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Abstract. Although sophisticated runtime bug detection tools existaot out
several kinds of concurrency errors, they cannot easilyskd at the kernel level.
Our Redflagframework and system seeks to bring these essential tagsig
the Linux kernel by addressing issues faced by other toaist, Bther tools typi-
cally examine every potentially concurrent memory acosbgh is infeasible in
the kernel because of the overhead it would introduce. Redfiaimizes over-
head by using offline analysis together with an efficientime-llogging system
and by supporting targeted configurable logging of spec#imé& components
and data structures. Targeted analysis reduces overhdayaids presenting de-
velopers with error reports for components they are notamesiple for. Second,
other tools do not take into account some of the synchrdpizatatterns found
in the kernel, resulting in false positives. We explore tignathms for detecting
concurrency errors: one for race conditions and anotheatfimicity violations;
we enhanced them to take into account some specifics of symghtion in the
kernel. In particular, we introduce Lexical Object Availily (LOA) analysis to
deal with multi-stage escape and other complex order-eimgisynchronization.
We evaluate the effectiveness and performance of Redflagvorfile systems
and a video driver.

1 Introduction

As the kernel underlies all of a system’s concurrency, ihesmost important front for
eliminating concurrency errors. In order to design a higleljable operating system,
developers need tools to find concurrency errors before ¢hege real problems in
production systems. Understanding concurrency in thedkésrdifficult. Unlike many
user-level applications, almost the entire kernel runs mudti-threaded context, and
much of it is written by experts who rely on intricate synafization techniques.

Runtime analysis is a powerful and flexible approach to diete©f concurrency
errors. We designed theedflagframework and system with the goal of airlifting this
approach to the kernel front lines. Redflag takes its namma ftwck car and formula
racing, where officials signal with a red flag to end a racea# fwo main parts:

1. Fast Kernel Logginguses compiler plug-ins to provideodularinstrumentation
that targets specific data structures in specific kernelystiésis for logging. It



reserves an in-memory buffer to log operations on the tath@ata structures with
the best possible performance.

2. Theoffline Redflag analysitol performs post-mortem analyses on the resulting
logs. Offline analysis reduces runtime overhead and allowsamber of analysis
algorithms to be applied to the logs.

Currently, Redflag implements two kinds of concurrency pses:Lockset[15]
analysis for data races aibtbck-based19] analysis for atomicity violations. We de-
veloped several enhancements to improve the accuracy $¢ #iigorithms, including
Lexical Object AvailabilityLOA) analysis, which eliminates false positives caused by
complicated initialization code. We also augmented Lotksesupport Read-Copy-
Update (RCU) [12] synchronization, a synchronization to@l to the Linux kernel.

The paper is organized as follows. Section 2 describes st#isy Section 3 presents
experimental results. Section 4 discusses related worktid®e5 concludes and dis-
cusses future work.

2 Design

2.1 Instrumentation and Logging

Redflag inserts targeted instrumentation using a suite o @@mpiler plug-ins that
we developed specifically for Redflag. Plug-ins are a rec&€ @ature that we con-
tributed to the development of. Compiler plug-ins executerd) compilation and have
direct access to GCC's intermediate representation ofdtie [2]. Redflag’s GCC plug-
ins search for relevant operations and instrument themfwitbtion calls that serve as
hooks into Redflag’s logging system.

Redflag currently logs four types of operations: (1) Fieldess: read from or write
to a field in astruct ; (2) Synchronization: acquire/release operation on a lmck
wait/signal operation on a condition variable; (3) Memaltg@ation: creation of a ker-
nel object, necessary for tracking memory reuse (Redflagisantrack deallocations,
if desired); (4) System call (syscall) boundary: syscalt@mce/exit (used for atomicity
checking).

