
Long-Term Secure Archival Using Proactively

Secret-Shared Datastores

Research proficiency exam

Christopher Smith

Supervisors: Professor Erez Zadok, Professor Omkant Pandey

Department of Computer Science

State University of New York at Stony Brook

September 2024

Technical Report FSL-24-03

Abstract

Secure archival systems seek to efficiently and reliably preserve data confidentiality,
integrity, and availability for long periods of time (on the order of a human lifespan or
more). Such long-lived data is often valuable and highly sensitive; the consequences
of information leakage or corruption could be catastrophic. To ensure long-term data
security, we must contend with the combined threats of cryptographic obsolescence
and Harvest Now, Decrypt Later attacks. These threats render inadequate tradi-
tional approaches to secure storage (e.g., encrypt then apply a message authentica-
tion code). We propose the use of information-theoretic techniques whose security
does not depend on unproven assumptions of computational hardness. Specifically,
we envision a geo-distributed and decentralized storage system that encodes data
with secret-sharing schemes. Further, the system should support proactive share
renewal with dynamic committees in the presence of Byzantine faults. In this work
we explore the challenges that motivate our approach, describe the key ideas behind
the associated techniques, and highlight promising research avenues that may lead
to more efficient and secure long-term archival systems.

Keywords: Archival, secure storage, cryptography, information-theoretic security,
proactive secret sharing, leakage-resilience, side-channel attacks, Byzantine fault-
tolerance

Contents

Abstract 2

1 Introduction 4
1.1 The Problem of Secure Archival. 4
1.2 An Information-Theoretic Solution 5

2 Cryptographic Obsolescence 6
2.1 Cryptographic Hardness Assumptions 6
2.2 Information-Theoretic Security . 7

3 System and Threat Model 7

4 Secret Sharing 9
4.1 Definitions . 9
4.2 Additive Secret Sharing . 10
4.3 Shamir’s Secret Sharing . 10

5 Proactive Secret Sharing 11
5.1 Herzberg’s Semi-Honest PSS . 12
5.2 Herzberg’s Malicious PSS . 13
5.3 The Resharing Trick for Dynamic-Committee PSS (DPSS) 15
5.4 Overview of State-of-the-art in DPSS 16

6 Related Work 17

7 Discussion 19

Appendices 27

A Algebra Preliminaries 27

B Secret Sharing Proofs 28

C Commitments 31

1 Introduction

What is the safest and most reliable way of keeping a secret for a very long time?
This is one of the central motivating questions behind the study of secure archival
systems, and it is the focal point of this work.

1.1 The Problem of Secure Archival.

Within the context of computing, archival refers to the long-term preservation of
digital data. In this work we take “long-term” to be on the order of a human
lifetime or more. Because the primary purpose of archives is preservation, reliability
is the most basic requirement for archival systems: user data should never be lost or
corrupted due to system failure, bit rot, negligence, etc. Another basic concern for
archival systems is storage efficiency. This is because archives are large—potentially
on the order of several exabytes or more [Goo19]. Combine this with the fact that
the cost of data storage is driven by quantity, duration, and access latency, and one
quickly realizes that archives cannot afford to use storage inefficiently. Interestingly,
archival systems are often willing to sacrifice latency: data is archived with the
intention of accessing it eventually—exactly when is not so important.

A pressing third requirement for archival systems—and possibly the most important—
is security, by which we mean the protection of data confidentiality (secrecy), in-
tegrity, and availability (i.e., the CIA triad [And03]) against an intelligent adversary.
This is because archival data is often highly valuable and/or sensitive. Consider as
examples public historical records, private medical data, trade secrets, or classified
government secrets. These may all be targets for adversaries willing to spend vast
resources to attack an archive over the course of many years.

Given what might be at stake, it is desirable to know how to make a long-term
archive as secure as possible. When asking questions about the possibilities or im-
possibilities of data security, it makes sense to begin by inspecting the mathematical
guarantees at the level of bits and encodings—the domain of cryptography and infor-
mation theory. Secure storage systems typically use encryption for confidentiality,
message authentication codes (or digital signatures) for integrity, and replication or
erasure coding for reliability and availability. On the time scale of archival systems,
however, we must contend with the possibility of cryptographic obsolescence. That
is, as time progresses, it becomes more likely that cryptographic schemes in use
today will be broken by future cryptanalytic advances. This danger is unavoidable
unless—at the very least— we resolve long-standing open questions in complexity
theory like P vs. NP (and the question must be resolved in a positive manner, i.e.,
P ̸= NP, see Section 2).

A natural response to the threat of cryptographic obsolescence is to shrug and
suggest re-encrypting (for confidentiality) or re-signing (for integrity) data. In the
case of confidentiality, this is clearly insufficient when one is worried about so-called
“Harvest Now, Decrypt Later” attacks [Noo23]. In such an attack, an adversary
steals encrypted data from a system with the hopes of gleaning information about
the stolen data possibly decades into the future with the help of improved crypt-
analysis (or better yet, poor key management). Concern for Harvest Now, Decrypt
Later is more than just gratuitous paranoia—the threat is being taken seriously
by industry and government alike with the prospects of cryptographically viable

quantum computers on the horizon [Lag23, Noo23, Tow22].

1.2 An Information-Theoretic Solution

How, then, can we hope to attain security—especially secrecy—in the face of both
cryptographic obsolescence and Harvest Now, Decrypt Later attacks? We propose
the use of secret sharing, a method of encoding a secret into n secret “shares”
with a threshold t ≤ n, such that any subset of t shares suffices to recover the se-
cret, but any subset of fewer than t shares reveals no information about the secret.
Slightly more formally, we require that any subset of fewer than t shares is statisti-
cally independent of the secret. This requirement of statistical independence is an
information-theoretic security guarantee, meaning it holds against computationally
unbounded attackers, and is therefore immune to cryptographic obsolescence.

Secret sharing lends itself well to a decentralized secure storage system because
a user can secret-share their data, then upload each share to a geographically dis-
tinct and administratively independent storage provider. With this decentralized
approach, the user avoids a single point of trust or failure, and can additionally re-
sist Harvest Now, Decrypt Later attacks. For example, consider a storage provider
(e.g., AWS) who unfairly hikes their prices, loses a share (admittedly unlikely since
storage providers place a premium on data reliability), or is suspected of stealing a
share from—or colluding with another provider (e.g., Azure). Assuming at least t
providers are still honest, and fewer than t providers have been corrupted, the user
can retrieve shares from all honest providers, ask the honest providers to delete their
shares, then reconstruct and reshare the secret among a new set of storage providers
that the user believes is uncorrupted. This share “refresh” functionality is critical
to long-term secrecy. Without it, given enough time an adversary would eventually
be able to steal enough shares to reconstruct the secret—no cryptanalysis required.

This user-driven approach is reminiscent of the “multi-cloud” paradigm, wherein
a user transparently leverages the services of multiple clouds through a single in-
terface [BLM20]. We note that multi-cloud is really an umbrella term referring to
any solution that leverages the services of multiple clouds [Wik24], but here (as we
believe is common) we take it to mean the weakest form of multi-cloud where integra-
tion/interoperability between clouds is virtually nonexistent. The main drawback of
the multi-cloud approach is the excessive burden it places on the user. They must
monitor each provider for price hikes, data loss, security events, etc., and then carry
out reconstruction and resharing. It is highly unrealistic to expect users to do this,
especially when considering the long-lived nature of the system. Of course, these
tasks could be outsourced to some third-party application provider like a cloud bro-
ker [LTM+11]. But again, this introduces a single point of trust, and now we must
worry about the broker itself going offline, raising prices, going rogue, etc.

To improve upon the (weak) multi-cloud approach, we instead envision a fully de-
centralized, self-maintaining system that does not require user intervention to keep
data secure. In particular, the system needs to be able to refresh its secret shares
without user intervention. This can be accomplished through Proactive Secret Shar-
ing (PSS): a special case of secure multi-party computation (MPC) that emulates
the functionality described above where a user reconstructs their secret and redis-
tributes fresh shares. When the set of parties can change between refreshes, the
PSS scheme is called dynamic: no party learns any information about the secret

or anyone else’s share, but everyone ends up with fresh shares of the same secret.
Ideally, the system is configured to execute PSS periodically (e.g., once a year), or
whenever some security event is triggered, or upon user prompting.

In summary, we propose the use of a decentralized, dynamic, proactive, secret-
shared storage system as the core component behind a long-term secure archive.
After exploring the nature of cryptographic obsolescence (Section 2) and introduc-
ing a system and threat model (Section 3), we describe the key technical ideas
behind secret sharing and PSS (Sections 4 and 5). Finally, we cover related work
(Section 6) and conclude with a discussion of future research directions that address
the shortcomings of existing secret-shared archives. (Section 7).

2 Cryptographic Obsolescence

2.1 Cryptographic Hardness Assumptions

Cryptographic obsolescence refers to the expiration of a cryptographic algorithm’s
security due to new cryptanalytic attacks. This is quite a rare phenomenon com-
pared to all the other disasters that could befall a secure system, but it happens
enough that there are several examples to pull from. Recall the demise of the MD5
hash [SSA+09], or that of DES encryption [BS93]. Shor’s algorithm [Sho99] has the-
oretically rendered discrete-log and factoring based cryptosystems insecure against
quantum adversaries—a breakthrough that is still driving modern research efforts
on plausibly post-quantum cryptography.

Granted, if we are worrying about secure storage, then we should focus on the
state of the art and practice in symmetric key encryption schemes: the Rijndael
algorithm, or Advanced Encryption Standard (AES) [DBN+01]. After more than
twenty years of cryptanalysis, AES remains (to public knowledge) as a battle-tested
and well-trusted encryption solution with no even remotely practical attacks on any
full-round versions. In fact, a prevailing notion among the cryptology community is
that the security of symmetric crypto (i.e., private-key encryption, hashes, etc.) is
more or less a solved problem security-wise [Aum19].

Nevertheless, it is currently impossible to prove that any cryptographic primi-
tive will not be broken in the future. This is because cryptography is basically a
field built on unproven mathematical assumptions of computational hardness. For
example, Diffie-Hellman key exchange assumes the hardness of computing discrete
logarithms [DH76], RSA encryption assumes the hardness of factoring RSA mod-
uli [RSA78], several post-quantum cryptographic schemes assume the hardness of
the Module Learning with Errors (MLWE) problem [BDK+18], and—like we said
above—breaking AES is assumed to be hard because of two decades of failed crypt-
analysis. A natural question to ask is why all these assumptions remain unproven.
In short, the answer is that all of cryptography currently implies a single, minimal
assumption: the existence of one-way functions [Imp95]. Informally, a one-way func-
tion is a function that is easy to compute in the forward direction, but difficult to
invert. It is a straightforward exercise to show that cryptographic primitives such as
hash functions and encryption schemes imply one-way functions. The existence of
one-way functions is a strictly stronger assumption than P ̸= NP [AB09], so uncon-
ditional proofs of security for any cryptographic algorithms depending on hardness
assumptions depends on the resolution of one of the most intractable problems in

all of mathematics. In other words, the possibility of cryptographic obsolescence is
unavoidable for the foreseeable future.

