existed on the file which was unlinked.

• copyup=currentuser creates the
new file with the UID, GID, and umask
taken from the current user.

• copyup=mounter creates the new file
with UID, GID, and permissions specified
in the options string of the Unionfs mount.

9



Although the extra options were interesting re-
search concepts, they were not practical for
what our users were using Unionfs for and only
served to increase code complexity.

Another instance of where ideas that are good
for research purposes fail in practice is in the
creation of whiteouts. Initially, when a white-
out was created while removing a file, the
whiteout was created atomically via rename
and was then truncated. This was done so that
if the process failed half-way through, there
would not be any ambiguity about whether the
file existed. This added additional complex-
ity to the code without sufficient gains in ei-
ther performance or functionality. Since then,
we have removed atomic whiteout creation due
to the inherent difficulty of maintaining the se-
mantics of open, yet deleted, files.

4 Limitations

During the development of Unionfs, we had
to make certain design decisions to help the
overall implementation. Such decisions often
impose limitations. We have identified three
such limitations in Unionfs: modification of
lower-level branches, mmap copyup with dy-
namic branch management, and scalability. We
discuss each in detail below.

Modification of lower-level branches. The
current design of Unionfs and other stackable
file systems on Linux results in double caching
of data and meta-data. This is an unfortu-
nate side-effect of the way the Linux VFS is
implemented—there is no easy coordination
between objects cached at different levels [1].
This forces us to maintain a list of lower VFS
objects for each upper object. For example, a
Unionfs inode contains an array of pointers to
all the corresponding inodes on the underlying

branches. Unionfs has to copy certain informa-
tion from the underlying inode for a file to the
Unionfs inode: metadata information such as
file size, access permissions, group and owner,
and so on.

Since Unionfs expects the underlying inode
(and therefore the file) to have certain proper-
ties about the file (e.g., have a size consistent
with that saved in the Unionfs inode) it is pos-
sible for inconsistencies to appear if a process
modifies the lower inode directly without go-
ing through Unionfs. We encourage our users
to avoid modifying the lower branches directly.
This works well in scenarios where many of the
branches are stored on read-only media (e.g.,
LiveCDs). However, there are some people
who want to use Unionfs to provide a unified
view of several frequently changing directories.
Moreover, if users delete or rename files or di-
rectories, then Unionfs points to the older ob-
ject, again yielding an inconsistent view.

mmap copyup with dynamic branch manage-
ment. When Unionfs was first implemented
in early 2004, only a bare-bone functionality
existed: the full set of system calls was not
implemented. Some of these system calls, in
particular mmap, are required for certain pro-
grams to function properly. The mmap sys-
tem call allows programs to map portions of
files into a process’s address space. Once a file
is mmapped, a process can modify it by sim-
ply writing to the correct location in memory.
Currently, Unionfs does not natively imple-
ment mmap operations, but rather passes them
down unchanged to the lower-level file system.
This has the advantage of preventing double
caching of data pages and its associated per-
formance and consistency pitfalls. However,
this comes with the drawback that Unionfs
does not receive notification of readpage
or writepage calls, so it cannot perform
copyup during a commit_write. The prob-

10



lem occurs when a process tries to modify a
page backed by a file on a read-only medium.
Just like in the regular open-for-write case, we
must copyup the file to a writable branch and
then perform the correct address space opera-
tions.

In March 2006, Shaya Potter, a Unionfs user
and contributor, released a partial implemen-
tation of mmap. The major problem with it
is the lack of copyup functionality while us-
ing mmap. Additionally, one has to be careful
with the implementation since certain file sys-
tems (e.g., OCFS2, GFS) must take additional
steps before calling prepare_write and
commit_write. We have made this mmap
functionality a compile-time option which is
off by default.

Scalability. Although we do not consider it
as serious as the two previous issues, the last
issue is scalability. Even though most Unionfs
users want two to six branches, there are some
that want more. In its current state, the max-
imum number of branches that Unionfs sup-
ports is 1,024 due to the use of FD_SET
and related macros. However, the overhead
of using Unionfs becomes high with just 200
branches, even for simple operations such as
readdir and lookup (see our evaluation in
Section 5). The problem with these operations
is that Unionfs needs to iterate through all the
branches; for each branch it needs to determine
whether or not it is a duplicate, whiteout, and
so on. Currently, we are storing stacking infor-
mation in a simple linear array. This structure,
while easy to access and use, has a search com-
plexity of O(n).

