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Abstract of the Thesis
From Tuples to Files: a Fast Transactional System Store and File System
by
Pradeep J. Shetty
Master of Science
in
Computer Science

Stony Brook University

2012

Traditional file systems are designed to store a moderate number of large objects. How-
ever, an increasing number of applications need also to store a large number of interrelated
smaller objects, to query and update these objects and their relationships, and to maintain con-
sistency and recoverability. Current approaches require applications to interact with multiple
interfaces for different data types, making it difficult for programmers to develop error-free,
efficient, and portable applications. Researchers have tried to solve this problem by using ad-
ditional layers of abstraction to unify these disparate interfaces but continue to use traditional
storage formats and algorithms that are optimized only for specific workloads.

We have built a transactional system store that can efficiently manage a continuum of
interrelated objects from small to large. Our system is based on a data structure, the VT-tree,
which is an extension of the log-structured merge-tree data structure (LSM). In this thesis we
describe a transactional system store design and implementation that supports high levels of
concurrency and larger-than-RAM snapshot-based transactions. We then describe the design
of a new transactional file system, KVFS, which is based on our transactional VT-tree. In
our system, applications can perform key-value storage and POSIX file operations in the
same ACID system transaction, providing support for operations such as file indexing and
tagging, meta-data search, and package installation—all in a generic and flexible manner.
Our experiments indicate that KVFS’s performance is comparable to that of existing native
file systems and its elegant transactional interface adds a minimal overhead and supports
highly concurrent transactions.
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Chapter 1

Introduction

Many modern applications need to store structured data along with traditional files to help
categorize them. Traditional files includes video clips, audio tracks, and text documents.
Structured data represents large numbers of interrelated smaller objects. Examples include
media tags such as a photograph light conditions, or an MP3’s performer’s name, album
cover, etc. File systems handle traditional file-based data efficiently, but struggle with the
structured data. Databases manage structured data efficiently, but not for large file-based
data. Storage systems supporting both file system and database workloads are architecturally
complex [11,20]. They use separate storage stacks or external databases, use multiple data
structures, and often are inefficient [41].

Applications want to use system transactions to group accesses to both file-based and
structured data consistently. Package managers (e.g., apt-get, yum) can use system transac-
tions to roll back an unsuccessful software upgrade. System transactions also let program-
mers write highly concurrent code more simply, and improve application security [27, 39].
Existing systems with transactional support require complex kernel modifications [27, 46],
need a complete redesign [33], or have high overheads [22]. An architecture that supports
system transactions and key-value storage, and can also efficiently process varying work-
loads, is going to be more complex if its storage design uses multiple, heterogeneous data
structures. No known, single data structure is flexible enough to support both database and
file-system workloads efficiently.

Read-optimized stores using B-trees have a predictable performance as the working set
increases. However, their performance suffers by randomly writing on each new insert, up-
date, or delete operation. Log-structured stores using B-trees efficiently insert, update, and
delete; but they randomly read data if their workload is highly random or larger than RAM.
Log-structured merge-trees [23] (LSM-trees) have neither of these problems. As with any log
structured systems, in LSM-trees random writes become sequential append to a log. Also,
commercially used LSM-trees uses Bloom filters [6] to accelerate point queries. Further-
more, LSM-based transactions are inherently log structured. That is why LSMs are widely
used in many write-optimized databases [2,17]. Still, current LSMs do not efficiently process
sequential insertions, large key-value tuples, or large file-based data.

We use an extended LSM that we co-developed, called VT-tree [38]. The V'T-tree supports
highly efficient mixes of sequential and random workloads, and any mix of file-system and
database workloads. In this thesis we also address several new issues such as fragmentation



faced in VT-tree. Based on VT-trees, we built a database storage engine called KVDB and a
new file system called KVFS—incorporating KVDB into KVFES’s architecture with relative
ease. KVFS supports both a traditional POSIX API as well as a MYSQL- or BDB-like
API for structured data access. Both APIs can be accessed in the same system transaction,
allowing for more flexible and versatile operations. This enables operations such as file
indexing and tagging, meta-data search, and package installation in a generic and flexible
manner.

KVES supports larger and faster system transactions by avoiding double-writes and by
indexing its journal. KVEFS runs in user-level (using FUSE [44]), is portable and easily
maintainable, and can be restarted and recovered independently of the OS. KVDB is cache
friendly, I/O efficient, and works well for random and sequential workloads. Excluding in-
herent FUSE overheads [28], KVFS’s performance is comparable to Ext4.

The rest of this thesis is organized as follows. Chapter 2 describes some of the data
structures used in databases and file systems. We introduce KVFS’s design and describe the
VT-tree and KVFES’s transactional architecture in Chapter 3. Our evaluation in Chapter 4,
compares the performance of KVFS to Ext4, and also measures the efficiency of KVFS’s
transactional interface. Related work is discussed in Chapter 5. We conclude and discuss
future work in Chapter 6.



Chapter 2

Background

KVES is a file system implemented as a FUSE [44] driver on top of a user-level database
called KVDB. To ensure that KVDB has the highest insertion, update, and delete through-
put possible, we chose the log-structured merge-tree (LSM-tree) as our basic data structure.
LSM-trees write sorted and indexed lists of tuples to storage, which are then asynchronously
merged into larger sorted and indexed lists through a process called compaction. LSM-trees
can sustain high random update, insert, and delete throughputs while deamortizing com-
paction more effectively than a naive log-structured or copy-on-write [15] approach [45].
A log-structured approach allows for efficient caching and a highly concurrent transactional
design, which we describe in Chapter 3.

However, the LSM-tree is not as efficient for sequential insertions [37] (see Chapter 3).
VT-tree [38] is an extended LSM-tree with optimizations for sequential insertion. We first
introduce the LSM-tree here and then describe VT-tree and its usage within KVFS in Chap-
ter 3.

LSM-Trees The LSM-tree is an alternative to the B-tree and the log-structured radix [15]
or B-tree [13,47] for storing structured data in secondary storage devices [3,23]. LSM-trees
offer one to two orders of magnitude faster insertions in exchange for one to ten times slower
point queries and scans [3]. They are typically used in scenarios where large data sets are
automatically generated and queries can be parallelized, such as Web search [8]. LSM-trees
rely on asynchronous compaction to keep lookup and scan times bounded as the number of
elements in the LSM-tree increases. There are a variety of compaction strategies [40], and
when used with Bloom-filter-like data structures [4, 6], losses in lookup latency with respect
to B-trees can be recovered.

Figure 2.1 illustrates the operation of a basic LSM-tree. An in-RAM buffer called a
memtable (e.g., a red-black tree or skip list) holds recently inserted items. When the buffer
is sufficiently full, it is flushed to disk as a single list of sorted tuples. Along with this sorted
list is a secondary index and a Bloom filter to accelerate scans and point queries. A list plus
its secondary index and Bloom filter is called an SS7able [8]. Point queries simply search all
lists for the value belonging to a key, using the Bloom filters and secondary indexes to avoid
fruitless searching and I/Os wherever possible. LSM-trees also allow us to read many tuples
in series, or find the tuples that come immediately after a queried key. This kind of query is
called a scan. To perform a scan, cursors are placed in each list; the buffer and all lists are
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merged into a single sorted view by incrementing and merging the result of the cursors.

As the number of tuples inserted increases, the number of on-disk lists increases too.
To ensure that lookup and scan performance is always bounded, some or all of the on-disk
lists may be compacted into one sorted list when a buffer is flushed. This is called a minor
compaction. The exact lists chosen to compact at the time of buffer flush depends on the com-
paction algorithm. The compaction algorithm also affects how many lists must be searched
to place cursors for a scan or to find a tuple [40].

The main problem with the LSM-Tree is that tuples must be copied for each compaction.
Each tuple is copied anywhere from (logg M to (K_l)]éogK Y times depending on the com-
paction algorithm. Here, B is the number of tuples that can fit in the Disk-Access Model
(DAM) [3] block size for the disk; K is the maximum allowed number of on-disk lists in a
given size class before a compaction is required. This is depicted in Figure 2.1 where the
contents in RAM are first serialized to an on-disk SSTable of size B; then the contents are
re-written to larger SSTables by subsequent minor compactions. These repeated copies are
a problem if we wish to use LSM-trees for file system data. Storing 16 times the size of the
in-RAM buffer in a day would require that data to be written 2—8 <. A traditional file system
would write it only once and would not move it until the next defragmentation. KVES tries
to achieve the same by using VT-tree and supporting defragmentation in VT-tree.




Chapter 3

Design and Implementation

We have two design goals for KVFS: (1) versatile support for mixed workloads while main-
taining simplicity and (2) efficiency especially given its transactional design. First, we de-
signed a storage system capable of supporting both file system and database workloads effi-
ciently yet remain architecturally simple. KVFES achieves this by using the V7-tree [38] data
structure, an extension to LSM-trees, to improve sequential-workload and large tuples per-
formance. Second, we designed an efficient transactional architecture to avoid most double
writes, be highly parallelizable for partitionable workloads, and support larger-than-RAM
transactions. Application using KVFS can group together a sequence of POSIX and key-
value storage operations into a single atomic transaction.

We describe KVFES’s architecture first in Section 3.1, then discuss how we use VT-trees
in KVES in Section 3.2, and our transactional architecture in Section 3.3.

