
Integrity Protections for Secure Long-term
Storage

Maliha Tabassum

Department of Computer Science

Stony Brook University

Doctoral Program

Research Proficiency Exam

December 2024

Technical Report FSL-24-05

Contents

1 Introduction 1

2 Background 3
2.1 Threat Modeling . 3
2.2 Desired Characteristics . 5

3 Integrity of Digital Archives 8
3.1 System Overview . 8
3.2 Integrity: Data Auditing . 9

3.2.1 Digital Signatures . 9
3.2.2 Commitment Schemes . 11
3.2.3 Secret Sharing Schemes . 14

3.3 Integrity: Provenance Tracking . 15
3.4 Discussion . 16

4 Related Work 18

5 Conclusion and Future Directions 20

1

Abstract

Long-term digital data preservation is often confronted with security challenges that persist for decades.
The security assurance of most storage solutions available today rely on practical yet unproven mathemat-
ical assumptions. Therefore, these solutions fall short of meeting the protection requirements of data that
demand to be safeguarded for longer than a human lifespan. The three key components of long-term data
security—confidentiality, integrity, and availability—are in danger now more than ever due to the rapid
advancements in technology (e.g., the emergence of powerful quantum computers). Although researchers
have explored the long-term confidentiality and availability of highly sensitive information, data integrity
in the long run has received inadequate attention. As a result, conventional approaches to ensure long-term
integrity have remained vulnerable to cryptographic obsolescence. In this technical report, we investigate
techniques that have the potential to serve as the central component of a robust data-integrity mechanism
for long-lived data and discuss their application to secure storage systems.

Chapter 1

Introduction

Digital archival systems provide an efficient solution for securely storing data for a long time by allowing
easy access and requiring less space. The trade-off is that storing data in the digital format expands the
attack surface and makes data more vulnerable to stealing and tampering attacks. While several techniques
to ensure the security of data in digital format have existed for a few decades [Sha84, GPSW06, Pai99,
ABC+07, SW08], the problem arises when data must be preserved for a really long time (e.g., decades or
even centuries). Computationally secure cryptographic primitives that are currently used for data security
rely on practical yet unproven mathematical assumptions and, therefore, do not meet the requirements of
long-term archival systems that aim to store data securely for at least a hundred years.

Readers may wonder at this point about the type of data that must be securely stored for so long. There
are plenty of instances where data demand to be safeguarded for decades or centuries. For example, the
oldest continuing agricultural experiment, The Broadbalk Wheat Experiment, started in 1843 and is still
ongoing at Rothamsted Research, UK [PJG+24]. Although the results of the experiment are published
periodically, maintaining the authenticity of data over time and preventing any inadvertent or malicious
alterations are crucial. Another example is trade secrets such as Coca-Cola’s recipe, that has been kept
hidden for more than a hundred years even from most of their employees [coc24]. In the case of trade
secrets, data must remain both confidential and unchanged. Public health records that have particular
significance to the study of the causes of disease are yet another type of data that must be shielded against
any tampering attacks. Global weather/climate history, presidential records, legal documents, court orders,
property deeds, birth and population records, and family medical history are some other examples of data
that call for secure long-term preservation.

The security of long-lived digital data comprises three key components: confidentiality, integrity, and
availability, also known as the CIA triad. Confidentiality refers to the hiding property of data that prevents
an unauthorized party from gleaning information. Integrity ensures the trustworthiness of data and protects
against data tampering attacks. Availability means that data is accessible whenever needed regardless of
network failures, system crashes, or other unanticipated failure events. The confidentiality and availability
of long-lived data have managed to capture the interest of researchers over the years [WWW02, GKP05,
SGMV09, BBD+17, BDF+20, ZWGG23]. The long-term integrity of data, however, remained largely
unexplored and is the primary focus of our work [STD+24].

We now present a formal definition of data integrity, followed by a real-world example of data tampering
attempts. According to National Institute of Standards and Technology (NIST), data integrity is the property
that data has not been altered in an unauthorized manner in transit, during processing, or at rest [GGF17].
An infamous attack example on the integrity of long-term data is the modification of a US presidential
record. In 2011, the US National Archives discovered that an established Lincoln researcher altered a
presidential pardon, part of the archive’s permanent records, in order to support a claim in his book [nat11].

1

President Abraham Lincoln signed 128 pardons during his presidency, including the pardon of Patrick
Murphy, who was sentenced to death. The pardon statement contained the signature of the president and
the date it was signed: April 14, 1865, the day the president was later assassinated [HSL21]. The number
“5” in the year, however, looked like a darker shade of ink than the rest of the date and raised suspicion.
Moreover, transcriptions of the document, published in 1953, listed the date as April 14, 1864, which added
credence to the concern. It was later determined that the original date of the pardon was indeed April 14,
1864, a year prior to the president’s demise. The researcher changed the date so that he could support his
claim about the president’s commitment to kindness till death [nat11]. The archivists were able to detect
the tampering using forensic examination methods such as visual observations of the physical document
under visible and ultraviolet radiation [HSL21]. If the document were stored only in digital format, which
is the case for many important documents, detecting such an attack would have been almost impossible
without a robust data-integrity mechanism, let alone recovering the original data.

In 2015, motivated by the need for long-term data preservation, Vigil et al. conducted a survey of
the existing long-term integrity solutions and found that none of them provided protection in the long
run [VBC+15]. The common limitation of the solutions was the failure to properly address the obsolescence
of cryptographic primitives due to algorithmic advances or increases in computational power. For example,
the DES encryption algorithm with 56-bit keys was considered secure in the research community for 20
years until the Deep Crack machine was introduced that could find a single DES key in 22 hours [ST21].
The MD5 hash function with 128-bit output length was believed to be collision resistant for many years
until a team of Chinese cryptanalysts demonstrated an explicit collision [KL14]. The SHA-1 algorithm was
adopted in 1995 as a replacement in the aftermath of collision attacks on MD5 but was practically broken
by the SHAttered attack in 2017 [wik24].

Two other solutions for long-term integrity were proposed after the aforementioned survey that aimed
to mitigate the limitations of the existing approaches. In 2017, Braun et al. introduced COPRIS, a data-
integrity scheme, that provides long-term integrity by renewing the timestamps and commitments used in
the protocol [BBD+17]. But the security of the scheme relies on the assumption that the cryptographic
primitives used are computationally secure during their usage period. In 2020, Muth et al. presented
another long-term integrity solution for secure storage that uses renewable vector commitments and times-
tamps [MGA+20]. Nonetheless, the primitives used are assumed to be secure throughout the duration of
their employment. These two solutions addressed the aging of cryptographic primitives to some extent, but
they cannot thwart tampering attacks if the algorithms are suddenly broken during their usage period.

In this technical report, we explore techniques that can potentially ensure the integrity of digital data for
a long time even when the adversary is computationally unbounded. To provide background information on
this work, we first outline the desired characteristics of a secure long-term storage system. We extend our
study to different data integrity solutions such as digital signature schemes, commitment schemes, secret
sharing schemes, and blockchain technology. Based on our work, we direct attention to promising research
areas for further investigation.

The rest of the report is organized as follows. Chapter 2 discusses various types of adversaries, expands
on two distinct notions of security, and describes the desired characteristics of a secure long-term archival
system. Chapter 3 presents two system models for data storage, explores potential mechanisms for long-
term data integrity, and discusses their application to secure storage systems. Chapter 4 includes related
work. We conclude in Chapter 5 with some future research directions.

2

Chapter 2

Background

In this chapter, we discuss various types of adversaries that imperil the integrity of long-lived data and
distinguish between two important notions of security. In addition, we describe the desired characteristics
of a long-term secure archival system that aims to store data for centuries.

2.1 Threat Modeling
Adversary Types. Malicious entities can be divided into two categories according to their computational
power: computationally bounded adversary and computationally unbounded adversary. The runtime of
a computationally bounded adversary, also known as a probabilistic polynomial-time adversary (PPT), is
upper bounded by a polynomial in the input size. Such adversaries can have significant computational ad-
vantages (e.g., access to a powerful quantum computer) over honest parties. Most cryptographic primitives
used for short-term storage are considered secure against PPT adversaries, assuming the time to break the
primitive is much longer than the lifetime of data. Nevertheless, these adversaries can pose a serious threat
to storage systems if the lifetime of data is longer than the primitive used to ensure security. Computation-
ally unbounded adversaries, on the other hand, are not limited by their computational power and, therefore,
can take advantage of parallel computing. Long-term archival systems are more vulnerable to attacks from
this type of adversaries since computationally secure integrity mechanisms cannot prevent an attacker from
tampering with data for an extended period of time.

Adversaries can also be classified into different types based on their motives. The goal of an attacker can
be to tamper with data or to destroy it completely, causing an archival system to lose valuable information
for good. Another motive of a malicious intruder could be to alter data without being detected; for example,
changing digital images and audio files to portray the opposite of reality as true. The last category of
adversaries in this classification comprises the ones that are concerned with monetary gain. Ransomware
attacks are a common example of attacks from this type of adversaries, where a group of attackers encrypt
user information with their private key to make it inaccessible and demand money from the user in return of
the decryption key. An adversary, threatening the integrity of long-term storage systems, can be motivated
by any of the aforementioned reasons though ransomware attacks are usually targeted at highly valuable
short-lived data.

