Fast Indexing: Support for Size-Changing Algorithms
in Stackable File Systems

Erez Zadok

State University of New York at Stony Brook

and

Johan M. Andersen, lon Badulescu, and Jason Nieh
Columbia University

Stackable file systems can provide extensible file system functionality with minimal performance
overhead and development cost. However, previous approaches provide only limited functionality.
In particular, they do not support size-changing algorithms (SCAs), which are important and
useful for many applications such as compression and encryption. We propose fast indexing, a
technique for efficient support of SCAs in stackable file systems. Fast indexing provides a page
mapping between file system layers in a way that can be used with any SCA. We use index files
to store this mapping. Index files are designed to be recoverable if lost and add less than 0.1%
disk space overhead. We have implemented fast indexing using portable stackable templates, and
we have used this system to build several example file systems with SCAs. We demonstrate that
fast index files have low overhead for typical user workloads such as large compilations, only 2.3%
over other stacked file systems and 4.7% over non-stackable file systems. Our system can deliver
better performance with SCAs than user-level applications, as much as five times faster.

Categories and Subject Descriptors: D.4.3 [Operating Systems]: File Systems Management—
Access methods

General Terms: Algorithms, Design, Experimentation, Performance

Additional Key Words and Phrases: Size-changing algorithms, Compression file systems, Encryp-
tion file systems, Index file structures, Stackable file systems, Virtual file systems, Extensible file
systems

Parts of this work appeared as conference publication in Usenix 2001 [Zadok et al. 2001]. This
work was supported in part by NSF CISE Research Infrastructure grant EIA-9625374, an NSF
CAREER award, and Sun Microsystems.

Authors’ Addresses: E. Zadok, 1416 Computer Science Building, State University of New York
at Stony Brook, Stony Brook, NY 11794-4400; Email: ezk@cs.sunysb.edu; J. M. Andersen, I.
Badulescu, and J. Nieh, Computer Science Department, Columbia University, Mail Code 0401,
1214 Amsterdam Avenue, New York, NY 10027; Email: {johan,ion,nieh}@cs.columbia.edu.
Permission to make digital or hard copies of part or all of this work for personal or classroom use is
granted without fee provided that copies are not made or distributed for profit or direct commercial
advantage and that copies show this notice on the first page or initial screen of a display along
with the full citation. Copyrights for components of this work owned by others than ACM must
be honored. Abstracting with credit is permitted. To copy otherwise, to republish, to post on
servers, to redistribute to lists, or to use any component of this work in other works, requires prior
specific permission and/or a fee. Permissions may be requested from Publications Dept, ACM
Inc., 1515 Broadway, New York, NY 10036 USA, fax +1 (212) 869-0481, or permissions@acm.org.

2 . E. Zadok et al.

1. INTRODUCTION

Size-changing algorithms (SCAs) are those that take as input a stream of data bits
and produce output of a different number of bits. These SCAs share one quality in
common: they are generally intended to work on whole streams of input data, from
the beginning to the end of the stream. Some of the applications of such algorithms
fall into several possible categories:

Compression: Algorithms that reduce the overall data size to save on storage
space or transmission bandwidths over networks. For example, a compression
file system that works with NFS [Sandberg et al. 1985; Pawlowski et al. 1994]
can reduce the amount of data that is transmitted over the network, thus saving
on precious network bandwidth at the expense of additional CPU processing to
compress and decompress data. If the CPU is fast enough, such a network-based
compression file system can actually perform better than a non-compressing
one; this is a common technique in network communications over slow links
[Engan et al. 1999]. In this category we consider non-lossy compression.

Encoding: Algorithms that encode the data such that it has a better chance of
being transferred, often via email, to their intended recipients. For example,
Uuencode is an algorithm that uses only the simplest printable AsciI characters
and no more than 72 characters per line. This is to ensure that uuencoded email
or binaries can traverse the Internet even if they go through legacy email or
networking systems that may not support the full Asci set of characters or
text lines longer than 72 characters.

In this category we also consider transformations to support internationaliza-
tion of text, as well as Unicoding.

Encryption: These are algorithms that transform the data so it is more difficult to
decode it without an authorization—a decryption key. Encryption algorithms
work in different modes. The simplest mode is Cipher Feedback (CFB) mode
[Schneier 1995]. This mode does not change the size of the data. As such, it
is not the strongest algorithm because it provides potential attackers one more
piece of information: the original input data size.

Stronger encryption modes can use Cipher Block Chaining (CBC), a mode
that typically increases the size of the output [Schneier 1995]. This algorithm
is considered stronger because it does not tell you what the original input data
size was. Furthermore, by encoding the input into more output bits, the input
data becomes more randomized, increasing the brute-force search space.
Transparent encryption could be particularly useful if combined with a network-
based file system such as NFS. In that case, the data that is transmitted over
insecure networks is encrypted, making it more difficult to attackers to decode
sniffed packets.

There are many useful user-level tools that use SCAs, such as uuencode, compress,
and pgp [Zimmerman 1995]. These tools work on whole files and are often used
manually by users. This poses additional inconvenience to users. When you encrypt
or decompress a data file, even if you wish to access just a small part of that file,
you still have to encode or decode all of it until you reach the portion of interest—
an action that consumes many resources. SCAs do not provide information that

Fast Indexing: Support for Size-Changing Algorithms in Stackable File Systems . 3

can help to decode or encode only the portion of interest. Furthermore, running
user-level SCA tools repeatedly costs in additional overhead as data must be copied
between the user process and the kernel several times. User-level SCA tools are
therefore neither transparent to users nor do they perform well.

Instead, it would be useful for a file system to support SCAs. File systems are:

(1) transparent to users since they do not have to run special tools to use files, and

(2) perform well since they often run in the kernel.

File systems have proven to be a useful abstraction for extending system func-
tionality. Several SCAs (often compression) have been implemented as extensions
to existing disk-based file systems [Ayers 1997; Burrows et al. 1992; Nagar 1997].
Their disadvantages are that they only work with specific operating systems and file
systems, and they only support those specific SCAs. Supporting general-purpose
SCAs on a wide range of platforms was not possible.

Stackable file systems are an effective infrastructure for creating new file system
functionality with minimal performance overhead and development cost [Guy et al.
1990; Heidemann and Popek 1991; Rosenthal 1990; Skinner and Wong 1993; Zadok
et al. 1999; Zadok and Nieh 2000; Zadok 2001]. Stackable file systems can be
developed independently and then stacked on top of each other to provide new
functionality. Also, they are more portable and are easier to develop [Zadok and
Nieh 2000]. For example, an encryption file system can be mounted on top of a
native file system to provide secure and transparent data storage [Zadok et al. 1998].
Unfortunately, general-purpose SCAs have never been implemented in stackable file
systems. The problem we set out to solve was how to support general-purpose SCAs
in a way that is easy to use, performs well, and is available for many file systems.

We propose fast indexing as a solution for supporting SCAs in stackable file
systems. Fast indexing provide a way to map file offsets between upper and lower
layers in stackable file systems. Since the fast indexing is just a mapping, a lower-
layer file system does not have to know anything about the details of the SCA used
by an upper-level file system. We store this fast indexing information in indez files.
Each encoded file has a corresponding index file which is simply stored in a separate
file in the lower-layer file system. The index file is much smaller than the original
data file, resulting in negligible storage requirements. The index file is designed to
be recoverable if it is somehow lost so that it does not compromise the reliability
of the file system. Finally, fast indexing is designed to deliver good file system
performance with low stacking overhead, especially for common file operations.

We have implemented fast indexing using stackable templates [Zadok et al. 1999;
Zadok and Nieh 2000; Zadok 2001]. This allows us to provide transparent support
for SCAs in a portable way. To demonstrate the effectiveness of our approach,
we built and tested several size-changing file systems, including a compression file
system. Our performance results show the following two points:

(1) That fast index files have low overhead for typical file system workloads, only
2.3% over other null-layer stackable file systems.

(2) That such file systems can deliver as much as five times better performance
than user-level SCA applications.

4 . E. Zadok et al.

This paper describes fast index files and is organized as follows. Section 2 reviews
the stacking file-system infrastructure used for this work and discusses related work
in SCA support in file systems. Section 3 details the design of the index file.
Section 4 describes the usage of the index file in relation to common file operations
and discusses several optimizations. Section 5 details our design for a consistent
and recoverable index file. Section 6 summarizes important implementation issues.
Section 7 describes the file systems we built using this work and evaluates our
system. Finally, we present conclusions and discuss directions for future work.

2. BACKGROUND

In this section we discuss extensibility mechanisms for file systems, what would
be required for such file systems to support SCAs, and other systems that provide
some support for compression SCAs.

2.1 Stacking Support

Traditional file system development is often done using low level file systems that
interact directly with device drivers. Developing file systems in this manner is
difficult and time-consuming, and result in code that is difficult to port to other
systems. Stackable file systems build on a generalization of files called vnodes
[Kleiman 1986], by allowing for modular, incremental development of file systems
using a stackable vnode interface [Heidemann and Popek 1994; Rosenthal 1992;
Skinner and Wong 1993]. Stacking is a technique for modularizing file system
functions by allowing one vnode interface implementation to call another, building
upon existing implementations and changing only that which is needed. Stacking
provides an infrastructure for the composition of multiple file systems into one.

| -

Q

User Process wn
wite() D)
VS WRITE()
. . m
Virtual File System (VFS) E
conpressfs_wite() Q@

CompressFSl

ext2fs_wite()

(EXT2FS)

Fig. 1. An example stackable compression file system. A system call is translated into a generic
VFS function, which is translated into a file-system specific function in our stackable compression
file system. CompressFS then modifies (compresses) the data passed to it and calls the file system
stacked below it with the modified data.

Figure 1 shows the structure for a simple single-level stackable compression file
system called CompressFS. System calls are translated into VFS calls, which in

Fast Indexing: Support for Size-Changing Algorithms in Stackable File Systems . 5

turn invoke their CompressFS equivalents. CompressFS receives user data to be
written. It compresses the data and passes it to the next lower layer, without any
regard to what type of file system implements that layer.

Stackable file systems were designed to be modular and transparent: each layer
is independent from the layers above and below it. In that way, stackable file
system modules could be composed together in different configurations to provide
new functionality. Moreover, stacking has the advantage of requiring no changes
to lower-level file systems. A stackable file system can simply be mounted on
top of any other file system. Not changing existing kernel components improves
overall reliability and system stability because the less code changes—especially
that supported by vendors—the more stable a new stackable file system can be.