3.1 KYVFS Architectural Overview

Figure 3.1 shows KVFS’s basic architecture. KVFS uses FUSE [44] to provide a POSIX-
compliant file system interface to traditional applications. A user read or write request is
passed on to FUSE by the VFS. The request goes to KVFS layer running as a user-space
daemon. KVFS translates the request into one or more key-value operations sent to KVDB,
which implements a transactional database storage engine based on the VT-tree. KVDB
performs all necessary I/Os using a series of mmaps of a disk file stored on a back-end Ext4
file system. The response follows the same path as the request, in reverse. FUSE provides
kernel-level caching for file data pages and attributes; cached information thus eliminates
the need for user-level upcalls; this results in maintaining KVFS’s high performance for in-
cache workloads. However, transaction managers typically require notification for all reads,
a challenge for consistency if notifications are missed for cached data. In Section 3.3 we
describe how KVFS addresses this challenge. We also modified FUSE to support write-back
caching and we explain this in detail in Section 3.1.1.

When initializing KVDB, we create a schema with one or more dictionaries, each backed
by a VT-tree. KVFES defines three VT-trees in a single KVDB schema, called fs-schema to
support file system operations. The three dictionary formats, also shown in Table 3.1, are:

1. nmap for namespace entries, similar to dentries; here, the path-component of a file
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VT-tree | Format

nmap | ({parent-inode#, path-component }, inode#)
imap (inode#, inode)

dmap | ({inode#, offset}, data-block)

Table 3.1: Three dictionary formats used within fs-schema

and its parent directory’s inode# form the key, and the value is the file’s inode#.
2. imap for storing inode attributes; and
3. dmap for the files’ data blocks.

KVEFS supports storing any external meta-data associated with a file by creating a new dic-
tionary format within the same schema in the KVDB.

KVES also provides a key-value interface directly to KVDB using sockets; this is useful
for databases and applications that process random-access workloads. KVFES supports access
to both the POSIX and key-value interface in the same system transaction. This allows an ap-
plication, for example, to create a new MP3 file iff its corresponding ID3 tag was successfully
added to a music-search database. We explain this further in Section 3.3.

3.1.1 FUSE write-back cache support

KVES uses FUSE [44] to support POSIX operations. Using FUSE requires two additional
context switches and buffer copies than running on a native file system. This results in around



2x overhead compared to the native file system performance [28]. The FUSE kernel module
caches read pages, but writes are immediately sent to the FUSE server running in user space.
Supporting a generic write-back cache in FUSE kernel is complex because of two reasons:

1. The entity responsible for accepting or rejecting the writes is not the FUSE kernel, but
the user-level file system instead. A deadlock situation could arise while flushing dirty
pages if the user-level file system is swapped out due to memory pressure [28].

2. If the user-level file system intends to be POSIX-compliant, all the dirty pages for the
file should be synchronized to disk during a close request.

In earlier versions of FUSE, all file write requests were split into 4KB (page size) writes,
requiring additional context switches for every 4KB of writes. FUSE started supporting big-
writes option from the 2.8.0 FUSE library version (libfuse) and the 2.6.27 Linux kernel ver-
sion. The big-writes option allows file writes to be transferred to user-level file system in
larger chunks. However, this write needs to be a single contiguous file write from the ap-
plication. The reason is that even the recent versions of FUSE do not cache the writes; it
only transfers them as a big chunk. FUSE limits the size of these chunks to 128KB to reduce
the kernel memory consumption and the possible deadlock situation. If the kernel is under
memory pressure due to a large number of such in-transit pages, a deadlock may occur if the
user-level file system process has been swapped out [28]. The big-writes option significantly
reduces the number of context-switches for applications that write to a file with write sizes
larger than 4KB. The big-writes option is not of much help for applications writing to random
files using smaller writes.

We extended the big-writes option to support basic a write-back cache in kernel. When a
write request comes for a file residing in the user-mode file system, we now cache the writes
in the file’s page-cache. This avoids immediate write-back to the user-mode file system.
The page is marked as dirty in the page-cache and stays as a hot page in the kernel’s page-
cache if it gets updated frequently. The page is written back by the pdf1lush kernel thread
when the page becomes eligible for a write-back. Additionally, we ensure that all the dirty
pages associated with the file are flushed to the user-mode file system when the file is closed.
When the dirty pages become eligible for write-back, we transfer them in chunks of 128KB.
The pages within the chunk need not be contiguous and they can also belong to different
files. We also limit the total page cache used by the FUSE user-file system for dirty pages to
256KB to avoid the possibility of a deadlock during write-back by pdf1ush. This write-back
implementation is not ideal and does not provide all the benefits of a write-back cache as used
by existing in-kernel file systems like Ext3 and XFS; still, results from our initial evaluation
are promising.

3.2 VT-treesin KVFS

KVEFS uses VT-trees [38] that we co-developed to achieve its first design goal: build a
storage system capable of supporting both file system and database workloads efficiently
and yet remain architecturally simple. LSM-trees are widely used in many write-optimized
databases [2, 17]. We call an LSM-tree with extensions for efficient sequential insertions

7



and large tuples, a VI-tree. During a minor compaction, The VT-tree merges two lists into
a larger list without copying every single tuple as a naive LSM-tree would, a process called
stitching. V'T-tree’s stitching avoids copying largely unmodified or sequential data during a
minor compaction, allowing it to handle file system data more efficiently. In KVFES, the dmap
benefits from VT-tree’s stitching property as the dmap holds file data that can be large and
sequential. File system meta-data like imap and nmap take advantage of the LSM-tree nature
of the VT-tree. nmap holds the directory entries (dentries). Entries in nmap are sorted and
always get merged as with the LSM-tree. This allows the dentries under a directory to be laid
out contiguously on the disk even if they are created at different point in time. This makes
the listing of large directories (e.g., with /bin/1s) in KVFS faster.

Read—on—append | VT-Tree
Trees |
4 1 3 2 L4 1 3 2
v \'% \'% \A v A" A" \'%
1 4 2 3
Merge | V|,V vV
opportuniti :
Read/scan
iteration through / :
stored tupl%.\ :
1 2 3 4 ; 1 2 3 4
LSM-Trees, | |~ | |  ,In-place
A | 3 5 Trees
\" \" v \%
1 4 2 3
A" \'% \'% A"
1 2 3 4 1 2 3 4
v v \'% v \'% A" \'% A"
1 2 3 4 1 2 3 4

Figure 3.2: Comparing write path vs. scan in LSM and LFS Approaches

A VT-tree can be tuned to behave like a log-structured file system (LFS) and avoid writing
more than once; alternatively, it can behave like a log-structured merge tree, and guarantee
upper bounds on the number of seeks required to perform a scan. Also, intermediate config-
urations are possible, to trade off seek for scan performance for repeated writes performance.
Thus, a VT-tree can span the entire continuum from an LSM-tree to an LFS.

Figure 3.2 compares four types of trees: read-on-append trees (e.g., log-structured B-
trees), LSM-trees, in-place trees (e.g., B-trees), and the VT-tree. Each tree is depicted show-
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ing the path a tuple took to its final destination. Horizontal lines represent an opportunity to
sequentially copy a tuple into a larger list during a merge. Only LSM-trees take every oppor-
tunity to do this; they copy every tuple log, /V times until all tuples are physically contiguous
on disk (bottom level). None of the other trees take every opportunity to compact tuples; this
allows them potentially to write more efficiently. In-place trees directly flush each tuple to its
final location, but perform random writes to do so. Read-on-append trees sequentially write
every tuple to disk initially, but require random reads to scan in sorted order. LSM-trees
sequentially read as efficiently as in-place trees; and, although LSM-trees perform log, N
writes for each tuple, this can still be much faster than a single disk seek.

The VT-tree is a compromise between an LFS-based approach and a naive LSM-tree
approach: contiguous tuple sequences smaller than the stitching threshold are copied, but
once the sequence length exceeds this threshold, tuples are no longer copied. Users can set
the stitching threshold large enough so that the cost to perform a seek is equivalent to the cost
of sequentially scanning a stitched region: thus performing sequential reads is never worse
than a factor of two of reading the same amount of data laid out contiguously on disk.

3.2.1 Fragmentation

Using VT-tree in KVFS comes with a cost: it results in fragmentation as with any similar log-
structured file systems [30]. An LSM-tree typically reads in lists of sorted tuples, and then
writes a sorted tuple stream to a new merged list through a process called compaction. In a
widely used compaction algorithm [40], a merge occurs log ;- N times, so a tuple is copied up
to log; N times. It is necessary to merge smaller lists into larger lists to bound the total num-
ber of lists in each size category. Stitching in VT-tree helps avoid such expensive list merging
and copying in some cases. If the data is already sorted or sequential, stitching leaves the
data in-place and uses back-pointers to refer to that data from the new list. However, stitch-
ing every region containing contiguous tuples that is above some threshold can introduce
fragmentation. This is because although some tuples are left in place, others are copied into
the new list, and their original physical location remains unused: this is shown in Figure 3.3.
To use VT-tree in a file system, a defragmentation tool is necessary, but the existing VT-tree
implementation does not have support for defragmentation [38]. We have designed a simple
defragmentation tool that can be run in online or offline mode. Our defragmentation tool
mainly focuses on reclaiming the unused space and also preserves the sequentiality of the
existing data.

As shown in Figure 3.3, each list (L;s) in VT-tree is made up of one or more zones, where
a zone is a minimum allocation unit in our implementation. Zones are usually SMB large.
Each list has an associated secondary index to help reduce 1/Os during lookups. This index
refers to the same original tuples, using the same original key, but whose value is the physical
offset or back pointer to the original tuple’s location. Typically, a secondary index entry
points to a contiguous scan (extent) of two or more elements in the original list. The number
of elements pointed to by a secondary index entry is one in this example and the stitching
threshold is of two elements.