Data tampering attacks can be launched by both malicious outsiders, who first need to bypass the
storage system’s access control mechanism, or dishonest insiders, who already have access to the storage
nodes. For example, distributed storage systems are susceptible to Byzantine failures, where a set of rogue
storage nodes violate the security protocols on purpose and send incorrect information to other storage
nodes [LSP19]. Other than various types of adversaries, unanticipated events such as natural disasters and
media obsolescence can also result in data loss. Hardware/software glitches and human errors are addi-
tional threats that can affect the integrity of data in long-term storage systems.

3

Security Notions. Based on the computational power of the adversary, the security assurance of a cryp-
tographic primitive can be divided into two types. A cryptographic scheme is considered computationally
secure if it is secure against computationally bounded adversaries. The security guarantee of such schemes
depends on unproven mathematical assumptions such as finding the discrete logarithm of a number is hard.
So long as these assumptions hold true, the security of the schemes will remain intact.

In contrast, a scheme is called information-theoretically secure if it provides security against computa-
tionally unbounded adversaries. The security of such schemes is derived from information theory, that is
the scheme can only be broken by stealing enough information about the data. In the case of information-
theoretic security, no algorithmic advances can threaten the security of a scheme; therefore, the security
is everlasting provided an adversary cannot steal the information needed to break the scheme. We give a
formal definition of both notions below using message authentication code as an example.

Message Authentication Code [KL14, Def. 4.1, §4.2]. A message authentication code (MAC) consists
of three probabilistic polynomial-time algorithm (Gen,Mac, V rfy) such that:

1. The key-generation algorithm Gen takes as input the security parameter 1n and outputs a key k with
|k| >= n.

2. The tag-generation algorithm Mac takes as input a key k and a message m ∈ {0, 1}∗, and outputs a
tag t. Since this algorithm may be randomized, we write this as t←Mack(m).

3. The deterministic verification algorithm V rfy takes as input a key k, a message m, and a tag t.
It outputs a bit b, with b = 1 meaning valid and b = 0 meaning invalid. We write this as b :=
V rfyk(m, t).

It is required that for every n, every key k output by Gen(1n), and every m ∈ {0, 1}∗, it holds that

V rfyk(m,Mack(m)) = 1.

Computationally Secure MAC [KL14, pp. 112-113]. The message authentication experiment Mac-forgeA,Π(n)
is defined as follows:

1. A key k is generated by running Gen(1n).

2. The adversary A is given input 1n and oracle access to Mack(·). The adversary eventually outputs
(m, t). Let Q denote the set of all queries that A asked its oracle.

3. A succeeds if and only if V rfyk(m, t) = 1 and m /∈ Q. In that case, the output of the experiment is
defined to be 1.

A message authentication code Π = (Gen,Mac, V rfy) is computationally secure, if for all probabilistic-
polynomial time adversaries A, there is a negligible function negl such that:

Pr[Mac-forgeA,Π(n) = 1] ≤ negl(n).

Information-theoretically Secure MAC [KL14, p. 142]. The one-time message authentication exper-
iment Mac-forge1-time

A,Π is defined as follows:

1. A key k is generated by running Gen.

2. The adversary A outputs a message m′ and is given in return a tag t′ ←Mack(m
′).

3. A outputs (m, t).

4

4. The output of the experiment is defined to be 1 if and only if V rfyk(m, t) = 1 and m ̸= m′.

A message authentication code Π = (Gen,Mac, V rfy) is information-theoretically secure, if for all
adversaries A, there is a negligible function ϵ such that:

Pr[Mac-forge1-time
A,Π = 1] ≤ ϵ.

Note that the message authentication experiments for computationally secure MAC and information-theoretically
secure MAC are different in that the adversary can query the oracle only once in the latter [KL14].

In other words, a computationally secure MAC is secure only against computationally bounded ad-
versaries, whereas an information-theoretically secure MAC is secure against all adversaries regardless of
their computational power. The integrity of data in transit can be ensured using a computationally secure
MAC as long as the scheme is secure throughout the duration of the protocol. Another solution is to use
an information-theoretically secure MAC. But in both cases, the sender and the recipient must agree on a
shared secret first [KL14]. In this article, we only focus on the integrity of data at rest, and hence, do not
expand on the integrity of data in transit further.

2.2 Desired Characteristics
Since long-term archival systems are vulnerable to attacks from adversaries with unlimited computational
power, the security guarantees of traditional storage systems fall short of meeting their requirements. This
is not to say that long-term archival systems do not share attributes with short-term storage systems. The
security assurances of long-term archives are expected to be stronger. Long-term archives differ in their
protection goals as well. Below are some desired characteristics of a storage system that stores data for
decades or even centuries.

Confidentiality
Data confidentiality translates to the practice of keeping data hidden from the public eye. Most storage sys-
tems store sensitive data in an encrypted form to prevent malicious entities from obtaining it. The security
guarantees of these encryption schemes rely on the infeasibility of some mathematically hard problems that
cannot be solved using the most advanced machines we have today. Cryptographic obsolescence, however,
can make limited-access data public without giving enough time to secure it [STD+24]. Keeping the pos-
sibility of new cryptanalytic attacks in mind, some storage systems use information theoretic solutions like
secret sharing. Secret sharing schemes encode data into shares such that a threshold number of shares is
needed to reconstruct it. This approach doesn’t depend on any unproven assumptions, but it incurs high
storage cost [SGMV09].

Integrity
Data integrity is an umbrella term that covers many security features. Informally, data integrity refers to
the accuracy and consistency of data. In secure archival systems, the accuracy and consistency of data
also depend on the correctness of the metadata. Hence, ensuring the integrity of both data and metadata
is essential. To guarantee data integrity, a storage system needs to periodically check for intrusions by
malevolent insiders and outsiders. The scope of assurance of data integrity solutions can be classified into
avoidance, detection, and correction [SWZ05]. Data integrity mechanisms for long-lived data should be
able to resist tampering, detect unauthorized modification attempts, and recover the original data in the
event of a successful intrusion.

• Data Auditing
The process of evaluating the integrity of remote data is called data auditing. It can be performed
by the data owner (private auditing) or by a trusted third party auditor (public auditing). Public

5

auditing removes the burden of periodic verification from a data owner with limited computational
capacity [ZKM+17]. However, data auditing brings along additional challenges. For example, au-
ditors should be able to perform the verification without accessing the entire data, also known as
blockless verification [ABC+07]. Auditing requests should be stateless, that is the results from pre-
vious auditing requests should not be needed for subsequent verifications. For confidential data,
auditing should reveal no information about the data or the owner to the public auditors [ZKM+17].
There should be no restrictions on how many verification requests can be sent to the storage service
provider [ABC+07]. Data owners, however, should not be able to retrieve data while pretending
to verify data integrity as frequently accessed data has a higher service charge and a dishonest data
owner might try to access data this way without paying the cost. Additionally, auditing schemes
should be able to verify that a storage service provider is indeed storing data as agreed upon and has
not deleted some information to save space [SM06].

• Provenance Tracking
Provenance is the history of ownership and authorized modifications of data [HSW09]. Provenance
metadata can facilitate non-repudiation, which means a data owner cannot deny the origin of data, and
by extension, his or her participation in an authorized operation on data [VBC+15]. Provenance and
non-repudiation protect honest storage service providers from false accusations by data owners. A
user may accidentally or intentionally modify or delete data and then wrongfully seek compensation
from the storage system. Archival systems need to verify the successful completion of an authorized
modification request and store the information securely. Provenance data also supports intrusion
detection and improves the reliability of storage [PSR23].

Availability
Data availability means that data is accessible and retrievable from storage systems whenever needed.
Hard-disk failures, software crashes, network issues, viruses, and malware are some instances that can
temporarily or permanently make data inaccessible [FLP+10]. Data unavailability can also result from data
deletion or tampering attacks [ZKM+17]. Failure to reach a Byzantine consensus in distributed systems
can generate inconsistency in metadata, leading to data unavailability [FLP85]. Popular data availability
solutions used in storage systems include replication and erasure coding. Replication simply makes copies
of the data and stores it in different locations to avoid a single-point of failure. Erasure coding is similar
to secret sharing in that data is encoded into data blocks and stored across multiple servers. Any subset
of a threshold number of data blocks can reconstruct the data. So, an erasure coding based solution can
survive the failure of a certain number of storage servers at a given time [FLP+10]. They can also detect
and recover from errors that affect a small portion of data [KL14].

Access Control
Access control regulates who can view, retrieve, or modify data [ZFY+18]. For long-term storage, access
control is of great consequence as the ownership of data might change over time. An adversary with
malicious intentions can impersonate the data owner and request to modify or delete data. Archives should
be able to distinguish between impersonators and authorized users to avert data stealing and unauthorized
alterations. In the case of shared data, if there is a change in the authorized set, storage systems need to
revoke access-permission of all users that are no longer part of the set [LJW+16].