Unfortunately, stacking poses problems for SCAs because the decoded data at
the upper layer has different file offsets from the encoded data at the lower layer.
CompressFS, for example, must know how much compressed data it wrote, where
it wrote it, and what original offsets in the decoded file did that data represent.
Those pieces of information are necessary so that subsequent reading operations
can locate the data quickly. If CompressFS cannot find the data quickly, it may
have to resort to decompression of the complete file before it can locate the data
to read.

Therefore, to support SCAs in stackable file systems, a stackable layer must have
some information about the encoded data—offset information. But a stackable file
system that gets that information about other layers violates its transparency and
independence. This is the main reason why past stacking works do not support
SCAs. The challenge we faced was to add general-purpose SCA support to a stack-
ing infrastructure without losing the benefits of stacking: a stackable file system
with SCA support should not have to know anything about the file system it stacks
on. That way it can add SCA functionality automatically to any other file system.

2.2 Compression Support

Compression file systems are not a new idea. Windows NT supports compression
in NTFS [Nagar 1997]. E2compr is a set of patches to Linux’s Ext2 file system that
add block-level compression [Ayers 1997]. Compression extensions to log-structured
file systems resulted in halving of the storage needed while degrading performance
by no more than 60% [Burrows et al. 1992]. The benefit of block-level compression
file systems is primarily speed. Their main disadvantage is that they are specific
to one operating system and one file system, making them difficult to port to other
systems and resulting in code that is hard to maintain.

The ATTIC system demonstrated the usefulness of automatic compression of
least-recently-used files [Cate and Gross 1991]. It was implemented as a modified
user-level NFS server. Whereas it provided portable code, in-kernel file systems
typically perform better. In addition, the ATTIC system decompresses whole files
which slows performance.

HURD [Bushnell 1994] and Plan 9 [Pike et al. 1990] have an extensible file system
interface and have suggested the idea of stackable compression file systems. Their
primary focus was on the basic minimal extensibility infrastructure; they did not
produce any working examples of size-changing file systems.

Spring [Khalidi and Nelson 1993; Mitchel et al. 1994] and Ficus [Heidemann

6 . E. Zadok et al.

and Popek 1994] discussed a similar idea for implementing a stackable compression
file system. Both suggested a unified cache manager that can automatically map
compressed and uncompressed pages to each other. Heidemann’s later work [Hei-
demann and Popek 1995] provided additional details on mapping cached pages of
different sizes. He mentioned a “prototype compression layer” built during a class
project. In personal communications with the author, we were told that this pro-
totype was implemented as a block-level compression file system, not a stackable
one. Unfortunately, no demonstration of these ideas for compression file systems
in a stacking environment was available from either of these works. In addition, no
consideration was given to arbitrary SCAs and how to efficiently handle common
file operations such as appends, looking up file attributes, etc.

Another transparent compression method possible is in user level. Zlibc is a
pre-loadable shared library that allows executables to uncompress the data files
that they need on the fly [Knaff 1997]. It is slow because it runs in user level, it
only works on whole files, and it can only decompress files. Furthermore, it has to
decompress the whole file before it can be used. Our system is much more flexible,
performs well, can work with parts of files or whole files, and we support all file
system operations transparently.

GNU zip (Gzip)) [Deutsch and Gailly 1996a; Gailly 2000] itself maintains some
information on the structure of its compressed data. This information includes
the unencoded length of the file, the original file name, and a checksum of the
encoded data. The information is useful, but is insufficient for the needs of a file
system. Gzip, for example, does not provide support for random-access reading,
a requirement for a compressed file system. With Gzip, compressed data must be
decompressed sequentially from beginning to end.

3. THE INDEX FILE

In a stacking environment that supports SCAs, data offsets may change arbitrarily.
An efficient mapping is needed that can tell where the starting offset of the encoded
data is for a given offset in the original file. We call this mapping the indez table.

The index table is stored in a separate file called the indez file, as shown in Figure
2. This file serves as the fast meta-data index into an encoded file. For a given
data file F', we create an index file called F'.idx. Our system encodes and decodes
whole pages or their multiples—which maps well to file system operations. The
index table assumes page-based operations and stores offsets of encoded pages as
they appear in the encoded file.

Consider an example of a file in a compression file system. Figure 3 shows the
mapping of offsets between the upper (original) file and the lower (encoded) data
file. To find out the bytes in page 2 of the original file, we read the data bytes
3000-7200 in the encoded data file, decode them, and return to the VFS that data
in page 2.

To find out which encoded bytes we need to read from the lower file, we consult
the index file, shown in Table 1. The index file tells us that the original file has
6 pages, that its original size is 21500 bytes, and then it lists the ending offsets of
the encoded data for an upper page. Finding the lower offsets for the upper page
2 is a simple linear dereferencing of the data in the index file; we do not have to
search the index file linearly. Note that our design of the index file supports both

Fast Indexing: Support for Size-Changing Algorithms in Stackable File Systems . 7

(Decoded (original) File) Upper Layer

Encoded Index
DataFile File Lower Layer

Fig. 2. Overall structure of size-changing stackable file systems. Each original data file is encoded
into a lower data file. Additional meta-data index information is stored in an index file. Both the
index file and the encoded data files reside in the lower level file system.

Decoded File (upper) 21500 (EOF)

0 4K 8K 12K 16K 20K

Page 0 Page 1 | Page 2 | Page 3 Page 4 | Rage 5 |
| jPage 0 | Page 1 | Page 2 | Encoded File (lower)
0 i i 4K i iBK J

o o oo =3

= S NN S

—] N~ g

10120 (EOF)

Fig. 3. An example of a 32-bit file system that shrinks data size (compression). Each upper page
is represented by an encoded lower “chunk.” The mapping of offsets is shown in Table 1.

32-bit and 64-bit file systems, but the examples we provide here are for 32-bit file
systems.

The index file starts with a word that encodes flags and the number of pages in
the corresponding original data file. We reserve the lower 12 bits for special flags
such as whether the index file encodes a file in a 32-bit or a 64-bit file system,
whether fast tails were encoded in this file (see Section 4.2), etc. The very first
bit of these flags, and therefore the first bit in the index file, determines if the file
encoded is part of a 32-bit or a 64-bit file system. This way, just by reading the
first bit we can determine how to interpret the rest of the index file: 4 bytes to
encode page offsets on 32-bit file systems or 8 bytes to encode page offsets on 64-bit
file systems.

We use the remaining 20 bits (on a 32-bit file system) for the number of pages
because 220 4KB pages (the typical page size on 1386 and SPARCvS systems) would
give us the exact maximum file size we can encode in 4 bytes on a 32-bit file system,
as explained next; similarly 252 4KB pages is the exact maximum file size on a 64-bit
file system.

8 . E. Zadok et al.

‘Word Representing | Regular With Fast
(32/64 bits) IDX File Tail (ft)

1 (12 bits) flags 1s=0,ft=0,... | 1s=0,ft=1,...
1 (20/52 bits) # pages 6 5

2 orig. file size 21500 21500

3 page 0 1100 1100

4 page 1 3000 3000

5 page 2 7200 7200

6 page 3 7700 7700

7 page 4 10000 10000

8 page 5 10120

Table 1. Format of the index file for Figures 3 and 4. Fast Tails are described in Section 4.2.
The first word encodes both flags and the number of pages in the index file. The “Is” (large size)
flag is the first bit in the index file and indicates if the index file encodes a 32-bit (0) or 64-bit (1)
file system.

The index file also contains the original file’s size in the second word. We store
this information in the index file so that commands like 1s -1 and others using
stat (2) would work correctly; a process looking at the size of the file through the
upper level file system would get the original number of bytes and blocks. The
original file’s size can be computed from the starting offset of the last data chunk
in the encoded file, but it would require decoding the last (possibly incomplete)
chunk (bytes 10000-10120 in the encoded file in Figure 3) which can be an expensive
operation depending on the SCA. Storing the original file size in the index file is
a speed optimization that only consumes one more word—in a physical data block
that most likely was already allocated.

The index file is small. We store one word (4 bytes on a 32-bit file system) for
each data page (usually 4096 bytes). On average, the index table size is 1024 times
smaller than the original data file. For example, an index file that is exactly 4096
bytes long (one disk block on an Ext2 file system formatted with 4KB blocks) can
describe an original file size of 1022 pages, or 4,186,112 bytes (almost 4MB).

Since the index file is relatively small, we read it into kernel memory as soon as
the main file is open and manipulate it there. That way we have fast access to the
index data in memory. The index information for each page is stored linearly and
each index entry typically takes 4 bytes. That lets us compute the needed index
information simply and find it from the index table using a single dereference into
an array of 4-byte words (integers). To improve performance further, we write the
final modified index table only after the original file is closed and all of its data
flushed to stable media.

The size of the index file is less important for SCAs which increase the data size,
such as unicoding, uuencoding, and some forms of encryption. The more the SCA
increases the data size, the less significant the size of the index file becomes. Even
in the case of SCAs that decrease data size (e.g., compression) the size of the index
file may not be as important given the savings already gained from compression.

Storing the index information in a separate file has four advantages: meta-data
separation, improved performance, recoverability, and simplified code management.

—DMany file systems separate data and meta data. This is a time-honored file system
design tradition and is done for efficiency and reliability. Meta-data is considered

Fast Indexing: Support for Size-Changing Algorithms in Stackable File Systems . 9

more important and so it gets cached, stored, and updated differently than regular
data. For example, in most Unix file systems [Bertoni 1998; McKusick et al.
1984; McKusick and Ganger 1999], file data is separated from meta-data in its
placement on disk (file name, inode number, owner, timestamps, access modes,
etc.). The index file is separate from the encoded file data for the same reasons.

—Having a separate and small meta-data file allows us to look up offset infor-
mation in that file quickly, then apply that offset to the main data file in one
operation. An alternative would have been to merge the index information and
data together. We considered three variations to that alternative: to append,
prepend, or spread the index information in the data file. If we append the index
information to the data file, performance would be hurt for sequential file reads
from the beginning of the file, because we would have to seek to the end of the
file constantly to look up and update index information. For the same reason,
prepending the index information to the data file would hurt data access at the
end of the file, such as when data is appended to files. The third variant was
to include a small amount of index information at different locations in the file,
perhaps at fixed locations or right before each encoded data chunk. With this
technique, however, random reads and writes would be hurt; to find the right
place to access the data with an index spread throughout the file, potentially
many index chunks would have to be located and read from the beginning of the
file.