2.2 Information-Theoretic Security

As we alluded to in Section 1, there is, in fact, a way of unconditionally proving
the security of some non-cryptographic schemes. Non-cryptographic schemes enjoy
the property of information-theoretic security, i.e. provable security that makes no
computational hardness assumptions. Contrasted with the computational security
of cryptography, information-theoretic security is much stronger as it holds against
computationally unbounded adversaries, but information-theoretic schemes tend to
suffer from poor efficiency.

The historic canonical example of this is the One-Time Pad (OTP): an encryption
scheme that XORs the plaintext (in bits) with a uniformly random key to produce
the ciphertext. Even if an adversary in possession of the ciphertext were to brute
force through every possible key, they would fail to learn any additional information
about the plaintext beyond that which they already knew (i.e. the posterior equals
the prior). The efficiency drawback is that the key must be the of the same length
as the message. This makes the scheme impractical in many situations. For one, if
Alice wishes to securely send Bob an n-bit message with the OTP, they must both
first securely agree upon a uniformly random n-bit key, which is very similar to the
problem they were trying to solve in the first place. From a storage perspective,
if Alice uses the OTP to encrypt her secret files, she has now doubled her stor-
age problems, as losing the key effectively destroys the information content of the
message. These impracticalities motivated the search for secure encryption schemes
with short key lengths. Computational hardness assumptions allow circumvention
of unsavory lower bounds on key lengths for information-theoretic encryption, and
thus the setting of computational security was introduced. Information-theoretic
approaches took a backseat to the flourishing field of cryptography, as a surpris-
ing number of impractical or impossible tasks in the information-theoretic setting
(far beyond short encryption keys) suddenly become possible with cryptographic
assumptions.

Of course, as we have addressed above, one thing that does not become possible
with cryptographic assumptions is long-term secrecy. In fact, this may be one of the
only application scenarios in which information-theoretic security is preferred over
the computational setting. As such, relatively few works on secure storage adopt
information-theoretic approaches (see Section 6). When they do, they always turn
to approaches based on secret sharing, which we cover in Section 4.

3 System and Threat Model

We consider a decentralized storage system comprised of geographically distributed
and administratively independent storage providers. Ideally, each provider is itself
a reputable geo-distributed storage system, like AWS. Beyond this, however, the
internal architecture of each storage provider is arbitrary. This is convenient for a
few reasons. For one, architectures may differ greatly between providers. On the
archival time scale, architecture within even a single provider will likely change, and
we should expect different providers to come and go (i.e. dynamic committees).

Leaving the design of each provider unspecified lets us discuss the system as a set of
n abstract computing processes (nodes) communicating over a network of point-to-
point links. We assume for now that the (logical, not necessarily physical) network
topology is a clique. We also assume a secure public-key infrastructure (PKI) that
ensures (computationally) secure private and authenticated communication channels
between parties.

With such a system model in mind, we turn to threat modeling, taking inspiration
from the mobile adversary model of Ostrovsky and Yung [OY91]. In order to violate
data confidentiality, integrity, or availability, an adversary must clearly exert control
over some nodes or their communication links. Because we abstracted so heavily
over the internals of each node, we assume all-or-nothing Byzantine corruptions.
That is, nodes are either honest or malicious (i.e. Byzantine). Honest nodes follow
protocol and are completely free of any faults or adversarial influence. Malicious
nodes are wholly corrupted by an adversary with access to all private keys, admin
privileges, storage, memory, etc., and thus may deviate arbitrarily from protocol and
learn any of the node’s secret data. Adversaries are assumed to run in probabilistic
polynomial time (PPT). Obviously we cannot allow an adversary to corrupt all n
nodes, so we assume an adversary can control at most f < n nodes at any given
point in time. Typically, f < ⌊n/3⌋ or f < ⌊n/2⌋. This subset of f malicious nodes
can be arbitrarily and adaptively changed by the adversary throughout the lifetime
of the system. A threat model for a distributed system should also address network
synchrony models, as the network can itself be viewed as an adversary that controls
delivery of all messages. Note that control of message delivery also implies the abil-
ity to eavesdrop on—and tamper with—messages, but this is not an issue as long
as (a) our assumption of a secure PKI holds, and (b) the adversary is a PPT ma-
chine. The synchrony model imposes certain restrictions on the network adversary.
Broadly speaking, the network could be synchronous, asynchronous, or somewhere
in between. In a synchronous network, each message is guaranteed to be delivered
within some known delay upper bound ∆. As a consequence, we can assume that a
system proceeds sequentially in epochs e0, e1, e2, ... (this is actually called lock-step
synchrony, and it can be achieved with a clock synchronization protocol [ADD+19]).
This makes it easier to design and analyze synchronous protocols. In a fully asyn-
chronous network, messages can be arbitrarily and indefinitely delayed. The asyn-
chronous model is fraught with impossibility results, and protocols in this model
are generally more difficult to design and analyze. Partial synchrony [DLS88] is a
popular model that sits in between synchrony and asynchrony. In this model, the
network can be fully asynchronous up until some unknown time GST , after which
the network becomes fully synchronous. The rationale behind the partial synchrony
assumption is that although the real world is technically asynchronous, in practice
messages are not delayed arbitrarily since protocols like TCP provide reliable de-
livery. The synchrony model is quite relevant in the context of secure distributed
protocols, such as proactive and verifiable secret sharing (Section 5). Choice of syn-
chrony model affects protocol design, security, and efficiency. For the purposes of
this work, however, the exact choice of synchrony model is not important as we do
not commit ourselves to (nor do we design or analyze the security of) any distributed
protocols.

4 Secret Sharing

Secret sharing is the fundamental cryptographic primitive underlying our secure
archival system. In this section we will provide formal definitions for secret sharing,
and constructions of both additive secret sharing and Shamir’s secret sharing. These
constructions assume familiarity with finite fields, see Appendix A for an overview.
Proofs of security are deferred to Appendix B. It is worth noting we exclusively focus
on information-theoretically secure secret sharing. Computational secret sharing
schemes are their own field of study, and some of them have even been used in
secure archival systems [RP11].

4.1 Definitions

All of the formal definitions in this section are adpated or pulled verbatim from an
excellent survey on secret sharing schemes by Amos Beimel [Bei11]. We begin with
definitions of access structures and distribution schemes, and then use both of these
to define secret sharing.

Definition 4.1 (Access Structure [Bei11]). Identify a set of n parties by their indices
[n] := {1, ..., n}. A collection A ⊆ 2[n] is monotone if B ∈ A and B ⊆ C imply that
C ∈ A. An access structure is a monotone collection A ⊆ 2[n] of non-empty subsets
of [n]. Sets in A are called authorized, and sets not in A are called unauthorized.

The threshold access structure is perhaps the most popular example of an access
structure. If [n] is our set of parties, then a threshold access structure At is param-
eterized by some integer t ≤ n, and consists of all subsets of [n] of size t or greater.
That is, At = {B ⊆ [n] : |B| ≥ t}. A threshold access structure with n parties and
threshold t is often written as a (t, n) access structure.

Definition 4.2 (Distribution Scheme [Bei11]). Let [n] be a set of parties. A dis-
tribution scheme Σ = (Π, µ) with domain of secrets K is a pair, where µ is a
probability distribution on some finite set R called the set of random strings, and Π
is a mapping from K ×R to a set of n-tuples K1× · · · ×Kn, where Kj is called the
domain of shares of party j. A dealer distributes a secret k ∈ K according to Σ by
first sampling a random string r ∈ R according to µ, computing a vector of shares
Π(k, r) = (s1, ..., sn), and privately communicating each share sj to party j. For a
set I ⊆ [n], we denote Π(k, r)I as the restriction of Π(k, r) to its I-entries.

The probability distribution µ is very often the uniform distribution, so we fre-
quently leave it unspecified and assume µ is uniform by default. We now present
two equivalent definitions of secret sharing. Proof of their equivalence can be found
in Claim 1 of Beimel [Bei11].

Definition 4.3 (Secret Sharing [Bei11]). Let K be a finite set of secrets, where
|K| ≥ 2. A distribution scheme (Π, µ) with domain of secrets K is a secret-sharing
scheme realizing an access structure A if the following two requirements hold:

1. (Correctness) The secret k can be reconstructed by any authorized set of
parties. That is, for any set B ∈ A where B = {i1, ..., i|B|}, there exists a
reconstruction function ReconB : Ki1 × · · · × Ki|B| → K such that for every
k ∈ K,

Pr[ReconB(Π(k, r)B) = k] = 1

2. (Perfect Privacy) Every unauthorized set cannot learn anything about the
secret (in the information-theoretic sense) from their shares. Formally, for any
set T /∈ A, for every two secrets a, b ∈ K, and for every possible vector of shares
(sj)j∈T :

Pr[Π(a, r)T = (sj)j∈T] = Pr[Π(b, r)T = (sj)j∈T]

The second definition of secret sharing makes use of the information-theoretic
entropy function H. Let X be a random variable with support X . The entropy
function is defined as H(X) :=

∑
x∈X Pr[X = x] log(1/Pr[X = x]).

Definition 4.4 (Secret Sharing - Alternative Definition [Bei11]). A distribution
scheme (Π, µ) is a secret sharing scheme realizing an access structure A with respect
to a given probability distribution on the secrets, denoted by a random variable S,
if the following conditions hold.

1. (Correctness) For every authorized set B ∈ A, H(S|Π(S,R)B) = 0 (where we
abuse notation and use R to denote the random variable according to µ over
the finite set of random strings used by Π, also denoted R). In other words,
Π(S,R)B implies the value of S.

2. (Privacy) For every unauthorized set T ∈ A, H(S|Π(S,R)T) = H(S). Equiv-
alently, the random variables S and Π(S,R)T are independent.

Instead of using (Π, µ) to specify a secret sharing scheme, we will often find it
useful (and more readable) to specify a secret sharing scheme as a pair of algorithms
(Share,Recon), where Share is just alternative notation for the distribution
scheme Π, and Recon is the corresponding reconstruction algorithm.

4.2 Additive Secret Sharing

We now present a construction of additive secret sharing. Let Fq be a finite field,
and [n] be a set of parties such that n < q. Let K = K1 = · · · = Kn = Fq be the
set of secrets and share domains, let R = Fn−1

q be the set of random strings, and let
µ be the uniform distribution on R. The distribution scheme Π is as follows. On
input k ∈ K, (r1, ..., rn−1) ∈ R, compute rn := k− r1− · · · − rn−1, and return vector
of shares (r1, ..., rn). This scheme is perfectly secret and realizes an (n, n) access
structure (i.e., every party is needed to reconstruct the secret). This statement is
formalized and proved as Claim B.1.

As one may suspect, additive secret sharing is not so ideal for a secure storage
system. Its major drawback is an inability to tolerate the loss of even a single share,
for this would information-theoretically destroy the original secret. More desirable
would be a threshold secret sharing scheme for which the threshold was configurable
and not fixed to n. This is accomplished by the well-known threshold secret sharing
scheme of Adi Shamir from 1979 [Sha79], which we present next.

