Accurate and Efficient Replaying of File System Traces

Nikolai Joukov, Timothy Wong, and Erez Zadok
Stony Brook University

Appears in the proceedings of the Fourth USENIX Conference on File and Storage Technologies (FAST 2005)

Abstract

Replaying traces is a time-honored method for bench-
marking, stress-testing, and debugging systems—and
more recently—forensic analysis. One benefit to replay-
ing traces is the reproducibility of the exact set of op-
erations that were captured during a specific workload.
Existing trace capture and replay systems operate at dif-
ferent levels: network packets, disk device drivers, net-
work file systems, or system calls. System call replayers
miss memory-mapped operations and cannot replay I/O-
intensive workloads at original speeds. Traces captured
at other levels miss vital information that is available only
at the file system level.

We designed and implemented Replayfs, the first sys-
tem for replaying file system traces at the VES level.
The VFS is the most appropriate level for replaying file
system traces because all operations are reproduced in a
manner that is most relevant to file-system developers.
Thanks to the uniform VFS API, traces can be replayed
transparently onto any existing file system, even a differ-
ent one than the one originally traced, without modify-
ing existing file systems. Replayfs’s user-level compiler
prepares a trace to be replayed efficiently in the kernel
where multiple kernel threads prefetch and schedule the
replay of file system operations precisely and efficiently.
These techniques allow us to replay I/O-intensive traces
at different speeds, and even accelerate them on the same
hardware that the trace was captured on originally.

1 Introduction

Trace replaying is useful for file system benchmarking,
stress-testing, debugging, and forensics. Itis also a repro-
ducible way to apply real-life workloads to file systems.
Another advantage of traces is their ease of distribution.
For benchmarking, synthetically generated workloads
rarely represent real workloads [42]. Compile benchma-
rks [14] put little load on the file system and are not scal-
able [6]. Real workloads are more complicated than arti-
ficially created ones, so traces of real file system activity
make for better test workloads. They represent the ac-
tual file system workloads and can be scaled as needed.
In addition to scaling, captured traces can be modified in
many ways before being replayed. For example, modi-
fication of the disk block locations can help to evaluate
new disk layout policies [27]. Sometimes trace replay-
ing is used to test a target file system with a synthetic

workload for which application reproducibility is diffi-
cult. One of the most common examples is the replaying
of TPC [35] traces on file systems, because running the
actual benchmark is complicated and requires a database
system. Also, replaying traces that were captured by oth-
ers allows a fair comparison of file systems. Finally, trace
replaying is an accurate method to prepare a file system
for benchmarking by aging it [31].

Synthetic benchmarks may be more predictable than
real-life workloads, but they do not exercise many pos-
sible file system operation sequences. Replaying can be
used to stress test a file system under practical conditions.

Trace replaying allows for selectively replaying por-
tions of a trace. This is useful to narrow down the search
for problems during debugging. Precise timing and mini-
mal influence on the system being tested are key require-
ments to reproduce the exact timing conditions.

Replaying file system traces can be considered a form
of fine-grained versioning. Existing versioning file sys-
tems [20, 32] cannot reproduce the timing and in-memory
conditions related to file system modifications. This
makes trace replaying a better choice for forensic pur-
poses. Replaying traces back and forth in time can be
useful for post-mortem analysis of an attack.

File system traces can be captured and replayed at dif-
ferent logical levels: system calls, the Virtual File System
(VES), the network level for network file systems, and
the driver level. The easiest way to collect and replay file
system traces is by recording and reissuing system calls
entirely from user mode. Unfortunately, this method does
not capture memory-mapped file system operations. This
was not a significant problem decades ago but nowadays
applications perform a large portion of their file system
interactions via memory-mapped operations rather than
normal reads and writes [29]. System call replayers have
non-zero overheads that do not allow them to replay high
I/O rates of high-performance applications, or spikes of
activity for applications that may issue most of their /O
requests at low rates.

Several researchers captured file system activity at the
VES level for Linux [2] and Windows NT [29, 37]. How-
ever, no one has replayed traces at the VFS level before.

Network tracers cannot capture the requests satisfied
from the client side or file system caches. Device driver
tracers capture raw disk requests and therefore cannot
distinguish between file system meta-data events (e.g.,
pathname related calls) and data-related events. There-

fore, network level and driver level replaying are not
comprehensive enough for the evaluation of an entire file
system, and they are primarily suitable for replaying at
the same level where they captured the trace. Neverthe-
less, both have their uses. For example, network trace
replaying is suitable for the evaluation of NFS servers;
and driver-level replayers are useful to evaluate physical
disk layouts. Also, both techniques have lower overheads
because they can use the CPU time that is normally spent
by client-side applications to prepare events for replay-
ing; this makes network and device-driver replayers effi-
cient and able to replay high rates of I/O accurately.

We have designed the first VFS-level replayer which
we call Replayfs. It replays traces captured using the
Tracefs stackable file system [2]. The traces are prepro-
cessed and optimized by our user-level trace compiler.
Replayfs runs in the kernel, directly above any directory,
file system, or several mounted file systems. It replays
requests in the form of VES API calls using multiple ker-
nel threads. Replayfs’s location in the kernel hierarchy
allows it to combine the performance benefits of existing
network and driver-level replayers with the ability to re-
play memory-mapped operations and evaluate entire file
systems. Memory-mapped operations can be easily cap-
tured and replayed at the VFS level because they are part
of the VFS API, but they are not a part of the system-call
API. Replayfs uses the time normally spent on context
switching, and on verifying user parameters and copying
them, to prefetch and schedule future events. In addition,
Replayfs saves time between requests by eliminating data
copying between the kernel and user buffers.

User-mode tools cannot replay the highest possible I/O
rates and spikes of such activity because due to their over-
heads. This is ironic because that is exactly the activity
that is crucial to replay accurately. Replayfs can replay
high I/O rate traces and spikes of activity even faster than
the original programs that generated them, on exactly the
same hardware. For example, Replayfs can replay read
operations 2.5 times faster than is possible to generate
them from the user level. This allows Replayfs to replay
the workload accurately with the original event rates.

The rest of this paper is organized as follows. Section 2
describes our capturing and replaying design. Section 3
describes our implementation. We evaluate our system in
Section 4. We describe related work in Section 5. We
conclude in Section 6 and discuss future work.

2 Design

The main goal of Replayfs is to reproduce the original
file system workload as accurately as possible. Memory-
mapped operations can be most efficiently captured only
in the kernel—they are part of the VFS API but not the
system-call API. Therefore, it is logical for Replayfs to
replay traces at the same level where the traces were cap-

~
User Process D
>

rename ()

vEs_rename()

Virtual File System (VFS) | E
tracefs_rename() %
Tracefs M

., Lrace

)

Figure 1: Tracefs is a stackable file system located above the
lower file system and below the VFS.

ext2_rename

ext2_rename

Lower file system
(traced)

Replayfs
e, trace

Figure 2: Replayfs is located directly above the lower file sys-
tem. It is not a stackable file system. It is seen like the VF'S for
the lower file system.