—For reliability reasons, we designed the index file so it could be recovered from
the data file in case the index file is lost or damaged (see Section 5). This offers
certain improvements over typical Unix file systems: if their meta-data (inodes,
inode blocks and indirect blocks, directory data blocks, etc.) is lost, it rarely can
be recovered. Note that the index file is not needed for our system to function: it
represents a performance enhancing tool. Without the index file, size-changing
file systems would perform poorly. Therefore, if it does not exist (or is lost), our
system automatically regenerates the index file.

—In addition, if we had not separated the index information from the data file,
our kernel code would have been significantly more complicated. Particularly
cumbersome would have been the need to shift index and data information around
to make space for growing either a data portion or an index chunk.

Separating the index information and data file also has two disadvantages. First,
since the index information is stored in a separate file, it uses up one more inode.
We measured the effect that the consumption of an additional inode would have on
typical file systems in our environment. We found that disk data block usage is often
68 times greater than inode utilization on disk-based file systems, leaving plenty
of free inodes to use. Nevertheless, to save resources even further, we efficiently
support zero-length files: a zero-length original data file is represented by a zero-
length index file (consuming an inode but no data blocks).

Second, with a separate index file, potential naming conflicts could occur with
the names of files and the names of their respective index files. For example, with
our chosen design, if a file system has a file F', its index file would be named F'. idx.
This prevents a user from creating a data file whose name is F'.idx. Although this
file’s index file could exist and would be named F'.idx.idx, the actual data file

10 . E. Zadok et al.

would conflict with the index file of F. To alleviate this problem in our chosen
design, the prefix .idx can be dynamically assigned at mount time as a mount
option.

Overall, however, we believe that the benefits of the separation of index and data
files outweigh the disadvantages.

4. FILE OPERATIONS

We now discuss the handling of file system operations in fast indexing as well as
specific optimizations for common operations. Note that most of this design relates
to performance optimizations while a small part (Section 4.4) addresses correctness.
Because the cost of SCAs can be high, it is important to ensure that we minimize
the number of times we invoke these algorithms and the number of bytes they have
to process each time. The way we store and access encoded data chunks can affect
this performance as well as the types and frequencies of file operations. As a result,
fast indexing takes into account the fact that file accesses follow several patterns:

—The most popular file system operation is stat (2), which results in a file lookup.
Lookups account for 40-50% of all file system operations [Mummert and Satya-
narayanan 1994; Roselli et al. 2000].

—DMost files are read, not written. The ratio of reads to writes is often 4-6 [Mum-
mert and Satyanarayanan 1994; Roselli et al. 2000]. For example, compilers and
editors read in many header and configuration files, but only write out a handful
of files.

—Files that are written are often written from beginning to end. Compilers, user
tools such as cp, and editors such as emacs write whole files in this way. Fur-
thermore, the unit of writing is usually set to match the system page size. We
have verified this by running a set of common edit and build tools on Linux and
recorded the write start offsets, size of write buffers, and the current size of the
file.

—Files that are not written from beginning to end are often appended to. The
number of appended bytes is usually small. This is true for various log files that
reside in /var/log as well as Web server logs.

—Very few files are written in the middle. This happens in two cases. First, when
the GNU 14 creates large binaries, it writes a sparse file of the target size and
then seeks and writes the rest of the file in a non-sequential manner. To estimate
the frequency of writes in the middle, we instrumented a null-layer file system
with a few counters. We then measured the number and type of writes for our
large compile benchmark (Section 7.3.1). We counted 9193 writes, of which 58
(0.6%) were writes before the end of a file.

Second, data-base files are also written in the middle. We surveyed our own
site’s file servers and workstations (several hundred hosts totaling over 1TB of
storage) and found that these files represented less than 0.015% of all storage.
Of those, only 2.4% were modified in the past 30 days, and only 3% were larger
than 100MB. Despite the overall infrequency of writes in the middle, databases
are an important class of applications for which writes in the middle of large files
can occur frequently. We discus optimizations for such applications in Section 9.

Fast Indexing: Support for Size-Changing Algorithms in Stackable File Systems . 11

—All other operations (together) account for a small fraction of file operations
[Mummert and Satyanarayanan 1994; Roselli et al. 2000].

We designed our system to optimize performance for the more common and
important cases while not harming performance unduly when the seldom-executed
cases occur. We first describe how the index file is designed to support fast lookups,
file reads, and whole file writes, which together are the most common basic file
operations. We then discuss support for appending to files efficiently, handling the
less common operation of writes in the middle of files, and ensuring correctness for
the infrequent use of truncate.

4.1 Basic Operations

To handle file lookups fast, we store the original file’s size in the index table. Due
to locality in the creation of the index file, we assume that its name will be found
in the same directory block as the original file name, and that the inode for the
index file will be found in the same inode block as the encoded data file. Therefore
reading the index file requires reading one additional inode and often only one data
block. After the index file is read into memory, returning the file size is done by
copying the information from the index table into the “size” field in the current
inode structure. Remaining attributes of the original file come from the inode of
the actual encoded file. Once we read the index table into memory, we allow the
system to cache its data for as long as possible. That way, subsequent lookups will
find files’ attributes in the attribute cache.

Since most file systems are structured and implemented internally for access and
caching of whole pages, we also encode the original data file in whole pages. This
improved our performance and helped simplify our code because interfacing with
the VFS and the page cache was more natural. For file reads, the cost of reading in
a data page is fixed: a fixed offset lookup into the index table gives us the offsets of
encoded data on the lower level data file; we read this encoded sequence of bytes,
decode it into exactly one page, and return that decoded page to the user.

Using entire pages made it easier for us to write whole files, especially if the write
unit was one page size. In the case of whole file writes, we simply encode each page
size unit, add it to the lower level encoded file, and add one more entry to the index
table. We discuss the cases of file appends and writes in the middle in Sections 4.2
and 4.3, respectively.

We did not have to design anything special for handling all other file operations.
We simply treat the index file at the same time we manipulate the corresponding
encoded data file. An index file is created only for regular files; we do not have to
worry about symbolic links because the VFS will only call our file system to open
a regular file. When a file is hard-linked, we also hard-link the index file using the
name of the new link with a the . idx extension added. When a file is removed from
a directory or renamed, we apply the same operation to the corresponding index
file.

4.2 Fast Tails

One common usage pattern of files is to append to them. Often, a small number of
bytes is appended to an existing file. Encoding algorithms such as compression and
encryption are more efficient when they encode larger chunks of data. Therefore it

12 . E. Zadok et al.

is better to encode a larger number of bytes together. Our design calls for encoding
whole pages whenever possible. Table 1 and Figure 3 show that only the last page
in the original file may be incomplete and that incomplete page gets encoded too.
If we append, say, 10 more bytes to the original (upper) file of Figure 3, we have
to keep it and the index file consistent: we must read the 1020 bytes from 20480
until 21500, decode them, add the 10 new bytes, encode the new 1030 sequence of
bytes, and write it out in place of the older 1020 bytes in the lower file. We also
have to update the index table in two places: the total size of the original file is
now 21510, and word number 8 in the index file may be in a different location than
10120 (depending on the encoding algorithm, it may be greater, smaller, or even
the same).

The need to read, decode, append, and re-encode a chunk of bytes for each append
grows worse as the number of bytes to append is small while the number of encoded
bytes is closer to one full page. In the worst case, this method yields a complexity
of O(n?) in the number of bytes that have to be decoded and encoded, multiplied
by the cost of the encoding and decoding of the SCA. To solve this problem, we
added a fast tails runtime mount option that allows for up to a page size worth of
unencoded data to be added to an otherwise encoded data file. This is shown in
the example in Figure 4.

Decoded File (upper) 21500 (EOF)

0 4K 8K 12K 16K 20K
Page 0 Page 1 | Page 2 | Page 3 Page 4 | Page 5 |
| jPage 0 | Page 1 | Pége 2 Encoded File (lower)
0 i i 4K i JADSK J =
=] =) SO Q o
— =3 NS = w
— ™ NI~ (s —
B N
Fast||®
Tail ||=
FT Size

Fig. 4. Size-changed file structure with fast-tail optimization. A file system similar to Figure 3,
only here we store up to one page full of unencoded raw data. When enough raw data is collected
to fill a whole fast-tail page, that page is encoded.

In this example, the last full page that was encoded is page 4. Its data bytes end
on the encoded data file at offset 10000 (page 2). The last page of the original upper
file contains 1020 bytes (21500 less 20K). So we store these 1020 bytes directly at
the end of the encoded file, after offset 10000. To aid in computing the size of the
fast tail, we add two more bytes to the end of the file past the fast tail itself, listing

Fast Indexing: Support for Size-Changing Algorithms in Stackable File Systems . 13

the length of the fast tail. (Two bytes is enough to list this length since typical
page sizes are less than 2'¢ bytes long.) The final size of the encoded file is now
11022 bytes long.

With fast tails, the index file does not record the offset of the last tail as can be
seen from the right-most column of Table 1. The index file, however, does record
in its flags field (first 12 bits of the first word) that a fast tail is in use. We put that
flag in the index table to speed up the computations that depend on the presence
of fast tails. We append the length of the fast tail to the encoded data file to aid
in reconstruction of a potentially lost index file, as described in Section 5.

When fast tails are in use, appending a small number of bytes to an existing
file does not require data encoding or decoding, which can speed up the append
operation considerably. When the size of the fast tail exceeds one page, we encode
the first page worth of bytes, and start a new fast tail.

Fast tails, however, may not be desirable all the time exactly because they store
unencoded bytes in the encoded file. If the SCA used is an encryption one, it
is insecure to expose plaintext bytes at the end of the ciphertext file. For this
reason, fast tails is a runtime global mount option that affects the whole file system
mounted with it. The option is global because typically users wish to change the
overall behavior of the file system with respect to this feature, not on a per-file
basis.

4.3 Write in the Middle

User processes can write any number of bytes in the middle of an existing file. With
our system, whole pages are encoded and stored in a lower level file as individual
encoded chunks. A new set of bytes written in the middle of the file may encode to a
different number of bytes in the lower level file. If the number of new encoded bytes
is greater than the old number, we shift the remaining encoded file outward to make
room for the new bytes. If the number of bytes is smaller, we shift the remaining
encoded file inward to cover unused space. In addition, we adjust the index table for
each encoded data chunk which was shifted. We perform shift operations as soon as
our file system’s write operation is invoked, to ensure sequential data consistency
of the file.