Dynamic Data Handling
Contrary to popular belief, archived data is not necessarily static in nature. Archival systems must permit
data modification though it may occur infrequently. Data owners should be able to insert, delete, and
update information without compromising the integrity and confidentiality of data [ZKM+17]. Moreover,
upon successful completion of the modification requests, stale data must be deleted securely to prevent data

6

leakage [TLLP12]. In addition, data consistency should be maintained, that is all authorized users should
see the same copy of the modified data.

Efficiency
Storage systems that store data for decades or even centuries can accumulate high storage, communication,
and computation overheads. Storage overhead is the cost of storing data and metadata, that is required
to ensure confidentiality, integrity, and availability. Communication overhead is the cost of periodically
sending auditing requests to the storage service provider and receiving a response. Computation overhead
refers to the time and resources needed to perform various operations on data [ZKM+17]. Long-term
archival systems should be affordable in the long run since the lifetime of data is rather lengthy. Dedu-
plication is a technique that can identify and delete duplicate and redundant data, thus, improving stor-
age utilization [ZKM+17]. Integrity verification schemes with a short proof size can significantly lower
the communication overhead [SM06]. Storage systems should be able to perform batch auditing, that is
processing multiple auditing requests from different users at the same time, to reduce its computational
burden [WWRL10].

Scalability
Storage systems should be scalable in terms of number of users and services, amount of data stored, and
rates of processing, among others. Scalability entails the ability to extend the service efficiently, while
upholding its quality [JW00]. Archival systems store a copious amount of data, and the size of an archive
is ever-growing since most data is not deleted. Long-term storage systems should scale according to the
storage demand to accommodate new clients [JW00].

7

Chapter 3

Integrity of Digital Archives

In this chapter, we survey various techniques that can potentially guarantee information-theoretic integrity
of long-lived data.

3.1 System Overview
We begin by describing two system models that take into account the confidentiality and availability char-
acteristics of long-term storage systems. However, we do not consider access control and authenticity,
dynamic data handling, and efficiency and scalability in this article and leave them as future work. There
are three entities in the system:

1. Data Owner (DO): owns data and outsources it to the storage service provider.

2. Authorized User (AU): can access and view data. AUs can also serve as a third party auditor (TPA),
who verifies the integrity of data at the DO’s request.

3. Storage Service Provider (SSP): stores data and is responsible for its confidentiality, integrity, and
availability. The SSP uses a distributed and decentralized system to store data as distributed systems
provide better availability and decentralization averts the single-point of failure problem.

Computational Confidentiality Model (CCM). The secrecy requirement of this model is less than one
hundred years since some data does not need to be kept secret for longer than the human lifespan. It is ideal
for scenarios when the confidentiality of data is not the prime concern. CCM employs Advanced Encryption
Standard (AES-256) for confidentiality and erasure coding, also known as forward error correction codes,
for availability.

AES is a symmetric block cipher that can be used to encrypt electronic data [NIS01]. The AES algo-
rithm has a block length of 128 bit and can use 128-, 192-, or 256-bit keys, with 256-bit key being the most
secure. AES is considered highly secure since no practical cryptanalytic attacks better than an exhaustive
search for the key have been found till to date. It is free, standardized, and an efficient encryption solution
for data confidentiality [KL14].

Erasure coding breaks data down into smaller data blocks and generates additional parity blocks for
data recovery. In an (m,n) erasure coding, data is split into m data blocks and using those m data blocks
n − m parity blocks are generated. All n blocks are then stored across multiple drives or servers. To
reconstruct the data, only m blocks are needed; thus, erasure coding enables fault tolerance of up to n−m
servers simultaneously. Erasure coding has gained popularity in storage systems because of its improved
fault tolerance and reduced storage overhead.

The combination of AES and erasure coding provides confidentiality and availability while keeping the
storage cost low. For short-term storage, any computationally secure integrity scheme such as Secure Hash

8

Algorithm (SHA-2) can be used with this model to ensure data confidentiality, integrity, and availability.
SHA-2 is a NIST-approved cryptographic hash function that takes a message as input and produces a fixed-
length hash value as output. In this technical report, we only focus on long-term integrity and do not
explore short-term integrity any further. The computational confidentiality model is designed for data that
must remain accurate and available for longer than a century, but not necessarily secret.

Information-theoretic Confidentiality Model (ICM). This model is suitable for data that must remain
confidential for at least a century. ICM deploys threshold secret sharing for both confidentiality and avail-
ability. A (t, n) threshold secret sharing scheme encodes a secret into n shares and distributes them to n
parties such that any t shares can reconstruct the secret but less than t shares provide no information about
the secret. Shamir’s secret sharing scheme is a well-known threshold secret sharing scheme, based on poly-
nomials over a finite field. It provides information-theoretic secrecy and fault tolerance of up to n−t shares.
There is an inevitable storage overhead of Shamir’s secret sharing that comes with the information-theoretic
secrecy guarantee, nonetheless [Sha79].

ICM can be used with both computationally secure and information-theoretically secure integrity schemes.
However, since computationally secure schemes depend on unproven cryptographic hardness assumptions,
combining them with an information-theoretic confidentiality scheme might compromise the secrecy. For
instance, a computationally secure auditing scheme can reveal additional information about the secret-
shared data even if the data cannot be reconstructed in its entirely. Care must be taken while designing a
system that integrates both computationally secure schemes and information-theoretically secure schemes
so as not to weaken the information-theoretic security assurances. The information-theoretic confidentiality
model is ideal for data that must remain accurate, available, and confidential for longer than a century.

3.2 Integrity: Data Auditing
We now turn our attention to some cryptographic primitives that have the potential to act as the cornerstone
of data integrity auditing mechanism for long-term storage.

3.2.1 Digital Signatures
Similar to message authentication codes, digital signatures are used to verify the integrity of transmitted
messages. But digital signatures do not require the sender to share a distinct secret key with each po-
tential recipient. A recipient can verify the accuracy and authenticity of a message by only using public
information about the sender [KL14].

Digital Signature Schemes [KL14, Def. 12.1, §12.2]. A digital signature scheme consists of three
probabilistic polynomial-time algorithms (Gen, Sign, V rfy) such that:

1. The key-generation algorithm Gen takes as input a security parameter 1n and outputs a pair of keys
(pk, sk). These are called the public key and the private key, respectively. We assume that pk and
sk each has length at least n, and that n can be determined from pk or sk.

2. The signing algorithm Sign takes as input a private key sk and a message m from some message
space (that may depend on pk). It outputs a signature σ, and we write it as

σ ← Signsk(m).

3. The deterministic verification algorithm V rfy takes as input a public key pk, a message m, and a
signature σ. It outputs a bit b, with b = 1 meaning valid and b = 0 meaning invalid. We write this as

b := V rfypk(m,σ).

9

It is required that except with negligible probability over (pk, sk) output by Gen(1n), it holds that

V rfypk(m,Signsk(m)) = 1

for every (legal) message m. If there is a function l such that for every (pk, sk) output by Gen(1n), the
message space is {0, 1}l(n), then we say that (Gen, Sign, V rfy) is a signature scheme for messages of
length l(n). We call σ a valid signature on a message m with respect to some public key pk understood
from the context if

V rfypk(m,σ) = 1.

Security of Digital Signature Schemes [KL14, p. 443]. Let Π = (Gen, Sign, V rfy) be a signature
scheme, and consider the following experiment for an adversary A and parameter n :

The signature experiment Sig-forgeA,Π(n) :

1. Gen(1n) is run to obtain keys (pk, sk).

2. Adversary A is given pk and access to an oracle Signsk(·). The adversary then outputs (m,σ). Let
Q denote the set of all queries that A asked its oracle.

3. A succeeds if and only if V rfypk(m,σ) = 1 and m /∈ Q. In this case, the output of the experiment
is defined to be 1.

A signature scheme Π = (Gen, Sign, V rfy) is secure, if for all probabilistic-polynomial time adver-
saries A, there is a negligible function negl such that:

Pr[Sig-forgeA,Π(n) = 1] ≤ negl(n).

Therefore, a signature scheme is considered secure if an adversary cannot output a valid signature
σ on a message m without the private key. The adversary’s runtime is assumed to be polynomially
bounded [KL14]. Below we provide the construction of Lamport’s Signature Scheme, that uses a one-
way function, as a concrete example.

One-Way Functions [KL14, p. 243]. Let f : {0, 1}∗ → {0, 1}∗ be a function. Consider the following
experiment defined for any algorithm A and any value n for the security parameter.

The inverting experiment, InvertA,f (n) :

1. Choose uniform x ∈ {0, 1}n and compute y := f(x).

2. A is given 1n and y as input, and outputs x′.

3. The output of the experiment is defined to be 1 if f(x′) = y, and 0 otherwise.

Note that A need not find the original preimage x; it suffices for A to find any value x′ for which f(x′) =
y = f(x). Also, A runs in time polynomial in the security parameter n, regardless of the length of y.

A function f : {0, 1}∗ → {0, 1}∗ is one-way if the following two conditions hold:

• (Easy to Compute.) There exists a polynomial-time algorithm Mf computing f ; that is, Mf (x) =
f(x) for all x.