~

=

S

Lower file system M
(target)

tured. As shown in Figure 1, Tracefs [2] is a stackable
file system [40]. Tracefs passes through all the Virtual
File System (VES) requests down to the lower file system
(or a tree of several mounted file systems). Before invok-
ing the lower operations and after returning from them,
Tracefs logs the input and output values and the timing
information associated with the requests. Replayfs is log-
ically located at the same level as Tracefs—right above
the lower file system as shown in Figure 2. However, Re-
playfs is not a stackable file system; it is not a file system
either. It reproduces the behavior of the VFS during the
trace capture time and appears like a VES for the lower
file system. Replayfs operates similarly to the part of the
VES which directly interacts with lower file systems.
File system related requests interact with each other
and with the OS in intricate ways: concurrent threads
use locks to synchronize access, they compete for shared
resources such as disks, the OS may purge caches due
to file system activity, etc. Therefore, to reproduce the
original workload correctly it is necessary to reproduce
the original timing of the requests and their side effects
accurately. This is simple if the file system event rates
are low. However, at high I/O rates, replayers’ overheads
make it more difficult to replay traces accurately. Specif-
ically, every request-issuing process consists of three in-
tervals: user mode activity (£yser), System time activity
of the VFS (tyrs), and the lower file system event ser-
vicing time (7). Let us call t,¢piayer the time neces-
sary for a replayer to prepare for calling a replayed event.
Clearly, if the t,cpiayer > tuser then the timing and I/O
rate could not be reproduced correctly if events are is-
sued too close to each other as illustrated in Figure 3.
This could happen, for example, if the trace is generated

Legend @ User Time (¢)
R Replayer overhead (t
VFS Time (tygg)
[0 File system Time (tyg)

replayer)

Origin

program
:]

System call replayer

i T |
E W |

time

Original time between lower file system requests

Figure 3: Two consecutive file system events triggered by an
original program, a system calls replayer, and Replayfs. In this
example, Replayfs and the user-mode replayer have the same
per-event overheads. Nevertheless, the lower file system re-
ceives events at the same time as they were captured if replayed
by Replayfs because trcpiayer < tuser + tvrs, whereas the
system-call replayer is unable to generate events on time be-
cause t’replaye’r > tuser.

by a high performance application or there is a spike of
I/0O activity. Unfortunately, such situations are frequent
and they are exacerbated because typical replayers have
non-negligible overheads. Existing system-call replay-
ers have overheads ranging from 10% [1] to 100% [7]
and higher. Replayers’ overheads come from the need to
prefetch the data, manage threads, and invoke requests.
Therefore, it is not surprising that no existing user-mode
replayer can replay at the maximum possible application
I/0O rates and reproduce the peaks of I/O activity—the
modes of file system activity that are most important for
benchmarking and debugging.

Increasing the CPU or I/O speeds solves the problem
for network-file—system trace replayers because the re-
player and the tested file system run on different hard-
ware. However, non-network file system trace replayers
run on the same hardware. Thus, hardware changes will
affect the behavior of the lower file system together with
the replayer: an increase in the CPU speed can decrease
both the Replayfs overheads as well as the tyrg + Ty
component. This may result in different file system re-
quest interaction, thus changing file system behavior.

Replayfs replays traces directly over the lower file sys-
tem. Thus its per-operation overhead has to be smaller
than ty ps + tuser, not smaller than just ¢,s., as illus-
trated by the bottom timeline of Figure 3. Therefore,
if the replaying overheads of Replayfs are the same as
the overheads of some user-mode replayer, then Replayfs
can replay at higher I/O rates than a user-mode replayer.
Running in the kernel gives Replayfs several additional
advantages described in this section, resulting in lower
overheads. This allows Replayfs to replay high I/O-rate
traces more accurately than any system-call replayer.

2.1 Replayfs Trace

There is a natural disparity between raw traces and re-
playable traces. A trace captured by a tracer is often
portable, descriptive, and verbose—to offer as much in-
formation as possible for analysis. A replayable trace,
however, needs to be specific to the system it is replayed
on, and must be as terse as possible so as to minimize
replaying overheads. Therefore, it is natural to prepro-
cess raw traces before replaying them, as shown in Fig-
ure 4. Preprocessing traces allows us to perform many
tasks at the user level instead of adding complexity to the
in-kernel components. We call the user mode program
for conversion and optimization of the Tracefs raw traces
a trace compiler; we call the resulting trace a Replayfs
trace. The trace compiler uses the existing Tracefs trace-
parsing library. However, new trace parsers can be added
to preprocess traces that were captured using different
tools, at different levels, or on different OSs. The trace
compiler splits the raw Tracefs trace into three compo-
nents, to optimize the run-time Replayfs operation. Each
component has a different typical access pattern, size,

and purpose.
Kernel-level
User-level
Kernel-level

Figure 4: Captured raw traces are compiled into the Replayfs
traces before replaying.

The first Replayfs trace component is called com-
mands. 1t is a sequence of VES operations with their
associated timestamp, process 1D, parameters, expected
return value, and a return object pointer. At runtime, the
commands are sequentially scanned and replayed one at
a time. Therefore, the sequence of commands can be se-
quentially prefetched on demand at runtime. After the
execution of every command, the actual return value is
compared with the return value captured in the original
trace. Replaying is terminated if the expected and actual
return values do not match.

The second component is called the Resource Alloca-
tion Table (RAT). Because Tracefs and Replayfs oper-
ate on VFS objects whose locations in memory are not
known in advance, and these objects are shared between
the commands, we added a level of indirection to refer
to the commands’ parameters and return values. Com-
mands contain offsets into the RAT for associated VFS
objects and memory buffers. Thus, Replayfs populates
RAT entries at run-time whereas the trace compiler cre-
ates commands referencing the RAT entries at trace com-
pile time. Tracefs captures memory addresses of VES
objects related to the captured operations. All VFS ob-

jects that had the same memory address during the trace
capture share the same RAT entry. The RAT is accessed
randomly for reading and writing using offsets in the pro-
gram elements and therefore the RAT is kept in memory
during the entire replaying process. We store integer pa-
rameters together with the command stream. This allows
us to decrease the size of the RAT and avoid unneces-
sary pointer dereferencing. Another purpose of the RAT
is reference counting. In particular, the reference count
of a regular VFS object may be different from the Re-
playfs reference count for the same object. For example,
this happens if the object was already in use and had non-
zero reference count at the time a replaying process was
started. We use reference counts to release VFS objects
properly upon the completion of replaying.

The third Replayfs trace component is the memory
buffers necessary to replay the trace. They include file
names and buffers to be written at some point in time.
These buffers are usually accessed sequentially but some
of them may be accessed several times during the replay-
ing process. This is usually the largest component of
the Replayfs trace. For replaying, memory buffers are
accessed for reading only because the information read
from the disk is discarded. We outline properties of Re-
playfs trace components in Table 1.

Component Access | In Memory | Read/Write
Commands | Sequent. | On demand Read only
RAT Random Always | Read+Write
Buffers Random | On demand Read only

Table 1: Replayfs trace components’ properties.

Figure 5 shows an example Replayfs trace fragment.
In this example, the dentry (Linux VES directory entry
object) RAT entry is referenced as the output object of
the LOOKUP operation and as the input parameter of the
CREATE operation. The “foo.bar” file name is such an
example buffer.

During the Replayfs trace generation, the trace com-
piler performs several optimizations. We keep the RAT in
memory during the entire replaying process. Therefore,
the trace compiler reuses RAT entries whenever possible.
For example, the trace compiler reuses a memory buffer
entry that is not used after some point in time and stores a
file pointer entry that is required only after that point. To
minimize the amount of prefetching of memory buffers,
the trace compiler scans and compares them. Because all
the memory buffers are read-only, all except one of the
buffers with exactly the same contents may be removed
from the trace.