When compiling the kernel with the Redflag plug-ins, the digver provides a list
of struct s to target for instrumentation. Field accesses and lockiesgelease opera-
tions are instrumented only if they operate on a targsttedt . A lock acquire/release
operation is considered to operate ostract if the lock it accesses is a field within
thatstruct . Some locks in the kernel are not members of stnyct : these global
locks can be directly targeted by name.

To minimize runtime overhead, and to allow logging in cotgexhere potentially
blocking 1/0 operations are not permitted (e.g., in intptrioandlers or while holding
a spinlock), Redflag stores logged information in a loclefiememory buffer. I/O is
deferred until logging is complete.

When logging is finished, a backend thread empties the baiffgvrites the records
to disk. With 1GB of memory allocated for the buffer, it is gdde to log 7 million
events, which was enough to provide useful results for albmalyses.



2.2 Lockset Algorithm

Lockset is a well known algorithm for detectimtata racesthat result from variable
accesses that are not correctly protected by locks. Ourdaedéinplementation is based

on Eraser [15]. Adata raceoccurs when two accesses to the same variable, at least one
of them a write, can execute together without interveningchyonization. Not all data
races are bugs. A data racebisnignwhen it does not affect the program’s correctness.

Lockset maintains aandidate sebf locks for each monitored variable. The candi-
date lockset represents the locks that have consistemtiggied the variable. A variable
with an empty candidate lockset is potentially involved irmee. Before the first access
to a variable, its candidate lockset is the set of all poedittks. The algorithm tracks
the current lockset for each thread. Each lock-acquireteadats a lock to its thread’s
lockset. The corresponding release removes the lock.

When an access to a variable is processed, the variablel&ieda lockset is refined
by intersecting it with the thread’s current lockset. Inastivords, the algorithm sets
the variable’s candidate lockset to be the set of locks tratvheld foreveryaccess
to the variable. When a candidate lockset becomes emptgldloeithm revisits every
previous access to the same variable, and if no common looksgbed both the current
access and that previous one, we report the pair as a pdtattiarace.

Redflag produces at most one report for each pair of linesdérstlurce code, so
the developer does not need to examine multiple reporthiéosame race. Each report
contains every stack trace that led to the race for both timesde and the list of locks
that were held at each access.

Beyond the basic algorithm described above, there arealm@nmon refinements
that eliminate false positives (false alarms) due to pdiraceesses that do not share
locks but cannot occur concurrently for other reasons.

Variable initialization. When a thread allocates a new object, no other thread has ac-
cess to that object. until the thread stores the new objedtisess in globally accessible
memory. Most initialization routines in the kernel explibits to avoid the cost of lock-
ing during initialization. As a result, most accesses dyimitialization appear to be
data races to the basic Lockset algorithm.

The Eraser algorithm solves this problem by tracking whittbads access variables
to determine when each variable become shared by multigadis [15]. We implement
a variant of this idea: when a variable is accessed by moredha thread or accessed
while holding a lock, it is considered shared. Accesses taréable before its first
shared access are marked as thread local, and Locksetsghers.

Memory reuse.When a region of memory is freed, allocating new data strestin
the same memory can cause false positives in Lockset, beegatiables are identified
by their location in memory. Eraser solves this problem bgitializing the candidate
lockset for every memory location in a newly allocated redi5]. Redflag also logs
calls to allocation functions, so that it can similarly acnofor reuse.



2.3 Block-Based Algorithms

Redflag includes two variants of Wang and Stoller’s blockduhalgorithm [18, 19].
These algorithms check fatomicity, which is similar to serializability of database
transactions and provides a stronger guarantee than freéaon data races. Two
atomic functions executing in parallel always produce thme result as if they exe-
cuted in sequence, one after the other.

When checking atomicity for the kernel, system calls prexadhatural unit of atom-
icity. By default, we check atomicity for each syscall exian. Not all syscalls need to
be atomic, so Redflag provides a simple mechanism to speodyler atomic regions
(see Section 2.5).