To improve performance, we shift data pages in memory and keep them in the
cache as long as possible: we avoid flushing those data pages to disk and let the
system decide when it wants to do so. That way, subsequent write-in-the-middle
operations that may result in additional inward or outward shifts will only have to
manipulate data pages already cached and in memory. Any data page shifted is
marked as dirty, and we let the paging system flush it to disk when it sees fit.

Note that data that is shifted in the lower level file does not have to be re-encoded.
This is because that data still represents the actual encoded chunks that decode
into their respective pages in the upper file. The only thing remaining is to change
the end offsets for each shifted encoded chunk in the index file.

We examined several performance optimization alternatives that would have en-
coded the information about inward or outward shifts in the index table or possibly
in some of the shifted data. We rejected them for three reasons:

(1) Tt would have complicated the code considerably.

14 . E. Zadok et al.

(2) It would have made recovery of an index file difficult.

(3) It would have resulted in fragmented data files that would have required a
defragmentation procedure.

Since the number of writes in the middle we measured was so small (0.6% of all
writes), we do consider our simplified design as a good cost vs. performance balance.
Even with our simplified solution, our file systems work perfectly correctly. Section
7.3.2 shows the benchmarks we ran to test writes in the middle and demonstrates
that our solution produces good overall performance.

4.4 Truncate

One design issue we faced was with the truncate(2) system call. Although this
call occurs less than 0.02% of the time [Mummert and Satyanarayanan 1994; Roselli
et al. 2000], we still had to ensure that it behaved correctly. Truncate can be used
to shrink a file as well as enlarge it, potentially making it sparse with new “holes.”
We dealt with four cases:

(1) Truncating on a page boundary. In this case, we truncate the encoded file
exactly after the end of the chunk that now represents the last page of the
upper file. We update the index table accordingly: it has fewer pages in it.

(2) Truncating in the middle of an existing page. This case results in a partial
page: we read and decode the whole page and re-encode the bytes within the
page representing the part before the truncation point. We update the index
table accordingly: it now has fewer pages in it.

(3) Truncating in the middle of a fast tail. In that case we just truncate the lower
file where the fast tail is actually located. We then update the size of the fast
tail at its end and update the index file to indicate the (now) smaller size of
the original file.

(4) Truncating past the end of the file is akin to extending the size of the file and
possibly creating zero-filled holes. We read and re-encode any partially filled
page or fast tail that used to be at the end of the file before the truncation;
we have to do that because that page now contains a mix of non-zero data and
zeroed data. We encode all subsequent zero-filled pages. This is important
for some applications such as encryption, where every bit of data—zeros or
otherwise—should be encrypted.

5. INDEX FILE CONSISTENCY

With the introduction of a separate index file to store the index table, we now have
to maintain two files consistently.

Normally, when a file is created, the directory of that file is locked. We keep
both the directory and the encoded data file locked when we update the index file.
This way both the encoded data file and the index file are guaranteed to be written
correctly.

We assume that encoded data files and index files will not become corrupt in-
ternally due to media failures. This situation is no worse than normal file systems
where a random data corruption may not be possible to fix. However, we do con-
cern ourselves with three potential problems with the index file: partially written
file, a lost file, and trivial corruptions.

Fast Indexing: Support for Size-Changing Algorithms in Stackable File Systems . 15

An index file could be partially written if the file system is full or the user
ran out of quota. In the case where we were unable to write the complete index
file, we simply remove it and log a warning message through syslog(3)—where
the message could be passed on to a centralized logging facility that monitors
and generates appropriate alerts. The absence of the index file on subsequent file
accesses will trigger an in-kernel mechanism to recover the index file. That way
the index file is not necessary for our system to function; it only aids in improving
performance.

An index file could be lost if it was removed intentionally (say after a partial
write) or unintentionally by a user directly from the lower file system. If the index
file is lost or does not exist, we can no longer easily tell where encoded bytes were
stored. In the worst case, without an index file, we have to decode the complete file
to locate any arbitrary byte within. However, since the cost of decoding a complete
file and regenerating an index table are nearly identical (see Section 7.6), we chose
to regenerate the index table immediately if it does not exist, and then proceed as
usual as the index file now exists.

We verify the validity of the index file when we use the index table. We check
that all index entries are monotonically increasing, that it has the correct number
of entries, file size matches the last entry, flags used are known, etc. The index
file is regenerated if an inconsistency is detected. This helps our system to survive
certain meta-data corruptions that could occur as a result of software bugs or direct
editing of the index file.

We designed our system so that the index file can be recovered reliably in all
cases. Four important pieces of information are needed to recover an index file
given an encoded data file. These four are available in the kernel to the running
file system:

(1) The SCA used.

(2) The page size of the system on which the encoded data file was created.
(3) Whether the file system used is 32-bit or 64-bit.

(4) Whether fast tails were used.

To recover an index file we read an input encoded data file and decode the bytes
until we fill out one whole page of output data. We rely on the fact that the original
data file was encoded in units of page size. The offset of the input data where we
finished decoding onto one full page becomes the first entry in the index table. We
continue reading input bytes and produce more full pages and more index table
entries. If fast tails were used, then we read the size of the fast tail from the last
two bytes of the encoded file, and we do not try to decode it since it was written
unencoded.

If fast tails were not used and we reached the end of the input file, that last
chunk of bytes may not decode to a whole output page. In that case, we know that
was the end of the original file, and we mark the last page in the index table as
a partial page. While we are decoding pages, we sum up the number of decoded
bytes and fast tails, if any. The total is the original size of the data file, which we
record in the index table. We now have all the information necessary to write the
correct index file and we do so.

16 . E. Zadok et al.

6. SCA IMPLEMENTATION

Our SCA support was integrated into FiST [Zadok and Nieh 2000; Zadok 2001].
The FiST system includes portable stackable file system templates for several op-
erating systems as well as a high-level language that can describe new stackable file
systems [Zadok and Badulescu 1999; Zadok et al. 1999]. Most of the work was put
into the stackable templates, where we added substantially more code to support
SCAs: 2119 non-comment lines of C code, representing a 60% increase in the size of
the templates. Because this additional code is substantial and carries an overhead
with it that is not needed for non-size-changing file systems (Section 7), we made
it optional. To support that, we added one additional declaration to the FiST
language, to allow developers to decide whether or not to include this additional
support.

To use FiST to produce a size-changing file system, developers need to include
a single FiST declaration in their input file and then write only two routines:
encode_data and decode_data. This is the same FiST API as we had before
[Zadok and Nieh 2000]; our SCA work is compatible with our high-level language
design and does not affect file systems previously written in FiST. The main advan-
tage of using FiST for this work has been the ease of use for developers that want
to write size-changing file systems. All the complexity is placed in the templates
and is mostly hidden from developers’ view. Developers need only concentrate on
the core implementation issues of the particular algorithm they wish to use in their
new file system. See Appendix A for an example of an SCA file system written
using FiST.

The FiST system has been ported to Linux, Solaris, and FreeBSD. Current SCA
support is available for Linux 2.3 only. Our primary goal in this work was to prove
that size-changing stackable file systems can be designed to perform well. When
we port it to the other platforms, we would then be able to describe an SCA file
system once in the FiST language; from this single portable description, we could
then produce a number of working file systems.

There are two implementation-specific issues of interest: one concerning Linux
and the other regarding writes in the middle of files. As mentioned in Section 3, we
write any modified index information out when the main file is closed and its data
flushed to stable media. In Linux, neither data nor meta-data are automatically
flushed to disk. Instead, a kernel thread (kflushd) runs every 5 seconds and asks
the page cache to flush any file system data that has not been used recently, but
only if the system needs more memory. In addition, file data is forced to disk when
either the file system is unmounted or the process called an explicit ff1lush(3) or
fsync(2). We take advantage of this delayed write to improve performance, since
we write the index table when the rest of the file’s data is written.

To support writes in the middle correctly, we have to make an extra copy of data
pages into a temporary location. The problem is that when we write a data page
given to us by the VFS, we do not know what this data page will encode into, and
how much space that new encoding would require. If it requires more space, then
we have to shift data outward in the encoded data file before writing the new data.
For this first implementation, we chose the simplified approach of always making
the temporary copy, which affects performance as seen in Section 7. While our code

Fast Indexing: Support for Size-Changing Algorithms in Stackable File Systems . 17

shows good performance, it has not been optimized much yet; we discuss avenues
of future work in Section 9.

7. EVALUATION

To evaluate fast indexing in a real world operating system environment, we built
several SCA stackable file systems based on fast indexing. We then conducted
extensive measurements in Linux comparing them against non-SCA file systems on
a variety of file system workloads.

In this section we discuss the experiments we performed on these systems to:

(1) show overall performance on general-purpose file system workloads,

(2) determine the performance of individual common file operations and related
optimizations, and

(3) compare the efficiency of SCAs in stackable file systems to equivalent user-level
tools.

Section 7.1 describes the SCA file systems we built and our experimental design.
Section 7.2 describes the file system workloads we used for our measurements.
Sections 7.3 to 7.6 present our experimental results.

7.1 Experimental Design

We ran our experiments on five file systems. We built three SCA file systems
and compared their performance to two non-SCA file systems. The three SCA file
systems we built were:

(1) Copyfs: this file system simply copies its input bytes to its output without
changing data sizes. Copyfs exercises all of the index-management algorithms
and other SCA support without the cost of encoding or decoding pages.

(2) Uuencodefs: this is a file system that stores files in uuencoded format and
uudecodes files when they are read. It is intended to illustrate an algorithm that
increases the data size. This simple algorithm converts every 3-byte sequence
into a 4-byte sequence. Uuencode produces 4 bytes that can have at most 64
values each, starting at the ASCII character for space (20;). We chose this
algorithm because it is simple and yet increases data size significantly (by one
third), whereas encryption algorithms that run in Electronic Codebook mode
(ECB) or Cipher Block Chaining (CBC) mode typically do not increase the
data size by much [Schneier 1995].

(3) Grzipfs: this is a compression file system using the Deflate algorithm [Deutsch
1996] from the zlib-1.1.3 package [Deutsch and Gailly 1996b; Gailly and Adler
1998]. This algorithm is used by GNU zip (gzip) [Deutsch and Gailly 1996a;
Gailly 2000], and is a variant of LZ77 [Ziv and Lempel 1977]. This file system
is intended to demonstrate an algorithm that (usually) reduces data size.

The two non-SCA file systems we used were Ext2fs, the native disk-based file
system most commonly used in Linux, and Wrapfs, a stackable null-layer file system
we trivially generated using FiST [Zadok 2001; Zadok and Nieh 2000]. Ext2fs
provides a measure of base file system performance without any stacking or SCA
overhead. Wrapfs simply copies the data of files between layers but does not include

18 . E. Zadok et al.