2.2 Data Prefetching

The commands and buffers components of the Replayfs
trace are loaded into memory on demand. Because fu-
ture data read patterns are known, we can apply one of

commands ——J>
LOOKUP|CREATE

0.1ms | 0.2ms
pid=3 | pid=3
param1 | param1
paré}nN paréhN
expect | expect
return | return

T

dentry | string | dentry

count=1 | count=1 | count=1

RAT

\

Y ("foo.bar") Y
(dentry1l) (dentry2)

Figure 5: Example Replayfs trace. Commands reference the
Resource Allocation Table (RAT) by the index values. The RAT
points directly to the shared objects in memory.

several standard prefetching algorithms. We have cho-
sen the fixed horizon algorithm [23] because it works
best when the Replayfs trace is fetched from a dedicated
disk. Therefore, we can optimize the prefetching for low
CPU usage. It was theoretically shown that the fixed
horizon and similar algorithms are almost optimal if the
prefetching process is not I/O-bound [5]. We assume that
a dedicated disk is always used for prefetching the Re-
playfs trace and therefore the prefetching process is not
I/0 bound. The commands and buffers Replayfs trace
components can be located on separate disks to further
decrease the I/O contention. The RAT component is al-
ways present in memory and does not interfere with the
prefetching of the other two components. An additional
advantage of the fixed horizon algorithm is small mem-
ory consumption. Note that the information about buffers
that require prefetching is extracted from the future com-
mands. Therefore, we prefetch the commands stream ear-
lier than it is necessary, to keep up with the replaying of
these commands.

2.3 Threads and Their Scheduling

Replayfs issues requests to the lower file system on be-
half of different threads, if different threads generated
these requests in the original trace. This is necessary
to accurately reproduce and properly exercise the lower
file system in case of resource contention (e.g., disk head
repositioning, locks, semaphores, etc.) and to replay the
timing properly if lower operations block. However, be-
cause using an excessive number of threads may hurt per-
formance [21], Replayfs reuses threads if possible. In

particular, the trace compiler optimizes the commands
stream: file system traces do not contain information
about thread creation and termination times. Similar to
the RAT entries reuse, the trace compiler reuses pro-
cesses. Thus, if some program spawns a thread and after
its termination it spawns another one, Replayfs will auto-
matically use one thread to replay operations invoked by
both of them. To minimize the scheduling-related over-
heads, Replayfs does not create a master thread to man-
age threads. For example, there is only one thread run-
ning if the traced data was generated by a single process.
It is important to note that the scheduling overheads dur-
ing replaying are approximately the same as during the
trace capture time. This is one of the conditions that is
necessary to replay traces efficiently on the same hard-
ware as was used during the trace capture.

Standard event timers have a precision of about Ims.
To increase the event replaying precision, a pre-spin tech-
nique is commonly used [1,9]: event timers are set to
about 1ms before the actual event time. The awoken
thread then spins in a loop, constantly checking the cur-
rent time until the desired event time is reached. A natu-
ral way to lower the CPU load is to use the pre-spinning
time for some other productive activity. We call this tech-
nique a productive pre-spin. Replayfs uses it to move an-
other thread into the run-queue if there is enough time
before the actual event time and the next operation has to
be replayed by a different thread. The next thread is not
woken up immediately; it is just put on the run-queue.
This way CPU cycles are more effectively spent on mov-
ing the process into a run-queue instead of spinning.

2.4 Zero Copying of Data

One of the main advantages of kernel replayers over user
mode replayers is the ability to avoid copying of unnec-
essary data across the kernel-user boundary. Thus, data
from pages just read does not need to be copied to a sep-
arate user mode buffer. The data read during the trace re-
playing is of no interest to the replaying tools. If desired,
checksums are sufficient for data verification purposes.
Instead of copying we read one byte of data from a data
page to set the page’s accessed bit. However, there is no
easy way a user-mode program can read data but avoid
copying it to user space. Direct I/O allows programs to
avoid extra data copying but is usually processed differ-
ently at the file system level and therefore the replaying
would be inaccurate if normal read or write requests are
replayed as direct I/O requests.

Avoiding the data copying is more difficult for write
operations. However, kernel-mode replayers have access
to low-level file system primitives. For example, a data
page that belongs to the trace file can be simply moved
to the target file by just changing several pointers. There-
fore, even for writing, most data copying can be elimi-

nated. Elimination of unnecessary data copying reduces
the CPU and memory usage in Replayfs. Note that user-
mode replayers that do not use direct I/O for fetching the
data from the disk, have to copy the data twice: first, they
copy it from the kernel to the user space buffers when
they load the trace data; then they copy the data to the
kernel when they issue a write request.

2.5 File System Caches

File system page caches may be in a different state when
replaying the traces than when capturing them. Some
times it is desirable to replay a trace without reproducing
the original cache state precisely; this is useful, for exam-
ple, when replaying a trace under different hardware con-
ditions (e.g., for benchmarking). However, sometimes
(e.g., for debugging or forensics) it is desirable to repro-
duce the lower file system behavior as close to the orig-
inal as possible. Therefore, Replayfs supports three re-
playing modes for dealing with read operations. First,
reads are performed according to the current cache state.
In particular, Replayfs calls all the captured buffer read
operations. In this case, only non-cached data pages re-
sult in calls to page-based read operations. Second, reads
are performed according to the original cache state. Here,
reads are invoked on the page level only for the pages that
were not found in the cache during tracing. Third, reads
are not replayed at all. This is useful for recreation of the
resulting disk state as fast as possible.

Directory entries may be released from the dentry
cache during the replaying process but stay in during the
trace capture. This can result in an inconsistency between
the RAT entries and the actual dentries. To avoid this sit-
uation we force the dentries that stayed in the cache dur-
ing the capture to stay in the cache during the replaying
process: we increase a dentry’s reference counter every
time it is looked up and decrease it when dentries were
released according to the original trace.

2.6 Asynchronous File System Activity

Some of the file system activity is performed asynchron-
ously by a background thread. Replaying asynchronous
activity is complicated because it is intertwined with file
system internals. For example, access-time updates may
be supported on the file system used for replaying but not
be supported on the original one. Therefore, Replayfs re-
plays such activity indirectly: the meta-data information
is updated on time according to the trace data but it is
up to the lower file system how and when to write the
corresponding changes to stable storage. This way the
replaying process exercises the lower file system without
enforcing restrictions that are related only to the origi-
nally traced file system.

2.7 [Initial File System State

In the simplest case, a trace can be captured starting with
an empty file system and then replayed over an empty
file system. However, traces usually contain operations
on files and other file system objects which existed be-
fore the tracing process was started. Therefore, a file sys-
tem must be prepared before the replaying may begin.
It is convenient to prepare the file system using the in-
formation contained in the trace. However, the best way
to prepare the lower file system is snapshotting [13, 26,
39]. Full restoration of the initial file system state makes
trace replaying more precise because many file system
algorithms have different performance with different file
system states. For example, directory sizes may influ-
ence the performance of LOOKUP and READDIR opera-
tions even if most of the files in the directory never show
up in a trace. Existing snapshotting systems can capture
and restore snapshots for Replayfs.

3 Implementation

Before a file system trace can be precisely replayed, it
has to be captured without perturbing the behavior of the
lower file system. Therefore, we performed several opti-
mizations in Tracefs. Traditionally, stackable file systems
buffer data twice. This allows them to keep both modi-
fied (e.g., encrypted or compressed) and unmodified data
in memory at the same time and thus save considerable
amounts of CPU time and I/O. However, Tracefs does not
modify the data pages. Therefore, double caching does
not provide any benefits but makes the page cache size
effectively half its original size. The data is copied from
one layer to the other, unnecessarily consuming CPU re-
sources. Unfortunately, the Linux VFS architecture im-
poses constraints that make sharing data pages between
lower and upper layers complicated. In particular, a data
page is a VFS object that belongs to a single inode and
uses the information of that inode at the same time [12].

We applied a solution used in RAIF [15]. Specifi-
cally, data pages that belong to the upper inode are as-
signed to lower-level inodes for the short duration of the
lower-level page-based operations. We tested the result-
ing Tracefs stackable file system on a single-CPU and
on multi-CPU machines under compile and I/O-intensive
workloads. In addition to the CPU time and memory sav-
ings, this optimization allowed us to reduce the Tracefs
source size by about 250 lines.