Of course, there are other operations, such
as llseek operating on directories, which
should be examined and possibly optimized.
For other operations, Unionfs is a bit more effi-
cient because it can use the dentry cache objects
that have been populated by lookup.

5 Evaluation

We conducted our benchmarks on a 1.7GHz
Pentium 4 machine with 1.25GB of RAM. Its
system disk was a 30GB 7,200 RPM Western
Digital Caviar IDE formatted with Ext3. In ad-
dition, the machine had one Maxtor 7,200 RPM
40GB IDE disk formatted with Ext2, which we
used for the tests. We remounted the lower file
systems before every benchmark run to purge
file system caches. We used the Student-t dis-
tribution to compute the 95% confidence inter-
vals for the mean elapsed, system, user, and
wait times. Wait time is the elapsed time less
CPU time used and consists mostly of I/O, but
process scheduling can also affect it. In each
case, the half-widths of the confidence inter-
vals were less than 5% of the mean. The test
machine was running a Fedora Core 4 Linux
distribution with a vanilla 2.6.16-rc6 kernel.

In all the tests, the highest-priority branch was
read-write, while all the other branches, if any,
were read-only. More detailed evaluation can
be found in our journal article [10].

5.1 Evaluation Workloads

We chose to perform two benchmarks to test
the extreme cases—on one end of the spectrum
there are CPU-intensive workloads, while on
the other end there are I/O-intensive workloads.

OpenSSH build. Building OpenSSH [8] is a
CPU-intensive benchmark. We used OpenSSH
4.0p1, which contains 74,259 lines of code. It
performs several hundred small configuration
tests, and then it builds 155 object files, one
library, and four scripts. This benchmark con-
tains a fair mix of file system operations, repre-
senting a workload characteristic of users. The
highest-priority branch was read-write, while
all the other branches, if any, were read-only

11



Postmark. Postmark v1.5 simulates the op-
eration of electronic mail servers [3]. It per-
forms a series of file system operations such
as appends, file reads, creations, and deletions.
This benchmark uses little CPU but is I/O in-
tensive. We configured Postmark to create
20,000 files, between 512–10,240K bytes in
size, and perform 200,000 transactions. We
used 200 subdirectories to prevent linear direc-
tory look ups from dominating the results. All
of the branches were read-write, to distribute
the load evenly across branches. This is be-
cause Postmark does not have an initial work-
ing set, therefore using read-only branches does
not make sense for this benchmark.

5.2 Results

On average, Unionfs incurred only 10.7% max-
imum overhead over Ext2 on the OpenSSH
compile, and 71.7% overhead over Ext2 on
Postmark. These results are somewhat worse
compared to our previous benchmarks [10].
However, the difference in the OpenSSH com-
pile benchmark appears mainly in I/O wait
time, which could be contributed to copyup tak-
ing place. We did not use copyup in our previ-
ous benchmark.

OpenSSH build. We performed the
OpenSSH compile with two different lay-
outs of the data. The first distributed all the
files from the source code tarball over all the
branches using a simple round robin algorithm.
The other layout consists of a copy of the entire
source tree on each branch. For both layouts,
we have measured and plotted the elapsed,
system, and user times.

When the OpenSSH source code is uniformly
distributed across all the branches, the over-
head is a mere 0.99% (Figure 5). This is due

 0

 20

 40

 60

 80

 100

 120

 140

8421Ext2

El
ap

se
d 

Ti
m

e 
(S

ec
on

ds
)

Number of branches

106.5 107.5 107.7 108.2 108.7

Wait
User

System

Figure 5: OpenSSH compile: Source code uni-
formly distributed across all branches.

 0

 20

 40

 60

 80

 100

 120

 140

8421Ext2

El
ap

se
d 

Ti
m

e 
(S

ec
on

ds
)

Number of branches

106.5 107.7 109.0
112.1

117.8

Wait
User

System

Figure 6: OpenSSH compile: Source code dupli-
cated on all branches.

to the simple fact that we must perform sev-
eral additional function calls before we hand of
control to the lower file system (Ext2). With
more branches, the overhead slightly increases
to 2.1% with 8 branches. This shows that
Unionfs scales roughly linearly for this bench-
mark.

With the OpenSSH source code duplicated on
all branches (Figure 6), the overheads were
slightly higher. A single branch configuration
incurred 1.2% overhead. The slight increase
in time is a logical consequence of Unionfs
having to check all the branches, and on each
branch dealing with the full source code tree
which slows down linear directory lookups.

12



 0

 100

 200

 300

 400

 500

8421Ext2

El
ap

se
d 

Ti
m

e 
(S

ec
on

ds
)

Number of branches

252.2

425.0
432.4

413.6
433.1

Wait
User

System

Figure 7: Postmark: 20,000 files and 200,000
transactions.