• (Hard to Invert.) For every probabilistic polynomial-time algorithm A, there is a negligible function
negl such that

Pr[InvertA,f (n) = 1] ≤ negl(n).

Lamport’s Signature Scheme [KL14, pp. 462-463]. Let H : {0, 1}∗ → {0, 1}∗ be a one-way func-
tion. Construct a signature scheme for messages of length l = l(n) as follows:

10

• Gen: on input 1n, proceed as follows for i ∈ {1, ..., l} :
1. Choose uniform xi,0, xi,1 ∈ {0, 1}n.
2. Compute yi,0 := H(xi,0) and yi,1 := H(xi,1).

The public key pk and the private key sk are,

pk =

(
y1,0 y2,0 . . . yl,0
y1,1 y2,1 . . . yl,1

)

sk =

(
x1,0 x2,0 . . . xl,0
x1,1 x2,1 . . . xl,1

)
.

• Sign: on input a private key sk as above and a message m ∈ {0, 1}l with m = m1 . . .ml, output
the signature

(x1,m1 , . . . , xl,ml
).

• V rfy: on input a public key pk as above, a message m ∈ {0, 1}l with m = m1 . . .ml, and a
signature σ = (x1, . . . , xl), output 1 if and only if

H(xi) = yi,mi

for all 1 ≤ i ≤ l.

This construction is a one-time secure signature scheme, which means the private key can be used only
once to securely sign a message. Here, l is any polynomial [KL14].

To securely send a message using a signature scheme, a user generates a pair of public-private keys
(pk, sk) using Gen(1n) and makes pk publicly available such that a recipient can access it as needed. The
user then signs a message m with pk and sends the message along with the signature to the recipient who
can verify the origin and integrity of message using the verification algorithm V rfy(m,σ)

?
= 1 [KL14].

Remote storage integrity can be established in a similar way: a data owner generates a pair of public-
private keys (pk, sk) and shares the public key with the storage server. The data owner then obtains a signa-
ture on the data and sends both the data and the signature to the storage server. The storage service provider
can verify the integrity of the data using the sender’s public key. When the data owner retrieves the data
after some time, he or she can use the verification algorithm to verify the integrity of data. Digital signature
schemes as defined above do not allow blockless verification as the entire data needs to be downloaded to
verify its integrity. Moreover, the integrity guarantees of most digital signature schemes are computational
though NIST has recently standardized three digital signature algorithms, namely CRYSTALS-Dilithium,
FALCON, and SPHINCS+, that can withstand attacks by an adversary who has access to a quantum com-
puter [NIS24].

3.2.2 Commitment Schemes
A commitment scheme can be viewed as a sealed envelope that contains a value that remains hidden until
the envelope is opened, and the envelope can only be opened to the original value. So, the sealed envelope
guarantees both confidentiality and integrity of the message inside [KL14].

Commitment Schemes [KL14, p. 188]. A (non-interactive) commitment scheme is defined by a ran-
domized algorithm Gen that outputs public parameters params and an algorithm Com that takes params
and a message m ∈ {0, 1}n and outputs a commitment com, where the randomness used by Com is
denoted by r. A sender commits to m by choosing uniform r, computing

com := Com(params,m; r),

11

and sending it to a receiver. The sender can later decommit com and reveal m by sending m, r to the
receiver; the receiver verifies this by checking that

Com(params,m; r)
?
= com.

Commitment schemes have two properties: hiding and binding. Hiding means that com reveals nothing
about m; binding means that it is impossible to output a commitment com that can be opened in two
different ways. These properties are formally defined below.

The commitment hiding experiment, HidingA,Com(n):

1. Parameters params← Gen(1n) are generated.

2. The adversary A is given input params, and outputs a pair of messages m0,m1 ∈ {0, 1}n.

3. A uniform b ∈ {0, 1} is chosen and com← Com(params,mb; r) is computed.

4. The adversary A is given com and outputs a bit b′.

5. The output of the experiment is 1 if and only if b′ = b.

The commitment binding experiment, BindingA,Com(n) :

1. Parameters params← Gen(1n) are generated.

2. A is given input params and outputs (com,m, r,m′, r′).

3. The output of the experiment is defined to be 1 if and only if m ̸= m′ and

Com(params,m; r) = com = Com(params,m′; r′).

Security of Commitment Schemes [KL14, Def. 5.13, §5.6] A commitment scheme Com is secure if
for all probabilistic polynomial time adversaries A, there is a negligible function negl such that,

Pr[HidingA,Com(n) = 1] ≤ 1

2
+ negl(n)

Pr[BindingA,Com(n) = 1] ≤ negl(n).

Commit schemes can either be computationally hiding and information-theoretically binding or information-
theoretically hiding and computationally binding, but not both [Dam98]. Because in order for a scheme to
be information-theoretically binding, the commitments should map one-to-one to the message space. That
means there is a unique commitment for each message. Otherwise, the sender can open the commitment
to two different messages, rendering the information-theoretic binding property inert. On the other hand, a
commitment scheme is information-theoretically hiding if a commitment can be mapped to more than one
message from the point of view of the recipient regardless of his or her computational power. That means
the commitment reveals no information about the message at all.

Now if a scheme is information-theoretically binding, then the commitment maps to a unique value,
and thus, potentially reveals some information about the message. Similarly, if a scheme is information-
theoretically hiding, then the commitment can possibly open to more than one message, but in that case,
the binding property is violated. So, only one property can be information-theoretically secure at a time.

An information-theoretically binding interactive commitment scheme can be constructed from secure
Pseudorandom Generators (PRGs) [BS23]. We describe one such commitment scheme that can commit a
single-bit message next.

Pseudorandom Generators [KL14, Def. 3.14, §3.3] Let l be a polynomial and let G be a deterministic-
polynomial time algorithm such that for any n and any input s ∈ {0, 1}n, the result G(s) is a string of length
l(n). We say that G is a pseudorandom generator if the following conditions hold:

12

• (Expansion.) For every n, it holds that
l(n) > n.

• (Pseudorandomness.): For any probabilistic polynomial time (PPT) algorithm D, there is a negligible
function negl such that

|Pr[D(G(s)) = 1]− Pr[D(r) = 1]| ≤ negl(n),

where the first probability is taken over uniform choice of s ∈ {0, 1}n and the randomness of D, and
the second probability is taken over uniform choice of r ∈ {0, 1}l(n) and the randomness of D.

We call l the expansion factor of G.
Bit Commitments from secure PRGs [BS23, p. 89] Let G : R → P be a secure PRG, where |P | ≥

|R|3 and P = {0, 1}n for some n. To commit to a bit b0 ∈ {0, 1} :

1. The recipient chooses a random p ∈ P and sends p to the sender.

2. The sender chooses a random r ∈ R and computes

com← Com(p, b0; r),

where Com(p, b0; r) is the following function:

Com(p, b0; r) :=

{
G(r) if b0 = 0,

G(r)⊕ p if b0 = 1.

The sender sends com as the commitment string. To open the commitment, the sender sends (b0, r) to the
recipient. The recipient accepts if com = Com(p, b0; r) and rejects otherwise. The binding property holds
unconditionally as long as 1

|R| is negligible [BS23].
Some applications of commitment schemes are: coin flipping, zero-knowledge proofs, and verifiable

secret sharing. We can also use commitment schemes as part of data integrity mechanisms. For the sake
of illustration, we next discuss a naive approach of using an information-theoretically binding commitment
scheme for data integrity. A data owner can use an interactive commitment scheme, where the recipient
generates params, as follows: the storage server generates params-1 using the generation algorithm and
shares it with the data owner. The data owner generates a commitment to the data to be stored using
params-1 and obtains an additional parameter params-2 using Gen. The data owner then sends the data,
the randomness used by Com, the commitment, and params-2 to the storage server. The storage server
verifies the commitment to make sure the data owner is honest and to avoid repudiation. Next, the storage
server generates a new commitment using params-2 and sends the commitment and the randomness used
to the data owner. Upon receiving the new commitment, the data owner confirms that the storage server has
indeed received and stored his data intact. The data owner locally stores the commitment and the random
value from the storage server for later verification.

When the data owner later retrieves the data, he can generate a new commitment to the retrieved infor-
mation using the stored random value and match it against the stored commitment from the storage server.
The information-theoretic binding of the commitment scheme guarantees that the storage server cannot
tamper with data without changing the value of the commitment he sent previously. Hence, the data owner
can detect any tampering attempts. The protocol must be run twice to obtain commitments from both the
data owner and the storage server as commitment schemes are designed to protect the recipient from the
sender with respect to the binding property. We emphasize that this is a rather simple example of how a
commitment scheme can be used for data storage. In reality, these schemes are never used on their own;
instead, they are used in conjunction with other cryptographic primitives to protect data.

13

3.2.3 Secret Sharing Schemes
A secret sharing scheme splits a secret s into n shares such that only an authorized set of shares can
reconstruct the secret but an unauthorized set does not reveal any information about the secret. Secret
sharing schemes come in different flavors, and most of them do not rely on any mathematical unproven
assumptions.