In most cases, Replayfs does not need the original data
buffers for replaying READ operations. Even for data veri-
fication purposes, an MD5 checksum is sufficient. There-
fore, we added a new Tracefs option that instructs it to
capture the data buffers for writing operations but not for
reads. This allowed us to reduce both the Tracefs trace
sizes and the Tracefs system time overheads.

Trace compiler. The trace compiler is optimized for
performance. Its intermediate data sets are commonly
larger than the amount of the available memory. There-
fore, we added several hash data structures to avoid re-
peatedly scanning the data and thus reduce I/O usage. We
compare the buffers by comparing their MD5 checksums.
This allows us to save the CPU time because MDS5 check-
sums are calculated only once for every buffer. The trace
compiler consists of 4,867 lines of C code.

Replayfs kernel module. Because the trace compiler
prepares the data for replaying, Replayfs itself is rela-
tively small and simple. It consists of thread manage-
ment, timing control, trace prefetching and eviction, op-
eration invocation, and VFS resource-management com-
ponents. Replayfs’s C source is 3,321 lines long. Re-
playfs supports accelerated or decelerated playback by a
fixed factor, as well as replaying as fast as possible.

Both Replayfs and Tracefs are implemented as load-
able kernel modules. We have ported Tracefs to the 2.6
Linux kernel and now both Tracefs and Replayfs can be
used on either 2.4 or 2.6 Linux kernels.

4 Evaluation

We conducted our benchmarks on a 1.7GHz Pentium
4 machine with 1GB of RAM. Its system disk was a
30GB 7200 RPM Western Digital Caviar IDE formatted
with Ext3. In addition, the machine had two Maxtor At-
las 15,000 RPM 18.4GB Ultra320 SCSI disks formatted
with Ext2. We used one of the SCSI disks for storing the
traces and the Replayfs traces; we used the other disk for
running the test workloads and replaying them. We re-
mounted the lower file systems before every benchmark
run to purge file system caches. We ran each test at least
ten times and used the Student-¢ distribution to compute
the 95% confidence intervals for the mean elapsed, sys-
tem, user, and wait times. Wait time is the elapsed time
less CPU time used and consists mostly of I/O, but pro-
cess scheduling can also affect it. In each case, the half-
widths of the confidence intervals were less than 5% of
the mean. The test machine was running a Fedora Core 3
Linux distribution with a vanilla 2.6.11 kernel.

4.1 Evaluation Tools and Workloads

We created one additional statistics module, for evalu-
ation purposes only: this module records the timeline
statistics from Ext2 and the timing-deviation figures from
Replayfs. This module uses the /proc interface to ex-
port the data to the user-level for analysis and plotting.
The statistics module stores the resulting information in
a static array and the only effects to a file-system oper-
ation are querying the time and incrementing a value in
the output array. Therefore, the corresponding overheads
were negligible: we measured them to be below 1% of
the CPU time for all the experiments we ran.

Am-utils build. Building Am-utils is a CPU-intensive
benchmark. We used Am-utils 6.1 [25]: it contains over
60,000 lines of C code in 430 files. The build process be-
gins by running several hundred small configuration tests
to detect system features. It then builds a shared library,
ten binaries, four scripts, and documentation: a total of
152 new files and 19 new directories. Though the Am-
utils compile is CPU intensive, it contains a fair mix of
file system operations. According to the instrumented
Ext2 file system, it uses 25% writes, 22% lIseek oper-
ations, 20.5% reads, 10% open operations, 10% close
operations, and the remaining operations are a mix of
READDIR, LOOKUP, etc. We used Am-utils because its
activity is not uniform: bursts of I/O activity are sepa-
rated by intervals of high CPU activity related to the user
mode computations. This allows us to analyze the re-
playing precision visually. Also, the compilation process
heavily uses the memory-mapped operations.

Postmark. Postmark v1.5 [16] simulates the operation
of electronic mail servers. It performs a series of file sys-
tem operations such as appends, file reads, creations, and
deletions. This benchmark uses little CPU but is I/O in-
tensive. We configured Postmark to create 20,000 files,
between 512-10K bytes in size, and perform 200,000
transactions. We selected the create, delete, read, and
write operations with equal probability. We used Post-
mark with this particular configuration because it stresses
Replayfs under a heavy load of I/O-intensive operations.

Pread. Pread is a small micro-benchmark we use to
evaluate Replayfs’s CPU time consumption. It spawns
two threads that concurrently read 1KB buffers of cached
data using the pread system call. In every experiment,
Pread performed 100 million read operations. We use
Pread to compare our results with Buttress [1], a state-
of-the-art system call replayer that also used pread.
This micro-benchmark also allowed us to demonstrate
the benefits of our zero-copying replaying.

4.2 Memory Overheads

The memory consumed by replayers effectively reduces
the file system cache sizes and therefore can affect the
behavior of the lower file system. The compiled binary
module sizes are negligible. They are 29KB for the Re-
playfs module and 3KB for the statistics module. Our
user mode trace compiler reduces the trace size by gener-
ating the variable length program elements and by elim-
inating duplicate data buffers. Table 2 shows some char-
acteristics of the raw and compiled traces as well as their
compilation times. We can see that the original Am-utils
trace size was reduced by 56%, by 70% for Postmark,
and by 45% for Pread. Recall that only the RAT is en-
tirely kept in memory and its size was small for all the
traces we used. The program and the buffers trace com-

ponents are prefetched on demand. We used a separate
disk for storing the traces. This reduced I/O contention
and allowed us to prefetch the minimal amount of data
that is necessary to replay the trace on time. In addition,
direct access to the page cache allowed us to promptly
evict pages that will not be accessed in the near future. As
a result, the memory used for prefetching and storing the
traces never exceeded 16MB for all of our experiments.
This means that all the Replayfs memory overheads to-
gether were less than 2% of the available memory on our
test machine during any time of our benchmark runs.

Am-utils | Postmark Pread
Raw trace 334 MB | 3,514 MB | 7,248 MB
Commands 25 MB 224 MB | 4,000 MB
RAT 0.4 MB 3.3 MB 60 bytes
Buffers 122 MB 832 MB 3 bytes
Compilation <1 15 31
time (minutes)

Table 2: Size and compilation time of the traces.

4.3 Timing Precision of Replaying

Standard OS timers usually have low resolution. For ex-
ample, standard Linux timers have a resolution of one
millisecond which is much larger than a microsecond, the
typical duration of a file system operation that does not
result in I/O. We have applied the pre-spin technique [9]
described in Section 2 to bring the timing accuracy to the
microsecond scale. Figure 6 shows the cumulative distri-
bution function (CDF) of the operation invocation timing
errors. Naturally, the timing errors of a Postmark run with
no pre-spin are distributed almost equally between 0 and
1 millisecond because events are triggered with the poor
millisecond resolution. We can see that pre-spinning dra-

Postmark, no pre-spin —&—

Postmark, pre-spin ---#---

Am-utils, no pre-spin ---&---
Am-mutils, pre-spin -

100
-__—-__

N

o

Fraction of operations (%)

0 400 500 600 700 800 900 1000

Timing error (microseconds)

Figure 6: Cumulative distribution functions of the event invo-
cation error rates during several replaying experiments. The
closer the curve is to the upper-left corner, the better the aver-
age accuracy is.

Am-utils, no pre-spin
Am-utils, pre-spin -------
1000

@ @
=3 S
=3 S}
—
=

Timing error (microseconds)

200

NN

i ATATATARNIE
80 90 100 110 120 130 140 150 160 170 180 190 200

Y N
0 10 20 30 40 50 60

Time (seconds)

Figure 7: Dependence of the average invocation time error on
elapsed time during the Am-utils trace replaying.

matically decreases the error values. However, the error
distributions differ for different workloads.