SCA support. By comparing Wrapfs to Ext2fs, we can measure the overhead of
stacking and copying data without fast indexing and without changing its content
or size. Copyfs copies data like Wrapfs but uses all of the SCA support. By
comparing Copyfs to Wrapfs, we can measure the overhead of basic SCA support.
By comparing Uuencodefs to Copyfs, we can measure the overhead of an SCA
algorithm incorporated into the file system that increases data size. Similarly, by
comparing Gzipfs to Copyfs, we can measure the overhead of a compression file
system that reduces data size.

One of the primary optimizations in this work is fast tails as described in Section
4.2. For all of the SCA file systems, we ran all of our tests first without fail-tails
support enabled and then with it. We reported results for both whenever fast tails
made a difference.

All experiments were conducted on four equivalent 433Mhz Intel Celeron ma-
chines with 128MB of RAM and a Quantum Fireball Ict10 9.8GB IDE disk drive.
We installed a Linux 2.3.99-pre3 kernel on each machine. Each of the four stack-
able file systems we tested was mounted on top of an Ext2 file system. For each
benchmark, we only read, wrote, or compiled the test files in the file system being
tested. All other user utilities, compilers, headers, and libraries resided outside the
tested file system.

Unless otherwise noted, all tests were run with a cold cache. To ensure that we
used a cold cache for each test, we unmounted all file systems which participated in
the given test after the test completed and mounted the file systems again before
running the next iteration of the test. We verified that unmounting a file system
indeed flushes and discards all possible cached information about that file system.
In one benchmark we report the warm cache performance, to show the effectiveness
of our code’s interaction with the page and attribute caches.

We ran all of our experiments 10 times on an otherwise quiet system. We mea-
sured the standard deviations in our experiments and found them to be small, less
than 1% for most micro-benchmarks described in Section 7.2. We report deviations
which exceeded 1% with their relevant benchmarks.

7.2 File System Benchmarks

We measured the performance of the five file systems on a variety of file system
workloads. For our workloads, we used five file system benchmarks: two general-
purpose benchmarks for measuring overall file system performance, and three micro-
benchmarks for measuring the performance of common file operations that may be
impacted by fast indexing. We also used the micro-benchmarks to compare the
efficiency of SCAs in stackable file systems to equivalent user-level tools.

7.2.1 General-Purpose Benchmarks

7.2.1.1 Am-utils. The first benchmark we used to measure overall file system
performance was am-utils (The Berkeley Automounter) [Pendry et al. 2000]. This
benchmark configures and compiles the large am-utils software package inside a
given file system. We used am-utils-6.0.4: it contains over 50,000 lines of C code in
960 files. The build process begins by running several hundred small configuration
tests intended to detect system features. It then builds a shared library, about ten
binaries, four scripts, and documentation: a total of 265 additional files. Overall

Fast Indexing: Support for Size-Changing Algorithms in Stackable File Systems . 19

this benchmark contains a large number of reads, writes, and file lookups, as well as
a fair mix of most other file system operations such as unlink, mkdir, and symlink.
During the linking phase, several large binaries are linked by GNU 1d.

The am-utils benchmark is the only test that we also ran with a warm cache.
Our stackable file systems cache decoded and encoded pages whenever possible, to
improve performance. While normal file system benchmarks are done using a cold
cache, we also felt that there is value in showing what effect our caching has on
performance. This is because user level SCA tools rarely benefit from page caching,
while file systems are designed to perform better with warm caches; this is what
users will experience in practice.

7.2.1.2 Bonnie. The second benchmark we used to measure overall file system
performance was Bonnie [Coker 1996], a file system test that intensely exercises file
data reading and writing, both sequential and random. Bonnie is a less general
benchmark than am-utils. Bonnie has three phases. First, it creates a file of a
given size by writing it one character at a time, then one block at a time, and then
it rewrites the same file 1024 bytes at a time. Second, Bonnie writes the file one
character at a time, then a block at a time; this can be used to exercise the file
system cache, since cached pages have to be invalidated as they get overwritten.
Third, Bonnie forks 3 processes that each perform 4000 random lseeks in the file,
and read one block; in 10% of those seeks, Bonnie also writes the block with random
data. This last phase exercises the file system quite intensively, and especially the
code that performs writes in the middle of files.

For our experiments, we ran Bonnie using files of increasing sizes, from 1MB and
doubling in size up to 128MB. The last size is important because it matched the
available memory on our systems. Running Bonnie on a file that large is important,
especially in a stackable setting where pages are cached in both layers, because the
page cache should not be able to hold the complete file in memory.

7.2.2 Micro-Benchmarks

7.2.2.1 File-copy. The first micro-benchmark we used was designed to measure
file system performance on typical bulk file writes. This benchmark copies files of
different sizes into the file system being tested. Each file is copied just once. Because
file system performance can be affected by the size of the file, we exponentially
varied the sizes of the files we ran these tests on—from 0 bytes all the way to 32MB
files.

7.2.2.2 File-append. The second micro-benchmark we used was designed to mea-
sure file system performance on file appends. It was useful for evaluating the effec-
tiveness of our fast tails code. This benchmark read in large files of different types
and used their bytes to append to a newly created file. New files are created by
appending to them a fixed but growing number of bytes. The benchmark appended
bytes in three different sizes: 10 bytes representing a relatively small append; 100
bytes representing a typical size for a log entry on a Web server or syslog daemon;
and 1000 bytes, representing a relatively large append unit. We did not not try to
append more than 4KB because that is the boundary where fast appended bytes
get encoded. Because file system performance can be affected by the size of the file,
we exponentially varied the sizes of the files we ran these tests on—from 0 bytes all

20 . E. Zadok et al.

the way to 32MB files.

Compression algorithms such as used in Gzipfs behave differently based on the
input they are given. To account for this in evaluating the append performance of
Gzipfs, we ran the file-append benchmark on four types of data files, ranging from
easy to compress to difficult to compress:

(1) A file containing the character “a” repeatedly should compress really well.

(2) A file containing English text, actually written by users, collected from our
Usenet News server. We expected this file to compress well.

(3) A file containing a concatenation of many different binaries we located on the
same host system, such as those found in /usr/bin and /usr/X11R6/bin. This
file should be more difficult to compress because it contains fewer patterns useful
for compression algorithms.

(4) A file containing previously compressed data. We took this data from Mi-
crosoft N'T’s Service Pack 6 (sp6i386.exe) which is a self-unarchiving large
compressed executable. We expect this file to be difficult to compress.

7.2.2.3 File-attributes. The third micro-benchmark we used was designed to mea-
sure file system performance in getting file attributes. This benchmark performs
a recursive listing (1s -1RF) on a freshly unpacked and built am-utils benchmark
file set, consisting of 1225 files. With our SCA support, the size of the original file
is now stored in the index file, not in the inode of the encoded data file. Finding
this size requires reading an additional inode of the index file and then reading its
data. This micro-benchmark measures the additional overhead that results from
also having to read the index file.

7.2.3 File System vs. User-Level Tool Benchmarks. To compare the SCAs in our
stackable file systems versus user-level tools, we used the file-copy micro-benchmark
to compare the performance of the two stackable file systems with real SCAs, Gzipfs
and Uuencodefs, against their equivalent user-level tools, gzip [Gailly 2000] and
uuencode, respectively. In particular, the same Deflate algorithm and compression
level (9) was used for both Gzipfs and gzip. In comparing Gzipfs and gzip, we
measured both the compression time and the resulting space savings. Because the
performance of compression algorithms depends on the type of input, we compared
Gzipfs to gzip using the file-copy micro-benchmark on all four of the different file
types discussed in Section 7.2.2.

7.3 General-Purpose Benchmark Results

7.3.1 Am-Utils. Figure 5 summarizes the results of the am-utils benchmark. We
report both system and elapsed times. The top part of Figure 5 shows system times
spent by this benchmark. This is useful to isolate the total effect on the CPU alone,
since SCA-based file systems change data size and thus change the amount of disk
I/O performed. Wrapfs adds 14.4% overhead over Ext2, because of the need to
copy data pages between layers. Copyfs adds only 1.3% overhead over Wrapfs; this
shows that our index file handling is fast. Compared to Copyfs, Uuencodefs adds
7% overhead and Gzipfs adds 69.9%. These are the costs of the respective SCAs in
use and are unavoidable—whether running in the kernel or user-level.

21

Fast Indexing: Support for Size-Changing Algorithms in Stackable File Systems

—q:ast

T

Cold-Regular=—=3

Cold

Warm-Regulars==3

—q:ast

]

Warm

200

150 -
100 [~
50 -

(spuo2oas) awi] walsAs

copyfs uuencodefs gzipfs
File System

wrapfs

ext2fs

T

Cold-Regular=—3

—q:ast

Cold

Warm-Regulars==3

¢

astE==—=]

Warm

200

180

160 -

| | | | |
o o O O O o
< 0 © <

—

(spuooas) awi] pasde|3

120~
100 -

copyfs uuencodefs gzipfs
File System

wrapfs

ext2fs

The Am-utils large-compile benchmark. Elapsed times shown on top and system times

shown on bottom. The standard deviations for this benchmark were less than 3% of the mean.

Fig. 5.

The total size of an unencoded build of am-utils is 22.9MB; a Uuencoded build

Gzipfs reduces this size by a factor of 2.66 to 8.6MB. So while

Uuencodefs increases disk I/0, it does not translate to a lot of additional system

)

is one-third larger;

time because the Uuencode algorithm is trivial. Gzipfs, while decreasing disk I/0,

however, is a costlier algorithm than Uuencode. That’s why Gzipfs’s system time
overhead is greater overall than Uuencodefs’s. The additional disk I/O performed

by Copyfs is small and relative to the size of the index file.

The bottom part of Figure 5 shows elapsed times for this benchmark. These
figures are the closest to what users will see in practice. Elapsed times factor in

increased CPU times the more expensive the SCA is, as well as changes in I/O that

22 . E. Zadok et al.

a given file system performs: I/O for index file, increased I/O for Uuencodefs, and
decreased I/0 for Gzipfs.

On average, the cost of data copying without size-changing (Wrapfs compared
to Ext2fs) is an additional 2.4%. SCA support (Copyfs over Wrapfs) adds another
2.3% overhead. The Uuencode algorithm is simple and adds only 2.2% additional
overhead over Copyfs. Gzipfs, however, uses a more expensive algorithm (Deflate)
[Deutsch 1996], and it adds 14.7% overhead over Copyfs. Note that the elapsed-
time overhead for Gzipfs is smaller than its CPU overhead (almost 70%) because
whereas the Deflate algorithm is expensive, Gzipfs is able to win back some of that
overhead by its I/O savings.