4.3 Shamir’s Secret Sharing

As before, let Fq be a finite field, and [n] a set of parties such that q < n. Let
K = K1 = · · · = Kn = Fq be the set of secrets and share domains. Let 2 ≤ t ≤ n be
the threshold, R = Ft−1

q the set of random strings, and µ the uniform distribution
on R. On input k ∈ K, (r1, ..., rt−1) ∈ R, Π constructs the degree t− 1 polynomial

p(x) = k + r1x + · · · + rt−1x
t−1, chooses any n distinct but non-zero evaluation

points x1, ..., xn ∈ Fq −{0}, and returns vector of shares ((x1, p(x1)), ..., (xn, p(xn)))
consisting of all the points on the polynomial associated with the n evaluation
points. Correctness intuitively follows because any t shares represent t points on
the polynomial, which suffice to uniquely interpolate the degree t − 1 polynomial
p and recover the constant term k (see Theorem B.1). Privacy intuitively follows
because if only a set of t− 1 points on the polynomial (i.e., shares) are known, then
considering any secret as an additional point (specifically the point at x = 0) of the
polynomial results in a unique polynomial, and the probability that this polynomial
is the correct polynomial is only as likely as the a priori distribution on the secret.
See Claim B.2 for the full proof.

Any secret sharing scheme—including Shamir’s—enjoying perfect secrecy must
pay the price in storage inefficiency. Notice in Shamir’s we started with a single field
element as the message, and we produced n field elements as output. In coding-
theoretic terms, we can view the n shares as a single codeword resulting from apply-
ing the scheme to our message. This means the rate of the code (ratio of message
size to codeword size) is O(1/n). Contrast this with AES, which asymptotically has
optimal rate O(1). Informally, this is because the quality of information-theoretic
security relies on how much entropy (i.e. randomness) is used in the scheme. Formal
proofs of lower bounds on share size for perfectly secret secret sharing schemes can
be found in Section 5 of Beimel [Bei11].

5 Proactive Secret Sharing

Recall in Section 1.2 we sketched the näıve approach to a secret-shared storage sys-
tem wherein a user secret shares their data and uploads each share to a “committee”
of geographically distinct and administratively independent storage providers. To
ensure the security of their data against Harvest Now, Decrypt Later attacks, the
user should periodically retrieve shares from the storage providers (and request their
deletion), reconstruct the secret, generate fresh secret shares of the secret, and re-
upload them (possibly to a different set of storage providers). The drawback of this
approach is the burden of requiring the user to facilitate the refresh. This can be
avoided with proactive secret sharing (PSS): a secure distributed protocol that emu-
lates the refresh process in a decentralized and (optionally) Byzantine fault-tolerant
manner.

Many PSS protocols have been designed over the past few decades. These pro-
tocols may vary by threat model, desired features, and level of sophistication. Full
descriptions and analyses of even the simplest PSS protocols can be a bit involved.

As a result, in this section we only aim to build an intuition for PSS protocols
and identify key techniques common across several PSS protocols. We do this by
sketching the seminal PSS protocol of Herzberg et al. [HJKY95] (which we refer
to as “Herzberg’s PSS” for convenience), first in the semi-honest case and then in
the malicious case. In doing so, we will cover the fundamental zero-sharing trick,
along with verifiable secret sharing and its subcomponents. Following Herzberg’s
PSS, we briefly cover the (equally fundamental) resharing trick of Desmedt and
Jajodia [DJ97] that initiated the study of dynamic PSS (DPSS) protocols which
allow redistribution of fresh shares to a new access structure. The section concludes
with a high-level overview of the state-of-the-art in DPSS.

5.1 Herzberg’s Semi-Honest PSS

To the best of our knowledge, the work of Herzberg et al. [HJKY95] was the first to
coin the term proactive secret sharing, and the first to provide a full construction.
Herzberg’s PSS assumes a (lock-step) synchronous system of n nodes, private (see
Sections 6 and 7 for more on this assumption) authenticated point-to-point channels
between all pairs of nodes provided by a secure PKI, and the existence of a “secure”
broadcast channel. Note that in practice, this broadcast channel would have to be
implemented over the point-to-point channels. This is trivial in the semi-honest
case we consider here where every node seeks to learn private information but does
not deviate from protocol: the broadcaster simply sends the same message to every
other party individually using the point-to-point channels. In the malicious (i.e.
Byzantine) case however, implementation of the broadcast channel becomes quite
nontrivial. Discussion of secure broadcast implementation is a rabbit hole that
drifts out of scope for this work, but we will say a few more words about this later
in Section 5.2.

Before describing the semi-honest protocol, we introduce the key technique en-
abling the generation of fresh shares used in Herzberg’s and other PSS protocols.
It is sometimes called “zero-sharing” [MZW+19], or “commit to zero” [NN04], as it
involves parties sending each other fresh secret shares of the zero field element, and
adding received shares of zero to their existing local share. Combined with the fact
that any unauthorized subset of Shamir’s secret shares is distributed uniformly and
independently at random (see Claim 1 in Chandran et al. [CKOS21]), a homomor-
phic property of Shamir’s secret sharing ensures that every party ends up with fresh
shares that are statistically independent of the old shares, and yet the underlying
secret remains unchanged. The homomorphic property of Shamir’s secret sharing is
really a homomorphic property of polynomial interpolation, which we state precisely
and prove in Claim B.3. Put plainly, the homomorphic property implies that the
“sum of shares equals shares of the sum”. We assume Shamir’s secret sharing for
the rest of the section unless specified otherwise. The upshot is that if Share(m, r)
is a secret sharing of some message m with randomness r, then we can generate
secret shares Share(0, r′) of the zero field element, and their sum Share(m, r+ r′)
remains a secret sharing of m. Further, this new secret sharing (intuitively) “looks”
uniformly random and independent from Π(m, r) since we essentially masked each
share of Share(m, r) with an independent and uniformly random value (i.e., a share
of Share(0, r′)).

We now describe Herzberg’s PSS in the semi-honest case where corrupted parties
collect and share information with the aim of learning the secret, but do not deviate
from protocol in order to e.g., tamper with the integrity of the secret. Suppose a
secret s has been (k + 1, n) secret shared so that party 1 ≤ i ≤ n holds share si.
To refresh the shares, each party i generates a random degree k polynomial δi such
that δi(0) = 0, and then sends δi(j) to party j. Upon receiving {δj(i)}j ̸=i, party i
sets s′i := si +

∑
j ̸=i δj(i), and deletes their old share. Notice each δj(i) is an i-th

Shamir secret share of 0, so the resulting share s′i is independent of si (as it has been
masked several times), but still corresponds to the original secret s.

While this simple semi-honest example due to Herzberg et al. represents the core
technique behind many subsequent PSS works, there are two major issues to address
before such a scheme could hope to be responsibly deployed in practice. The first is

that we have only considered semi-honest adversaries. A single malicious adversary
can destroy the secret by sending garbage (for example) instead of the appropriate
δj(i). This issue is addressed with a verifiable secret sharing (VSS) subprotocol.
The second issue is that the set of parties is static, so shares of zero are being sent
right back to the malicious parties. The threat model of Herzberg et al. justifies this
by assuming adversarial corruption is removed from each corrupted party before the
refresh via some magical “reboot”. This is unrealistic. A storage provider may not
know how to properly remove an adversary, or even know an adversarial corruption
has occurred in the first place. Further, the storage provider itself may be under
total adversarial control (e.g., they went rogue). What we desire instead is a PSS
protocol supporting dynamic access structures, wherein the newly minted shares
can be given to a new set of parties, possibly of different size and with different
threshold. We address the problem of malicious parties next.

5.2 Herzberg’s Malicious PSS

The key idea enabling security against malicious parties is the incorporation of a ver-
ifiable secret sharing (VSS) subprotocol. Like PSS, (VSS) is a secure distributed pro-
tocol that builds upon an existing secret sharing scheme (we again assume Shamir’s
secret sharing unless specified otherwise). Informally, the goal of a VSS protocol
is to protect shareholders against a malicious dealer who tries to deal inconsistent
shares to the shareholders (e.g., a dealer who sends each party uniformly random
garbage). At first glance, this may seem like a strange security goal because, in
the context of our discussion on archival, we might associate the dealer with a user,
and a user has no incentive to deal inconsistent shares. This is indeed a reason-
able intuition, but it arises from the assumption that the dealer is always the user.
Recalling Herzberg’s semi-honest PSS from the prior section, each party is itself a
dealer when it generates shares of zero to send to every other party. Should a party
not honestly generate shares of zero, the secret could be destroyed or altered. Hence,
the use of VSS makes sense within the context of a PSS protocol to protect against
shareholders who act as dealers during share renewal. For completeness, we provide
a formal definition of VSS adapted from Das et al. [DXT+23].

Definition 5.1 (Verifiable Secret Sharing [DXT+23]). A verifiable secret sharing
(VSS) protocol consists of two phases: sharing and reconstruction. During the
sharing phase, a dealer D shares a secret s ∈ F (for F a finite field). During the
reconstruction phase, nodes interact to recover the secret. We say a VSS protocol
is k-resilient if the following properties hold with probability 1−negl(λ) (where λ is
the security parameter) against any PPT adversary A that corrupts up to k nodes:

1. Correctness. If D is honest and has a secret s, then the sharing phase will
result in all honest nodes eventually outputting a share of s. Once the sharing
phase finishes, if all honest nodes start the reconstruction phase, they will
output s.

2. Completeness. If any honest node outputs in the sharing phase, then there
exists a secret s̃ ∈ F such that all honest nodes eventually output a share of s̃.
Also, s̃ is guaranteed to be reconstructed during the reconstruction phase.

3. Secrecy. If D is honest, there exists a PPT simulator S which interacts with

an ideal functionality FV SS and outputs a view of A, such that A’s view in the
real-world protocol and the simulated protocol are indistinguishable.

4. Termination. All honest nodes will eventually terminate the sharing phase.

We make a few comments on this definition before sketching a VSS construction.
First, the termination property, as stated, only makes sense in synchronous systems.
For asynchronous systems, the authors replace the termination with an asynchronous
termination property stating if any honest node outputs in the sharing phase, then
all honest nodes will eventually terminate. Second, the language in the secrecy
property belongs to the simulatability paradigm for security proofs, and very loosely
says that an adversary cannot do better in the real world than they can against some
ideal execution of the protocol that leverages a trusted third party (i.e., FV SS).
Third, if the secrecy property holds with probability 1, (i.e. negl(λ) = 0), then we
have perfect secrecy.

The specific VSS construction used in Herzberg’s PSS protocol is due to Peder-
sen [Ped91]. Two salient features of Pedersen’s VSS are that it (a) unconditionally
(i.e., information-theoretically) hides the secret, and (b) is non-interactive (i.e., re-
quires only one round of communication between dealer and parties). The first
feature is desirable for long-term security, while the second is desirable because it
saves on communication complexity. The key idea of the protocol is for the dealer
to broadcast a Pedersen commitment to the random polynomial used for Shamir’s
secret sharing, then send to each party their share and some additional opening
information that lets each party verify that their share was generated according
to the dealer’s random polynomial. Information-theoretic secrecy is preserved by
the unconditional hiding property of the Pedersen commitment. A homomorphic
property of the Pedersen commitment allows parties to non-interactively verify their
shares. See Appendix C for the relevant details of commitment schemes that make
this possible.