Two figures clarify this behavior. Figure 7 shows the
average timing error during every second of the Am-utils
trace replaying. Figure 8 shows the corresponding file
system operation counts recorded by the instrumented
Ext2. We can see a clear correlation between the replay-
ing event rates and the related average error. The reason
behind this correlation is that events well spaced apart are
replayed with high accuracy, whereas events that should
be invoked close to each other cannot be invoked as ac-
curately because of the I/O and CPU time overheads.
Therefore, we can make two conclusions.

First, the CDF of invocation errors can easily hide real
replaying problems. For example, a CDF captured with
a slow operation rate workload may indicate that almost
all of the operations were replayed with high precision.
However, Figure 6 shows that no information can be in-
ferred about how the same tool would behave at medium
or high I/O rates.

Second, the timers’ accuracy is not as important for file
system activity replayers as it was believed before [1, 9].
The timer’s resolution contributes to the event invocation
errors only at the low event rates where timing precision
is not even necessary. On one hand, it is unlikely that
events separated by long intervals of no file system ac-
tivity (as long as several durations of an average event)
will influence each other too much. On the other hand,
file system operations invoked close to each other, and
especially if they are invoked by different processes and
they overlap, are more likely to interfere with each other.
Therefore, it is desirable to replay them as precisely as
possible. However, in that case the timer’s resolution has
small overall impact on the resulting timing quality. In-
stead, the overheads that replayers add between opera-
tions define the timing precision as we discussed in Sec-

tion 2. We can see that in Figure 8 by comparing the
traces of an Am-utils replayed with different timer reso-
lutions. We cannot easily see the pre-spinning improve-
ment effects in Figure 8, because they are only visible
at the micro-second resolution; Figure 6 shows our pre-
spinning improvements more prominently. However, we
can see from Figure 8 that in both timer resolution cases
there are small discrepancies at the peaks of activity be-
tween the replayed and captured traces.

One may assume that an increase in the CPU speed
can solve the timing precision problem. This is indeed
the case for network packet and network file system re-
players because the replayer and the target system run
on different machines. However, this is not the case for
non-network file system replayers because they execute
on the same machine as the tested file system. There-
fore, with a faster CPU, the replayed operations will also
execute faster and their corresponding interactions will
change disproportionally; that is the portion of the CPU
time spent servicing file system requests will decrease
and requests from different processes will overlap less,
thus processes will compete less for locks or disk heads.

4.4 CPU Time Consumption

System-call replaying tools run in user mode and invoke
the same system calls that were invoked by the original
user programs. Usually user-level replayers have CPU
time overheads that are higher than the user activity in-
tervals in the original trace. Replayfs runs in the kernel
and therefore avoids wasting time on some of the opera-
tions required to cross the user-kernel boundary.

Let us consider the pread system call. After it is in-
voked, the VFS converts the file descriptor number to
an in-kernel file structure, checks parameters for valid-
ity and correspondence with the file type, and verifies
that the buffer can be used for writing. Replayfs benefits
from the following four optimizations: (1) kernel mode
VES objects are readily available to Replayfs and need
not be looked up; (2) Replayfs operates on VES objects
directly and the file structure argument is taken directly
by looking up the RAT; (3) parameters and file access
modes were checked during the trace capture and can be
skipped; and (4) memory buffers are not passed from the
user space, so Replayfs can allocate them directly with-
out having to verify them. Figure 9 shows the times re-
lated to the execution of the original Pread program and
replaying its trace by Replayfs at full speed. The Replayfs
bar in Figure 9 shows that skipping the VFS operations
described above allows Replayfs to replay the Pread trace
32% faster than the original program generated it on the
same hardware.

Replayfs can also avoid copying data between
user-mode buffers and the kernel pages. The
Replayfs-nocopy bar in Figure 9 demonstrates that

Replayfs, no pre-spin

Replayfs, pre-spin
Tracef

acefs -----—- racefs -------
PREPARE_WRIT REPARE_WRITE
3000 3000
2000 2000
1000 1000

—
OPEl PEl

800 800

600 600

400 400
2 200 | 2 200 |
2] .
g i V\ ”J“P\MMWWMJU g i [V \\AMWNMAJ ,\J
Q 2 Q. Q
o Tt g bogpn
S k)
] PERMISSIO o} ERMISSIO
o Ke)
£ 5
= 6000 = 6000

4500 ”m n 4500

3000 i 3000
i i
1500 : 1500 v ‘1
LLSEEK LLSEE
4000 4000
3000 3000
2000 2000
1000 # 1000
i
p e i /-’f‘\v\ /&\ i S I i
10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150 160 170 180 190 200
Time (seconds) Time (seconds)

Figure 8: Counts of the file system operations as seen by the lower Ext2 file system while replaying the Am-utils traces without the
pre-spin timer enhancement (left) and with the pre-spin enhancement (right). As we can see, there is no clear difference between
the two on the seconds scale in spite of the fact that timing on the micro-second scale is better with the pre-spin configuration. In
most cases the Replayfs and Tracefs curves overlap and are indistinguishable. Small timing discrepancies are correlated with peaks
of I/0 activity. We show four operations with the highest peaks of activity (>800 operations) because they have the highest timing
errors observed. Also, we do not show the RELEASE and COMMIT_WRITE operations because their graphs closely resemble the
shapes of the OPEN and PRPARE_WRI TE operations, respectively.

Wait time ——

Lower read system time =<1
Other system time &5
User time

200 [

161s

a
o

Elapsed time (sec)
>
o
T

55s

50

Pread Replayfs-nocopy

eplayfs Prefetch System Call Replayer

Figure 9: Elapsed times of our Pread program (Pread), the
Pread trace replayed by Replayfs while copying the data just
read (Replayfs), elapsed time of the Pread trace replayed
by a Replayfs that skips the data copying (Replayfs-nocopy),
the time necessary to read the trace data as fast as possible
(Prefetch), and estimated elapsed time of the system call re-
player with a 10% user time overhead (System Call Replayer)

Replayfs can replay the original Pread trace 61% (2.5
times) faster than the original program generated it on the
same hardware. We can see that the data copying alone
can reduce the execution of the file system read operation
by 55% (685 out of 1,240 CPU cycles on average).

In the case of the Pread trace, no prefetching of data
was necessary (except for 3 bytes of null-terminated file
name). We created a modified version of the Pread
program we call Prefetch that sequentially reads data
from a file as fast as possible. It took Prefetch 55
seconds on average to read the Pread program trace
component. The Prefetch bar in Figure 9 shows that
out of these 55 seconds, 49 were spent waiting for I/O
completion. This means that the replaying process was
not I/O-bound because Replayfs prefetches traces asyn-
chronously. However, a further decrease of the Replayfs
CPU overheads may make Replayfs I/O-bound while re-
playing the Pread trace: Replayfs would reach the physi-
cal limitations of the I/O hardware and the disks, at which
point replaying could not be sped up further. In that case,
this problem can be resolved by replacing the disk drive
or its controller because the tested file system and the Re-
playfs traces are located on different physical drives.