Using a warm cache improves performance by 5-10%. Using fast tails improves
performance by at most 2%. The code that is enabled by fast tails must check, for
each read or write operation, if we are at the end of the file, if a fast tail already
exists, and if a fast tail is large enough that it should be encoded and a new fast
tail started. This code has a small overhead of its own. For file systems that do not
need fast tails (e.g., Copyfs), fast tails add an overhead of 1%. We determined that
fast tails is an option best used for expensive SCAs where many small appends are
occurring, a conclusion demonstrated more visibly in Section 7.4.2.

7.3.2 Bonnie. Figure 6 shows the results of running Bonnie on the five file sys-
tems. Since Bonnie exercises data reading and writing heavily, we expect it to be
affected by the SCA in use. This is confirmed in Figure 6. Over all runs in this
benchmark, Wrapfs has an average overhead of 20% above Ext2fs, ranging from
2-73% for the given files. Copyfs only adds an additional 8% average overhead over
Wrapfs. Uuencodefs adds an overhead over Copyfs that ranges from 5% to 73%
for large files. Gzipfs, with its expensive SCA, adds an overhead over Copyfs that
ranges from 22% to 418% on the large 128MB test file.

Figure 6 exhibits overhead spikes for 64MB files. Our test machines had 128 MB of
memory. Our stackable system caches two pages for each page of a file: one encoded
page and one decoded page, effectively doubling the memory requirements. The
64MB files are the smallest test files that are large enough for the system to run
out of memory. Linux keeps data pages cached for as long as possible. When it
runs out of memory, Linux executes an expensive scan of the entire page cache and
other in-kernel caches, purging as many memory objects as it can, possibly to disk.
The overhead spikes in this figure occur at that time.

Bonnie shows that an expensive algorithm such as compression, coupled with
many writes in the middle of large files, can degrade performance by as much as a
factor of 5-6. In Section 9 we describe certain optimizations that we are exploring
for this particular problem.

7.4 Micro-Benchmark Results

7.4.1 File-Copy. Figure 7 shows the results of running the file-copy benchmark
on the different file systems. Wrapfs adds an average overhead of 16.4% over Ext2fs,
which goes to 60% for a file size of 32MB; this is the overhead of data page copying.
Copyfs adds an average overhead of 23.7% over Wrapfs; this is the overhead of
updating and writing the index file as well as having to make temporary data copies
(explained in Section 6) to support writes in the middle of files. The Uuencode

Fast Indexing: Support for Size-Changing Algorithms in Stackable File Systems . 23

1000 T T A
F Ext2fs —— -1
F Wrapfs -+~ -
r Copyfs -3 - e
rUUencodefs- % - P
t Gzipfs — & P
- u
100 ST X L

10

Time (seconds) [log]

1M 2M aMm 8M 16M 32M 64M 128M
File Size (bytes) [log]

600

500 & gzipfs/copyfs
Ouuencodefs/copyfs
400 M copyfs/wrapfs
wrapfs/ext2

300

200

100 -

Elapsed Time Overhead (%)

0
M 2M 4M 8M 16M 32M 64M 128M

File Size (bytes) [log]

Fig. 6. The Bonnie benchmark performs many repeated reads and writes on one file as well as
numerous random seeks and writes in three concurrent processes. We show the total cumulative
overhead of each file system. Note that the overhead bands for Gzipfs and Uuencodefs are each
relative to Copyfs. We report the results for files IMB and larger, where the overheads are more
visible.

algorithm adds an additional average overhead of 43.2% over Copyfs, and as much
as 153% overhead for the large 32MB file. The linear overheads of Copyfs increase
with the file’s size due to the extra page copies that Copyfs must make, as explained
in Section 6. For all copies over 4KB, fast-tails makes no difference at all. Below
4KB, it only improves performance by 1.6% for Uuencodefs. The reason for this is
that this benchmark copies files only once, whereas fast-tails is intended to work
better in situations with multiple small appends.

7.4.2 File-Append. Figure 8 shows the results of running the file-append bench-
mark on the different file systems. The figure shows the two emerging trends in

24 . E. Zadok et al.

10

ET T T T T T | I T
E Ext2fs ——
r Wra{)f_s e
[Copyfs (fast-tail)- -3 -- /
[Copyfs - % - ’
| UUencodefs (fast-taily- & - &
= 1e UUencodefs: * - e
3 E %/BT
= b .
%) L
e}
c
3 01r E
[E
K22 [
° [
£ r
T oooip 4
0.001 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1
0 12 4 81632 128 512 2K 8K 32K 128K512K 2M 8M 32M

File Size (bytes) [log]

400

350 +— B uuencodefs/copyfs
O copyfs/wrapfs
300 1— mwrapfs/ext2

S

O

(1]

e

£ 250

3

O 200

E

E 150

e}

&

D_lOO’

&

o5
O,
X X X X
8 3 g 3 % B

File Size (bytes) [log]

Fig. 7. Copying files into a tested file system. As expected, Uuencodefs is costlier that Copyfs,
Wrapfs, and Ext2fs. Fast-tails do not make a difference in this test, since we are not appending
multiple times.

effectiveness of the fast tails code. First, the more expensive the algorithm, the
more helpful fast tails become. This can be seen in the right column of plots. Sec-
ond, the smaller the number of bytes appended to the file is, the more savings fast
tails provide, because the SCA is called fewer times. This can be seen as the trend
from the bottom plots (1000 byte appends) to the top plots (10 byte appends). The
upper rightmost plot clearly clusters together the benchmarks performed with fast
tails support on and those benchmarks conducted without fast tails support.

Not surprisingly, there is little savings from fast tail support for Copyfs, no matter

Fast Indexing: Support for Size-Changing Algorithms in Stackable File Systems . 25

10 Byte Appends 10 Byte Appends
10000 T T T 10000 T T T
Ext2fs —— al-a ——
Wrapfs ---x--- all-a (fast-tail) ---x---
Copyfs (fast) ----*--- inary ----%---
1000 ¢ Copyfs (reg) & F 1000 binary (fast-tail) &
UUencodefs (fast) -—-=-- text ——m——
. UUencodefs (reg) -~ _ text (fast-tail) --
=) =) .
2 2
@ @
kel kel
2 2
o o
3 S
[Q
Ko 22
Py o
£ £
= =
o o
1 ©
@]
a2 a2
(] o]
w w
0.001 0.001
8K 32K 128K 512K 2M M 32M 8K 32K 128K 512K 2M 8M 32M
File Size (bytes) [log] File Size (bytes) [log]
100 Byte Appends 100 Byte Appends
10000 T T T 10000 T T T
Ext2fs —+— all-a ——
Wrapfs ---x--- all-a (fast-tail) ---»---
Copyfs (fast) ----*--- binary ----%---
1000 | Copyfs (reg) & q 1000 ¢ binary (fast-tail) & E|
UUencodefs (fast) --=-- text —-m--
. UUencodefs (reg) ---o- — text (fast-tail) -
g g ! zip
= = zip (fast-tail) -
o @
kel 3
2 g
S S
3 S
@]
2 <
o o
£ £
= [
o o
@ Q
@2 &
a2 a
] o]
w w
0.001 0.001
8K 32K 128K 512K 2M 8M 32M 8K 32K 128K 512K 2M 8M 32M
File Size (bytes) [log] File Size (bytes) [log]
1000 Byte Appends 1000 Byte Appends
10000 T T T 10000 T T T
Ext2fs —+— all-a ——
Wrapfs ---x--- all-a (fast-tail) ---»---
Copyfs (fast) ----*--- binary ----%---
1000 | Copyfs (reg) & q 1000 ¢ binary (fast-tail) & q
UUencodefs (fast) --=-- text —-m--
. UUencodefs (reg) ---o- — text (fast-tail) -
= L 4 = L zip i
& 100 S 100 2ip (fast-tail)
o @
kel 3
2 g
3 10 4 8 10
@]
2 <
g g
= S 1
o o
@ Q
@2 &
a2 a
< < 0.1
w w
0.01
0.001 0.001
8K 32K 128K 512K 2M 8M 32M 8K 32K 128K 512K 2M 8M 32M
File Size (bytes) [log] File Size (bytes) [log]

Fig. 8. Appending to files. The left column of plots shows appends for Uuencodefs and Copyfs.
The right column shows them for Gzipfs, which uses a more expensive algorithm; we ran Gzipfs
on four different file types. The three rows of two plots each show, from top to bottom, appends
of increasing sizes: 10, 100, and 1000 bytes, respectively. The more expensive the SCA is, and the
smaller the number of bytes appended is, the more effective fast tails become; this can be seen as
the trend from lower leftmost plot to the upper rightmost plot. The standard deviation for these
plots did not exceed 9% of the mean.

26 . E. Zadok et al.

what the append size is. Uuencodefs is a simple algorithm that does not consume
too much CPU cycles. That is why savings for using fast tails in Uuencodefs range
from 22% for 1000-byte appends to a factor of 2.2 performance improvement for
10-byte appends. Gzipfs, using an expensive SCA, shows significant savings: from
a minimum performance improvement factor of 3 for 1000-byte appends to as much
as a factor of 77 speedup (both for moderately sized files).

7.4.3 File-Attributes. Figure 9 shows the results of running the file-attributes
benchmark on the different file systems. Wrapfs add an overhead of 35% to the
GETATTR file system operation because it has to copy the attributes from one
inode data structure into another. SCA-based file systems add the most significant
overhead, a factor of 2.6-2.9 over Wrapfs; that is because Copyfs, Uuencodefs, and
Gzipfs include stackable SCA support, managing the index file in memory and on
disk. The differences between the three SCA file systems in Figure 9 are small and
within the error margin.

120 T
Cold-Regularmms

0 . ' I I I

ext2fs wrapfs copyfs uuencodefs gzipfs
File System

=
o
o

o]
o
T

System Time (milliseconds)
£y (o2}
o o
T

n
o
T

Fig. 9. System times for retrieving file attributes using lstat(2) (cold cache)

While the GETATTR file operation is a popular one, it is still fast because the
additional inode for the small index file is likely to be in the locality of the data file.
Note that Figure 9 shows cold cache results, whereas most operating systems cache
attributes once they are retrieved. Our measured speedup of cached vs. uncached
attributes shows an improvement factor of 12-21. Finally, in a typical workload,
bulk data reads and writes are likely to dominate any other file system operation
such as GETATTR.