One caveat is that the binding property of the Pedersen commitment depends on
hardness of the discrete log assumption, so a dealer that efficiently computes discrete
logarithms can succeed in dealing inconsistent shares. Fortunately, this is not much
of an issue, since data integrity does not suffer from the same Harvest Now, Decrypt
Later threat as data secrecy. Integrity remains uncompromised as long as the dealer
cannot efficiently compute discrete logarithms at the time of protocol execution. Of
course, as mentioned in Section (2), in theory, discrete logarithms can already be
computed in polynomial time with Shor’s algorithm on a quantum computer. If the
threat of cryptographically viable quantum computers seems imminent, we could
swap out the Pedersen commitment with another suitable unconditionally hiding
commitment whose binding depends on a secure post-quantum hardness assumption,
such as the one in Cabarcas et. al [CDG+15].

It is worth noting that a commitment scheme cannot be both unconditionally
hiding and binding. Intuitively, this is because unconditional binding implies that
the commitment can only correspond to one element (or some small subset) of
the message space, while unconditional hiding implies that the commitment could
correspond to any element (or some large subset) of the message space. These impli-
cations directly contradict each other. Thus, when selecting commitment schemes
for a VSS protocol, we must choose between unconditional hiding / computational
binding, computational hiding / unconditional binding, or computational hiding and

binding. Because our focus in this work is long-term security against Harvest Now,
Decrypt Later attacks, we opt for unconditional hiding. Computational binding is
acceptable for use in PSS since we need only worry about integrity violations dur-
ing protocol execution, so we can simply use whatever computational assumption is
currently believed to be secure.

A second caveat is—as mentioned in the section preamble—the assumption of a
secure broadcast channel. The näıve approach to broadcast—send the same mes-
sage individually to each party—is trivially insecure against a malicious broadcaster
who sends different messages to each party. A secure broadcast channel can be real-
ized with Byzantine broadcast (BB) in synchronous systems, and Byzantine reliable
broadcast (RB) in asynchronous systems. The difference between the two is identi-
cal to the difference in Definition 5.1: BB requires that all parties terminate, while
RB requires that if one honest party terminates, then all parties terminate [LRU22].
We do not discuss any protocols for realizing either of these or their costs, but will
point out that their communication complexity is necessarily higher than that of
the semi-honest case, as parties must communicate with each other to weed out
misinformation.

Armed with a high-level understanding of Pedersen’s VSS, we provide a sketch of
Herzberg’s full protocol with malicious security. Assume a user has already honestly
dealt Shamir shares of a secret to n parties with threshold k + 1, such that party
i holds share si. Herzberg’s protocol assumes a synchronous system with private
authenticated channels, so the lifetime of the system can be divided into epochs,
and each party can be sure that messages are reliably delivered, untampered, from
the party that claims to have sent the message, in a timely manner. At the end of
each epoch t, parties begin a share renewal phase. Each honest party i generates n
shares of zero using a random polynomial δi as described above in Section 5.1, sends
each share to its corresponding party, and broadcasts a Pedersen commitment to
δi. When party j receives all of its shares of zero, it verifies the i-th share against
the public commitment to δi. If all verifications pass, then party j broadcasts an
acceptance message to all other parties. If the verification for the ĩ-th share fails,
then party j broadcasts an accusation against party ĩ. Party ĩ must then broadcast
the share it sent to party j, at which point every other party can check whether
this share indeed failed verification. Parties then agree on a set of “bad” parties,
and add to their local share those shares of zero belonging to “good” parties. This
completes the share renewal phase, and the epoch is set to t + 1.

5.3 The Resharing Trick for Dynamic-Committee PSS (DPSS)

We now address the second issue with Herzberg’s PSS (Section 5.1) of static parties.
The study of PSS with dynamic access structures (DPSS) was initiated by the work
of Desmedt and Jajodia in 1997 [DJ97]. This work showed that linear secret sharing
schemes satisfying certain properties (Shamir’s among them) admit a “resharing”
trick, whereby an authorized subset of parties in the original committee generates
“subshares” of their local shares using an appropriate secret sharing scheme. These
subshares are then sent to corresponding parties in the new committee. Each new
party uses its received subshares to compute a new local share. This new share
belongs to a sharing of the original secret under a new access structure (e.g., possibly
different threshold). Desmedt and Jajodia only considered the semi-honest case

(passing mention of a robust protocol variant is made in Section 6 [DJ97]). Wong,
et al., [WWW02] use a straightforward application of VSS techniques to support
malicious parties, but incur exponential communication costs in the worst case, and
assume all parties in the new committee are honest.

To provide slightly more detail on the resharing technique, suppose a secret s ∈ F
was (k + 1, n) secret shared as (s1, ..., sn) such that, for any authorized set B, there
exist weights (bi)i∈B such that s =

∑
i∈B bisi (in the case of Shamir’s secret sharing,

bi =
∏

j∈B,j ̸=i xj/(xj − xi)), where x1, ..., xn ∈ F are the evaluation points). B

wishes to produce fresh shares for a new set of parties [n′] with a new threshold
k′ + 1. To do this, each party i ∈ B generates a new degree k′ random polynomial
p′i(x) = si +ai,1x+ · · ·+ai,k′x

k′ , and computes subshares ŝi,j = p′i(xj) for all j ∈ [n′].
Each party i ∈ B then sends ŝi,j to party j ∈ [n′]. Now each new party j ∈ [n′]
upon receiving its collection of subshares {ŝi,j} from all i ∈ B, computes its final
new local share s′j =

∑
i∈B biŝi,j. The fact that the collection of new shares {s′j}j∈[n′]

are secret shares of s under the new (k′ + 1, n′) access structure follows from the
main result of Desmedt and Jajodia [DJ97].

5.4 Overview of State-of-the-art in DPSS

A string of subsequent works [SLL10, MZW+19, VAFB22, GKM+22, YXD22, YXXM23]
on dynamic-committee proactive secret sharing (DPSS) incrementally achieve im-
proved security and practical efficiency through the use of a variety of additional
techniques, including (but not limited to): distributed ledgers, bivariate polynomi-
als, asynchronous networks, hyperinvertible matrices, distributed polynomial gen-
eration, non-interactive zero-knowledge proofs, KZG polynomial commitments, and
multi-valued validated Byzantine agreement. As a result, these DPSS systems
have become significantly more complex than the historical PSS protocols described
above. As such, we opt to briefly provide an overview of the “HoneyBadger” DPSS
protocol of Yurek et al. [YXXM23], and the COBRA DPSS protocol of [VAFB22],
which we believe to be the current state-of-the-art in DPSS. Interestingly, none
of these works are concerned specifically with long-term archival, instead citing
blockchain issues like MPC in the face of node churn, or confidential Byzantine
fault-tolerant state machine replication, as their target applications.

Honeybadger DPSS assumes an asynchronous network with authenticated private
channels between each pair of nodes, and considers the problem of resharing a secret
s from a committee C to a new committee C ′. At most t nodes are corrupted in
C, and at most t′ nodes are corrupted in C ′, subject to the constraints t < |C|/3
and t′ < |C ′|/3. It is possible that nodes in C overlap with those in C ′. The
main tools used in the protocol are an asynchronous complete secret sharing scheme
(ACSS), Byzantine reliable broadcast (RB), and multi-valued Byzantine agreement
(MVBA). ACSS is similar to VSS, in that parties can verify that everyone received a
share consistent with a broadcasted commitment. Their specific ACSS construction
relies on RB, Pedersen commitments, Paillier encryption, and zero-knowledge proofs
of knowledge (ZKPoK). In short, for each secret share si, the dealer broadcasts
a Pedersen commitment to si, a Paillier encryption of si under the i-th party’s
public key, and a ZKPoK proving the dealer knows si given the commitment and
the encryption. It is worth noting their ACSS supports a distinction between a
correctness threshold t representing the maximum number of Byzantine parties, and

a privacy threshold d + 1 representing the number of shares needed to reconstruct
the secret. Additionally, we observe that this ACSS construction is not information-
theoretically hiding, as every party must know the Paillier encryption of every other
share. As such, this protocol would not be suitable for our purposes, but we describe
it anyway as an example of the current state-of-the-art in DPSS. In MVBA, every
party has an input value v, and the goal is to agree upon a single value satisfying
a public predicate f : {0, 1}|v| → {0, 1}. At a high level, the protocol strategy is
as follows. C uses ACSS to reshare (in the sense of Desmedt and Jajodia [DJ97])
shares to C ′. Because of asynchrony, C ′ needs to agree on a set of d+ 1 parties from
C that successfully completed the ACSS resharing; this is achieved via MVBA.

COBRA DPSS considers the same problem setting as HoneyBadger DPSS, except
in a partially synchronous network. The main tool used in COBRA is distributed
polynomial generation, which is built over verifiable secret sharing and Byzantine
consensus. Distributed polynomial generation allows a group of parties to create a
random degree t polynomial Q encoding a specific point (x, y). For the purposes of
dynamic resharing, COBRA designs a modified distributed polynomial generation
algorithm allowing the old committee C to generate two random polynomials Q,Q′

subject to the constraint that Q(0) = Q′(0) = q, where q is a random value. Each
party i ∈ C holds a share Q(i) (in addition to their original local share si), and
each party j ∈ C ′ holds a share Q′(j). The key idea behind the resharing is as
follows. Each party i ∈ C will add the point Q(i) to their original local share
si, and sends the new blinded share si + Q(i) to each j ∈ C ′. Upon receiving at
least t + 1 correct blinded shares from C, each j ∈ C ′ reconstructs the blinded
secret z := (s + Q(0)). They then compute s′j := z − Q′(j) as their new share.
Observe that the {s′j} are points on the polynomial z−Q′, and the free term of this
polynomial is z − Q′(0) = (s + Q(0)) − Q′(0) = s, so the secret is preserved under
the new refreshed shares. This describes the semi-honest case; VSS and Byzantine
consensus are used in straightforward ways to lift this to the malicious case. Unlike
HoneyBadger DPSS, this protocol is information-theoretically hiding, and therefore
more suitable for long-term secure archival.

6 Related Work

Gridsharing [SB05], POTSHARDS [SGMV09], and PASIS [GKP05] (which sub-
sumes the work of Wong et al. [WWW02]) were among the first works to propose a
secret-shared storage system. That is, storage systems where the data is directly pro-
tected with information-theoretic secret sharing. These systems stand in contrast
with others that use traditional encryption methods for data, and secret sharing
for other purposes, like protecting server private keys [MS04]. POTSHARDS uses
Shamir’s secret sharing along with some disaster recovery techniques, but does not
support any proactive share renewal capabilities. Gridsharing attempts to reduce
computational overheads associated with Shamir’s secret sharing and VSS by using
XOR (i.e., additive) secret sharing and quorum techniques, but incurs higher storage
overhead as a result. Further, while they mention the ability to perform proactive
share renewal, they never actually incorporate it into their system. PASIS provides
a general framework for survivable storage systems with several options for data
encoding—one of them being the DPSS scheme of Wong et al. As discussed previ-
ously in Section 5, this early DPSS scheme suffers from exponential communication

overhead in the worst case, and assumes all parties in the new committee are honest
during the share renewal phase.