During the compaction process in VT-tree with stitching enabled, lists L; and L, are
merged and L is the resulting compacted list. List L; is made up of two zones, Z; and Zs;
L4 is made up of zones Z3 and Z,. Each of the lists have six tuples in them. After merging,
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we stitch regions consisting of contiguous tuples whose length is at least that of the stitching
threshold. In this example, the stitching threshold is two and the stitched tuples are {1,2},
{10,12} and {14, 17, 19}. The rest of the tuples are copied to the newly allocated zones Zj
and Zg in the list Ls. As seen in Figure 3.3, zones 7, Z,, and Z, remain allocated and are
used by the list L3. Zone Z3 has been freed as all the tuples in it have been copied to the
zones Z5 and Zg while compacting the lists L; and L. After the merge, zones Z; and Zs
show some internal fragmentation. L3 ends up consuming five zones instead of four with a
20% of space wastage.

In KVES, the stitching threshold is usually between 32—-256KB and zones are 8MB in
size. A typical file system supporting capacity of 128GB will have 16K zones. Our experi-
ments, described in Chapter 4, show that most of the zones in a half filled KVFS contain only
few stitched regions, and are only 20—40% utilized resuling in a lot of fragmentation.

Defragmentation algorithm. A defragmentation process needs to consider at least the fol-
lowing three parameters: the amount of data needs to be moved, preserving the sequentiality
of the existing data, and the total time taken for the completion. Other important param-
eters to measure the effectiveness of a defragmentation algorithm are the amount of space
reclaimed and any improvement in subsequent scan performance. As seen in Figure 3.3, af-
ter compaction, zones Z; and Z, in list L3 are fragmented, and we consume an extra zone
Zg to store the copied tuples: a 20% space wastage. So, VT-tree’s defragmentation algorithm
first needs to find the amount of space that can be reclaimed and the candidate reclaimable
zones. In LFS [30], the defragmentation process is called segment cleaning and segments
used within LFS are similar to zones in KVFS. Segments in LFS can have some dead or stale
data along with the live or active data. In the greedy algorithm used by LFS, the reclaimable
segments are chosen based on the amount of active data they hold. If a segment has less ac-
tive data, it is easy to clean that segment as it has to move only the active data to some other
segment. As noted by LFS’s authors, this greedy algorithm suffers when the rate of change of
data follows a bi-modal distribution between hot and cold segments. They proposed another
algorithm called cost-benefit that considers the cost-to-benefit ratio of cleaning a particular
segment. There, the authors looked at the youngest block within the segment to estimate how
long the segment is going to be untouched (remain clean); segments containing older data
have a higher benefit if cleaned.

As with any log-structured systems, in VT-tree, data within a zone never gets modified;
if required, it is copied to another zone in a new list during compaction. A zone can get
fragmented during a compaction in two cases: (1) when only few stitched regions can be
formed in this zone or (2) if an interleaving tuple is found for some of the existing stitched
regions in this zone and at least one stitched region stays unaffected. This interleaving tuple
can be anything: an update (i.e., block in a file being overwritten) or a deletion of an existing
tuple, or even an unrelated tuple to the existing tuples in the stitched region. These two cases
can happen with zones that are either hot or cold. In VT-tree, hot zones are part of list at
the top, which are small and recently created. Cold zones are usually part of larger and older
lists. Lists at the top participate in the compaction process more often than the older lists at
the bottom. Thus, cleaning the zones of these lists at the top may not be beneficial. Also,
lists at the top contain a smaller number of zones and do not contribute to the majority of the
fragmentation anyway.
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We devised an algorithm that orders the lists based on the amount of space that can be
reclaimed. We also consider the location of the list in the hierarchy. Within each list selected
for cleaning, the algorithm finds the candidate zones for reclaiming. To do that, we scan
through all the zones and assigns a weight to each of them. This weight is calculated based
on the amount of sequential data each of these zones already have. We use the secondary
indexes to find the range of sequentiality of the data and we can calculate the weight without
performing any I/O. The weight is calculated as the ratio of total length of contiguous scans to
the number of contiguous scans in the zone. This ensures that having one large stitched region
has more weight than many small stitched regions in a zone. Zones with a lower weight are
the candidate zones for reclaiming space. The data from these candidate zones is moved to
the other zones in the order explained below. Using this algorithm, we do not need any extra
zones than what is already being used, allowing us to use the same methodology in an out-of-
space condition that could result due to fragmentation. We also avoid overwriting any existing
data in a used zone as that would otherwise make the recovery complex and also require
journalling each overwrite. Here, we also preserve the sequentiality of the existing data and
perform only the minimally required amount of data movement to reclaim the maximum
space possible.

With our method, a zone containing lot of active data may get chosen for cleaning. This
is possible only if the zone contains lot of random data that interleaves between the stitched
regions in some other zones: this is less likely in practice. In Figure 3.3 we show only one list,
Ls, participating in the defragmentation. Within this list, zones Z, and Z5 have the highest
weight of three as both have only one large contiguous scan of three tuples. Zones Z; and
Z5 have a weight of two, and zone Zg has a weight of one. Since we can only reclaim one
zone here, Zg is our candidate. We end up moving the tuples from the zone Zs to zones 7
and Z,, each of which has one unused tuple space. While selecting zones for the data to be
copied, we can either use a first-fit or a best-fit method. The best-fit technique improves the
sequentiality and it only requires us to go through secondary indexes to determine the best
fit without causing any I/Os, but may result in more random writes while copying the data.
Whereas first-fit is easy to implement, it may sometimes spread the data more randomly if
the holes are small and spread across many zones.

Our current implementation of the defragmentation runs in an offline mode. During the
normal run, KVFS keeps track of the fragmented zones, allows users to get the information
on when to run the defragmentation tool. KVFS needs to be booted in defrag mode to kick
off the defragmentation process. While in defrag mode, KVES goes through each of the
VT-trees in its schema and runs the aforementioned defragmentation algorithm. Within each
VT-tree, we run the defragmentation algorithm on all the fragmented lists and in parallel.
Our experiments, described in Chapter 4, show the efficiency of this algorithm. Although this
simple defragmentation algorithm works well, the framework we have implemented allow us
to use a different method for weight calculation if required. Our defragmentation tool can be
easily extended to run online. KVFS already keeps track of the zone usage during a normal
run. After each minor compaction, we can check if the resulting new list is fragmented
and kick off a defragmentation thread in the background if the list is fragmented. As we
never overwrite any existing data in the zone, reads can be served in parallel. Once the data
has been moved and a new secondary index is constructed, we can stop the reads, swap the
secondary indexes, and then let the reads use the new secondary index. However, any future
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compactions involving this particular list have to wait until the defragmentation is completed.

Another simple method of defragmentation is to cause a minor compaction of a frag-
mented list with that of an empty list, with a stitching threshold set to some large value. The
resulting output list has no stitched regions and hence no fragmented zones. All the zones
used by previous list become free and reusable. This method in fact undoes the effects of the
stitching that took place during previous minor compactions, before the data reached this list.
Although it appears to defeat the purpose of having stitching in the first place, this is not true.
Stitching would already have saved some extra copies that would have otherwise happened
by now. The only disadvantage is that this method requires free zones to perform a minor
compaction, which may not be always available. Comparing these methods and exploring
others are subject to future work.

3.3 Snapshots and Transactional Support

KVDB is based on the VT-tree. Snapshots and transactions are an inherent feature in V'T-tree,
as with any other log-structured system [36]. Snapshots in KVDB are transaction aware. We
implemented them using the same machinery used in KVDB.

KVDB initially contains a single schema called the main-line schema, which consists of
one or more dictionaries, each backed by a VT-tree. KVDB supports snapshots by snapshot-
ting the main-line schema, which implicitly snapshots all the VT-trees part of it. Creating
a snapshot makes the main-line schema read-only as expected and creates a new writable
schema with empty VT-trees: this is now the new main-line. The new main-line schema
hosts only new data and any modification to the existing old data. Lookups and scans may
need to visit older snapshots, requiring KVDB to maintain a dependency of this new main-
line schema with the older snapshot. A lookup first visits the current main-line schema and
on an unsuccessful search, it will follow this dependency list, doing lookups on the snapshots
from recent to old until the search is successful or the end of the list is reached.

Since snapshots in KVDB only contain the modifications from the previous one, support-
ing a snapshot-based incremental backup and replication is efficient and easy—a feature that
many modern storage systems try to include.

3.3.1 Transactional Support in KVDB

KVDB supports ACID transactions in two different modes of isolation:

e Serializability: this is the highest degree of isolation [14]. KVDB supports serializabil-
ity using strong, strict two-phase locking (SS2PL). We discuss the choice of SS2PL
later in this Section.

e Snapshot isolation: here, transaction reads see a consistent snapshot of the KVDB that
was taken when the transaction started. Conflict resolution here can be slow or the
applications using this may encounter lost updates. So, this mode is provided only for
applications to run in parallel, as long as they have no overlap in their operations.
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Transactions using these two modes differ in the locking semantics they follow, and also
in their snapshot-dependency list. In snapshot isolation, the dependency list begins with the
snapshot that was taken at the time the transaction started; all the reads in this transaction
see only the data generated before the transaction’s start time. In serializability mode, the
dependency list always starts with the current main-line schema, allowing the transaction to
read the most recently committed data by other transactions, even if these transactions were
started later.

KVDB provides system transactions to any process that calls t xn-begin. This branches
the current system state into a private writable schema, and the main-line or the writable por-
tion of the system; see Figure 3.4(a). The main-line is visible to all other processes. The
process can now modify this writable snapshot without affecting any other process in the sys-
tem. When the process calls t xn—commi t, the separate branch is merged with the main-line,
and locking within KVDB eliminates merge conflicts. Having private snapshots and caches
for each transaction improves KVDB’s concurrency and parallelism. This transactional ar-
chitecture is also best suited for applications running on multi-core architectures, such as with
the Corey [7] kernel.