We compared Replayfs with the state-of-the-art But-
tress system call replayer. Unfortunately, Buttress avail-
ability for public, especially for comparison purposes,
is limited and we could not evaluate it. Its overheads
under the Pread workload are reported to be 10% [1].
The rightmost bar in Figure 9 represents an extrapolated
timing result for Buttress; for visual comparison pur-
poses, we created that bar by adding 10% overhead of
the elapsed time to the user time of the original Pread
program time. Note that the actual overhead value is not
as important as the fact that the overhead is positive. Be-

10

cause the overhead is positive, user-level replayers can-
not replay traces like Pread at the same rate as the orig-
inal Pread program can issue I/O requests. Having low
or even negative overheads in Replayfs results in good
reproduction of the original timing conditions. Despite
some existing discrepancies between the original traces
and the replayed ones (seen in Figure 8), the replayed
and the original figures overlap for most of the opera-
tions even during peaks of activity. Existing system call
replaying tools such as Buttress cannot match the trace as
closely because of their inherent overheads. Buttress is a
well designed system; its overheads are lower than the
overheads of other published systems that replay traces
via system calls. However, it is precisely because But-
tress and similar systems run in the user level that they
have higher overheads, which in turn imposes greater
limitations on their ability to replay traces accurately.

Another benefit of Replayfs’s low overheads is the
ability to replay the original traces at faster speeds even
on the same hardware. As we described above, we can re-
play read-intensive traces 2.5 times faster than their orig-
inal time. In addition, we replayed the Am-utils trace in
the accelerated mode. We were able to replay the 210-
second long Am-utils trace in under 6 seconds, reproduc-
ing all the memory-mapped and other disk state changing
operations. This represents a speedup of more than two
orders of magnitude.

5 Related Work

Trace capture and replaying have been used for decades
and we describe only a representative set of papers re-
lated to file system activity tracing and replaying.

Capturing traces. We describe tracers according to the
level of abstraction where they capture the file system ac-
tivity: system-call-level tracers, virtual file system level
tracers, network tracers, and finally driver-level tracers.
We discuss them in this order because network-level trac-
ers capture file system information at a level of abstrac-
tion that is higher than the driver-level, but is lower than
the VFS-level.

e The most common tool used to capture system calls
is strace [38]. It uses the ptrace system call to
capture the sequence of system calls invoked by
an application together with associated parameter
values. DFSTrace showed that special measures
have to be taken to collect file system traces in dis-
tributed environments during long intervals of time,
to minimize the volume of generated and transferred
data [19]. The problem of missed memory-mapped
operations in system call traces has long been recog-
nized [22]. However, only in 2000 did Roselli show
that unlike decades ago, memory-mapped I/O oper-
ations are now more common than normal reads and
writes [29].

e Others collected traces at the virtual file system level
for Linux [2] and Windows NT [29, 37]; these traces
include memory-mapped operations.

e Network packet traces can be collected using spe-
cialized devices or software tools like tcpdump [11].
Specialized tools can capture and preprocess only
the network file system related packets [4,8]. Net-
work file system traces do not contain information
about the requests satisfied from the caches but can
contain information about multiple hosts.

e Driver-level traces contain only the requests that are
not satisfied from the caches. This is useful when
disk layout information needs to be collected while
minimizing the trace size [30].

Trace replaying. Similar to capturing traces, replaying
traces is performed at several logical levels. Usually, the
traces are replayed at the same level that they were cap-
tured from. This way changes to the timing and opera-
tions mix are minimized. However, for simplicity, some
authors replay kernel-level traces at the user level.

e It is simple to replay system calls that contain all
the necessary information as parameters. Several
existing system call replayers are designed specif-
ically to replay file system activity. Buttress [1]
and DFSTrace [19] can replay system call traces
from the user level. Buttress’s evaluation showed a
10% slowdown if replaying traces at high I/O rates,
which the authors claimed was “accurate enough.”
Performance data for DFSTrace’s replaying mode is
not available, mostly because the main focus of the
authors was on capturing traces.

e Network traffic replayers operate in user mode and
can replay arbitrary network traces [9, 33]. Network
file system trace replaying is conceptually similar
to ordinary network packet trace replaying. How-
ever, knowledge of the network file system proto-
col details allows replayers to reorder some packets
for faster replaying [42]. Replayers and tracers can
run on dedicated machines separate from the tested
servers. Thus, network file system trace replaying is
the least intrusive replaying and capturing method.

e Replaying I/O patterns at the disk-driver level al-
lows the evaluation of elevator algorithms and driver
subsystems with lower overheads and little com-
plexity. Also, it allows the evaluation of disk lay-
outs. For example, Prabhakaran et al. used a driver
level replayer to measure the effects of the journal
file relocation on the disk [27]. In this particular
case, system-call-level replaying was not appropri-
ate because the physical file’s location on the disk
could not be easily controlled from the user level.

e Others capture and then replay traces at different
logical levels. For example, Drive-Thru [24] pro-

11

cesses driver-level traces and replays them at the
system-call level to evaluate power consumption.
Unrelated file system operations are removed during
the preprocessing phase to speed up the replaying
process. Several others replayed network file system
traces in disk simulators for benchmarking [36,41].
Network traces are most suitable for this purpose be-
cause they are captured below caches and thus min-
imally disturb the workload.

File system state versioning. File system trace replay-
ing can be considered a form of fine-grained version-
ing [20,32]. Replaying can reproduce the version of the
file system state including possible state abnormalities
caused by timing conditions. This property is useful for
forensics (post-attack investigation) and debugging pur-
poses. Also, it can be used to emulate the aging of a file
system before running actual benchmarks [31].

Before replaying file system activity, replayers may
have to recreate the pre-tracing file system image. This is
important for accuracy: file layouts and the age of the
file system can affect its behavior significantly. Some
authors have opted to extrapolate the original file sys-
tem state based on information gleaned from the trace
alone [19,42]. This technique has three disadvantages.
First, full path name information is required in the trace
data to identify the exact directories in which files were
accessed [22]. Second, files that were not accessed dur-
ing the trace are not known to the system, and those
files could have affected the file system’s layout and age.
Third, several trace-capture techniques omit information
that is vital to replaying accurately. For example, an NFS
(v2 and v3) trace replayer that sees an NFS_WRITE pro-
tocol message cannot tell if the file being written to ex-
isted before or not. It is therefore our belief that the best
method to restore the pre-tracing file system state is to
use snapshotting [13,26,39].

Data prefetching. Data prefetching is a common tech-
nique to decrease application latency and increase perfor-
mance [3]. Future access patterns are normally inferred
from a history of past accesses or from hints provided
by applications [34]. If access patterns are known in ad-
vance, two simple approaches are possible. First, data
can be aggressively read in advance without overwriting
the already prefetched data. Second, data can be read
just in time to avoid stalls. Cao et al. showed that both
approaches are at most two times worse than the optimal
solution [5]. Both algorithms have simple implementa-
tions. The TIP2 system [23] uses a version of the sec-
ond algorithm called fixed horizon. A more sophisticated
reverse aggressive [17] algorithm has near-optimal per-
formance but is difficult to implement. The forestall [18]
algorithm is an attempt to combine the best of these al-
gorithms: simplicity and prefetching performance.

Timing inaccuracy. Existing system-call replayers
suffer from timing precision problems and peak-load re-
production problems to some degree, for several reasons:

e User mode replayers have high memory and CPU
overheads due to redundant data copying between
user and kernel buffers [28].

e Page eviction is not completely controlled from the
user level and thus prefetching policies are harder to
enforce. Nevertheless, the madvise interface can
help somewhat to control data page eviction [9].

e Some kernels are not preemptive and have long ex-
ecution paths including in interrupt handlers [10].

e Replaying processes can be preempted by other
tasks. This can be partially solved by instructing the
scheduler to treat the replaying process as real time
process [9].

e Standard timer interfaces exposed to the user level
are not precise enough. Several authors investigated
this problem and came to similar conclusion [1,9]:
it is sufficient to setup the timer early and busy-wait
only after the timer expires.