Whereas these early works provide long-term confidentiality of data at rest via
information-theoretic secret sharing, the 2016 work of LINCOS [BBD+17] and its
follow-ups [BDF+20, MGA+20, GKKB18] belong to a more modern thread of secure
archival that take a more hardline stance towards the issue of cryptographic obsoles-
cence by additionally considering long-term confidentiality of data in transit, as well
as long-term integrity. These works establish information-theoretically private com-
munication channels by having parties agree on a One-Time Pad key with quantum
key distribution (QKD). The main drawback is that QKD is a fledgling technology
with high infrastructure costs. In particular, LINCOS throughput is severely limited
by the 40KB/s rate at which they could generate fresh key material from the Tokyo
QKD system. Long-term integrity is achieved with a chain of digitally signed times-
tamps. Intuitively, integrity of a digital signature can be prolonged indefinitely by
signing an old timestamped signature with a new timestamped signature. As long
as the new (presumably secure) signature is added before the old one is broken,
the security of the entire chain is effectively renewed. Curiously, while LINCOS
(and its aforementioned follow-ups) suggest the use of proactive secret sharing for
long-term confidentiality, they forego its implementation and instead have the user
manually reshare the secret periodically. To the best of our knowledge, no secure
archival systems to date have actually implemented PSS/DPSS. The systems that
do rigorously implement and evaluate PSS/DPSS focus on more general blockchain
applications. We also note that none of the DPSS works from Section 5 consider
information-theoretic channels. While these systems can be considered related work,
we have already mentioned them in Section 5, and focus here on the specific problem
of secure archival, especially in the face of cryptographic obsolescence and Harvest
Now, Decrypt Later attacks.

That said, we briefly mention two approaches to secure archival in the compu-
tationally secure setting. The first is AONT-RS [RP11], a secure storage system
designed around a computationally secure secret sharing scheme (constructed using
encryption schemes, hash functions, and Reed-Solomon erasure codes). The ap-
proach of AONT-RS found its way into commercial use in the Cleversafe storage
system, which was eventually acquired by IBM. The second approach is that of cas-
cade ciphers : wrapping data in multiple layers of different encryption schemes to
hedge against the cryptanalysis of any particular scheme. ArchiveSafeLT [SS22] is
the only archival system we are aware of that uses this approach. Of course, since
both of these approaches are only computationally secure, they are both susceptible
to Harvest Now, Decrypt Later attacks.

We conclude the section by pointing out some pertinent surveys and position
papers. In 2006, a position paper by Storer et al. [SGM06] holistically reasons about
threats to long-term secure archives, but says nothing about information-theoretic
security or secret-shared archives. A 2014 survey by Braun et al. [BBMW14] explores
information-theoretic techniques for achieving long-term confidentiality of data at
rest and in transit. A 2015 survey by Vigit et al. [VBC+15] complements that of
Braun et al. by focusing on long-term integrity (and related) concerns. Finally, a
recent position paper by Smith et al. [STD+24] focuses on challenges and approaches
to building long-term secure archives in the face of cryptographic obsolescence and
Harvest Now, Decrypt Later attacks This work can be considered an extension of

that work with a more pointed focus on using DPSS systems to achieve the same
goal.

7 Discussion

Recall the main requirements we postulated in Section 1 for archival systems: se-
curity, reliability, and storage efficiency. Our proposed solution is a decentralized,
geo-distributed, dynamic proactively secret shared storage system. While we be-
lieve this is the right approach for a long-term archive that must contend with the
combined threats of cryptographic obsolescence and Harvest Now, Decrypt Later,
there remain several areas for improvement.

A glaring issue is the poor storage efficiency incurred by information-theoretic
secret sharing due to hard lower bounds on share size (see Section 4.3). Instead
of trying to remedy this by using a different encoding—such as packed secret shar-
ing [FY92], or entropically secure encryption [DS05]—we could directly try to make
storage cheaper with a new generation of archival storage media. Two promising
candidates are DNA and glass. DNA storage boasts a theoretical density of 1EB per
cubic millimeter (8 orders of magnitude greater than tape), and centuries of dura-
bility. While not quite as dense, at 429TB per cubic inch, glass requires very little
maintenance, and can survive for millenia [ZČD+16]. Of the two, glass appears to
be much closer to widespread adoption: Microsoft’s Project Silica [pro24] is a pro-
totype archive based on glass. They choose glass over DNA due to the high costs
and low throughputs of DNA synthesis and sequencing. One could still argue that
regardless of storage media, asymptotically the storage cost of secret-sharing will
not scale for massive archives. We do not refute this argument, but instead point
out that our target workload for secret-shared archives is highly sensitive long-lived
data for which the user does not even wish to risk the possibility of a Harvest Now,
Decrypt Later attack years down the line. In these cases, the value of the data
likely outweighs the storage cost. As one example, suppose a government organiza-
tion stores petabytes of classified information in an archive. What should they do
with the encryption keys, which are now as valuable as the cumulative value of every
piece of data that was encrypted under said keys? Such a secret-shared archive is a
strong contender for an extremely secure key management system. Further, encryp-
tion keys are short, so the storage cost in this case should be negligible compared
to the size of the encrypted archive.

A security concern that has thusfar gone completely unaddressed by secret-shared
systems is the relatively recently discovered vulnerability of many secret sharing
schemes to leakage attacks. In a leakage attack, an adversary might leak only a few
bits of information about a share via some hidden side-channel. Notice that the tra-
ditional threat model for secret sharing only considers adversaries that steal whole
shares. A 2017 work on the exact repair problem for Reed-Solomon codes [GW17]
was shown by Benhamouda et al. [BDIR21] to translate into a leakage attack on
Shamir’s secret sharing over characteristic 2 fields. In the worst case, leaking only
one bit of information from each share (no need to steal any share in its entirety) can
lead to complete reconstruction of the secret. In response to this vulnerability, sev-
eral recent works [BDIR21, CKOS22, KK23, MNPC+22, MPCSW21] have proposed
new leakage-resilient secret sharing (LRSS) schemes. These schemes can be broadly
classified according to two axes: leakage model and linearity. The leakage model

determines the class of side-channel attacks that a scheme can resist. Strong leakage
models protect against larger classes of attacks, but tend towards greater share sizes.
Weaker leakage models have smaller share sizes, but protect against fewer attacks.
Linear LRSS schemes are more compatible with existing secret-sharing based proto-
cols (like PSS), but require restrictive parameter choices (e.g., field size, threshold)
in order to maintain security. Nonlinear schemes do not have these restrictions, but
the constructions are more complex, less efficient, and are not directly compatible
with existing protocols. Evaluating the LRSS landscape in the context of archival
systems is an open problem.

As mentioned in Section 6, LINCOS uses QKD for information-theoretic pri-
vate channels. An alternative is the use of schemes in the Bounded Storage Model
(BSM) [Mau92]. Cryptography in the BSM relies on the assumption that an ad-
versary’s storage capacity is limited. While unorthodox, this assumption is not of a
computational nature, so schemes in the BSM still enjoy information-theoretic secu-
rity. As an example, in the BSM honest parties can agree on a One-Time Pad key by
leveraging a large source of public randomness that an adversary (with a much larger
storage capacity than the honest parties) cannot fully capture and store. The only
systems-level (i.e. non-theoretical) evaluation of the BSM we are aware of is from
2005 [DNLA05]. Since then, new theoretical results have expanded the possibilities
of the BSM. Namely, the necessary gap between honest and adversarial storage has
been improved from quadratic to exponential for important cryptographic primitives
like key agreement, oblivious transfer, and general multi-party computation (at the
cost of increased round and communication complexity) [Raz18, GZ19, DQW23].

In summary, dynamic proactively secret-shared datastores are a leading candi-
date for the core architecture of long-term secure archival systems that must contend
with cryptographic obsolescence and Harvest Now, Decrypt Later attacks. DPSS
has been studied for many years, and the latest systems have become quite sophisti-
cated and increasingly practical due to interest in enabling confidential data storage
and MPC applications in the blockchain space. By drawing on the state-of-the-
art in DPSS and pursuing the open directions outlined above, we aim to develop
highly secure, reliable, and efficient long-term archival systems that can safeguard
humanity’s most valuable data far into the future.

References

[AB09] Sanjeev Arora and Boaz Barak. Computational Complexity: A Modern
Approach. Cambridge University Press, USA, 1st edition, 2009.

[ADD+19] Ittai Abraham, Srinivas Devadas, Danny Dolev, Kartik Nayak, and
Ling Ren. Synchronous byzantine agreement with expected o(1)
rounds, expected communication, and optimal resilience. In Financial
Cryptography and Data Security: 23rd International Conference, FC
2019, Frigate Bay, St. Kitts and Nevis, February 18–22, 2019, Revised
Selected Papers, page 320–334, Berlin, Heidelberg, 2019. Springer-
Verlag.

[And03] James M. Anderson. Why we need a new definition of information
security. Comput. Secur., 22(4):308–313, 2003.

[Aum19] Jean-Philippe Aumasson. Too much crypto. Cryptology ePrint
Archive, Paper 2019/1492, 2019. https://eprint.iacr.org/2019/1492.

[BBD+17] Johannes Braun, Johannes Buchmann, Denise Demirel, Matthias
Geihs, Mikio Fujiwara, Shiho Moriai, Masahide Sasaki, and Atsushi
Waseda. Lincos: A storage system providing long-term integrity, au-
thenticity, and confidentiality. In Proceedings of the 2017 ACM on
Asia Conference on Computer and Communications Security, ASIA
CCS ’17, pages 461–468, New York, NY, USA, 2017. Association for
Computing Machinery. https://dl.acm.org/doi/10.1145/3052973.3053043.

[BBMW14] Johannes Braun, Johannes Buchmann, Ciaran Mullan, and Alex Wies-
maier. Long term confidentiality: a survey. Designs, Codes and Cryp-
tography, 71:459–478, 2014. https://eprint.iacr.org/2012/449.pdf .

[BDF+20] Johannes Buchmann, Ghada Dessouky, Tommaso Frassetto, Ágnes
Kiss, Ahmad-Reza Sadeghi, Thomas Schneider, Giulia Traverso, and
Shaza Zeitouni. Safe: A secure and efficient long-term distributed
storage system. In Proceedings of the 8th International Workshop on
Security in Blockchain and Cloud Computing, SBC ’20, pages 8–13,
New York, NY, USA, 2020. Association for Computing Machinery.

[BDIR21] Fabrice Benhamouda, Akshay Degwekar, Yuval Ishai, and Tal Rabin.
On the local leakage resilience of linear secret sharing schemes. Journal
of Cryptology, 34:1–65, 2021. https://link.springer.com/article/10.1007/s00145-

021-09375-2.