When KVDB is initialized, the main-line schema is part of a default, main-line trans-
action. Clients wanting to enforce ACID properties need only begin a new transaction and
commit it once all operations are completed. Transactions can be multi-threaded: KVDB
ensures consistency using per-transaction locks. Writable snapshots can be larger than RAM,
and can continue to exist after the process that initially branched them terminates (supporting
check-pointing). Since writes to the private writable schema are updates to a VT-tree, which
is an LSM-tree, no redo records are needed to abort a transaction: simply remove the newly
created lists within the schema. Also, transactions can exceed RAM sizes without blocking
on packing or segment cleaning, because the LSM-tree maintains an implicit index to support
lookups in no worse than K log; N I/Os (often only one 1/0).

Figure 3.4(a) shows the KVDB in snapshot-isolation mode with two active transactions—
TXN;y 5 and T'X N; ,—and a default main-line transaction, 7'X N,. All the writes and up-
dates in the transaction go to its writable schema. Reads and scans within the transaction
may need to visit all the dependent snapshots. For reads and scans, we first construct a
transaction-specific view (TSV) containing all the schemas the transaction depends on. For
T X N,.o, the TSV contains its writable schema, snapshots S5;.1, S.9;, and any dependent
snapshots. Reads within 7'X N, 5 are looked up in all the snapshots (as ordered by the TSV)
until the desired element is found or no more snapshots are left. We reduce 1/0Os during
lookups using Quotient Filters (QFs) [4]. Similarly, the TSV for the main-line transaction
T' X Ny consists of its writable schema, snapshots S.S;3, SS;1+2, SSi+1, S5;, and any depen-
dent snapshots. If no transaction is directly dependent on a particular snapshot, that snapshot
can be merged with the next one to improve read performance; here, S'S; can be merged into
SS;.+1 unless it is a user-created snapshot.

In Figure 3.4(b), we show transactions in the serializability mode. As we see, all the trans-
actions have dependency on the current main-line transaction. The TSV for T'X N, 4 contains
its writable schema, main-line transaction 7'X N’s writable schema, snapshots S.5;.1, S5;,
and any dependent snapshots.

We now discuss the effect of operations t xn-begin, txn—-commit and txn—-abort
supported by KVDB for transactions.
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Figure 3.4: Transactional Architecture: showing the dependency list for both isolation modes

KVDB txn-begin. In snapshot-isolation mode, this operation creates a new snapshot, with
two effects. (1) We mark the main-line schema read-only, which may flush in-RAM VT-
tree buffers to on-disk lists. KVDB can defer this until memory is full. (2) We create a new
writable schema and make it part of the main-line transaction. txn-begin also creates a new
writable schema for itself; lookups and scans on this transaction may visit older snapshots.
So we register the new schema’s dependency on the previous main-line schema.

In serializability mode, txn-begin need only to create a private writable schema for itself
and register the dependency with that of the current main-line. We do not need to snapshot
the main-line.
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KVDB txn-commit. This operation evicts dirty key-value pairs from in-RAM buffers of
each VT-tree’s in its writable schema, into the main-line schema. Then, we move all on-disk
lists from each of its VT-tree’s to the corresponding main-line schema’s VT-tree. We quiesce
the main-line transaction while moving each list (a simple pointer-swap operation). The most
recently committed transaction’s lists are placed highest, and so they are found before their
other (now stale) versions. We then discard the writable schema and the transaction structure.
Finally, we flush the journal to ensure durability and recoverability.

KVDB txn-abort. This operations requires freeing up the space used by in-RAM buffers
and then discarding the writable schema and the transaction itself.

3.3.2 Locking Policy

Locking within KVDB is pessimistic and two-phase. Processes acquire locks on resources
before reading from or writing to them, and they release these locks on commit or abort.
Locking need not be pessimistic: read operations could be serialized to disk in sorted or-
der along with inserts, and conflicts could be detected by merging the lists of a committing
writable snapshot (transaction) with the main-line, and thus detect conflicts and lost updates.
Since KVDB supports larger-than-RAM transactions, these lists can be large and conflict res-
olution can be time consuming as well. However, the trade-off between serializing reads and
avoiding immediate contention with a pessimistic model is unclear; it is outside the scope of
this thesis and a subject of future work.

Locking is further optimized by using a range tree to store locks. Processes can lock sub-
sets of the key-space, and can then avoid checking locks for all operations within this subset.
This allows partitioning of the caches and permits completely parallel operations on transac-
tion caches and the main-line cache—improving concurrency—without even synchronization
on locking primitives. We use this feature to lock directories in KVFS, by specifying a pre-
fix, and then no further locking is required to transact on the contents of that directory. Lock
denial is handled by allowing transactions with a higher priority to proceed on contention. In
this case, the lower-priority transaction can choose to wait until the conflicting higher-priority
transaction commits or aborts, or the lower-priority transaction can choose to restart at a later
point in time. Transaction priority is the same as that of the process that started it. Locking
support in KVDB comes with deadlock detection. On detecting the deadlock, a transaction
with lower priority is aborted and all its resources are released along with all of the locks it
has acquired until then.

3.3.3 Transactional Support in KVFS

The KVEFES layer uses the FUSE [44] low-level interface to translate FUSE file system re-
quests into key-value requests. With KVDB providing an efficient transactional interface,
making KVFS a transactional file system required no kernel changes. KVFS provides three
interfaces that we implemented using setxattr: (1) txn-begin, (2) txn-commit, and (3)
txn-abort. These are available as a user library for user applications.
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KVEFS txn-begin. Each txn-begin creates a snapshot of the file system. An application
can then safely modify this private snapshot. Applications must chroot into the snapshot,
which is automatically done during txn-begin; child processes inherit the parent’s cur-
rent working directory as per POSIX [16]. This enables multiple-process transactions (e.g.,
a transactional shell script): child processes automatically inherit their parent’s locks and
isolation. No extension to the task struct or other process information are required within
the OS [27,39]. Other than calling these APIs, applications require small changes (often
to remove obsolete code).n Our system manages all remaining transactional aspects. Upon
txn-begin, we embed a transaction ID (TID) into the root directory inode# of new snap-
shot. Future operations start from this root directory, allowing KVES to find the TID from
the inode# part of the requests. KVFS uses two types of inode numbers. (1) The advertised
inode#, with the TID embedded. These are the inode numbers that application see and all
system requests use. They have a side benefit of creating a separate kernel inode cache for
each transaction. (2) A plain inode#, used internally by KVFES to organize, store, and retrieve
files, pages, and directory entries. This allows reads to span across multiple snapshots and
also merge the snapshots to improve the performance, without going through the entire data
within the snapshot.

KVFS txn-abort and txn-commit. txn-abort recursively unlinks this temporary snap-
shot once all processes have chdi red out of the snapshot. Conversely, t xn—commit merges
the snapshot’s contents into the main file system view shared by other and non-transactional
processes. In both cases, KVFS invalidates the corresponding kernel cache before returning
control back to the application. This ensures that applications have to acquire fresh read locks
on committed/aborted items, and not use stale caches.

FUSE cache support. FUSE’s read performance is comparable to in-kernel file systems,
but only when its kernel-caching feature is enabled [37]. Kernel caching, however, conflicts
with user-level transaction managers that must ensure proper locking before reads. KVES is
able to leave read caching enabled in FUSE while still maintaining consistency, and avoid
lost updates. In KVFS, reads are specific to a particular writable snapshot, or the main-line.
If the read is to a writable snapshot, then either the item is not cached, in which case KVDB
is notified and locks it accordingly—or the item is cached, but only for this specific writable
snapshot, and must already be locked. By using a separate snapshot with a separate cache for
each transaction, cache faults automatically have a one-to-one correspondence with taking
read locks on their items.
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Chapter 4

Evaluation

Our experimental setup used to evaluate KVDB, KVFS, and other systems is described in
Section 4.1. In this chapter, we mainly focus on evaluating the two design goals mentioned
in Chapter 3. First, with KVDB’s simple and efficient transactional architecture, we show
in Section 4.2 that transactions comes with minimal overhead and are highly concurrent.
Second, in Section 4.3 we compare KVFS’s performance against Ext4, concluding that it is
practical to use KVFS. We then evaluate the performance of KVFS’s transactional interface
in Section 4.4. We measure the effectiveness of our defragmentation algorithm devised for
VT-trees in KVFS at the end in Section 4.5.

4.1 Experimental Setup

We conducted experiments on three identically configured machines running Linux Ubuntu
10.04.3 LTS. Each machine includes a single-socket Intel Xeon X5650 (4 cores with one
hyperthread on each core, 2.66GHz, 12MB L2 cache). The machines have 64GB of RAM;
to test the out-of-RAM performance, we booted them with 4GB each. Each machine has a
146.2GB 15KRPM SAS disk used as the system disk and a 160GB SATA II 2.5in Intel X25-
M Solid State Drive (SSD) used to store the out-of-RAM part of the data. We use only a 95GB
partition of the SSD to minimize the SSD FTL firmware interference. We measured 10 thread
random-read throughput on the Intel X-25M of 15,000 10ps, a random-write throughput of
3,500 IOps, a sequential read throughput of 245MB/sec, and a sequential write throughput
of 107MB/sec. We report these numbers because Intel specifications cite 30,000 I1Ops: after
extensive experience and testing with the device, we have not been able to reproduce those
vendor-supplied figures. We dropped all the caches before running any benchmark. To avoid
swapping, if any, due to memory pressure, we set the Linux SWAPPINESS parameter to zero
and monitored vmstat’s output to ensure there was no swapping. Since we a observed slight
performance variations across machines, despite identical hardware and software configura-
tions, we do not compare results across machines.
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4.2 Transactional Performance in KVDB

Transactions in KVDB can be larger than RAM and are highly parallelizable for partitionable
workloads. We focus here on evaluating the overhead introduced and the concurrency pro-
vided by transactions running in both snapshot isolation and serializability mode in KVDB.
As explained in Section 3.3, transactions in KVDB have a private writable snapshot with
its own RAM buffer cache for each of the VT-trees within it. The sizes of these caches are
configurable. This allows the transactions to be highly concurrent, cache efficient, and also
scalable on multi-cores. KVDB supports range locks with deadlock detection for applications
to partition their workload.