7.5 File System vs. User-Level Tool Results

Figure 10 shows the results of comparing Gzipfs against gzip using the file-copy
benchmark. The reason Gzipfs is faster than gzip is primarily due to running in the
kernel and reducing the number of context switches and kernel /user data copies.

As expected, the speedup for all files up to one page size is about the same,
43.3-53.3% on average; that is because the savings in context switches are almost
constant. More interesting is what happens for files greater than 4KB. This depends
on two factors: the number of pages that are copied and the type of data being
compressed.

Fast Indexing: Support for Size-Changing Algorithms in Stackable File Systems . 27

100 G f @l T T T T T T T T
H ZI S a a -
binary) - +- X
3 Gmp%fs (te>r<)t/ ”Eif' */i/ég
L zipfs (zi Y
10 G?\l’tlJUzZIB()tgah 8- 7$: » ?%;% 2
= r -Zip (bina -
g NG, b (iox) —o — * g
= [GNU-Zp(zip) - + T E
g #,8 E
= 2,
S ,
Q 2,
(9]
23 _
. .
£
=

I S B | 1 1 1 1 1 1 1 1 1
012 4 81632 128 512 2K 8K 32K 128K512K 2M 8M 32M
File Size (bytes) [log]

400
—all-a

300 L7 binary
—text
—— compressed

200

100

Speedup of Gzipfs over GNU Zip (%)

32
128 |
512
8
2

128K |

512K
2M
aM |
32M |

File Size (bytes) [log]

Fig. 10. Comparing file copying into Gzipfs (kernel) and using gzip (user-level) for various file
types and sizes. Here, a 100% speedup implies twice as fast.

The Deflate compression algorithm is dynamic; it will scan ahead and back in the
input data to try to compress more of it. Deflate will stop compressing if it thinks
that it cannot do better. We see that for binary and text files, Gzipfs is 3—4 times
faster than gzip for large files; this speedup is significant because these types of data
compress well and thus more pages are manipulated at any given time by Deflate.
For previously compressed data, we see that the savings is reduced to about double;
that is because Deflate realizes that these bits do not compress easily and it stops
trying to compress sooner (fewer pages are scanned forward). Interestingly, for the
all-a file, the savings average only 12%. That is because the Deflate algorithm is
quite efficient with that type of data: it does not need to scan the input backward

28 . E. Zadok et al.

and it continues to scan forward for longer. However, these forward-scanned pages
are looked at few times, minimizing the number of data pages that gzip must copy
between the user and the kernel. Finally, the plots in Figure 10 are not smooth
because most of the input data is not uniform and thus it takes Deflate a different
amount of effort to compress different bytes sequences.

One additional benchmark of note is the space savings for Gzipfs as compared
to the user level gzip tool. The Deflate algorithm used in both works best when
it is given as much input data to work with at once. GNU zip looks ahead at
64KB of data, whereas Gzipfs currently limits itself to 4KB (one page). For this
reason, gzip achieves on average better compression ratios: as little as 4% better
for compressing previously compressed data, to 56% for compressing the all-a file.
The space used by Gzipfs included all of the compressed data blocks and those used
by the index files. Although the index files could be as small as a few bytes, the
operating system still allocates a minimum of 4KB—the default EXT2 disk block
size used on Linux systems.

We also compared the performance of Uuencodefs to the user level uuencode
utility. We found the performance savings to be comparable to those with Gzipfs
compared to gzip.

7.6 Additional Tests

We measured the time it takes to recover an index file and found it to be statistically
indifferent from the cost of reading the whole file. This is expected because to
recover the index file we have to decode the complete data file.

Finally, we checked the in-kernel memory consumption. As expected, the total
number of pages cached in the page cache is the sum of the encoded and decoded
files’ sizes (in pages). This is because in the worst case, when all pages are warm and
in the cache, the operating system may cache all encoded and decoded pages. For
Copyfs, this means doubling the number of pages cached; for Gzipfs, fewer pages
than double are cached because the encoded file size is smaller than the original file;
for Uuencodefs, 2.33 times the number of original data pages are cached because
the algorithm increased the data size by one-third. In practice, we did not find
the memory consumption in stacking file systems on modern systems to be onerous
[Zadok and Nieh 2000].

8. CONCLUSIONS

The main contribution of our work is demonstrating that SCAs can be used ef-
fectively and transparently with stackable file systems. Our performance overhead
is small and running these algorithms in the kernel improves performance consid-
erably. File systems with support for SCAs can offer new services automatically
and transparently to applications without having to change these applications or
run them differently. Our templates provide support for generic SCAs, allowing
developers to write new file systems easily.

Stackable file systems also offer portability across different file systems. File
systems built with our SCA support can work on top of any other file system. In
addition, we have done this work in the context of our FiST language, allowing
rapid development of SCA-based file systems on multiple platforms [Zadok 2001;
Zadok and Nieh 2000).

Fast Indexing: Support for Size-Changing Algorithms in Stackable File Systems . 29

9. FUTURE WORK

We are investigating methods of improving the performance of writes in the middle
of files by decoupling the order of the bytes in the encoded file from their order
in the original file. By decoupling their order, we could move writes in the middle
of files elsewhere—say the end of the file (similar to a journal) or an auxiliary
file. Another alternative is to structure the file differently internally: instead of a
sequential set of blocks, it could be organized as a B-tree or hash table where the
complexity order of insertions in the middle is sub-linear [Bender et al. 2000]. These
methods would allow us to avoid having to shift bytes outward to make space for
larger encoded units, and we could support busy large databases more effectively.
However, if we begin storing many encoded chunks out of order, large files could
get fragmented. We would need a method for compaction or coalescing all these
chunks into a single sequential order.

A related and important optimization we plan to implement is to avoid extra
copying of data into temporary buffers. This is only needed when an encoded
buffer is written in the middle of a file and its encoded length is greater than its
decoded length; in that case we must shift outward some data in the encoded data
file to make room for the new encoded data. We can optimize this code and avoid
making the temporary copies when files are appended to or being newly created
and written sequentially.

Finally, we plan on taking advantage of the type of SCA to further improve per-
formance. Some SCAs, such as compression, include a dictionary at the head of
each compressed data chunk. This dictionary is needed to decode the compressed
data chunk—much like a key used to decrypt a piece of ciphertext. Furthermore,
each dictionary is unique to its data chunk. For this reason, one cannot append two
compressed data chunks together and treat them as one: decoding such a concate-
nated data chunk with the first chunk’s dictionary will result in data corruption.
In other words, compression algorithms are not concatenateable. However, some
SCAs are concatenateable. For example, unicoding or even Uuencodefs use algo-
rithms that convert a small number of bits to another small number of bits. Such
algorithms do not use a key or dictionary, and are therefore concatenateable. The
knowledge that an algorithm is concatenateable can help FiST to produce code that
would avoid decoding two data chunks and then concatenating them (often useful
when appending data to the end of a file). Instead, an SCA file system that uses
a concatenateable algorithm could simply append the data bytes without decoding
prior bytes.

ACKNOWLEDGMENTS

We would like to thank Jerry B. Altzman for his initial input into the design of
the index table. We thank John Heidemann for offering clarification regarding his
previous work in the area of stackable filing. Thanks go to Margo Seltzer for her
valuable comments on an earlier version of this paper.

30 . E. Zadok et al.

APPENDIX
A. CODE SAMPLE

In this appendix we include a portion of the FiST code for Uuencodefs and explain
the API to writing SCA file systems using FiST.

The full code to Uuencodefs and the other file systems in this paper, as well as ad-
ditional papers, are available from http://www.cs.columbia.edu/~ezk/research/fist/.
A comprehensive discussion of the FiST language is available elsewhere [Zadok
2001].

w{

#include "fist.h"
Y

debug on;

filter data;
filter sca;

hh
hh

/* encodes the data in page_data into hidden_pages_data. Returns -errno for
error, and the size of hidden_pages_data for success */
int
encode_data(char *hidden_pages_data, /* A PAGE_SIZE buffer (already
allocated) passed to us to fill in */

char *page_data, /* The data we are to encode */
int *need_to_call, /% Call us again? */

void **opaque) /* Opaque data (usu. "from") */
unsigned to, /* from + no. bytes to write */
inode_t *inode, /* The inode in question */

int in_bytes_left;

int out_bytes_left = PAGE_CACHE_SIZE;
int startpt;

unsigned char A, B, C;

int bytes_written = 0;

startpt = (int) *opaque;
in_bytes_left = to - startpt;

while ((in_bytes_left > 0) && (out_bytes_left >= 4)) {
A = page_data[startpt];

switch(in_bytes_left) {
case 1:

B = 0;
C = 0;

Fast Indexing: Support for Size-Changing Algorithms in Stackable File Systems . 31

in_bytes_left--;
startpt += 1;

break;

case 2:
B = page_data[startpt + 1];
C = 0;

startpt += 2;
in_bytes_left -= 2;
break;
default:
B = page_datal[startpt + 1];
C = page_data[startpt + 2];
startpt += 3;
in_bytes_left -= 3;
break;

¥

hidden_pages_datal[bytes_written] = 0x20 + ((A >> 2) & 0x3F);
out_bytes_left--;
bytes_writtent+;

hidden_pages_data[bytes_written] =

0x20 + (((A << 4) | ((B > 4) & 0xF)) & 0x3F);
out_bytes_left—-—;
bytes_writtent+;

hidden_pages_data[bytes_written] =

0x20 + (((B << 2) | ((C > 6) & 0x3)) & Ox3F);
out_bytes_left--;
bytes_writtent+;

hidden_pages_data[bytes_written] = 0x20 + ((C) & O0x3F);
out_bytes_left——;
bytes_writtent+;

}

if (in_bytes_left > 0)

xopaque = (void *)startpt;
else

*need_to_call = 0;

return bytes_written;

The FiST input file begins with a standard C header inclusion and then follows
with three declarations:

32 . E. Zadok et al.

—debug on: This optional declaration turns on debugging support code. A sepa-
rate user-level utility communicates with the file system using an ioctl(2) to set
the desired debugging level.

—filter data: This mandatory declaration tells FiST that the file system being
generated will modify page data. This declaration alone, however, is not enough
for SCA file systems; declaring only this one will produce a file system that does
not change data sizes.

—filter sca: This mandatory declaration tells FiST that the file system being
generated will change data sizes.