Sharing Function [GK18, Def. 2.4, §2.2]. Let [n] = {1, 2, . . . , n} be a set of identities of n parties
and M be the domain of secrets. A sharing function Share is a randomized mapping from M to S1×S2×
· · · × Sn, where Si is the domain of shares of party i. A dealer distributes a secret m ∈ M by computing
the vector

Share(m) = (s1, s2, . . . , sn)

and privately communicating each share si to party i. For a set S ⊆ [n], we denote Share(m)S to be a
restriction of Share(m) to S.

Secret Sharing Scheme [GK18, Def. 2.5, §2.2]. Let M be a finite set of secrets, where |M | ≥ 2.
Let [n] = {1, 2, . . . , n} be a set of identities of n parties. A sharing function Share with domain M is a
(t, n, ϵ)-Secret Sharing Scheme if the following two properties hold:

• (Correctness.) The secret can be reconstructed from any t out of n shares. That is, for any set T ⊆ [n]
where |T | ≥ t, there exists a deterministic reconstruction function Rec : ⊗i∈TSi →M such that for
every m ∈M,

Pr[Rec(Share(m)T) = m] = 1

(over the randomness of the sharing function).
• (Statistical Privacy.) Any collusion of less than t parties have ”almost” no information about the

underlying secret. Formally, for any unauthorized set U ⊆ [n], where |U | < t, and for every pair of
secrets m1,m2 ∈M, for any distinguisher D with output in {0, 1}, the following holds:∣∣Prshares←Share(m1)[D(sharesU) = 1]− Prshares←Share(m2)[D(sharesU) = 1]

∣∣ ≤ ϵ.

The special case of ϵ = 0 is known as perfect secrecy [GK18].

A secret sharing scheme is called linear if the share-generation and secret-reconstruction steps are linear
transformations [Bei11]. Shamir’s secret sharing scheme is a popular linear secret sharing scheme. Below
we describe Shamir’s secret sharing scheme, preceded by two algebraic structures that will be used in
Shamir’s.

Groups [DF04, pp. 16–17]. A group is an ordered pair (G, ⋆), where G is a set and ⋆ is a binary
operation on G, satisfying the following axioms:

1. the binary operation ⋆ is associative, meaning

a ⋆ (b ⋆ c) = (a ⋆ b) ⋆ c;

2. there exists an element e in G, called an identity of G, such that for all a ∈ G, we have

a ⋆ e = e ⋆ a = a; and

3. for each a ∈ G, there exists a−1 ∈ G, called an inverse of a, such that

a ⋆ a−1 = a−1 ⋆ a = e.

14

If the operation ⋆ is commutative, then G is called an abelian group [DF04].
Fields [DF04, p. 34]. A field is a set F together with two binary operations + and · on F such that

(F,+) is an abelian group (identity 0) and (F − {0}, ·) is also an abelian group. Moreover, the following
distributive law holds:

a · (b+ c) = (a · b+ a · c)

for all a, b, c ∈ F. If the set F is finite, then it is called a finite field.
Shamir’s (t,n)-threshold Secret Sharing Scheme [KL14, p. 503] Let F be a finite field that contains

the domain of possible secrets, and with |F | > n. Let x1, x2, . . . , xn ∈ F be distinct, non-zero elements
that are fixed and publicly known (such elements exist since |F | > n). The scheme works as follows:

• Sharing. Given a secret s ∈ F, the dealer chooses uniform a1, a2, . . . , at−1 ∈ F and defines the
polynomial

p(X)
def
= s+

t−1∑
i=1

aiX
i.

This is a uniform degree-(t− 1) polynomial with constant term s. The share of party Pi is

si := p(xi) ∈ F.

• Reconstruction. Say t users Pi1 , Pi2 , . . . , Pit pool their shares si1 , si2 , . . . , sit . Using polynomial
interpolation, they compute the unique degree-(t− 1) polynomial p′ for which

p′(xij) = sij

for 1 ≤ j ≤ t. The secret is p′(0).

The reconstruction works since p′ = p and p(0) = s [KL14].
Shamir’s secret sharing scheme offers information-theoretic confidentiality and allows dynamic addi-

tion and removal of shares as long as the threshold is fixed [Sha79]. Secret sharing schemes are usually
used in storage systems for data privacy and availability, but they can also provide data integrity. Since any
threshold number of shares can reconstruct the secret, a data owner can take all possible combinations of t
shares and run the reconstruction algorithm on each subset. If the resulting secrets are not identical, then
at least one share has been altered either by the storage service provider or a malicious attacker. The data
can be recovered as long as fewer than t shares are corrupted. But if t shares have been compromised, then
the data is lost forever. This method of integrity verification is very similar to error correcting codes. Error
correction techniques, however, can only detect and recover from random errors that affect a small portion
of data [KL14]. The drawback of secret sharing schemes is that they do not allow blockless verification.
Similar to the other techniques, secret sharing schemes need to be adapted for long-term integrity of remote
storage systems.

3.3 Integrity: Provenance Tracking
Now that we have seen some techniques for data auditing, we review a potential solution for long-term
provenance tracking. Data about data such as the origin of data and information about the ownership and
authorized modifications can protect both data owner and storage server from unfair allegations. Metadata
is usually static in nature and takes much less space compared to the data itself. Secure archival systems
must collect metadata in a timely manner, establish its accuracy, and store it securely throughout the entire
lifetime of data.

Blockchain Technology. A blockchain is a distributed and immutable ledger of transactions, where
each transaction is verified by the majority of the participating nodes in the system. In a peer-to-peer net-
work, nodes are the same as the peers and are considered equal, but they can take on different roles. There

15

are two types of nodes: full nodes, that maintain a complete copy of the blockchain, and miner nodes,
that add new blocks to the chain. The blockchain framework can be divided into three layers: the data
layer, network layer, and application layer. The data layer consists of data structures and algorithms, the
network layer includes a decentralized network and a consensus mechanism used for distributed agreement
among the nodes, and the application layer contains applications to facilitate various blockchain opera-
tions [GHY18].

The data structure used in a blockchain can be viewed as a linked list of blocks that are connected
and secured through cryptographic hash functions. Blocks usually have a fixed size and comprise two
parts: a header and a body. The block header contains metadata about the block such as the hash of the
previous block header, the Merkle hash root of the included transactions, a timestamp, and a nonce. The
body of the block contains all the transactions in the block, the number of which depends on the block
size. Blockchain technology uses consensus mechanisms such as Proof of Work, Proof of Stake, and
Practical Byzantine Fault Tolerance to reach a consensus among the full nodes regarding the validity of the
transactions contained in a block [GHY18].

To illustrate how blocks are added to a chain, we briefly describe Bitcoin, the first cryptocurrency
leveraging blockchain technology. Bitcoin uses a peer-to-peer network to record electronic transactions as
follows: new transactions are broadcast to all nodes that collect them into a block. Each node then tries to
solve a difficult proof-of-work, that is finding the correct nonce for its block. Once a solution is found by
a node, it broadcasts the block to all the other nodes. Nodes accept the block only if all the transactions
contained are valid and not already spent. The hash of the newly accepted block is then used as the hash of
the previous block in the header of the next block to be added to the chain [Nak08].

Blockchain technology is widely used for security and provenance owing to its fault tolerance, trans-
parency, and tamper resistance [PSR23]. Since the addition of a new block is subject to a majority
nodes’ approval, errors in a small number of nodes do not affect the ledger much. Moreover, each full
node stores a complete copy of the ledger, so an attacker must tamper with all the copies to destroy a
blockchain [GHY18]. In addition, changing a past block requires redoing the proof-of-work for that block
and all the blocks after it while keeping up with the addition of newer blocks to the chain. As the number of
blocks a computationally bounded attacker has to catch up with increases, the success probability of such
attacks drops exponentially [Nak08]. Long-term secure archival systems can employ a blockchain to store
metadata for provenance and non-repudiation purposes. For instance, authorized data modification requests
can be treated as transactions and stored on a blockchain. Computationally secure cryptographic primitives,
however, can render a blockchain insecure in the face of a computationally unbounded adversary. Another
potential solution for provenance tracking is briefly mentioned in Chapter 5.

3.4 Discussion
The security approaches discussed in this chapter, unfortunately, do not encompass the necessary features
of data integrity mechanisms that can protect data for a long time. All three data auditing techniques —
digital signature schemes, commitment schemes, and secret sharing schemes— lack support for blockless
verification. Blockchain technology is susceptible to majority attacks, where more than half of the nodes
collude and introduce erroneous blocks to the chain [GHY18].

The auditing techniques also fail to cover the scope of assurance of data integrity solutions. Digital
signatures and commitment schemes can only detect data tampering, but they cannot avoid data corruption
or recover the original data. Secret sharing schemes, on the other hand, can avoid data corruption in the
sense that a certain number of shares need to be altered in order to modify data. They can also recover
data if a threshold number of shares are available. Detecting data tampering attempts using secret sharing
is not straightforward as a data owner needs to reconstruct the polynomial for each subset of shares that
has size t [HL09]. These approaches, therefore, cannot be used as standalone solutions for long-term data

16

integrity. To illustrate how they can be part of a complete solution, we now briefly describe some systems
that employ one or more of these approaches though they do not consider them in the context of long-term
information-theoretic integrity.