We implemented two variants of the block-based algorithsingle-variable vari-
ant that detects violations involving just one variable antivo-variable variant that
detects violations involving more than one variable.

The single-variable block-based algorithm decomposes ggscall execution into
a set ofblocks which represent sequential accesses to a variable. Eack inicludes
two accesses to the same variable in the same thread, assvib# &ist of locks that
were held for the duration of the block (i.e., all locks acqdibefore the first access
and not released until after the second access). The &gotiten checks each block,
searching all other threads for any access to the blockiablarthat might interleave
with the block in an unserializable way. An access can iatett a block if it is made
without holding any of the block’s locks, and the interleayiis unserializable if it
matches any of the patterns in Figure 1(a).

tid-1 ; tid-2 tid-1 ; tid-2 tid-1 ; tid-2
tid-1 tid-2 tid-1 tid-2 write(v1) write(v1) read(v1)
d it write(vl) : read(v2) : write(vl)
1; read(var) . 3w e(var)l write(v2) write(v2) read(v2)
write(var) write(var) write(v2) write(v1) write(v2)
read(var) read(var)
. read(vl) write(vl) read(vl)
2: write(var) 4: read(var) : write(v2) : write(v2) : write(v2)
read(var) final-write(var) write(v1) write(v2) write(v1)
write(var) write(var) write(v2) write(vl) read(v2)
(a) Single variable (b) Double variable

Fig. 1. The illegal interleavings in the single- and double-vaeablock-based algo-
rithms [19]. Note that a final write is the last write to a vémduring the execution of
an atomic region.

The two-variable block-based algorithm also begins by dgmmsing each syscall
execution into blocks. A two-variable block comprises tvazesses talifferent vari-
ablesin the same thread and syscall execution. The algorithntiearfor pairs of
blocks in different threads that can interleave illegaigch block includes enough in-
formation about which locks were held, acquired, or reldadgring its execution to
determine which interleavings are possible. Figure 1(bpshthe six illegal interleav-
ings for the two-variable block-based algorithm; Wang atall& give details of the
locking information saved for each block [19].



Together, these two variants are sufficient to determinethveneany two syscalls
in a trace can violate each other’s atomicity [19]. In otherdas, these algorithms can
detect atomicity violations involving any number of vatlied

Analogues of the Lockset refinements in Section 2.2 are usélgei block-based
algorithm to eliminate false positives due to variableiatitation and memory re-use.

2.4 Algorithm Enhancements

The kernel is a highly concurrent environment and uses akuéferent styles of syn-
chronization. Among these, we found some that were not adddeby previous work
on detecting concurrency violations. This section disesg®/0 new synchronization
methods that Redflag handles: multi-stage escape and RCU.

Multi-stage escape.As explained in Section 2.2, objects within their initi@iion
phases are effectively protected against concurrent scbesause other threads do
not have access to them. However, an object’s accessituilityher threads is not nec-
essarily binary. An object may be available to a limited defuactions during a sec-
ondary initialization phase and then become available tidemset of functions when
that phase completes. During the secondary initializatsmme concurrent accesses
are possible, but the initialization code is still protecégainst interleaving with many
functions. We call this phenomenamnulti-stage escapé\s an example, inode objects
go through two stages of escape. First, after a short fiagtesinitialization, the inode
gets placed on a master inode list in the file system’s supekbFile-system—specific
code performs a second initialization and then assignsitideito a dentry.

The block-based algorithm reported illegal interleavibgsveen accesses in the
second-stage initialization and syscalls that operatdes) fikeread() andwrite()
These interleavings are not possible, however, becaussyleallsalwaysaccess in-
odes through a dentry. Before an object is assigned to aydeits second escape—the
second-stage initialization code is protected againstwoant accesses from any file
syscalls. Interleavings are possible with functions theatdrse the superblock’s inode
list, such as the writeback thread, but they do not resultdmgity violations, because
they were designed to interleave correctly with secondestaitialization.