The 8-branch configuration increased runtime
by 10.7%. As with the previous data layout,
Unionfs scales roughly linearly.

Postmark. Figure 7 shows the elapsed, sys-
tem, and user time for Postmark. The elapsed
time overheads for Unionfs are in the range
of 64.0–71.7% above that of Ext2. Since
Postmark is designed to simulate I/O intensive
workloads, and all the VFS operations have
to pass through Unionfs, it is not surprising
that the overhead of Unionfs becomes appar-
ent. Fortunately, typical user workloads are
not I/O bound and therefore one will not notice
much performance degradation as shown by the
OpenSSH compile benchmarks.

6 Conclusion

It is often easy to create a piece of software
whose functionality is enough for the authors.
However, that functionality is usually a subset
of that required by real users. Since the first re-
lease in early 2004, user feedback has helped us
make Unionfs more complete and stable than
it would have been had a small team of de-
velopers worked on it without any community

feedback. Our users have used Unionfs for ap-
plications that were not even considered back
when Unionfs was originally designed, and lo-
cated bugs that would otherwise have gone un-
noticed.

For quite some time, Linux users wanted a
namespace unifying file system; Unionfs gives
them exactly that. While there are still several
known issues to deal with, Unionfs is steadily
becoming a polished software package. With
the increasing use and popularity of Unionfs
we felt that the next logical step was to clean
up Unionfs and submit it for kernel inclusion.

7 Acknowledgments

Unionfs would not be in nearly as good a state
if it was not for our user community, which has
submitted bug reports, patches, and provided us
with interesting use cases. There are far too
many contributors to list individually (there are
over 37 listed in our AUTHORS file, which only
includes those who have submitted patches),
and we extend thanks to all contributors and
users, named and unnamed. Early adopters and
bug reporters like Tomas Matejicek and Fabian
Franz helped immeasurably. Recently, Jun-
jiro Okajima has fixed many bugs and can be
counted on for high-quality patches. The exper-
imental mmap code currently in Unionfs was
contributed by Shaya Potter. Jay Dave, Puja
Gupta, Harikesavan Krishnan, and Mohammad
Nayyer Zubair worked on Unionfs in its early
stages.

This work was partially made possible by NSF
CAREER award EIA-0133589, NSF Trusted
Computing Award CCR-0310493, and HP/Intel
gift numbers 87128 and 88415.1.

Unionfs is released under the GPL. Sources
and documentation can be downloaded from
http://unionfs.filesystems.org.

13



References

[1] J. S. Heidemann and G. J. Popek. Per-
formance of cache coherence in stackable
filing. In Proceedings of the Fifteenth
ACM Symposium on Operating Systems
Principles (SOSP ’95), pages 3–6, Copper
Mountain Resort, CO, December 1995.
ACM SIGOPS.

[2] Inside Security IT Consulting GmbH. In-
side Security Rescue Toolkit. http://
insert.cd, 2006.

[3] J. Katcher. PostMark: A New
Filesystem Benchmark. Technical
Report TR3022, Network Appliance,
1997. www.netapp.com/tech_
library/3022.html.

[4] P. Kerr. m-dist: live linux midi
distribution. http://plus24.com/
m-dist/, 2005.

[5] K. Knopper. Knoppix Linux. www.
knoppix.net, 2006.

[6] P. Lougher. SQUASHFS - A squashed
read-only filesystem for Linux. http:
//squashfs.sourceforge.net,
2006.

[7] T. Matejicek. SLAX – your pocket
OS. http://slax.linux-live.
org, 2006.

[8] OpenBSD. OpenSSH. www.openssh.
org, May 2005.

[9] J. Silverman. Clusterix: Bringing the
power of computing together. http:
//clusterix.net, 2004.

[10] C. P. Wright, J. Dave, P. Gupta, H. Krish-
nan, D. P. Quigley, E. Zadok, and M. N.
Zubair. Versatility and unix semantics

in namespace unification. ACM Transac-
tions on Storage (TOS), 2(1):1–32, Febru-
ary 2006.

[11] C. P. Wright and E. Zadok. Unionfs:
Bringing File Systems Together. Linux
Journal, (128):24–29, December 2004.

[12] E. Zadok and J. Nieh. FiST: A Language
for Stackable File Systems. In Proc. of
the Annual USENIX Technical Confer-
ence, pages 55–70, San Diego, CA, June
2000. USENIX Association.

14