The metric used to evaluate the replaying precision
in several papers is the average difference between the
actual event time and the traced event time [1,9]. For
example, using better kernel timers and the madvise
interface resulted in a typical 100-microsecond of dif-
ference [9]—almost a 100 times improvement compared
with a replayer without these measures [33].

6 Conclusions

Trace replaying offers a number of advantages for file
system benchmarking, debugging, and forensics. To be
effective and accurate, file system traces should be cap-
tured and replayed as close as possible to the file system
code. Existing systems that capture file system traces at
the network file system level often miss on client-side
cached or aggregated events that do not translate into pro-
tocol messages; system-call traces miss the ever more
popular memory-mapped reads and writes; and device-
driver level traces omit important meta-data file system
events such as those that involve file names. These prob-
lems are exacerbated when traces that were captured at
one level are replayed at another: even more information
loss results.

We demonstrated that unlike previously believed, the
accuracy of replaying high I/O-rate traces is limited by
the overheads of the replayers—not the precision of the
timers. Since most file systems run in the kernel, user-
level file system replayers suffer from overheads that af-
fect their accuracy significantly. User-mode replayers
produce an excessive number of context switches and
data copies across the user-kernel boundary. Therefore,
existing replayers are inaccurate and unable to replay file
system traces at high event rates.

12

We have designed, developed, and evaluated a new re-
playing system called Replayfs, which replays file sys-
tem traces immediately above file systems, inside the ker-
nel. We carefully chose which actions are best done of-
fline by our user-level trace compiler, or online by our
runtime kernel Replayfs module. Replaying so close to
the actual file system has three distinct benefits:

e First, we capture and replay all file system
operations—including important memory-mapped
operations—resulting in more accurate replaying.

e Second, we have access to important internal kernel
caches, which allowed us to avoid unnecessary data
copying, reduce the number of context switches, and
optimize trace data prefetching.

e Third, we have precise control over thread schedul-
ing, allowing us to use the oft-wasted pre-spin pe-
riods more productively—a technique we call pro-
ductive pre-spin.

Our kernel-mode replayer is assisted by a user-mode
trace compiler, which takes portable traces generated by
Tracefs, and produces a binary replayable trace suitable
for executing in the kernel. Our trace compiler carefully
partitions the data into three distinct groups with different
access patterns, which allowed us to apply several opti-
mizations aimed at improving performance:

Commands which are read sequentially;

Resource Allocation Table (RAT) which determines
how in-memory resources are used throughout the
replaying phase. In particular, the RAT allows us
to reuse resources at replay time once they are no
longer needed, rather than discarding them;

Buffers which are bulk I/O data pages and file names
that are often accessed randomly on a need basis.

This partitioning and the possibility to evict cached
data pages directly allowed us to reduce memory usage
considerably: in all of our experiments, Replayfs con-
sumed no more than 16MB of kernel memory, which is
less than 2% on most modern systems. Overall, Replayfs
can replay traces faster than any known user-level sys-
tem, and can handle replaying of traces with spikes of
I/O activity or high rates of events. In fact, thanks to
our optimizations, Replayfs can replay traces captured on
the same hardware—faster than the original program that
produced the trace.

6.1 Future Work

Commands executed by different threads may be issued
out of their original order. For example, if one thread is
waiting for a long I/O request, other threads may con-
tinue their execution unless there is a dependency be-
tween requests. This is useful for stress-testing and cer-
tain benchmarking modes. However, commands have to
be synchronized at points where threads depend on each

other. For example, if an original trace shows that one
thread read a file after a second thread wrote the same file,
then this ordering should be preserved during trace re-
playing. We are modifying our existing trace compiler to
add thread synchronization commands to the commands
Replayfs trace component.

Some workloads may result in different behavior of the
file system even if the operations’ order is preserved. For
example, two threads concurrently writing to the same
file may create a different output file due to in-kernel pre-
emption. Future policies will allow Replayfs to differ-
entiate between real replaying errors and tolerable mis-
matches between return values due to race conditions.

There is a large body of existing traces which were
captured over the past decades on different systems or
at different levels. Unfortunately, many of these traces
cannot be replayed for lack of tools. We are currently
developing user-mode translators which can convert such
traces from other formats into our own portable format.

We have carefully analyzed the VFS interfaces of
Linux, FreeBSD, Solaris, and Windows XP. Despite their
significant internal implementation differences, we found
them to be remarkably similar in functionality. This
is primarily because file system interfaces have evolved
over time to cooperate best with APIs such as the POSIX
system-call standard. Therefore, we also plan to port Re-
playfs to other operating systems.

7 Acknowledgments

We would like to acknowledge Akshat Aranya, Jordan
Hoch, and Charles P. Wright for their help at different
stages of Replayfs’s design, development, and testing.
We would also like to thank all FSL members for their
support and a productive environment. This work was
partially made possible by NSF awards EIA-0133589
(CAREER) and CCR-0310493, and HP/Intel gifts num-
bers 87128 and 88415.1.

References

[1] E. Anderson, M. Kallahalla, M. Uysal, and R. Swami-
nathan. Buttress: A Toolkit for Flexible and High Fidelity
I/0 Benchmarking. In Proceedings of the Third USENIX
Conference on File and Storage Technologies (FAST
2004), pages 45-58, San Francisco, CA, March/April
2004.

[2] A. Aranya, C. P. Wright, and E. Zadok. Tracefs: A
File System to Trace Them All. In Proceedings of the
Third USENIX Conference on File and Storage Technolo-
gies (FAST 2004), pages 129-143, San Francisco, CA,

March/April 2004.

[3] L. Belady. A Study of Replacement Algorithms for Vir-
tual Storage Computers. IBM Systems Journal, 5(2):78—

101, 1966.

13

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

M. Blaze. NFS Tracing by Passive Network Monitoring.
In Proceedings of the USENIX Winter Conference, San
Francisco, CA, January 1992.

P. Cao, E. Felten, A. Karlin, and K. Li. A Study of In-
tegrated Prefetching and Caching Strategies. In Proceed-
ings of the 1995 ACM SIGMETRICS Conference on Mea-
surement and Modeling of Computer Systems, pages 188—
197, Ottawa, Canada, May 1995.

P. M. Chen and D. A. Patterson. A New Approach to I/O
Performance Evaluation - Self-Scaling I/0 Benchmarks,
Predicted I/O Performance. In Proceedings of the 1993
ACM SIGMETRICS International Conference on Mea-
surement and Modeling of Computer Systems, pages 1—
12, Seattle, WA, May 1993.

F. Cornelis, M. Ronsse, and K. Bosschere. Tornado: A
novel input replay tool. In Proceedings of the 2003 Inter-
national Conference on Parallel and Distributed Process-
ing Techniques and Applications (PDPTA ‘03), volume 4,
pages 1598-1604, Las Vegas, Nevada, June 2003.

D. Ellard and M. Seltzer. New NFS Tracing Tools and
Techniques for System Analysis. In Proceedings of the
Annual USENIX Conference on Large Installation Sys-
tems Administration, San Diego, CA, October 2003.

W. Feng, A. Goel, A. Bezzaz, W. Feng, and J. Walpole.
Tcpivo: a high-performance packet replay engine. In
Proceedings of the ACM SIGCOMM workshop on Mod-
els, methods and tools for reproducible network research,
pages 57-64, Karlsruhe, Germany, 2003.

A. Goel, L. Abeni, J. Snow, C. Krasic, and J. Walpole.
Supporting Time-Sensitive Applications on General-
Purpose Operating Systems. In Proceedings of the Fifth
Symposium on Operating System Design and Implemen-
tation (OSDI ’02), pages 165-180, Boston, MA, Decem-
ber 2002.

LBNL Network Research Group.
Dump/Libpcap site.
2003.