To avoid reporting these kinds of false interleavings, weoithucelexical Object
Availability (LOA) analysis, which produces a relation on field accessegdch tar-
getedstruct . Intuitively, the LOA relation encodes observed orderingpag lines of
code. We use these orderings to infer when an object beconaesilable to a region
of code, marking the end of an initialization phase.

In the inode example, any access from a file syscall servesidsnee that first-
and second-stage initialization are finished, meaningahatsses from those initial-
ization routines are no longer possible. Accesses from titelvack thread are weaker
evidence, showing that first-stage initialization is firgdh

The LOA algorithm first divides the log file into sub-traceach sub-trace contains
all accesses to one particular instamcef a targetedstruct S. For each sub-trace,
which is for some instance of somsguct S, the algorithm adds an entry for a pair
of statements in the LOA relation fdf when it observes that one of the statements
occurred after the other in a different thread in that saloer Specifically, for atruct



S and read/write statemenisandb, (a, b) is included inLO Ay iff there exists a sub-
trace for an instance efruct S containing events, ande; such that:

1. e, is performed by statement ande, is performed by statemehtand
2. e, occurs before, in the sub-trace, and
3. e, ande;, occur in different threads.

We modified the block-based algorithm to report an atomidityation only if the
interleaving statements that caused the violation arevatito interleave by theitO A
relation. For an event produced by statenettt interleave a block produced by state-
mentsa andce, the LO A relation must contain the pai(a, b) and(b, ¢). Otherwise, the
algorithm considers the interleaving impossible.

Returning to the inode example, consideandc to be statements from the sec-
ondary initialization stage anidto be a statement in a function called by ttead
syscall. Because statemértannot access the inode until after secondary initiabrati
is done,(b, ¢) cannot be iNLO A;;,4., the LO A relation for inodes.

We also added LOA analysis to the Lockset algorithm: it réptbrat two statements
a andb can race only if botl{a, b) and(b, ) are in theLO A relation for thestruct
thata andb access.

Although we designed LOA analysis specifically for multkge escape, it can also
infer other kinds of order-enforcing synchronization. leaample, we found that the
kernel sometimes uses condition variables to protect agagrtain operations to in-
odes that are in a startup state, which lasts longer thaniiislization. We constructed
the happened-before relation [8] to determine which p@eirtterleavings were pre-
cluded by condition variables, but all such interleavingsevalready filtered by LOA.
LOA analysis can also infedestructionphases, when objects typically return to being
exclusive to one thread.

Because LOA filters interleavings based on the observedr @fdevents, it can
cause false negatives (i.e., it can eliminate warningsesponding to actual errors).
The common technique of filtering based on when variablesrbeshared (see Section
2.2) has the same problem: if a variable becomes globallysadiale but is not promptly
accessed by another thread, neither technique recoghaesiich an access is possible.
Dynamic escape analysis addresses this problem by deiagrpnecisely when an
object becomes globally accessible [19], but it accountsifity one level of escape.

Syscall interleavingsEngler and Ashcraft observed that dependencies on datargrev
some kinds of syscalls from interleaving [4]. For examplerigee operation on a file
never executes in parallel with apen operation on the same file, because userspace
programs have no way to caltite beforeopen finishes.
These dependencies are actually a kind of multi-stage estap return fronopen
is an escape for the file object, which then becomes avaitaldéher syscalls, such as
write . For functions that are called only from one syscall, our L&#alysis already
rules out impossible interleavings between syscalls wihkind of dependency.
However, when a function is reused in several syscalls,[ibel relation, as de-
scribed above, cannot distinguish executions of the saatensent that were executed
in different syscalls. As a result, fO A analysis sees that an interleaving in a shared



function is possible between one pair of syscalls, it wilidee that the interleaving is
possible between any pair of syscalls.