POTSHARDS is an archival storage system that provides long-term data confidentiality using secret
sharing schemes [SGMV09]. Integrity verification in POTSHARDS is performed using hash functions and
algebraic signatures as follows. In the preprocessing phase, data is split into secure shards using secret-
splitting and sent to independent archives. When an archive receives a shard, it randomly selects a block to
store the shard and places it in the last available slot in the block. A hash value, stored in the block header,
is updated accordingly at this time. Archives periodically verify the integrity of its data by checking the
hash stored in the header of each block on disk. To perform inter-archive verification, POTSHARDS uses
a scheme based on algebraic signatures that have the property that the parity of the signatures is the same
as the signatures of the parity. The scheme exhibits attractive features such as verification of random data
blocks and high resistance to coordinated attempts to modify data.

LINCOS is a storage system that considers the long-term integrity, authenticity, and confidentiality of
data though the integrity guarantee is computational [BBD+17]. It uses a novel integrity scheme based on
information-theoretic hiding commitment schemes for confidentiality-preserving integrity and authenticity
protection. The integrity scheme in LINCOS generates commitments to data being stored and timestamp
the commitments. Since the commitment schemes are computationally binding, the commitments and
timestamps are renewed from time to time. In order to verify the integrity of a document, the decommitment
values are disclosed and the corresponding sequence of timestamps are used to establish the existence of the
commitments. Assuming the commitment schemes and time stamp schemes used are secure during their
usage period, the integrity scheme provides long-term unforgeability. Moreover, experimental evaluation
shows that the scheme has good performance and negligible time and space overheads, compared to hash-
based solutions. For long-term confidentiality, LINCOS relies on Shamir’s secret sharing and requires the
data owner to proactively renew the shares.

PASIS is a survivable storage system that aims to ensure everlasting security and availability [GKP05].
In the PASIS framework, the presence of compromised entities is viewed as the common case rather than
the exception. Security is achieved through a decentralized storage architecture and secret sharing schemes,
which allow users to trade off among performance, availability, and confidentiality. Some secret sharing
schemes compatible with the PASIS framework are: Shamir’s secret sharing, Blakley’s threshold scheme,
proactive secret sharing scheme, and verifiable secret sharing scheme. Verifiable secret sharing is a secret
sharing scheme that uses a commitment scheme to protect honest share holders from a corrupted data dealer.
A dealer or data owner uses a polynomial-based secret sharing scheme to generate shares and a commitment
scheme to produce commitments to the coefficients of the polynomial. The shares are then sent to the
respective parties and the commitment values are broadcast among all parties. Using the broadcast values,
the share holders or storage servers can verify that their received shares are correct without communicating
with other parties.

ProvChain is a blockchain-based provenance solution that offers security features such as tamper-proof
provenance, user privacy, and reliability [LST+17]. It is a decentralized architecture that collects and
verifies cloud data provenance. In ProvChain, provenance records are hashed and added to the leaf nodes of
a Merkle tree, where the Merkle root is mapped to a transaction in the blockchain network. The transactions
are then collected into a block and added to the chain after external verification [PSR23]. ProvChain
protects against tampering attacks on provenance data since in order to modify a record, an attacker needs
to locate the transaction and the block, create a new block with the modified record, and present a longer
chain of blocks containing the new block. Additionally, ProvChain hashes the user ID to conceal user
information from the network nodes and provenance auditors [LST+17].

17

Chapter 4

Related Work

In this chapter, we refer to some similar surveys on the subject matter. Storage security, especially the secu-
rity of cloud storage services, has been investigated for decades [VBC+15, LYZC15, ZKM+17, ZFY+18,
LCY+22]. These works are mostly focused on short-term storage security given that most data stored in
the cloud is not classified information. Among the works cited above, only Vigil et al. survey the integrity,
authenticity, non-repudiation, and proof of existence for long-term archives [VBC+15]. They compare
existing solutions that offer the desired protection goals with respect to their functionalities, trust assump-
tions, and performance. The authors also shed light on the deficiencies of current systems in achieving
these goals and draw attention to open problems. Our work is different from the survey in that we do not
compare the existing solutions; instead, we focus on the underlying techniques that provide some of the in-
tegrity assurances in order to find the most suitable option. Moreover, we consider both computational and
information-theoretic integrity of long-term archives, whereas the paper only discusses computationally
secure solutions.

Liu et al. provide an analysis of authenticator-based data integrity verification techniques for cloud
and Internet of Things data [LYZC15]. They partition the life cycle of a remote integrity verification
scheme with dynamic data handling as follows: setup and data upload, authorization for trusted third
parties, challenge for integrity proof, proof integration, proof verification, updated data upload, updated
metadata upload, and verification of updated metadata. The paper focuses on the integrity verification
techniques that support provable data possession (PDP), that is the verification is done only by checking a
small number of blocks. While the PDP setting is efficient and practical for short-term storage, it cannot
detect data integrity breaches in the long term. Besides, the representative schemes presented in the paper
use computationally secure cryptographic primitives at best.

A survey by Zafar et al. presents common security concerns associated with cloud storage and discusses
the significance of integrity schemes in the life cycle of outsourced data [ZKM+17]. The authors define
a taxonomy based on the attributes of data integrity schemes mentioned in the paper and identify some
design challenges. They also provide a comparative analysis of the existing solutions with respect to the
identified characteristics and conclude with potential research threads. The paper is mostly concerned with
the integrity of cloud storage but does not include long-term integrity solutions. The goal of our work is
to survey techniques that can ensure the integrity of long-term storage systems, not only the integrity of
short-term cloud storage services.

Zhou et al. review the state of the art data integrity verification schemes for cloud storage and classify
existing approaches into four types according to user mode and storage type [ZFY+18]. In addition, they
point out some major challenges that can compromise the safety and efficiency of data integrity verification
schemes and discuss available techniques that can mitigate these issues. This paper mentions many desired
characteristics and their associated challenges that pertain to long-term archival systems. However, the

18

security guarantee of all the schemes surveyed in the paper is only computational.
Li et al. list ten criteria for evaluating integrity auditing schemes for both single copy and multiple

replicas of data in cloud storage [LCY+22]. The paper reviews a wide range of integrity auditing schemes
based on these criteria and calls attention to some open research problems. Similar to most other surveys,
this paper focuses on computationally secure integrity schemes for cloud storage. In contrast, we explore
both computationally and information-theoretically secure techniques that can protect the integrity of long-
term archival systems.

19

Chapter 5

Conclusion and Future Directions

As mentioned before, existing integrity solutions cannot provide protection against computationally un-
bounded adversaries. But the techniques explored in this report have the potential to ensure long-term
integrity and can be combined to extend their scope of assurance. For example, the amalgamation of secret
sharing schemes and digital signature schemes can avoid data corruption, detect tampering, and recover the
original data. Goyal and Kumar recently proposed a non-malleable secret sharing scheme, where an adver-
sary can only destroy the secret but cannot modify it without being detected [GK18]. If a corrupted share
is used in reconstruction, the algorithm will return a string that is completely ”unrelated” to the secret.
Non-malleable secret sharing can be used in secure archival systems to easily uncover the presence of a
corrupted share in a set of shares. For provenance tracking, blockchain-based solutions can replace compu-
tationally secure hash functions with commitment schemes, that have the unconditional-binding property.
Maniatis and Baker introduced Timeweave, a framework for timeline entanglement based on two novel data
structures [MB02]. A timeline is a historic record of the states that a system goes through during its oper-
ational history. Timeline entanglement merges different timelines maintained at independent and mutually
distrusted systems by linking the past of one timeline to the future of another. Long-term storage systems
can use timeline entanglement to create undeniable temporal orderings of provenance related events across
distributed servers.

In this technical report, we consider techniques for long-term integrity of data at rest. The integrity of
data in transit in the face of an unbounded adversary is still under investigation [KL14]. Besides, long-term
confidentiality solutions often come with high storage and communication overheads [STD+24]. Access
control, authenticity, dynamic data handling, and efficiency are some other challenges that an archival
system must address in order to protect valuable data for generations to come.

20

Bibliography

[ABC+07] Giuseppe Ateniese, Randal C. Burns, Reza Curtmola, Joseph Herring, Lea Kissner, Zachary
N. J. Peterson, and Dawn Xiaodong Song. Provable data possession at untrusted stores. In
Peng Ning, Sabrina De Capitani di Vimercati, and Paul F. Syverson, editors, Proceedings of
the 2007 ACM Conference on Computer and Communications Security, CCS 2007, Alexan-
dria, Virginia, USA, October 28-31, 2007, pages 598–609. ACM, 2007.

[BBD+17] Johannes Braun, Johannes Buchmann, Denise Demirel, Matthias Geihs, Mikio Fujiwara,
Shiho Moriai, Masahide Sasaki, and Atsushi Waseda. Lincos: A storage system providing
long-term integrity, authenticity, and confidentiality. In Proceedings of the 2017 ACM on Asia
Conference on Computer and Communications Security, ASIA CCS ’17, pages 461–468, New
York, NY, USA, 2017. Association for Computing Machinery. https://dl.acm.org/doi/10.1145/
3052973.3053043 .