[BDK+18] Joppe Bos, Leo Ducas, Eike Kiltz, T Lepoint, Vadim Lyubashevsky,
John M. Schanck, Peter Schwabe, Gregor Seiler, and Damien Stehle.
Crystals - kyber: A cca-secure module-lattice-based kem. In 2018
IEEE European Symposium on Security and Privacy (EuroS&P), pages
353–367, 2018.

[Bei11] Amos Beimel. Secret-sharing schemes: A survey. In Yeow Meng Chee,
Zhenbo Guo, San Ling, Fengjing Shao, Yuansheng Tang, Huaxiong
Wang, and Chaoping Xing, editors, Coding and Cryptology, pages 11–
46, Berlin, Heidelberg, 2011. Springer Berlin Heidelberg.

[BLM20] Robert Bohn, Craig Lee, and Martial Michel. The nist cloud federation
reference architecture, 2020. https://doi.org/10.6028/NIST.SP.500-332.

[BS93] Eli Biham and Adi Shamir. Differential Cryptanalysis of the Data
Encryption Standard. Springer, 1993.

[CDG+15] Daniel Cabarcas, Denise Demirel, Florian Göpfert, Jean Lancrenon,
and Thomas Wunderer. An unconditionally hiding and long-term bind-
ing post-quantum commitment scheme. Cryptology ePrint Archive,
Paper 2015/628, 2015. https://eprint.iacr.org/2015/628.

[CKOS21] Nishanth Chandran, Bhavana Kanukurthi, Sai Lakshmi Bhavana Ob-
battu, and Sruthi Sekar. Adaptive extractors and their application
to leakage resilient secret sharing. In Annual International Cryptology
Conference, pages 595–624. Springer, 2021.

https://eprint.iacr.org/2019/1492
https://dl.acm.org/doi/10.1145/3052973.3053043
https://eprint.iacr.org/2012/449.pdf
https://link.springer.com/article/10.1007/s00145-021-09375-2
https://link.springer.com/article/10.1007/s00145-021-09375-2
https://doi.org/10.6028/NIST.SP.500-332
https://eprint.iacr.org/2015/628

[CKOS22] Nishanth Chandran, Bhavana Kanukurthi, Sai Lakshmi Bhavana Ob-
battu, and Sruthi Sekar. Short leakage resilient and non-malleable
secret sharing schemes. In Annual International Cryptology Confer-
ence, pages 178–207. Springer, 2022. https://eprint.iacr.org/2022/216.pdf .

[DBN+01] Morris Dworkin, Elaine Barker, James Nechvatal, James Foti,
Lawrence Bassham, E. Roback, and James Dray. Advanced encryption
standard (aes), 2001-11-26 2001.

[DF03] D.S. Dummit and R.M. Foote. Abstract Algebra. Wiley, 2003.

[DH76] W. Diffie and M. Hellman. New directions in cryptography. IEEE
Transactions on Information Theory, 22(6):644–654, 1976.

[DJ97] Yvo Desmedt and Sushil Jajodia. Redistributing secret shares to new
access structures and its applications. Technical report, George Mason
University, 1997. Technical Report ISSE TR-97-01, Vol. 148.

[DLS88] Cynthia Dwork, Nancy Lynch, and Larry Stockmeyer. Consensus in
the presence of partial synchrony. J. ACM, 35(2):288–323, apr 1988.

[DNLA05] Timothy John Draelos, William Douglas Neumann, Andrew J Lan-
zone, and William Erik Anderson. Key management and encryption
under the bounded storage model. Technical report, Sandia National
Laboratories (SNL), Albuquerque, NM, and Livermore, CA . . . , 2005.

[DQW23] Yevgeniy Dodis, Willy Quach, and Daniel Wichs. Speak much, re-
member little: Cryptography in the bounded storage model, revisited.
In Annual International Conference on the Theory and Applications
of Cryptographic Techniques, pages 86–116. Springer, 2023.

[DS05] Yevgeniy Dodis and Adam Smith. Entropic security and the encryption
of high entropy messages. In Theory of Cryptography Conference, pages
556–577. Springer, 2005.

[DXT+23] Sourav Das, Zhuolun Xiang, Alin Tomescu, Alexander Spiegelman,
Benny Pinkas, and Ling Ren. Verifiable secret sharing simplified. Cryp-
tology ePrint Archive, Paper 2023/1196, 2023.

[FY92] Matthew Franklin and Moti Yung. Communication complexity of se-
cure computation (extended abstract). In Proceedings of the Twenty-
Fourth Annual ACM Symposium on Theory of Computing, STOC ’92,
page 699–710, New York, NY, USA, 1992. Association for Computing
Machinery.

[GKKB18] Matthias Geihs, Nikolaos Karvelas, Stefan Katzenbeisser, and Jo-
hannes Buchmann. Propyla: Privacy preserving long-term secure stor-
age. SCC ’18, pages 39–48, New York, NY, USA, 2018. Association
for Computing Machinery.

[GKM+22] Vipul Goyal, Abhiram Kothapalli, Elisaweta Masserova, Bryan Parno,
and Yifan Song. Storing and retrieving secrets on a blockchain. In
IACR International Conference on Public-Key Cryptography, pages
252–282. Springer, 2022.

https://eprint.iacr.org/2022/216.pdf

[GKP05] Gregory R Ganger, Pradeep K Khosla, and CARNEGIE-MELLON
UNIV PITTSBURGH PA. Pasis: A distributed framework for perpet-
ually available and secure information systems, 2005. https://apps.dtic.

mil/sti/citations/ADA436245.

[Goo19] Phil Goodwin. Tape and cloud: Solving storage problems in the
zettabyte era of data. White paper, International Data Corporation
(IDC), 2019.

[GW17] Venkatesan Guruswami and Mary Wootters. Repairing reed-solomon
codes. IEEE Transactions on Information Theory, 63(9):5684–5698,
2017. https://ieeexplore.ieee.org/document/7922614.

[GZ19] Jiaxin Guan and Mark Zhandary. Simple schemes in the bounded
storage model. In Advances in Cryptology–EUROCRYPT 2019: 38th
Annual International Conference on the Theory and Applications of
Cryptographic Techniques, Darmstadt, Germany, May 19–23, 2019,
Proceedings, Part III 38, pages 500–524. Springer, 2019.

[HJKY95] Amir Herzberg, Stanis law Jarecki, Hugo Krawczyk, and Moti Yung.
Proactive secret sharing or: How to cope with perpetual leakage.
In Advances in Cryptology—CRYPT0’95: 15th Annual International
Cryptology Conference Santa Barbara, California, USA, August 27–
31, 1995 Proceedings 15, pages 339–352. Springer, 1995. https://link.

springer.com/chapter/10.1007/3-540-44750-4 27.

[Imp95] R. Impagliazzo. A personal view of average-case complexity. In Pro-
ceedings of Structure in Complexity Theory. Tenth Annual IEEE Con-
ference, pages 134–147, 1995.

[KK23] Ohad Klein and Ilan Komargodski. New bounds on the local leakage
resilience of shamir’s secret sharing scheme. In Helena Handschuh
and Anna Lysyanskaya, editors, Advances in Cryptology – CRYPTO
2023, pages 139–170, Cham, 2023. Springer Nature Switzerland. https:

//link.springer.com/chapter/10.1007/978-3-031-38557-5 5.

[KL14] Jonathan Katz and Yehuda Lindell. Introduction to Modern Cryptog-
raphy, Second Edition. CRC Press, 2014.

[Lag23] David Lague. U.s. and china race to shield secrets from quantum
computers. Reuters, 2023.

[LRU22] Christophe Levrat, Matthieu Rambaud, and Antoine Urban. Break-
ing the t < n/3 consensus bound: Asynchronous dynamic proactive
secret sharing under honest majority. Cryptology ePrint Archive, Pa-
per 2022/619, 2022.

[LTM+11] Fang Liu, Jin Tong, Jian Mao, Robert Bohn, John Messina, Mark
Badger, and Dawn Leaf. Nist cloud computing reference architecture,
2011-09-08 00:09:00 2011.

[Mau92] Ueli M Maurer. Conditionally-perfect secrecy and a provably-secure
randomized cipher. Journal of Cryptology, 5:53–66, 1992.

https://apps.dtic.mil/sti/citations/ADA436245
https://apps.dtic.mil/sti/citations/ADA436245
https://ieeexplore.ieee.org/document/7922614
https://link.springer.com/chapter/10.1007/3-540-44750-4_27
https://link.springer.com/chapter/10.1007/3-540-44750-4_27
https://link.springer.com/chapter/10.1007/978-3-031-38557-5_5
https://link.springer.com/chapter/10.1007/978-3-031-38557-5_5

[MGA+20] Philipp Muth, Matthias Geihs, Tolga Arul, Johannes Buchmann, and
Stefan Katzenbeisser. Elsa: efficient long-term secure storage of large
datasets (full version). EURASIP Journal on Information Security,
2020:1–20, 2020.

[MNPC+22] Hemanta K. Maji, Hai H. Nguyen, Anat Paskin-Cherniavsky, Tom
Suad, Mingyuan Wang, Xiuyu Ye, and Albert Yu. Leakage-resilient
linear secret-sharing against arbitrary bounded-size leakage family.
In Eike Kiltz and Vinod Vaikuntanathan, editors, Theory of Cryp-
tography, pages 355–383, Cham, 2022. Springer Nature Switzerland.
https://link.springer.com/chapter/10.1007/978-3-031-22318-1 13.

[MPCSW21] Hemanta K Maji, Anat Paskin-Cherniavsky, Tom Suad, and Mingyuan
Wang. Constructing locally leakage-resilient linear secret-sharing
schemes. In Annual International Cryptology Conference, pages 779–
808. Springer, 2021.

[MS04] Michael A Marsh and Fred B Schneider. Codex: A robust and secure
secret distribution system. IEEE Transactions on Dependable and se-
cure Computing, 1(1):34–47, 2004.

[MZW+19] Sai Krishna Deepak Maram, Fan Zhang, Lun Wang, Andrew Low, Yu-
peng Zhang, Ari Juels, and Dawn Song. Churp: Dynamic-committee
proactive secret sharing. In Proceedings of the 2019 ACM SIGSAC
Conference on Computer and Communications Security, CCS ’19, page
2369–2386, New York, NY, USA, 2019. Association for Computing Ma-
chinery.

[NN04] Ventzislav Nikov and Svetla Nikova. On proactive secret sharing
schemes. In Proceedings of the 11th International Conference on Se-
lected Areas in Cryptography, SAC’04, page 308–325, Berlin, Heidel-
berg, 2004. Springer-Verlag.

[Noo23] Greg Noone. Are harvest now, decrypt later cyberattacks actually
happening? Tech Monitor, 2023.

[OY91] Rafail Ostrovsky and Moti Yung. How to withstand mobile virus at-
tacks (extended abstract). In Proceedings of the Tenth Annual ACM
Symposium on Principles of Distributed Computing, PODC ’91, pages
51–59, New York, NY, USA, 1991. Association for Computing Machin-
ery. https://doi.org/10.1145/112600.112605.