4.2.1 Concurrent Transactions

Here, we focus on evaluating the overhead and concurrency provided by transactions running
only in snapshot isolation mode. In this mode, transactions have minimal overhead and
are highly concurrent as this avoids the conflict resolution; however, it can result in lost
updates. Applications running in parallel and having no conflicts between them, or running
a partitionable workload, can benefit by running as transactions in snapshot-isolation mode.
To use transactions in KVDB, applications need to use t xn-begin to begin a transaction
and txn-commit to commit all the changes at the end, as described in Section 3.3.1.

Configuration. Each run of the benchmark randomly inserts a data set of 10GB of 64B
pairs into a schema consisting of a single VT-tree. We configured KVDB to have 256MB
of cache in total. Each transaction gets a part of this 256MB cache for the RAM buffer
within its private snapshot. We ran the benchmark with a single thread on the default main-
line transaction (ML-1T) requiring no txn-begin and txn—-commit. To compare the
overhead of t xn-begin and t xn—commit, we began a transaction and ran the same single
threaded benchmark (1Txn-1T). In both runs, there was only one active transaction and we
configured it to use the entire 256MB cache for the RAM buffer in the VT-tree. For measuring
the concurrency provided by the transactions, we compared three runs of the same benchmark
with varying numbers of transactions and threads. The first run, ML-10T, has ten threads
inserting on the main-line transaction. The other two have a separate transaction for each
thread to insert to: 10 threads (and 10 transactions) for 10Txn-1T and 4 threads for 4Txn-1T,
which was chosen to minimize contention on our 4-core test machine. The cache is divided
evenly: 25.6MB for each transaction in 10Txn-1T and 64MB for transactions in 4Txn-1T.
Transactions are asynchronous in all runs.

Results. As seen in Figure 4.1, the ML-1T and 1Txn-1T runs show that transactional over-
head is minimal. A txn-begin comes at no cost as creating a snapshot in KVDB is a
light-weight operation. ML-1T completed the benchmark in 1,465s and 1Txn-1T in 1,508s.
For 1Txn-1T, t xn—commit took only 1.2s: this involved flushing the RAM buffer into one
of the disk lists, moving the on-disk lists into main-line, and journaling the meta data. This
is because the in case of asynchronous transactions, KVDB avoids double writes for high-
insertion throughput workloads that require partial durability, by flushing the RAM buffer
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Figure 4.1: Measuring the overhead and the concurrency provided by transactions running in
snapshot-isolation mode when the workload is partitionable.

onto disk and journaling only the meta-data. As we see, the 1Txn-1T run had an overhead of
only 2-3% which is mainly due to the additional locking required to avoid conflicts.

ML-10T completed in 2,170s and is 33% slower than ML-1T. This is because writes
through parallel threads are serialized by the locks within the VT-tree, but can be parallelized
across VT-trees. This is what we exploit in the 10Txn-1T and 4Txn-1T runs as each transac-
tion gets its own VT-tree within its private snapshot. 10Txn-1T completed in 1,180s which is
24% faster than 1M-1T, our baseline. Notice that in the 10Txn-1T run, there are ten VT-trees
each with a smaller RAM buffer, requiring flushing them to a smaller on-disk list more often.
This results in more, but smaller compactions compared to the ML-1T run. This, along with
the 3% overhead of each transaction and ten threads contending for four cores, gets us only
24% extra speed. 4Txn-1T completed the task in 899s with 63% better throughput than 1ML-
1T. 4Txn-1T is 31% faster than the 10Txn-1T, thanks to reduced contention for cores and also
requiring fewer compactions in total. An efficient transactional architecture in KVDB allows
us to have only 3% overhead and provides concurrency with 63% better throughput.

4.2.2 Overlapping Transactions

As described in Section 3.3, KVDB supports transactions to be run in the highest level of
isolation: serializability. This mode supports repeatable reads and has no lost updates or dirty
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Figure 4.2: Time taken for completing the operations by the transactions running in serializ-
ability mode with varying percentage of overlap

reads [14]. KVDB uses strong, strict two-phase locking (SS2PL) to support serializability.
We evaluate the transactional overhead when transactions are in serializability mode with a
varying percentage of overlap with other transactions.

Configuration. We devised a benchmark that inserts 30GB worth of dmap pairs into a
schema consisting of a single VT-tree using transactions. Each transaction is of 16MB in
size with 1,920 transactions in total. This benchmark runs as four threads, each running
an equal number of transactions in parallel. So, at any point in time there are four active
transactions. We chose four threads to have less CPU contention between each other, based
on the results from our previous experiment. The benchmark allows to specify if there is
any overlap between the active transactions and the percentage of overlap. The percentage
of overlap determines how many of the transactions being run by each thread have a conflict
with one of the active transactions run by the other three threads. So, a 0% overlap means
none of the transactions conflict; a 100% overlap means that all of the transactions conflict
with at least one of the actively running transaction at the time the conflicting transaction was
running. We run the same benchmark 12 times with varying overlap percentage between 0%
and 100%. We configured the main-line transaction to have 256MB of cache and each of the
active transactions to have 20MB. All the operations on the transaction fit in its cache.
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Figure 4.3: Time taken for commiting the transactions running in serializability mode with
varying percentage of overlap

Results. Figure 4.2 shows the time taken for inserting 30GB of data (operation time) by
1,920 transactions with a varying percentage of overlap. This does not include the time
taken for t xn-begin and txn—commit. Figure 4.3 shows the time taken for committing
(commit time) the same 1,920 transactions. The time taken for beginning the transactions was
negligible and the same across all runs. The operation time for inserting 30GB of data for the
benchmark run with 0% overlap was only 29.7s: see Figure 4.2. This time only considers the
total time taken by all the transactions to insert I6MN into its own VT-tree. Since the cache
was configured to be 20MB for each of the transaction, this reflects the time taken to insert
16MB of data into its own cache by all the transactions run on four threads. Remember that
this is not same as if 1,920 transactions are running in parallel; here, only four transactions
at a time could run in parallel. The operation time for 100% overlap is 555.07s. In this
run every transaction has a conflicting operation with at least one of the other three actively
running transaction. On conflicts, the lower-priority transaction waits for the other conflicting
transaction to commit and then resumes. The lower-priority transaction may need to restart
its operations in case the conflict causes a deadlock with other transactions. In this run there
were two deadlocks resulting in a restart of two transactions. The 100% overlap run is almost
the same as if all the transactions were run serially one after the other. All the other runs had
their operation time spread linearly between that of the 0% and 100% overlap runs without
any anomalies as expected.
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The commit time shown in Figure 4.3 is interesting. The total time spentin t xn—commit
by all the transactions in the 0% overlap run is 819.74s, whereas it was 324.69s for the 100%
overlap run. txn-commit in KVDB requires evicting the pairs in the private cache of the trans-
action into the corresponding VT-tree in the main-line schema and then journaling the same
for durability. Currently, the time to evict the pairs from private cache into the main-line
takes at least as much time as it took for inserting those into the private cache of the trans-
action. This is because we copy all the pairs between the private cache and the main-line
instead of moving them. So, the per-transaction t xn—commit time is actually more than
the per-transaction operation time. This is only true if the transaction is small and every-
thing fits in its private cache. Additionally, KVDB does not support group commit yet and
all the commits are serialized. So, in the 0% overlap run, every committing transaction has
to wait for at least one other transaction to commit except the one that committed first. This
forces the commit time of each transactions to include the commit time of at least one other
transaction, making a group-commit feature necessary. However, in the case of the 100%
overlap, the commit time of some of the transactions are included in the operation time of the
other transactions instead. This is because, on a conflict, which happens very frequently in
the 100% overlap run, the lower-priority transaction waits for the conflicting higher-priority
transaction to commit before resuming. This makes the operation time of the lower-priority
transaction to include the commit time of the conflicting higher-priority transaction. This
is an expected behavior for the 100% overlap run. Unless a group commit is implemented,
and also we move the pairs efficiently between the transaction’s private cache and the main-
line on commit, the total time taken by all the transactions in the 0% overlap run, the 100%
overlap run, or anything in between are be almost the same. This is in fact the case: the
0% overlap experiments completed the entire benchmark in 846.13s and the 100% overlap
run completed it in 852.07s. We may not have thousands of transactions running in parallel
and all of which have conflicts with others; still, even then this experiment shows the impor-
tance of supporting group-commit. Since KVDB’s transactional architecture is designed for
supporting larger-than-RAM transactions, where the amount of data in cache is small com-
pared to the total data, the commit time is going to be negligible as shown in our previous
experiment in Section 4.2.1.