J. S. Heidemann and G. J. Popek. Performance of cache
coherence in stackable filing. In Proceedings of Fif-
teenth ACM Symposium on Operating Systems Principles
(SOSP ’95), pages 3-6, Copper Mountain Resort, CO,
December 1995.

D. Hitz, J. Lau, and M. Malcolm. File System Design
for an NFS File Server Appliance. In Proceedings of the
USENIX Winter Technical Conference, pages 235-245,
San Francisco, CA, January 1994.

J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols,
M. Satyanarayanan, R. N. Sidebotham, and M J. West.
Scale and performance in a distributed file system. ACM
Transactions on Computer Systems, 6(1):51-81, Febru-
ary 1988.

N. Joukov, A. Rai, and E. Zadok. Increasing distributed
storage survivability with a stackable raid-like file sys-
tem. In Proceedings of the 2005 IEEE/ACM Workshop on
Cluster Security, in conjunction with the Fifth IEEE/ACM
International Symposium on Cluster Computing and the
Grid (CCGrid 2005), Cardift, UK, May 2005 (Won best
paper award).

The TCP-
February

www . tcpdump.org,

(16]

(17]

(18]

[19]

(20]

[21]

(22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

J. Katcher. PostMark: A New Filesystem Benchmark.
Technical Report TR3022, Network Appliance, 1997.
www.netapp.com/tech_library/3022.html.

T. Kimbrel and A. Karlin. Near-optimal Parallel Prefetch-
ing and Caching. In Proceedings of the 37th IEEE Sym-
posium on Foundations of Computer Science, pages 540—
549, October 1996.

T. Kimbrel, A. Tomkins, R. Patterson, B. Bershad, P. Cao,
E. Felten, G. Gibson, A. Karlin, and K. Li. A Trace-
Driven Comparison of Algorithms for Parallel Prefetch-
ing and Caching. In Proceedings of the Second Sympo-
sium on Operating Systems Design and Implementation
(OSDI 1996), pages 19-34, Seattle, WA, October 1996.
L. Mummert and M. Satyanarayanan. Long term dis-
tributed file reference tracing: Implementation and ex-
perience. Technical Report CMU-CS-94-213, Carnegie
Mellon University, Pittsburgh, PA, 1994.

K. Muniswamy-Reddy, C. P. Wright, A. Himmer, and
E. Zadok. A Versatile and User-Oriented Versioning File
System. In Proceedings of the Third USENIX Conference
on File and Storage Technologies (FAST 2004), pages
115-128, San Francisco, CA, March/April 2004.

J. Ousterhout. Why Threads are a Bad Idea (for most
purposes). In Invited Talk at the 1996 USENIX Technical
Conference, January 1996. home.pacbell.net/ouster/
threads.ppt.

J. Ousterhout, H. Costa, D. Harrison, J. Kunze,
M. Kupfer, and J. Thompson. A Trace-Driven Analysis
of the UNIX 4.2 BSD File System. In Proceedings of the
Tenth ACM Symposium on Operating System Principles,
pages 15-24, Orcas Island, WA, December 1985

R. Patterson, G. Gibson, E. Ginting, D. Stodolsky, and
J. Zelenka. Informed Prefetching and Caching. In Pro-
ceedings of the 15th ACM Symposium on Operating Sys-
tem Principles (SOSP ’95), pages 79-95, Copper Moun-
tain Resort, CO, December 1995.

D. Peek and J. Flinn. Drive-Thru: Fast, Accurate Evalu-
ation of Storage Power Management. In Proceedings of
the Annual USENIX Technical Conference, pages 251—
264, Anaheim, CA, April 2005.

J. S. Pendry, N. Williams, and E. Zadok. Am-utils User
Manual, 6.1b3 edition, July 2003. www.am-utils.org.

Z. Peterson and R. Burns. Ext3cow: a time-shifting
file system for regulatory compliance. Trans. Storage,
1(2):190-212, 2005.

V. Prabhakaran, A. C. Arpaci-Dusseau, and R. H. Arpaci-
Dussea. Analysis and Evolution of Journaling File Sys-
tems. In Proceedings of the Annual USENIX Technical
Conference, Anaheim, CA, May 2005.

A. Purohit, J. Spadavecchia, C. Wright, and E. Zadok.
Improving Application Performance Through System
Call Composition. Technical Report FSL-02-01, Com-
puter Science Department, Stony Brook University, June
2003. www.fsl.cs.sunysb.edu/docs/cosy-perf/.

D. Roselli, J. R. Lorch, and T. E. Anderson. A Compar-
ison of File System Workloads. In Proc. of the Annual
USENIX Technical Conference, pages 41-54, San Diego,
CA, June 2000.

14

[30]

[31]

[32]

(33]

[34]

(35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

C. Ruemmler and J. Wilkes. UNIX Disk Access Patterns.
In Proceedings of the Winter USENIX Technical Confer-
ence, pages 405—420, San Diego, CA, January 1993.

K. A. Smith and M. I. Seltzer. File System Aging -
Increasing the Relevance of File System Benchmarks.
In Proceedings of the 1997 ACM SIGMETRICS Inter-
national Conference on Measurement and Modeling of
Computer Systems, pages 203-213, Seattle, WA, June
1997.

Craig A. N. Soules, Garth R. Goodson, John D. Strunk,
and Gregory R. Ganger. Metadata Efficiency in Version-
ing File Systems. In Proceedings of the Second USENIX
Conference on File and Storage Technologies (FAST "03),
pages 43-58, San Francisco, CA, March 2003.

tepreplay(8), February 2004.
tcpreplay.sourceforge.net.

A. Tomkins, R. Patterson, and G. Gibson. Informed
Multi-Process Prefetching and Caching. In Proceedings
of the 1997 ACM SIGMETRICS Conference on Measure-
ment and Modeling of Computer Systems, pages 100—
114, Seattle, WA, June 1997.

Transaction Processing Performance Council.
action Processing Performance Council.
2005.

M. Uysal, A. Merchant, and G. A. Alvarez. Using
MEMS-Based Storage in Disk Arrays. In Proceedings
of the Second USENIX Conference on File and Storage
Technologies (FAST ’03), pages 89-101, San Francisco,
CA, March 2003.

W. Vogels. File System Usage in Windows NT 4.0. In
Proceedings of the 17th ACM Symposium on Operating
Systems Principles, pages 93—109, Charleston, SC, De-
cember 1999

W. Akkerman. strace software home page. www.liacs.
nl/ wichert/strace/, 2002.

C. P. Wright, J. Dave, P. Gupta, H. Krishnan, E. Zadok,
and M. N. Zubair. Versatility and Unix Semantics
in a Fan-Out Unification File System. Technical Re-
port FSL-04-01b, Computer Science Department, Stony
Brook University, October 2004.
edu/docs/unionfs-tr/unionfs.pdf.

E. Zadok and J. Nieh. FiST: A Language for Stackable
File Systems. In Proc. of the Annual USENIX Technical
Conference, pages 55-70, San Diego, CA, June 2000.

C. Zhang, X. Yu, A. Krishnamurthy, and R. Y. Wang.
Configuring and Scheduling an Eager-Writing Disk Ar-
ray for a Transaction Processing Workload. In Proceed-
ings of the First USENIX Conference on File and Storage
Technologies (FAST 2002), pages 289-304, Monterey,
CA, January 2002.

N. Zhu, J. Chen, T. Chiueh, and D. Ellard. Scal-
able and Accurate Trace Replay for File Server Eval-
uation. Technical Report TR-153, Computer Science
Department, Stony Brook University, December 2004.

tcpreplay developers.

Trans-

www.tpc.org,

www.fsl.cs.sunysb.

www.ecsl.cs.sunysb.edu/tr/TR153.pdf.