[Ped91] Torben Pryds Pedersen. Non-interactive and information-theoretic se-
cure verifiable secret sharing. In Annual international cryptology con-
ference, pages 129–140. Springer, 1991.

[pro24] Project silica, April 2024.

[Raz18] Ran Raz. Fast learning requires good memory: A time-space lower
bound for parity learning. Journal of the ACM (JACM), 66(1):1–18,
2018.

https://link.springer.com/chapter/10.1007/978-3-031-22318-1_13
https://doi.org/10.1145/112600.112605

[RP11] Jason K. Resch and James S. Plank. Aont-rs: blending security
and performance in dispersed storage systems. In Proceedings of the
9th USENIX Conference on File and Stroage Technologies, FAST’11,
page 14, USA, 2011. USENIX Association.

[RSA78] R. L. Rivest, A. Shamir, and L. Adleman. A method for obtain-
ing digital signatures and public-key cryptosystems. Commun. ACM,
21(2):120–126, feb 1978.

[SB05] Arun Subbiah and Douglas M. Blough. An approach for fault toler-
ant and secure data storage in collaborative work environments. In
Proceedings of the 2005 ACM Workshop on Storage Security and Sur-
vivability, StorageSS ’05, page 84–93, New York, NY, USA, 2005. As-
sociation for Computing Machinery.

[SGM06] Mark W. Storer, Kevin M. Greenan, and Ethan L. Miller. Long-term
threats to secure archives. In Ethan L. Miller and Erez Zadok, editors,
Proceedings of the 2006 ACM Workshop On Storage Security And Sur-
vivability, StorageSS 2006, Alexandria, VA, USA, October 30, 2006,
pages 9–16. ACM, 2006.

[SGMV09] Mark W. Storer, Kevin M. Greenan, Ethan L. Miller, and Kaladhar
Voruganti. Potshards—a secure, recoverable, long-term archival stor-
age system. ACM Trans. Storage, 5(2), jun 2009. https://dl.acm.org/doi/

10.1145/1534912.1534914.

[Sha79] Adi Shamir. How to share a secret. Commun. ACM, 22(11):612–613,
nov 1979. https://doi.org/10.1145/359168.359176.

[Sho99] Peter W. Shor. Polynomial-time algorithms for prime factorization and
discrete logarithms on a quantum computer. SIAM Rev., 41(2):303–
332, 1999.

[SLL10] David Schultz, Barbara Liskov, and Moses Liskov. Mpss: Mobile
proactive secret sharing. ACM Trans. Inf. Syst. Secur., 13(4), dec
2010.

[SS22] Moe Sabry and Reza Samavi. Archivesafe lt: Secure long-term archiv-
ing system. ACSAC ’22, pages 936–948, New York, NY, USA, 2022.
Association for Computing Machinery.

[SSA+09] Marc Stevens, Alexander Sotirov, Jacob Appelbaum, Arjen Lenstra,
David Molnar, Dag Arne Osvik, and Benne de Weger. Short chosen-
prefix collisions for md5 and the creation of a rogue ca certificate. In
Shai Halevi, editor, Advances in Cryptology - CRYPTO 2009, pages
55–69, Berlin, Heidelberg, 2009. Springer Berlin Heidelberg.

[STD+24] Christopher Smith, Maliha Tabassum, Soumya Chowdary Daruru,
Gaurav Kulhare, Arvin Wang, Ethan L. Miller, and Erez Zadok. Se-
cure archival is hard... really hard. In Proceedings of the 16th ACM
Workshop on Hot Topics in Storage and File Systems, HotStorage ’24,
page 38–46, New York, NY, USA, 2024. Association for Computing
Machinery.

https://dl.acm.org/doi/10.1145/1534912.1534914
https://dl.acm.org/doi/10.1145/1534912.1534914
https://doi.org/10.1145/359168.359176

[Tow22] Kevin Townsend. Solving the quantum decryption ‘harvest now, de-
crypt later’ problem. SecurityWeek, 2022.

[VAFB22] Robin Vassantlal, Eduardo Alchieri, Bernardo Ferreira, and Alysson
Bessani. Cobra: Dynamic proactive secret sharing for confidential bft
services. In 2022 IEEE symposium on security and privacy (SP), pages
1335–1353. IEEE, 2022.

[VBC+15] Mart́ın Vigil, Johannes Buchmann, Daniel Cabarcas, Christian
Weinert, and Alexander Wiesmaier. Integrity, authenticity, non-
repudiation, and proof of existence for long-term archiving: A survey.
Computers & Security, 50:16–32, 2015.

[Wik24] Wikipedia contributors. Multicloud — Wikipedia, the free encyclo-
pedia. https://en.wikipedia.org/w/index.php?title=Multicloud&oldid=1232791299,
2024. [Online; accessed 19-July-2024].

[WWW02] T.M. Wong, Chenxi Wang, and J.M. Wing. Verifiable secret re-
distribution for archive systems. In First International IEEE Secu-
rity in Storage Workshop, 2002. Proceedings., pages 94–105, 2002.
https://ieeexplore.ieee.org/document/1183515.

[YXD22] Yunzhou Yan, Yu Xia, and Srinivas Devadas. Shanrang: Fully asyn-
chronous proactive secret sharing with dynamic committees. Cryptol-
ogy ePrint Archive, 2022.

[YXXM23] Thomas Yurek, Zhuolun Xiang, Yu Xia, and Andrew Miller. Long live
the honey badger: Robust asynchronous {DPSS} and its applications.
In 32nd USENIX Security Symposium (USENIX Security 23), pages
5413–5430, 2023.

[ZČD+16] Jingyu Zhang, A Čerkauskaitė, Rokas Drevinskas, Aabid Patel, Mar-
tynas Beresna, and Peter G Kazansky. Eternal 5d data storage by
ultrafast laser writing in glass. In Laser-based Micro-and Nanoprocess-
ing X, volume 9736, pages 163–178. Spie, 2016.

https://en.wikipedia.org/w/index.php?title=Multicloud&oldid=1232791299
https://ieeexplore.ieee.org/document/1183515

A Algebra Preliminaries

Informally, a field is a set of elements that support all the usual arithmetic operations
of addition, subtraction, multiplication and division (by non-zero elements). Popular
examples include Q,R, and C. A finite field is a field where the set of elements is
finite. The canonical example is Zp: the set {0, 1, ..., p−1} with integer addition and
multiplication modulo a prime p. Many cryptographic algorithms, such as Shamir’s
secret sharing, perform arithmetic over a finite field instead of some infinite field
like the reals. There are many reasons why this is the case. For Shamir’s secret
sharing, use of a field allows polynomial interpolation. Use of a finite field allows for
a uniform distribution (it is easy to prove that the uniform distribution cannot exist
over any infinite set). Shamir’s secret sharing is covered below (Section 4), in this
section we provide the requisite algebra background for understanding finite fields
and computing over them.

We begin with a formal definition of a field.

Definition A.1 (Field [DF03]). A field is a set F together with two binary opera-
tions + and · (called addition and multiplication, respectively) on F such that the
following properties hold:

1. (F,+) is an abelian group (call its identity 0)

2. (F− {0}, ·) is also an abelian group

3. The following distributive law holds for all a, b, c ∈ F:

a · (b + c) = (a · b) + (a · c)

Clearly, one must understand what an abelian group is in order to understand
Definition A.1.

Definition A.2 ((Abelian) Group [DF03]). A group is an ordered pair (G, ·), where
G is a set and · is a binary operation on G (i.e., a map G×G→ G) satisfying the
following axioms:

1. (a · b) · c = a · (b · c) for all a, b, c ∈ G i.e., G is associative.

2. There exists an element e ∈ G, called an identity of G, such that for all a ∈ G
we have a · e = e · a = a.

3. For each a ∈ G there exists an element a−1 ∈ G, called the inverse of a, such
that a · a−1 = a−1 · a = 1.

The group (G, ·) is called abelian, or commutative, if a · b = b ·a for all a, b ∈ G. For
convenience we abuse notation and refer to G as the group (G, ·) when it is clear
from context what · is.

Common examples of an abelian group include (Z,+) and (Zn,+n), where +
refers to the usual integer addition, Zn refers to the set of integers {0, 1, ..., n− 1},
and +n refers to the usual integer addition followed by taking the remainder modulo
n. It is important to note that the integers under integer multiplication (or Zn under
integer multiplication modulo n) do not form a group as zero has no multiplicative
inverse. Even if we consider Zn − {0} under multiplication modulo n we still do

not get a group in the general case (see that the element 2 ∈ Z4 − {0} has no
multiplicative inverse modulo 4). If we restrict ourselves to a prime modulus p,
however, all of a sudden (Zp − {0},×p) is an abelian group. This popular group,
denoted Z∗

p, is important enough for our purposes that we supply a quick proof of
this fact.

Claim A.1. Z∗
p is an abelian group.

Proof. We must verify that Z∗
p satisfies the properties of an abelian group from

Definition A.2. First, the operation of multiplication modulo p is associative and
commutative because modular arithmetic is associative and commutative. Second,
1 ∈ Zp is obviously the identity. Third, every element a ∈ Zp has an inverse
because gcd(a, p) = 1, so there exist integers x, y (Bézout coefficients, computable
via extended Euclidean algorithm) such that xa + yp = 1, implying that xa = 1
(mod p), and therefore a−1 = x (mod p)

Taken together with the (trivial) fact that (Zp,+p) is an abelian group, we arrive
at an easily verifiable corollary stated at the beginning of the section that Zp is a
finite field (just need to show distributivity, which follows from distributivity over
Z, which can be proven by induction).

Here we have only discussed the basic definition of a finite field, and provided
only the construction of prime fields Zp. This is sufficient for purposes of this work.
It is important to note that many applications use more advanced extension fields
such as GF (28). For more information we refer the reader to any standard algebra
text [DF03].

B Secret Sharing Proofs

Claim B.1 (Security of Additive Secret Sharing). The distribution scheme described
in 4.2 is a secret-sharing scheme realizing an (n, n) threshold access structure.

Proof. We first prove correctness (using Definition 4.3. There is only one authorized
set B = [n] ∈ A. Consider the reconstruction function ReconB : K1×· · ·×Kn → K
that works as follows. On input shares (r1, ..., rn) := Π(k, r)B, return r1 + · · ·+rn =:
k′. Clearly k = k′ by construction.