4.3 File System Performance

KVEFS uses FUSE to support POSIX operations. Using FUSE requires two additional context
switches and buffer copies than running on a native file system. This results in around 2 x
overhead compared to the native file system performance [28]. However, serial reads on
FUSE are comparable to and even some times better than native file systems. This is due to
caching and read-ahead performed at both the FUSE kernel component and the lower native
file system [28]. The FUSE kernel module caches read pages, but writes are immediately sent
to the FUSE server running in user space. We have designed a simple write-back caching but
its implementation as of this writing is not complete enough to run bigger workloads. To
exclude FUSE overhead, we compare KVFS’s performance with FUSE-Ext4 a pass-through
FUSE mounted on Ext4. We also evaluated Ext4 to measure FUSE overhead by comparing
it against FUSE-Ext4. We use Filebench [10] for evaluating these systems. We first evaluate
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Figure 4.4: Filebench results for micro-benchmark workloads on SSD

these systems by running micro-benchmarks like serial reads, serial writes, random reads,
and random writes in Section 4.3.1. We then use some real-world like workloads provided
by Filebench such as a fileserver, videoserver, varmail, and webserver to benchmark these
systems in Section 4.3.2.

4.3.1 File System Micro-benchmarking

Configuration. KVES creates an fs-schema consisting of three VT-trees in KVDB as de-
scribed in Section 3.1: nmap, imap, and dmap. We configured nmap, imap, and dmap to have
RAM buffers of sizes 6MB, 12MB, and 512MB, respectively. Using larger RAM buffer can
improve performance, but at the same time we want enough memory left to accommodate sec-
ondary indexes and Quotient Filters to stay in RAM. We set the stitching-threshold to 32KB
for all the runs. We describe the reason for choosing this stitching threshold in Section 4.5.
We use Filebench’s randomread, randomwrite, singlestreamread, and singlestreamwrite mi-
cro workloads. All the I/Os are done at 4KB size unless otherwise mentioned. Filebench’s
randomread workload reads a 30GB single file randomly. The randomwrite workload per-
forms random writes on a pre-allocated 30GB file. The singlestreamread workload serially
reads a pre-created 30GB file with I/O size of 16KB. The singlestreamwrite workload se-
quentially starts writing to a file at offset zero.

24



SeqWrite | SeqRead | RandWrite | RandRead
Ext4 19,914 23,866 3,179 13,491
KVFS 14,035 23,227 5,857 11,286
FUSE-Ext4 | 10,537 23,025 2,603 10,462

Table 4.1: Results of Filebench micro-benchmarks in ops/sec

Results. As seen in Figure 4.4 and Table 4.1, both the FUSE variants including KVFS have
similar performance for serial reads when compared to Ext4. Since in the serial read work-
load, the file is first written sequentially, VT-tree does not need to do any sorting; stitching
preserves the block order, allowing fast subsequent serial reads. The stitching optimization
in VT-tree avoids merging during compaction for serial writes, allowing its performance to
be better than FUSE-Ext4 even though these are equipped with extents and delayed alloca-
tion optimizations. VT-tree caches the dirty data and writes out the data serially in a sorted
order when the RAM buffer becomes full. For this reason, KVFS does not need to support
delayed allocations. KVFS also does not need to support extents as frequent compactions
in VT-tree reduce fragmentation over the lifetime of the file if the stitching threshold is set
appropriately. In KVFS, a random 4KB write becomes a new key-value pair insertion into
KVDB, which acts as an update during one of the merges within VT-tree. Since random
writes into KVFS become a serial write of a list, KVFS’s random write performance is better
than other file systems including Ext4. Random writes in KVFS are 84% faster than Ext4
and 125% faster than FUSE-Ext4. Inserting lots of pairs result in frequent merges; and since
the data is random, stitching is not of much help, making KVFS’s random-write performance
not the same as KVFS’s serial write performance, but it still significantly outperforms other
file systems. With the use of Quotient Filters [4] and secondary indexes, KVDB achieves
SSD’s random-read throughput for random point queries, making random reads in KVES
comparable to FUSE-Ext4 and Ext4. For sequential writes, FUSE-Ext4 is almost twice as
slow and around 22% slower for random writes than Ext4. Providing write-back cache helps
here, especially when the workload is CPU bound, by reducing context switches. With the
write-back caching at FUSE kernel, KVFS’s random write performance can improve even
further.

4.3.2 File System Macro-Benchmarking

Configuration. The Fileserver workload performs a sequence of creates, deletes, appends,
reads, writes, and stat operations on a directory tree. We configured the mean size of the file
to 100KB, mean append size to 16KB, directory width to 20, and number of files to 100,000.
Filebench pre-allocates 80% of the files and randomly selects a file for each of the above
operations. We ran the benchmark for 10 minutes each with 10 threads and I/O size of 4KB
for all file systems on SSD.

The Videoserver workload has two file sets: actively serving videos from one and the
other set contains videos that are currently inactive. In this workload one thread writes new
videos to replace no longer viewed videos in the passive set. Meanwhile 48 threads are
serving videos from the active video set. The Videoserver workload has a write I/O size of
IMB and Read 1/0 size of 256KB. The active video set contains six videos and the passive
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Table 4.2: Results of Filebench macro-benchmark workloads in ops/sec

set contains 26 videos.

The Varmail workload emulates I/O activity of a simple mail server storing emails in

separate files. It consists of 16 threads

doing create-append-sync, read-append-sync, read,

and delete operations in a single directory. The 1/O size used in this workload is 1MB.

The Webserver workload produces a sequence of open-read-close with 100 threads on
multiple files in a directory tree, plus a single log-file append thread of mean append size

16KB for every 10 read threads.

As seen in Figure 4.5 and Table 4.2, for all the macro-benchmark workloads,

Results.

Ext4 and Ext4.

The Fileserver workload has a good mix of metadata operations and large sequential and

random read or writes.

KVES performs comparably or superior to FUSE

By looking at ops/sec for each operation, we noticed that KVFS

performs comparable or superior to FUSE-Ext4 and Ext4 for metadata operations like open,
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create, stat, and delete operations. These metadata operations are similar to random database
workloads consisting of small tuples and are ideal for the VT-tree. The file server workload
also includes appending 16KB to a random file and randomly reading the whole file. This ap-
pend workload is similar to random writes. KVFS again performs better than FUSE-Ext4 and
Ext4 here. But, for randomly reading the whole file, KVFS has around 5.5% lower through-
put than Ext4, but 3% better throughput than FUSE-Ext4. Compactions of on-disk lists in
VT-tree brings these randomly appended data together over the lifetime of the file. Frequent
insertions of the data in the file server workload ensures that the compactions are triggered
often, improving the performance of the subsequent sequential reads of a file. The frequency
of compaction is determined by the insertion rate and can also be triggered periodically which
to improve KVFES’s performance for whole file reads even further.

For the videoserver workload, all the file systems perform equally well as FUSE overhead
is negligible for requests with large I/O size [28].

In the varmail workload, FUSE-Ext4 has a better performance than Ext4 for read-append-
sync cycle. FUSE file systems are noted to have slightly better performance for sequential
reads because of the double readaheads and double caching happening at the FUSE kernel
and lower file system layer [28]. For every other operations, all three file systems performs
almost the same, as the 1/O size is large as in videoserver workload.

FUSE-Ext4 and KVFS are 11.6% slower than Ext4 for the webserver workload. The
Webserver workload is mostly read oriented, and files are not large enough to help FUSE’s
user space file systems with additional readaheads. This makes the read cycle of the workload
performing better for Ext4.

In sum, for macro workloads, FUSE shows negligible overhead with the highest of 11.6%
for Webserver; sometimes it performs better than the in-kernel file system for workloads like
varmail. Additionally, KVFS’s performance is superior or comparable to FUSE-Ext4 for
almost all workloads.

4.4 Real Workload and KVFS’s Transactional Performance

Here, we use Samba and Linux kernel compilation, and other related operations to compare
the performance of KVFS with Ext4 and FUSE-Ext4. For KVFES, we ran the same set of oper-
ations with and without transactions to measure the overhead caused by transactions. In case
of transactions, we ran them in both snapshot isolation (KVFS-TXN-SI) and serializability
(KVFS-TXN-SER) mode. As described in Section 3.3.3, applications need to use the APIs
txn-begin, txn-commit, and txn-abort—provided by our user library—to invoke
transactional operations on KVFS.
In this benchmark we include the following operations in this order:

1. txn-start: This operation begins a transaction and is included only for KVFS when it is
running its operations in a transaction.

2. untar: Untar the downloaded tar version of the source.
3. removetar: Remove the downloaded tar version.

4. make: Run make inside the source directory.
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Pre-Compile Post-Compile
TarSize (MB) | UntarSize (MB) | Number of Files | Size (MB) | Number of Files
Samba-3.3.6 25 80 4,343 189 5,151
Linux-3.0.1 74 494 39,048 739 45,737
Linux-3.1.1 74 498 39,371 746 46,103
Linux-3.2.1 75 505 39,964 753 46,945
Linux-3.3.1 76 511 40,449 763 47,502

Table 4.3: Size and number of files in Samba and Linux source directories before and after
compilation.

5. findall: Run /bin/find on the source directory. This is basically a meta-data opera-
tion that lists the name of all files and directories recursively under the source directory.

6. readall: This scans through each file in the source directory recursively, and reads its
content and write to /dev/null.

7. txn-commit: This operation commits a transaction and is included only for KVFS when
it is running its operations in a transaction.

We excluded the time taken to configure and install the compiled versions as the target
file systems were not mounted as root file system.