[BDF+20] Johannes Buchmann, Ghada Dessouky, Tommaso Frassetto, Ágnes Kiss, Ahmad-Reza
Sadeghi, Thomas Schneider, Giulia Traverso, and Shaza Zeitouni. Safe: A secure and effi-
cient long-term distributed storage system. In Proceedings of the 8th International Workshop
on Security in Blockchain and Cloud Computing, SBC ’20, pages 8–13, New York, NY, USA,
2020. Association for Computing Machinery.

[Bei11] Amos Beimel. Secret-sharing schemes: A survey. In Yeow Meng Chee, Zhenbo Guo, San
Ling, Fengjing Shao, Yuansheng Tang, Huaxiong Wang, and Chaoping Xing, editors, Coding
and Cryptology - Third International Workshop, IWCC 2011, Qingdao, China, May 30-June
3, 2011. Proceedings, volume 6639 of Lecture Notes in Computer Science, pages 11–46.
Springer, 2011.

[BS23] Dan Boneh and Victor Shoup. A Graduate Course in Applied Cryptography. 2023. https:
// crypto.stanford.edu/∼dabo/cryptobook/BonehShoup 0 6.pdf .

[coc24] Coca-cola’s formula is at the world of coca-cola, the secret’s out, c2024. https://www.
coca-colacompany.com/about-us/history/coca-cola-formula-is-at-the-world-of-coca-cola.

[Dam98] Ivan Damgård. Commitment schemes and zero-knowledge protocols. In Ivan Damgård, edi-
tor, Lectures on Data Security, Modern Cryptology in Theory and Practice, Summer School,
Aarhus, Denmark, July 1998, volume 1561 of Lecture Notes in Computer Science, pages
63–86. Springer, 1998. https://doi.org/10.1007/3-540-48969-X 3 .

[DF04] David S. Dummit and Richard M. Foote. Abstract Algebra, Third Edition. Willy and Sons,
2004.

[FLP85] Michael J. Fischer, Nancy A. Lynch, and Mike Paterson. Impossibility of distributed consen-
sus with one faulty process. J. ACM, 32(2):374–382, 1985.

21

https://dl.acm.org/doi/10.1145/3052973.3053043
https://dl.acm.org/doi/10.1145/3052973.3053043
https://crypto.stanford.edu/~dabo/cryptobook/BonehShoup_0_6.pdf
https://crypto.stanford.edu/~dabo/cryptobook/BonehShoup_0_6.pdf
https://www.coca-colacompany.com/about-us/history/coca-cola-formula-is-at-the-world-of-coca-cola
https://www.coca-colacompany.com/about-us/history/coca-cola-formula-is-at-the-world-of-coca-cola
https://doi.org/10.1007/3-540-48969-X_3

[FLP+10] Daniel Ford, François Labelle, Florentina I. Popovici, Murray Stokely, Van-Anh Truong, Luiz
Barroso, Carrie Grimes, and Sean Quinlan. Availability in globally distributed storage sys-
tems. In Remzi H. Arpaci-Dusseau and Brad Chen, editors, 9th USENIX Symposium on
Operating Systems Design and Implementation, OSDI 2010, October 4-6, 2010, Vancouver,
BC, Canada, Proceedings, pages 61–74. USENIX Association, 2010.

[GGF17] Paul A. Grassi, Michael E. Garcia, and James L. Fenton. Digital identity guidelines, 2017.
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-3.pdf .

[GHY18] Weichao Gao, William G. Hatcher, and Wei Yu. A survey of blockchain: Techniques, appli-
cations, and challenges. In 27th International Conference on Computer Communication and
Networks, ICCCN 2018, Hangzhou, China, July 30 - August 2, 2018, pages 1–11. IEEE, 2018.
https://doi.org/10.1109/ ICCCN.2018.8487348 .

[GK18] Vipul Goyal and Ashutosh Kumar. Non-malleable secret sharing. In Ilias Diakonikolas,
David Kempe, and Monika Henzinger, editors, Proceedings of the 50th Annual ACM SIGACT
Symposium on Theory of Computing, STOC 2018, Los Angeles, CA, USA, June 25-29, 2018,
pages 685–698. ACM, 2018. https://doi.org/10.1145/3188745.3188872 .

[GKP05] Gregory R Ganger, Pradeep K Khosla, and CARNEGIE-MELLON UNIV PITTSBURGH
PA. Pasis: A distributed framework for perpetually available and secure information systems,
2005. https:// apps.dtic.mil/ sti/ citations/ADA436245 .

[GPSW06] Vipul Goyal, Omkant Pandey, Amit Sahai, and Brent Waters. Attribute-based encryption for
fine-grained access control of encrypted data. In Ari Juels, Rebecca N. Wright, and Sabrina
De Capitani di Vimercati, editors, Proceedings of the 13th ACM Conference on Computer and
Communications Security, CCS 2006, Alexandria, VA, USA, October 30 - November 3, 2006,
pages 89–98. ACM, 2006.

[HL09] Lein Harn and Changlu Lin. Detection and identification of cheaters in (t , n) secret sharing
scheme. Des. Codes Cryptogr., 52(1):15–24, 2009.

[HSL21] Jennifer K. Herrmann, Yoonjoo Strumfels, and Kathy Ludwig. Examination of date tam-
pering on abraham lincoln’s pardon of patrick murphy, rg 153 entry 15, case mm761 (arc
identifier: 1839980). Forensic Science International: Synergy, 3:100210, 2021. https:
//www.sciencedirect.com/science/article/pii/S2589871X21000802 .

[HSW09] Ragib Hasan, Radu Sion, and Marianne Winslett. The case of the fake picasso: Preventing
history forgery with secure provenance. In Margo I. Seltzer and Richard Wheeler, editors, 7th
USENIX Conference on File and Storage Technologies, February 24-27, 2009, San Francisco,
CA, USA. Proceedings, pages 1–14. USENIX, 2009.

[JW00] Prasad Jogalekar and C. Murray Woodside. Evaluating the scalability of distributed systems.
IEEE Trans. Parallel Distributed Syst., 11(6):589–603, 2000.

[KL14] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptog-
raphy, Second Edition. CRC Press, 2014. https://www.crcpress.com/
Introduction-to-Modern-Cryptography-Second-Edition/Katz-Lindell/p/book/9781466570269 .

[LCY+22] Angtai Li, Yu Chen, Zheng Yan, Xiaokang Zhou, and Shohei Shimizu. A survey on integrity
auditing for data storage in the cloud: From single copy to multiple replicas. IEEE Trans. Big
Data, 8(5):1428–1442, 2022. https://doi.org/10.1109/TBDATA.2020.3029209 .

22

https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-63-3.pdf
https://doi.org/10.1109/ICCCN.2018.8487348
https://doi.org/10.1145/3188745.3188872
https://apps.dtic.mil/sti/citations/ADA436245
https://www.sciencedirect.com/science/article/pii/S2589871X21000802
https://www.sciencedirect.com/science/article/pii/S2589871X21000802
https://www.crcpress.com/Introduction-to-Modern-Cryptography-Second-Edition/Katz-Lindell/p/book/9781466570269
https://www.crcpress.com/Introduction-to-Modern-Cryptography-Second-Edition/Katz-Lindell/p/book/9781466570269
https://doi.org/10.1109/TBDATA.2020.3029209

[LJW+16] Zechao Liu, Zoe Lin Jiang, Xuan Wang, Siu-Ming Yiu, Chunkai Zhang, and Xiaomeng
Zhao. Dynamic attribute-based access control in cloud storage systems. In 2016 IEEE Trust-
com/BigDataSE/ISPA, Tianjin, China, August 23-26, 2016, pages 129–137. IEEE, 2016.

[LSP19] Leslie Lamport, Robert E. Shostak, and Marshall C. Pease. The byzantine generals problem.
In Dahlia Malkhi, editor, Concurrency: the Works of Leslie Lamport, pages 203–226. ACM,
2019. https://doi.org/10.1145/3335772.3335936 .

[LST+17] Xueping Liang, Sachin Shetty, Deepak K. Tosh, Charles A. Kamhoua, Kevin A. Kwiat, and
Laurent Njilla. Provchain: A blockchain-based data provenance architecture in cloud en-
vironment with enhanced privacy and availability. In Proceedings of the 17th IEEE/ACM
International Symposium on Cluster, Cloud and Grid Computing, CCGRID 2017, Madrid,
Spain, May 14-17, 2017, pages 468–477. IEEE Computer Society / ACM, 2017.

[LYZC15] Chang Liu, Chi Yang, Xuyun Zhang, and Jinjun Chen. External integrity verification for
outsourced big data in cloud and iot: A big picture. Future Gener. Comput. Syst., 49:58–67,
2015.

[MB02] Petros Maniatis and Mary Baker. Secure history preservation through timeline entangle-
ment. In Dan Boneh, editor, Proceedings of the 11th USENIX Security Symposium, San
Francisco, CA, USA, August 5-9, 2002, pages 297–312. USENIX, 2002. http://www.usenix.
org/publications/ library/proceedings/ sec02/maniatis.html .