The bulk of the FiST input file comprises the data-encoding and decoding func-
tions. In the above example we show the data-encoding function only; the data-
decoding function is written similarly. A large portion of the data-encoding function
is dedicated to the Uuencode algorithm itself—performing bitwise operations such
as shifts, AND, and OR operations. The code above shows how easy it is to write a
new file system with FiST: the programmer’s main task is focused on the specifics
of the file system in question, not on the details of operating system, the run-time
environment, or usual concerns about implementing each operation of a file system
(read, write, mkdir, rmdir, readdir, etc.).

The data-encoding function takes six arguments and returns an integer: the
number of output bytes actually produced. This API was designed to afford the
maximum flexibility to programmers.

(1) hidden_pages_data: This parameter is the address of an allocated buffer whose
size is at most PAGE_SIZE (typically 4KB or 8KB). An encoding function
would typically fill this buffer with as much data as it can. The encoding
function is not obligated to fill it entirely.

(2) page_data: This parameter is the input data that we have to process (encode).
The data-encoding function is not obligated to process all of the input data.

(3) need_to_call: If the data-encoding function did not process all of the input
data, it must set this variable to 1.

(4) opaque: If not NULL, this variable determines the start offset within hidden pages data
where the function must begin writing encoded data. If the encoding function
was unable to process all of the input data (perhaps because the output buffer
was too small), then it must set this variable to the address where it finished
processing input data. FiST will use that information to call the encoding
function again at a later time, to process the additional data bytes.

(5) to: This variable is a relative offset within hidden pages_data where the en-
coding function must stop writing data. Together, opaque and to form a sub-
range within the entire data page pointed to by hidden_pages_data where data
needs to be written. In this fashion, FiST is able to minimize the number of
times it calls encoding and decoding functions, as well as minimize the number
of bytes that must be processed each time.

(6) inode: This variable is used when a programmer invokes a FiST function that
requires accessing Vnode-specific information, such as the file’s owner.

After a developer writes a FiST input file such as the one above, the developer
processes it through the FiST code generator, fistgen. Fistgen produces output

Fast Indexing: Support for Size-Changing Algorithms in Stackable File Systems . 33

source files and a Makefile that can be processed by make to build a dynamically-
loadable kernel module. The module can then be loaded into a running kernel
using system tools such as insmod or modload. Once the module is loaded into the
kernel, the new file-system functionality is available and the new file system can be
mounted using mount(8).

REFERENCES
AYERS, L. 1997. E2compr: Transparent file compression for Linux. Linuz Gazette Issue 18.
http://www.linuxgazette.com/issuel8/e2compr.html.

BENDER, M. A., DEMAINE, E.; AND FARACH-COLTON, M. 2000. Cache-Oblivious B-Trees.
In 41st Annual Symposium on Foundations of Computer Science (FOCS) (2000), pp. 399—

409.
BERTONI, J. L. 1998. Understanding solaris filesystems and paging.
Technical Report TR-98-55 (November), Sun Microsystems Research.

http://research.sun.com/research/techrep /1998 /abstract-55.html.

Burrows, M., JERIAN, C., LAMPSON, B., AND MANN, T. 1992. On-line data compression
in a log-structured file system. In Fifth International Conference on Architectural Support
for Programming Languages and Operating Systems (ASPLOS-V) (1992), pp. 2-9.

BuseNELL, M. I. 1994. The HURD: Towards a new strategy of OS design. GNU’s Bulletin.
http://www.gnu.org/software/hurd /hurd.html.

CATE, V. AND GROSS, T. April 811, 1991. Combining the concepts of compression and
caching for a two-level filesystem. In Fourth ACM International Conference on Architec-
tural Support for Programming Languages and Operating Systems (Santa Clara, CA, April
8-11, 1991), pp. 200-211.

COKER, R. 1996. The Bonnie home page. http://www.textuality.com/bonnie.

DeuTscH, P. 1996. Deflate 1.3 specification. Technical Report RFC 1051 (May), Network
Working Group.

DEUTSCH, P. AND GAILLY, J. L. 1996a. Gzip 4.3 specification. Technical Report RFC 1052
(May), Network Working Group.

DEuUTSCH, P. AND GAILLY, J. L. 1996b. Zlib 3.3 specification. Technical Report RFC 1050
(May), Network Working Group.

ENGAN, M., CASNER, S., AND BORMANN, C. 1999. IP header compression over PPP. Tech-
nical Report RFC 2509 (February), Network Working Group.

GAILLY, J. L. 2000. GNU Zip. http://www.gnu.org/software/gzip/gzip.html.

GAILLY, J. L. AND ADLER, M. 1998. The Zlib home page. http://www.gzip.org/zlib.

Guy, R. G., HEIDEMANN, J. S.; MAK, W., PAGE Jr., T. W., POPEK, G. J., AND ROTHMEIER, D.
1990. TImplementation of the Ficus replicated file system. In Proceedings of the Summer
USENIX Technical Conference (Summer 1990), pp. 63-71.

HEIDEMANN, J. AND POPEK, G. 1995. Performance of cache coherence in stackable filing. In
Proceedings of Fifteenth ACM Symposium on Operating Systems Principles (1995). ACM
SIGOPS.

HEIDEMANN, J. S. AND POPEK, G. J. 1991. A layered approach to file system development.
Technical Report CSD-910007, UCLA.

HEIDEMANN, J. S. AND POPEK, G. J. 1994. File system development with stackable layers.
ACM Transactions on Computer Systems 12, 1 (February), 58-89.

KHALIDI, Y. A. AND NELSON, M. N. 1993. Extensible file systems in Spring. In Proceedings
of Fourteenth ACM Symposium on Operating Systems Principles (1993), pp. 1-14.

KLEIMAN, S. R. 1986. Vnodes: An architecture for multiple file system types in Sun UNIX.
In Proceedings of the Summer USENIX Technical Conference (Summer 1986), pp. 238—47.

KNAFF, A. 1997. Zlibc: Uncompressing C library. ftp://ftp.gnu.org/pub/gnu/zlibc/zlibc-
0.9e.tar.gz.

34

. E. Zadok et al.

McKusick, M. K. AND GANGER, G. R. 1999. Soft Updates: A technique for eliminating
most synchronous writes in the fast filesystem. In Proceedings of the Annual USENIX
Technical Conference, FreeNIX Track (JUNE 1999), pp. 1-18.

McKusick, M. K., Joy, W. N., LEFFLER, S. J., AND FABRY, R. S. 1984. A fast file system
for UNIX. ACM Transactions on Computer Systems 2, 3 (August), 181-97.

MrTcHEL, J. G., GIoBBONS, J. J., HAMILTON, G., KESSLER, P. B., KHALIDI, Y. A., KOU-
GIOURIS, P., MADANY, P. W., NELSON, M. N., POwWELL, M. L., AND RADIA, S. R. 1994.
An overview of the Spring system. In CompCon Conference Proceedings (San Francisco,
CA, February 1994). CompCon.

MUMMERT, L. AND SATYANARAYANAN, M. 1994. Long term distributed file reference trac-
ing: Implementation and experience. Technical Report CMU-CS-94-213, Carnegie Mellon
University.

NAGAR, R. 1997. Windows NT File System Internals: A developer’s Guide, pp. 615-67.
O’Reilly. Section: Filter Drivers.

PawrLowski, B., JuszczAk, C., STAUBACH, P., SMIiTH, C., LEBEL, D., AND HiTZz, D. 1994.
NFS version 3 design and implementation. In Proceedings of the Summer USENIX Tech-
nical Conference (June 1994), pp. 137-52.

PENDRY, J. S., WILLIAMS, N., AND ZADOK, E. 2000. Am-utils User Manual (6.0.4 ed.).
http://www.am-utils.org.

PIKE, R., PRESOTTO, D., THOMPSON, K., AND TRICKEY, H. 1990. Plan 9 from Bell Labs.
In Proceedings of the Summer UKUUG Conference (July 1990), pp. 1-9.

RoseLri, D., LorcH, J. R., AND ANDERSON, T. E. 2000. A comparison of file system
workloads. In Proceedings of the Annual USENIX Technical Conference (June 2000).
ROSENTHAL, D. S. H. 1990. Evolving the Vnode interface. In Proceedings of the Summer

USENIX Technical Conference (Summer 1990), pp. 107-18.

ROSENTHAL, D. S. H. 1992. Requirements for a “Stacking” Vnode/VFS interface. Technical
Report SD-01-02-N014, UNIX International.

SANDBERG, R., GOLDBERG, D., KLEIMAN, S., WALSH, D., AND LyoN, B. 1985. Design and
implementation of the Sun Network Filesystem. In Proceedings of the Summer USENIX
Technical Conference (Summer 1985), pp. 119-30.

SCHNEIER, B. 1995. Applied Cryptography (2 ed.)., pp. 189-97. John Wiley & Sons. Section:
Algorithm Types and Modes.

SKINNER, G. C. AND Wong, T. K. 1993. “Stacking” Vnodes: A progress report. In Pro-
ceedings of the Summer USENIX Technical Conference (June 1993), pp. 161-74.

ZAapok, E. 2001. FiST: A System for Stackable File System Code Gener-
ation. Ph. D. thesis, Computer Science Department, Columbia University.
http://www.cs.columbia.edu/~ezk /research/thesis/.

ZADOK, E., ANDERSON, J. M., BADULESCU, 1., AND NIEH, J. 2001. Fast Indexing: Support
for size-changing algorithms in stackable file systems. In Proceedings of the Annual USENIX
Technical Conference (June 2001), pp. 289-304.

ZADOK, E. AND BADULESCU, I. 1999. A stackable file system interface for Linux. In Linuz-
Ezpo Conference Proceedings (May 1999), pp. 141-151.

ZADOK, E., BADULESCU, 1., AND SHENDER, A. 1998. Cryptfs: A stackable vnode level en-
cryption file system. Technical Report CUCS-021-98 (June), Computer Science Depart-
ment, Columbia University.

ZADOK, E., BADULESCU, 1., AND SHENDER, A. 1999. Extending file systems using stackable
templates. In Proceedings of the Annual USENIX Technical Conference (June 1999), pp.
57-70.

ZADOK, E. AND NIEH, J. 2000. FiST: A language for stackable file systems. In Proceedings
of the Annual USENIX Technical Conference (June 2000), pp. 55-70.

ZIMMERMAN, P. R. 1995. The Official PGP User’s Guide. MIT Press. Section: Pretty Good
Privacy.

Ziv, J. AND LEMPEL, A. 1977. A universal algorithm for sequential data compression. [EEE
Transactions on Information Theory 23, 3, 337-343.