4.4.1 Single Transaction

Configuration. In this benchmark, the aforementioned operations are first run on Samba
version 3.3.6 and then on the Linux kernel version 3.0.1. We measured times separately
for each run. Table 4.3 shows the size of the source directories and the number of files in
the source directory before and after compilation. The operations findall and readall were
performed after compilation, so they have more files to list and read. We used the default
configuration for both Samba and Linux. We ran make with five concurrent threads.

Results. As seen in Figure 4.6, the total time taken by all the operations for Samba is 53.55s
and 69.35s for Ext4 and FUSE-Ext4, respectively. Around 93% of the total time is spent in
compilation itself. KVFS with no transaction completes the benchmark in 63.29s, which is
around 9.5% faster than FUSE-Ext4, even after having an equal amount of FUSE overhead.
KVES is only 15% slower than the in-kernel Ext4. KVFS performs better than FUSE-Ext4
on all operations except the readall. FUSE-ext4 took only 3.28s for the readall operation
whereas KVFS completed it in 4.65s. KVES stores the data in dmap format. dmap is 4KB in
size to make it aligned with the page size of the underlying file system. In dmap, the key takes
up 16 bytes and 1 byte is used for the delete flag. This leaves only 4,079 bytes to store the
actual data. So, KVFS may need to do more lookups to read the given amount of data when
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Figure 4.6: Samba compilation results

compared to Ext4 or FUSE-Ext4. KVFS, when running these operations as part of a transac-
tion in both snapshot isolation and serializability mode, completed this benchmark in 64.58s
and 70.68s, respectively. The transaction in snapshot-isolation mode has only t xn-start
and txn—-commit operations in addition to KVFES run without transaction. t xn-start is
negligible and t xn—commit took only 0.57s to complete. The transaction in serializability
mode completed the benchmark in 70.68s with the overhead of 10.45% when compared to
KVES run with no transactions. As serializability needs to maintain strong isolation guaran-
tees, these overheads mainly come from the range-lock tree and deadlock-avoidance checks.

Figure 4.7 shows the result for all file systems for operations on the Linux kernel source.
The results are similar to that of Samba run except that each operation took more time as the
code base of Linux kernel is larger. Ext4 completed the benchmark in 220.05s, FUSE-ext4
in 250s, and KVFES without transaction in 240.18s. In this run KVFS was 4% better than
FUSE-Ext4 and only 8.5% slower than the Ext4. Here, compilation took around 52% of the
total time and readall took 40% of the time. After compilation, there were 45,737 files with
a total size of 739MB. Transactions in snapshot isolation have almost zero overhead with
txn-commit taking only 0.28s. Transactions in serializability mode show a similar over-
head of 10% in this benchmark as well when compared to KVFS run without any transaction.

In these runs, KVFES is 4-9.5% faster than FUSE-Ext4 and only 9.5-15% slower than the
in-kernel Ext4 file system, showing that its practicality to be used in desktops and servers
with the additional benefits of transactions and other features. Transactions in KVFS with
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Figure 4.7: Linux kernel compilation results

weaker isolation guarantees come almost for free, and offer stronger serializability isolation
for overlapping transactions with only 10% overhead.

4.4.2 Parallel Transactions

Configuration. In this experiment, we ran the same benchmark with all the operations
mentioned in Section 4.4.1 for the four Linux kernel versions 3.0.1, 3.1.1, 3.2.1, and 3.3.1—
only now all of them were run in parallel. In each of the benchmarks with a particular Linux
kernel version, we ran make internally with five threads as before. For KVFS, we configured
the mainline cache to be 256MB in size and any used transaction had 64MB configured for
their private cache.

Results. Figure 4.8 shows the results for this experiment. Ext4 took 220.5s to run these
operations on a single Linux kernel source; it completed this parallel benchmark on four
Linux kernel versions in 453.76s. FUSE-Ext4 completed the same in 571.10s and KVFS
took only 514.45s. So, KVFS performed 11% better than FUSE-Ext4 and 13.4% slower
than the Ext4. For running transactions in KVFES, the snapshot-isolation mode is best suited
here as these operations do not include any conflicting requests. Remember that these file
systems are not mounted as root file systems. We ran each of these four benchmarks in
separate transactions in snapshot-isolation mode. All transactions work in their own snapshot
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directory without stepping over each other and they commit their changes at the end. These
snapshots have their own VT-tree with a smaller private cache, and is highly concurrent.
This run, with the transactions, completed in 491.10s, 4.5% faster than without transactions.
A smaller private cache size means that a larger number of lists gets generated and merges
become more frequent. Increasing the cache size improves the performance even further as
long as it does not swap out other entities like secondary indexes and Quotient Filters from
RAM.

4.5 Defragmentation in KVFS

Log structured systems face the issue of fragmentation; KVES, which uses VT-trees, is no
exception. We have devised a defragmentation algorithm described in Section 3.2.1. We first
measure the effectiveness of our defragmentation algorithm using a synthetically generated
workload. We then analyze the characteristics of fragmentation in KVFS and its relation with
the stitching threshold supported by the VT-tree.

Evaluating the Defragmentation Algorithm

Configuration. We devised a benchmark that inserts around 38GB of dmap pairs represent-
ing the file data blocks into KVDB. Given a stitching threshold, the benchmark repeatedly
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generates a sequence of data of length chosen randomly between 4KB and the stitching-
threshold part of different a file each time, until the specified amount of data (38GB) is
inserted. We ran this benchmark with a stitching threshold of 64KB. We configured KVDB
with 512MB cache. Inserting 40GB into VT-tree creates 11 lists.

Stitching | Range query | Defragmentation | Range query | Used | Reclaimable
threshold | before defrag (sec) after defrag | zones zones
(sec) (sec)
64KB 377.71 284.14 274.82 11,264 6,270

Table 4.4: Results before and after defragmentation

Results. After inserting all the data, the total number of used zones were 11,264 as shown
in Table 4.4. The total number of zones required for holding 38GB worth of dmap pairs is
only 4,864. After scanning through all the lists, our algorithm determined that it can reclaim
6,270 zones, which is 55% of the total used zones. The rest of the 130 zones are either used
by the lists at the top or by the disk-backed secondary indexes and Quotient Filters. Before
running our defragmentation algorithm, we ran a range query in our KVDB, which reads all
the dmap pairs in KVDB in sorted order. As the data is sorted only within each list and not
across the lists, this operation needs to do a lot more work than sequentially reading all the
lists. This operation took around 377.7s reading at 103MB/s. We measured this to compare
the performance of the same operation after defragmentation. As our defragmentation con-
siders the sequentiality of existing data before moving it around, it should ideally improve
the performance of the range operation. Defragmentation required moving around 15GB of
data from the candidate zones to the rest of the zones. Our defragmentation algorithm re-
claimed all the 6,270 zones in only 284.14s with a rate of 54MB/s. Our algorithm reads the
data from the zone sequentially, but the write to the zone, even though it is sequential, may
not be contiguous, resulting in an acceptable throughput of 54MB/s considering that the data
needs to read from and written to different locations. The range query operation after the
defragmentation took only 274.8s with an improvement of 27.3%.

Analysis of Fragmentation in KVFS

We used a Filebench workload consisting of appends to a random file picked from a set of
10,000 files with mean append size of 16KB and a random write to a pre-allocated 10GB file
in each cycle. The benchmark runs for 30mins and inserts around 34GB of data. To analyze
the fragmentation in KVFS, we ran the same benchmark with different stitching thresholds
each time.

Figure 4.9 shows the percentage of under-utilized zones after each run of this bench-
mark for stitching thresholds of 32KB, 64KB, 128KB, 256KB, and 512KB. As we see, the
fragmentation decreases as the stitching threshold increases. This is because larger stitching
thresholds result in fewer number of stitched regions and most of the data is compacted and
thereby gets copied to the zones in the new list.

Figure 4.10 shows the distribution of zones and its percentage of usage for different stitch-
ing thresholds. As we see, the fragmented zones are concentrated around 40% or 70% usage
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Figure 4.9: Percentage of under-utilized zones (< 75%) with different stitching thresholds
after inserting 34GB of data in KVFS

for smaller stitching thresholds. The 32KB stitching threshold also shows a large number of
highly fragmented zones with around 10% utilization. Runs with larger stitching thresholds
(256KB and 512KB) are in the extreme: either they have a large number of fewer than 10%
utilized zones, or a large number of less fragmented zones. This is because if the zone con-
tains any stitched region, their number is less or they are part of the compacted lists with no
fragmentation for larger stitching thresholds.

The average file size in a general-purpose file system is around 32-64KB [1]. Having
a large stitching threshold defeats the purpose of stitching in order to save the copies for
an already sorted data of files smaller than the stitching threshold. At the same time, if the
stitching threshold is small, sequential reads on large files like video and audio files might
have to read from many stitched regions across many zones. This can only happen if the file
was not written once and instead appended to at different point in time, which is often not
true for video and audio files. So, having a relatively small stitching threshold of, say, 32KB
with periodic defragmentation appears the best strategy for KVFS.
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Figure 4.10: Zone usage distribution for runs with different stitching thresholds

4.6 Evaluation Summary

An efficient transactional architecture in KVDB allows us to have only 3% overhead and
provides concurrency with 63% better throughput by using snapshots for partitionable work-
load. For small and parallel running transactions requiring strong isolation guarantees, our
experiment shows that supporting a group-commit feature in KVDB is necessary to improve
performance further. KVFS shows comparable performance with FUSE-Ext4 and Ext4 for
all micro-benchmarks except random writes where KVFES is 84% faster than Ext4 and 125%
faster than FUSE-Ext4. For KVFS, the overhead of using FUSE is mainly visible in sequen-
tial writes with an overhead of around 30% when compared to Ext4. Our ongoing write-back
cache implementation should help here and further improve KVFS’s random write perfor-
mance. As we saw in the macro-benchmarks like fileserver, videoserver, varmail, and web-
server workloads, KVES is capable of handling small file operations well, and also handles
large writes and sequential reads of whole files comparably to FUSE-Ext4 and Ext4. In our
Samba and Linux kernel compilation experiments, KVES consistently performs better than
FUSE-Ext4. Using transactions in KVFS for running many Linux kernel compilations in
parallel actually improves the performance as opposed to adding an overhead. These parallel
Linux kernel compilations are an example of applications that can run in parallel with no
conflicts and can benefit from KVFS’s transactional architecture. We also show that frag-
mentation in KVFES is higher when used with a smaller stitching threshold. However, it can
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be addressed efficiently with the defragmentation algorithm we have devised specifically for
the VT-trees used within KVFS.
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Chapter 5
Related Work

In this chapter we discuss work related to KVDB and KVFS. We first discuss other kinds of
write-optimized systems and databases that use LSM-trees and its variants. We then discuss
additional features supported by KVFS when compared to some of the existing log-structured
file systems. Finally we discuss some of the existing transactional file systems and versioning
file systems.