Now we prove privacy (using Definition 4.4). Let T ⊊ [n] be any unauthorized
set. It suffices to show that S and ST := Π(S,R)T are independent. Let Si be
the random variable corresponding to the secret share held by party i. To prove
independence we will show that, for arbitrary secret a and secret shares (ri)i∈T :

Pr[S = a | ST = (ri)i∈T] = Pr[S = a] (B.1)

Observe that S =
∑

i∈[n] Si and ST = (Si)i∈T , so we obtain from the LHS of (B.1):

Pr

∑
i∈[n]

Si = a

∣∣∣∣∣∣ Si = ri ∀i ∈ T

 (B.2)

= Pr

[∑
i/∈T

Si = a−
∑
i∈T

ri

]
(B.3)

= Pr

Si∗ = a−
∑
i∈T

ri −
∑

i/∈T,i̸=i∗

Si

 (B.4)

=
∑

(r′i)i/∈T,i ̸=i∗

Pr [Si = r′i ∀i /∈ T, i ̸= i∗]

· Pr

Si∗ = a−
∑
i∈T

ri −
∑

i/∈T,i̸=i∗

Si

∣∣∣∣∣∣ Si = r′i ∀i /∈ T, i ̸= i∗

 (B.5)

=
∑

(r′i)i/∈T,i ̸=i∗

Pr [Si = r′i ∀i /∈ T, i ̸= i∗]

· Pr

Si∗ = a−
∑
i∈T

ri −
∑

i/∈T,i̸=i∗

r′i

 (B.6)

= Pr[S = a]
∑

(r′i)i/∈T,i ̸=i∗

Pr [Si = r′i ∀i /∈ T, i ̸= i∗] (B.7)

= Pr[S = a], (B.8)

where the i∗ appearing in (B.4) is any arbitrary party index not in T , and (B.7)
follows because the event Si∗ = a−

∑
i∈T ri−

∑
i/∈T,i̸=i∗ r

′
i occurs if and only if S = a.

This is because there are q possibilities for Si∗ and q possibilities for S, so only one
value of Si∗ results in a being the secret, and conversely each value of S uniquely
determines the value of Si∗ (given the conditioning of the formula in (B.7).

Theorem B.1 (Lagrange Interpolation Theorem). For every field F, every t distinct
points x1, ..., xt, and any t values y1, ..., yt, there exists a unique polynomial p of
degree at most t−1 with coefficients over F (i.e., p ∈ F[X]≤t−1) such that p(xi) = yi
for every 1 ≤ i ≤ t.

Proof. First we show such an interpolating polynomial exists. For each xi ∈ {x1, ..., xt},
let ℓi(x) :=

∏
j ̸=i

(x−xj

xi−xj
be the i-th Lagrange basis polynomial. See that ℓi(x) = 0 if

x ̸= x1, and ℓi(x) = 1 if x = xi (so ℓi is an indicator function for xi). Each basis
polynomial has degree t− 1, so the sum p(x) =

∑
1≤1≤t ytℓi(x) is an at most degree

t− 1 polynomial satisfying p(xi) = yi for every 1 ≤ i ≤ t.
Now we show this polynomial is unique. Assume we have two polynomials p and

q of degree at most t− 1 such that p(xi) = q(xi) = yi for every 1 ≤ i ≤ t. Consider
the polynomial h := p− q. This polynomial has degree at most t− 1, but it also has
t roots (namely, x1, ..., xt)). Thus, h must be identically 0, so p = q, and therefore
the interpolating polynomial is unique.

Claim B.2 (Security of Shamir’s Secret Sharing). Shamir’s distribution scheme is
a secret-sharing scheme realizing a (t, n) threshold access structure.

Proof. First we prove correctness. Let B ⊆ [n] be any authorized set of parties
holding a set of shares Π(k, r)B =: ((xi1 , p(xi1)), ..., (xi|B| , p(xib))) of secret k ∈ Fq.

Since |B| ≥ t, we can take any t of these shares and apply Lagrange interpolation
(Theorem B.1) to recover the unique polynomial p that produced these shares. We
can actually directly recover the secret without fully interpolating p by evaluating
each Lagrange basis polynomial at 0: ℓi(0) =

∏
j ̸=i

xj

xi−xj
, and computing k = p(0) =∑

i p(xi)ℓ(0).
The proof of privacy is analogous to that of additive secret sharing. Let T ⊆ [n]

be any unauthorized set. Let S denote the random variable corresponding to the
secret, and ST := Π(S,R)T be the random variable corresponding to the shares held
by parties in T . Shamir’s secret shares are of the form (xi, p(xi)), but the xi are
public so randomness is only over the second coordinate, which we will denote by
Yi (i.e., ST = (Yi)i∈T). It is common to leave evaluation points implicit like this and
identify a share with its second coordinate. Finally, let λi denote the evaluation of
the i-th Lagrange basis polynomial at 0 (λi := ℓi(0)). It suffices to show that S and
ST are independent. Observe S =

∑
i∈[n] λiYi, so we have, for any secret a ∈ K and

any shares (yi)i∈T :

Pr [S = a | ST = (yi)i∈T] (B.9)

= Pr

∑
i∈[n]

λiYi = a

∣∣∣∣∣∣ Yi = yi ∀i ∈ T

 (B.10)

= Pr

[∑
i/∈T

λiYi +
∑
i∈T

λiyi = a

]
(B.11)

= Pr

λi∗Yi∗ +
∑
i∈T

λiyi +
∑

i/∈T,i̸=i∗

λiYi = a

 (B.12)

=
∑

(y′i)i/∈T,i ̸=i∗

Pr [Yi = y′i ∀i /∈ T, i ̸= i∗] (B.13)

· Pr

λi∗Yi∗ +
∑
i∈T

λiyi +
∑

i/∈T,i̸=i∗

λiy
′
i = a

 (B.14)

= Pr [S = a] ·
∑

(y′i)i/∈T,i ̸=i∗

Pr [Yi = y′i ∀i /∈ T, i ̸= i∗] (B.15)

= Pr [S = a] (B.16)

Claim B.3. Let Fq be a finite field, let X⃗ := (x1, ..., xk+1) be a set of k < q non-
zero distinct field elements, and let ReconX⃗ : Fk+1

q → Fq[x]≤k be the function that
interpolates k+1 field elements into a polynomial over Fq of degree at most k. Then
ReconX⃗ is an additive homomorphism.

Proof. Let (f1, ..., fk+1) and (g1, ..., gk+1) each be an arbitrary list of points in Fk+1
q .

Let f := ReconX⃗(f1, ..., fk+1) and g := ReconX⃗(g1, ..., gk+1) be their corresponding
interpolated polynomials, and define h := ReconX⃗((f1, ..., fk+1) + (g1, ..., gk+1)) =
ReconX⃗(f1+g1, ..., fk+1+gk+1). See that h(xi) = fi+gi = f(xi)+g(xi) = (f+g)(xi)
for 1 ≤ i ≤ k + 1. Because h agrees with f + g on k + 1 points, by the interpolation
theorem (B.1) h = f + g. In other words, ReconX⃗((f1, ..., fk+1) + (g1, ..., gk+1)) =
ReconX⃗(f1, ..., fk+1) + ReconX⃗(g1, ..., gk+1), as desired.

C Commitments

Informally, a commitment scheme is a two-phase (commit and open) protocol be-
tween a sender and a receiver, where the sender can send a commitment to a value
to the receiver, and later open the commitment to the value upon the receiver’s
request. Commitment schemes should satisfy the hiding and binding properties.
Hiding means that the receiver should learn no information about the committed
value from the commitment it received. Binding means that the sender cannot open
the commitment to a value different from the one it committed to. As discussed in
Section 5.2, at most one of the hiding and binding properties can be information-
theoretically secure. We now provide the construction of the Pedersen commitment
central to the VSS scheme in Section 5.2.

Let G be a finite group of size |G| = q (assume for simplicity q is prime) with
generator g where the discrete logarithm problem is considered hard. That is, given
gx, where x ∈ Zq is chosen uniformly at random, any PPT adversary with access to
G, q, g, gx has negligible probability of guessing x. For a more formal definition of the
discrete logarithm problem, see Katz and Lindell [KL14]. The Pedersen commitment
scheme is a tuple of algorithms (Setup,Commit,Open,Verify) that operate as
follows:

� (Sender) Setup(1λ) → pp: Output public parameters pp = (G, q, g, h) (held
by sender and receiver), where G is a group of prime size q, g and h are randomly
chosen generators (so logg h is unknown), and the discrete logarithm problem
is hard in G. The security parameter is λ.

� (Sender) Commit(pp, x ∈ Zq)→ (c, w): Sample r ∈ Zq uniformly at random,
and output (c, w), where c := gxhr ∈ G is the commitment sent to the receiver,
and w = (x, r) is the witness to be used by the sender during the open phase.

� (Sender) Open(pp, w)→ w: Output w = (x, r) and send to receiver.

� (Receiver) Verify(pp, c, w = (x, r))→ {0, 1}: Output 1 if gxhr = c, else 0.

Pedersen commitments provide perfect hiding, and computational binding.

Claim C.1 (Security of Pedersen Commitment). The Pedersen commitment scheme
described above satisfies perfect hiding, i.e. a receiver holding pp = (G, q, g, h) and
c = gxhr learns no information about x, and computational binding, i.e. a sender
who cannot solve the discrete log problem in G cannot open c to a value other than
(x, r) and pass verification.

Proof. For hiding, it suffices to show that c is distributed uniformly in G. See that
Pr[c = gxhr] = Pr[hr = c · g−x] = Pr[r = logh(c · g−x)] = 1/q, as r is distributed
uniformly in G.

For binding, assume that the sender was able to open c to a value (x′, r′) ̸= (x, r)
such that gx

′
hr′ = gxhr, and let α = logg h. Then the sender can set gx

′−x = gα(r−r′),
and because the sender knows x, x′, r, r′, they can solve for α = (x − x′)(r − r′)−1

(recall q is prime so this inverse always exists), thus solving the discrete logarithm
problem for g and h.

Pedersen commitments enjoy a homomorphic property that allow them to be
extended to a polynomial commitment scheme. As the name suggests, the sender
can commit to an entire polynomial. Additionally, the receiver can query the sender
for evaluations of the polynomial at a particular point, and use the commitment
to verify that the received point is indeed a point on the committed polynomial.
The way this is done is very straightforward. Let (G, q, g, h) ← Setup(1λ), and
p(x) = a0 + a1x + · · · + adx

d be a degree d polynomial with coefficients in Zq A
sender can commit to p by sampling a random degree d polyomial r(x) = r0 +
r1x + · · · + rdx

d, and Pedersen committing to the i-th coefficient of p using the
i-th coefficient of r as randomness, yielding a commitment c := (ga0hr0 , ..., gadhrd).
If the receiver queries the sender for the evaluation of p at a point i ∈ Zq, an
honest sender can respond with (p(i), r(i)). It follows that a receiver can check
whether the response is correct by computing gp(i)hr(i), and testing for equality
against (ga0hr0) · (ga1hr1)i · · · (gadhrd)i

d
, since homomorphic properties of exponents

mean this is equal to ga0+a1(i)+···+ad(i
d)hr0+r1(i)+···+rd(i

d) = gp(i)hr(i).

	Abstract
	Introduction
	The Problem of Secure Archival.
	An Information-Theoretic Solution

	Cryptographic Obsolescence
	Cryptographic Hardness Assumptions
	Information-Theoretic Security

	System and Threat Model
	Secret Sharing
	Definitions
	Additive Secret Sharing
	Shamir's Secret Sharing

	Proactive Secret Sharing
	Herzberg's Semi-Honest PSS
	Herzberg's Malicious PSS
	The Resharing Trick for Dynamic-Committee PSS (DPSS)
	Overview of State-of-the-art in DPSS

	Related Work
	Discussion
	Appendices
	Algebra Preliminaries
	Secret Sharing Proofs
	Commitments