[MGA+20] Philipp Muth, Matthias Geihs, Tolga Arul, Johannes Buchmann, and Stefan Katzenbeisser.
Elsa: efficient long-term secure storage of large datasets (full version). EURASIP Journal on
Information Security, 2020:1–20, 2020.

[Nak08] Satoshi Nakamoto. Bitcoin: A peer-to-peer electronic cash system. 2008. https://bitcoin.org/
bitcoin.pdf .

[nat11] National archives discovers date change on lincoln record, 2011. https://www.archives.gov/
press/press-releases/2011/nr11-57.html#:∼:text=Lowry%20admitted%20to%20changing%20the,
Ford’s%20Theatre%20in%20Washington%2C%20DC .

[NIS01] NIST. Advanced encryption standard (aes), 2001. https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.
FIPS.197-upd1.pdf .

[NIS24] NIST. Post-quantum cryptography: Additional digital signature schemes, 2024. https:// csrc.
nist.gov/projects/pqc-dig-sig.

[Pai99] Pascal Paillier. Public-key cryptosystems based on composite degree residuosity classes. In
Jacques Stern, editor, Advances in Cryptology - EUROCRYPT ’99, International Conference
on the Theory and Application of Cryptographic Techniques, Prague, Czech Republic, May
2-6, 1999, Proceeding, volume 1592 of Lecture Notes in Computer Science, pages 223–238.
Springer, 1999.

[PJG+24] Paul R. Poulton, A. Edward Johnston, Margaret J. Glendining, Rodger P. White, Andrew S.
Gregory, Suzanne J. Clark, Wendy S. Wilmer, Andy J. Macdonald, and David S. Powl-
son. Chapter four - the broadbalk wheat experiment, rothamsted, uk: Crop yields and
soil changes during the last 50 years, 2024. https://www.sciencedirect.com/science/article/pii/
S0065211323001165 .

23

https://doi.org/10.1145/3335772.3335936
http://www.usenix.org/publications/library/proceedings/sec02/maniatis.html
http://www.usenix.org/publications/library/proceedings/sec02/maniatis.html
https://bitcoin.org/bitcoin.pdf
https://bitcoin.org/bitcoin.pdf
https://www.archives.gov/press/press-releases/2011/nr11- 57.html#:~:text=Lowry%20admitted%20to%20changing%20the,Ford's%20Theatre%20in%20Washington%2C%20DC
https://www.archives.gov/press/press-releases/2011/nr11- 57.html#:~:text=Lowry%20admitted%20to%20changing%20the,Ford's%20Theatre%20in%20Washington%2C%20DC
https://www.archives.gov/press/press-releases/2011/nr11- 57.html#:~:text=Lowry%20admitted%20to%20changing%20the,Ford's%20Theatre%20in%20Washington%2C%20DC
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197-upd1.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.197-upd1.pdf
https://csrc.nist.gov/projects/pqc-dig-sig
https://csrc.nist.gov/projects/pqc-dig-sig
https://www.sciencedirect.com/science/article/pii/S0065211323001165
https://www.sciencedirect.com/science/article/pii/S0065211323001165

[PSR23] Bofeng Pan, Natalia Stakhanova, and Suprio Ray. Data provenance in security and privacy.
ACM Comput. Surv., 55(14s):323:1–323:35, 2023.

[SGMV09] Mark W. Storer, Kevin M. Greenan, Ethan L. Miller, and Kaladhar Voruganti. Potshards—a
secure, recoverable, long-term archival storage system. ACM Trans. Storage, 5(2), jun 2009.
https://dl.acm.org/doi/10.1145/1534912.1534914 .

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613, 1979. https://doi.org/10.
1145/359168.359176 .

[Sha84] Adi Shamir. Identity-based cryptosystems and signature schemes. In G. R. Blakley and
David Chaum, editors, Advances in Cryptology, Proceedings of CRYPTO ’84, Santa Barbara,
California, USA, August 19-22, 1984, Proceedings, volume 196 of Lecture Notes in Computer
Science, pages 47–53. Springer, 1984.

[SM06] Thomas J. E. Schwarz and Ethan L. Miller. Store, forget, and check: Using algebraic sig-
natures to check remotely administered storage. In 26th IEEE International Conference on
Distributed Computing Systems (ICDCS 2006), 4-7 July 2006, Lisboa, Portugal, page 12.
IEEE Computer Society, 2006.

[ST21] Nigel P. Smart and Emmanuel Thomé. History of cryptographic key sizes. IACR Cryptol.
ePrint Arch., page 894, 2021.

[STD+24] Christopher Smith, Maliha Tabassum, Soumya Chowdary Daruru, Gaurav Kulhare, Arvin
Wang, Ethan L. Miller, and Erez Zadok. Secure archival is hard... really hard. In Proceedings
of the 16th ACM Workshop on Hot Topics in Storage and File Systems, HotStorage 2024,
Santa Clara, CA, USA, July 8-9, 2024. ACM, 2024.

[SW08] Hovav Shacham and Brent Waters. Compact proofs of retrievability. In Josef Pieprzyk, editor,
Advances in Cryptology - ASIACRYPT 2008, 14th International Conference on the Theory
and Application of Cryptology and Information Security, Melbourne, Australia, December 7-
11, 2008. Proceedings, volume 5350 of Lecture Notes in Computer Science, pages 90–107.
Springer, 2008.

[SWZ05] Gopalan Sivathanu, Charles P. Wright, and Erez Zadok. Ensuring data integrity in storage:
techniques and applications. In Proceedings of the 2005 ACM Workshop on Storage Security
and Survivability, StorageSS ’05, page 26–36, New York, NY, USA, 2005. Association for
Computing Machinery. https://doi.org/10.1145/1103780.1103784 .

[TLLP12] Yang Tang, Patrick P. C. Lee, John C. S. Lui, and Radia Perlman. Secure overlay cloud
storage with access control and assured deletion. IEEE Trans. Dependable Secur. Comput.,
9(6):903–916, November 2012.

[VBC+15] Martı́n A. Gagliotti Vigil, Johannes Buchmann, Daniel Cabarcas, Christian Weinert, and
Alexander Wiesmaier. Integrity, authenticity, non-repudiation, and proof of existence for
long-term archiving: A survey. Computers and Security, 50:16–32, 2015. https://doi.org/10.
1016/ j.cose.2014.12.004 .

[wik24] Sha-1, Oct 2024. https:// en.wikipedia.org/wiki/SHA-1 .

[WWRL10] Cong Wang, Qian Wang, Kui Ren, and Wenjing Lou. Privacy-preserving public auditing
for data storage security in cloud computing. In INFOCOM 2010. 29th IEEE International

24

https://dl.acm.org/doi/10.1145/1534912.1534914
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/359168.359176
https://doi.org/10.1145/1103780.1103784
https://doi.org/10.1016/j.cose.2014.12.004
https://doi.org/10.1016/j.cose.2014.12.004
https://en.wikipedia.org/wiki/SHA-1

Conference on Computer Communications, Joint Conference of the IEEE Computer and Com-
munications Societies, 15-19 March 2010, San Diego, CA, USA, pages 525–533. IEEE, 2010.

[WWW02] T.M. Wong, Chenxi Wang, and J.M. Wing. Verifiable secret redistribution for archive systems.
In First International IEEE Security in Storage Workshop, 2002. Proceedings., pages 94–105,
2002. https:// ieeexplore.ieee.org/document/1183515 .

[ZFY+18] Lei Zhou, Anmin Fu, Shui Yu, Mang Su, and Boyu Kuang. Data integrity verification of the
outsourced big data in the cloud environment: A survey. Journal of Network and Computer
Applications, 122:1–15, 2018. https://doi.org/10.1016/ j.jnca.2018.08.003 .

[ZKM+17] Faheem Zafar, Abid Khan, Saif Ur Rehman Malik, Mansoor Ahmed, Adeel Anjum, Ma-
jid Iqbal Khan, Nadeem Javed, Masoom Alam, and Fuzel Jamil. A survey of cloud comput-
ing data integrity schemes: Design challenges, taxonomy and future trends. Computers and
Security, 65:29–49, 2017. https://doi.org/10.1016/ j.cose.2016.10.006 .

[ZWGG23] Yifang Zhang, Mingyue Wang, Yu Guo, and Fangda Guo. Towards dynamic and reliable
private key management for hierarchical access structure in decentralized storage. In Pro-
ceedings of the 32nd ACM International Conference on Information and Knowledge Manage-
ment, CIKM ’23, page 3371–3380, New York, NY, USA, 2023. Association for Computing
Machinery.

25

https://ieeexplore.ieee.org/document/1183515
https://doi.org/10.1016/j.jnca.2018.08.003
https://doi.org/10.1016/j.cose.2016.10.006

	Introduction
	Background
	Threat Modeling
	Desired Characteristics

	Integrity of Digital Archives
	System Overview
	Integrity: Data Auditing
	Digital Signatures
	Commitment Schemes
	Secret Sharing Schemes

	Integrity: Provenance Tracking
	Discussion

	Related Work
	Conclusion and Future Directions