Write-optimized databases. GTSSL [40] uses an LSM-tree variant [23], but with a multi-
tier extension. GTSSL also supports ACID transactions. However, GTSSL does not support
snapshots and transactions larger than RAM, which are critical for a transactional file sys-
tem [39]. It also lacks the sequential optimization that the VT-tree has. VT-trees can be
easily extended to support multi-tier storage and is part of our future work. Anvil [19] pro-
vides a modular framework for applications to have different data layouts. Anvil does not
provide ACID transactions; Anvil’s future work includes transactions, support for concurrent
LSM-trees and larger-than-RAM transactions. BDB Java Edition (BDBJE) [9] is a log-based,
no-overwrite transactional storage engine. In BDBJE, each key-value pair is stored in a sepa-
rate leaf node of a B-Tree. It uses a log to store the dirty key-value pair and behaves like other
log-structured systems. Our evaluation shows that BDBJE performs well for out-of-RAM se-
quential insertions. However, its performance drops considerably for random insertions of
small key-value pairs, and requires 5x more memory for its Java heap to keep up with its
competitors. BDBJE’s authors are aware of this [25].

BT -trees keep all records in the leaf nodes and they chain nodes at the leaf level or at
each level using sibling pointers. These are used to improve range-scan performance. Using
sibling pointers causes write operation to ripple forward, backward, and back among the leaf
nodes. Goetz’s write-optimized B-trees [13] do not maintain pointers to siblings, which are
required for chaining leaf nodes. Instead of these sibling pointers, write-optimized B-trees
use fence keys, thereby avoiding the expense of updating the siblings during a write operation.
This affects the scan performance. However, write-optimized B-trees also support in-place
insertions, which result in random writes during updates. Write-optimized B-trees are not
scalable as they require all the index nodes to be in cache. Our VT-trees do not have any of
these limitations.

Rose [34] uses a more traditional LSM with a fixed number of levels. Rose is designed
only for database workloads and it allows fast replication by compressing the column. Rose
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is orthogonal to our work.

Log-structured file systems. Log-structured file systems (LFS) [30] write the changes to a
circular log and do not overwrite the file data on disk. LFS’s threading concept is reminiscent
of VT-tree’s sequential optimization, called stitching. LFSs require that all keys in their data
structure reside in RAM to avoid disk I/O boundedness [45]. This is not an issue for file
systems that deal with large 4KB pages, but is an issue for smaller tuples, which KVFS was
designed to transparently support as well. KVFES uses a similar segment-cleaning method
as used in LFS, but our algorithm, used in KVFES differs in how it chooses the candidate
segments for cleaning. LFS uses the age of the data in the segment, whereas KVES uses the
sequentiality of the existing data to determine the benefit of cleaning a particular segment.

Snapshots are an implicit feature of LFS. Other log-structured file systems like WAFL [15]
and ZFS [42] use copy-on-write to support snapshots and to preserve data atomicity. KVFS
also supports snapshots. It uses snapshots to support highly concurrent application-level
transactions. Unlike WAFL and ZFS, we allow the snapshots to be modified by the transac-
tion that owns it, and we keep the changes isolated from other transactions. We merge the
changes to the active file system when the transaction commits. We avoid conflicts using
pessimistic locking in KVFS. VT-tree, used internally within KVFS, behaves like LFS for
file-system workloads and like an LSM for database workloads, preforming equally well on
both types of workloads.

Transactional file systems. Amino [48] uses ptrace to interpose file system operations
in order to provide transactions. Using ptrace introduced high overheads, and the ptrace
monitor has to run in privileged mode. Valor [39] adds an in-kernel logging subsystem for
write-ordering and an in-kernel locking to provide a transactional file interface. Valor sup-
ports long lived transactions and transactions larger than RAM. QuickSilver [33] is one of the
early systems to incorporate transactions into the OS, but each component had to support two-
phase commit and rollback for a complete transactional support. TxOS [27] detects conflicts
and data versioning at the virtual file system layer to behave like a transactional file system.
TxOS does not support transactions larger than RAM. TxF [46] uses the exiting transactional
manager in NTFS to support transactions. It requires each component to implement its com-
mit and rollback methods similar to QuickSilver. TxF performs writes twice and must gather
undo images using reads when data is overwritten, as it does not operate on a log-structured
file system and instead it uses a traditional transactional architecture. These transactional file
system interfaces either add some high overhead, require complex kernel changes, or require
a complete redesign. KVFS supports long lived and larger-than-RAM transactions, requires
no kernel modifications, introduces negligible overhead, and is simple.

File system meta-data indexing. FFS’s optimizations for directory lookups and insertions
are simple but do not scale as well as B-Trees. XFS [43], ReiserFS [29], Ext3, and Btrfs [24]
use better B+Trees to index path names. Perspective [31] offers a user-friendly distributed
file system based on MySQL. BeFS [11] and HFaD [35] focus on multiple indexes for the
same file. Both use traditional B+Trees. Previous projects showed how inefficient randomly
written B+Trees can be, even for SSD devices [37,40]. Spyglass [18] partitions names-
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pace metadata into smaller KD-trees [5] that fit in RAM; it writes updated KD trees in new
locations and links them to previous versions to increase update throughput. The authors
admittedly avoid tree compaction [18], which is almost always required [8]; they also admit-
tedly do not measure its asymptotic performance or compare against other write-optimized
indexes. VT-tree, however, scales well when indexes exceed RAM sizes and it works well
for any type of hard-to-partition indexed data (e.g., dedup, global search).

Versioning file systems. Versioning file systems provide file-system level as well as per-
file versioning capabilities. Ext3cow [26] provides time-shifting versioning at the file level,
allowing users to access these versions based on time. Versionfs [21] implements versioning
at the stackable file system layer and adds versioning functionality transparently on top of
any other file system. The Elephant file system [32] allows user-specified retention policies
to manage versioned files. Cedar [12] provides file versioning by maintaining different copies
of data with no sharing between versions. WAFL and ZFS uses snapshots to facilitate backup
and recovery. KVFS also aims to provide file-system—level snapshots for the same purpose
but does not support per-file versioning. It currently does not provide a user interface for
accessing the snapshots other than via transactions. In KVFS, snapshots are private to a
transaction, but it is easy to support shared user snapshots.
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Chapter 6

Conclusions

Our main goal was to build a simple transactional storage system that supports both file
system and database workloads efficiently. Our co-developed VT-tree data structure per-
forms efficiently for any mix of highly sequential workloads (e.g., file-based data access),
as well as highly random workloads (e.g., structured data access and databases). Our de-
fragmentation algorithm efficiently solves the issue of fragmentation in VT-trees caused by
stitching, which is an important feature to enable efficient sequential and file-system work-
loads. We designed an efficient transactional architecture with only 2—-3% overhead on single
asynchronous transactions, but improves highly concurrent performance by as much as 63%.
Transactions requiring strong isolation guarantees incurs only 10% overhead. Our KVFS
performance is comparable to Ext4 and superior to FUSE-Ext4 for most of the workloads,
showing its practicality to be used in desktops and servers. Additionally, KVFS provides
snapshots, a low-overhead concurrent transactional API, and keeps FUSE kernel caches en-
abled and consistent. We have also designed a simple write-back caching scheme for FUSE
that would improve the write performance of KVFES further.

Future Work. (1) Stitching can cause file system fragmentation over time; we have devel-
oped an offline defragmentation tool. We want to extend it to run online and also explore
other defragmentation techniques. (2) We want to complete the implementation of the write-
back cache for FUSE’s kernel module and measure the performance improvement for large
workloads consisting of writes. (3) We also want to extend KVFES to do in-line deduplica-
tion. VT-tree and LSM-trees in general are suitable for deduplication as they eliminate any
duplicates during compactions. In KVFS, a simple way to implement in-line deduplication
is to change the format of the dmap entries to include a checksum or hash of the data block
as the key, and a separate dictionary format to map file data-blocks to their respective hashes.
(4) We are currently using one VT-tree with dmap format to store data blocks belonging to
all the files in the file system. We want to explore using VT-tree with no RAM-buffers to
store individual file data separately. This ensures that the data belonging to a file is always
sequential, improving the performance of sequential reads of any file in the file system. So,
there will be as many VT-trees as there are files in the file system. This may require support-
ing zone sizes of 4KB to accommodate small files in the VT-tree. However, large zones are
also necessary to maintain the sequentialty on the disk for large lists in a VT-tree backing a
large file, requiring an efficient zone allocation and management functionality.
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