To overcome this problem, we augment th@ A relation to contain entries of the
form ((syscall, statement), (syscall, statement)). As a result, LOA analysis treats
a function called from different syscalls as separate fonst Statements that do not
execute in a syscall are instead paired with the name of thmeekthread they execute
in. The augmented O A relations can express dependencies caused by both nagé-st
escape during initialization and dependencies among kysca

RCU. Read-Copy Update (RCU) synchronization is a recent additidhe Linux ker-
nel that allows very efficient read access to shared vasdh®. A typical RCU-write
first copies the protected data structure, modifies the lomay, and then replaces the
pointer to the original copy with a pointer to the updatedycdpCU synchroniza-
tion does not protect against lost updates, so writers maeesttheir own locking. A
reader needs only to surround read-side critical sectiatisreu _read _lock() and
rcu _read _unlock() , which ensure that the shared data structure does not gt fre
during the critical section.

We extended Lockset to test for correctness of RCU use. Whitinead enters
a read-side critical section by callingu _read _lock() , our implementation adds a
virtual RCU lock to the thread’s lockset. We do not report tadtace between aread and
a write if the read access has the virtual RCU lock in its letkslowever, conflicting
writes to an RCU-protected variable will still produce aaledce report.

2.5 Filtering False Positives and Benign Warnings

[+ [Thread 1] */ [ * [Thread 2] */
spin_lock(inode->lock);
inode->i_state |= |_SYNC;

spin_unlock(inode->lock);
spin_lock(inode->lock);
if (inode->i_state & |_CLEAR) {
[x .

spin_unlock(inode->lock);
spin_lock(inode->lock);
inode->i_state &= "I_SYNC;
spin_unlock(inode->lock);

Fig. 2. An interleaving that appears to violate the atomicity ofithstate  field. How-
ever, this is a false alarm, because the two threads acdés®di bits of the field.

Bit-level granularity We found that many false positives in the block-based algms
were caused bflag variables like thei _state field in Figure 2, which group several
boolean values into one integer variable. Because sevaga fire stored in the same



variable, an access to any individual flag appears to acdefiags in the variable.
Erickson et al. observed this same pattern in the Windowsrirekand account for it in
their DataCollider race detector [5].

Figure 2 shows an example of an interleaving that the singt@&ble block-based
algorithm would report as a violation. The two bitwise assignts in thread 1 both
write to thei _state field. These two writes form a block between which the condi-
tional in thread 2 can interleave; this is one of the illegat@rns shown in Figure 1(a).
However, there is no atomicity problem, because thread tesvdnly thel _SYNCbit,
and thread 2 reads only theCLEARDit.

We eliminate such false positives by modifying the bloclsdzhalgorithms to treat
any variable that is sometimes accessed using bitwise tpsras 64 individual vari-
ables (on 64-bit systems). Our analysis still detects ledwings between bitwise ac-
cesses to individual flags and accesses that involve theewlaoiable.

Idempotent operationén operation isdempotenif, when it is executed multiple times
on the same variable, only the first execution changes th&blais value. For example,
setting a bit in a flag variable is an idempotent operationeWitwo threads execute
an idempotent operation, the order of these operations oematter, so atomicity
violations involving them are false positives. The user aanotate lines that perform
idempotent operations. Our algorithms filter out warnirigg tnvolve only these lines.

Choosing atomic region¥Ve found that many atomicity violations initially reportey
the block-based algorithms are benign: the syscalls imgbare not atomic, but are not
required to be atomic. For example, thiefs _file _write()  function in the Btrfs
file system loops through each page that it needs to write bddg of the loop, which
writes one page, should be atomic, but the entire functi@samt need to be.

Redflag lets the user break up atomic regions by marking tihesde asenceposts
A fencepost ends the current atomic region and starts a newFam example, placing
a fencepost at the beginning of the page-write looptifs _file _write()  prevents
Redflag from reporting atomicity violations spanning twerdtions of the loop. Fence-
posts provide a simple way for developers to express exji@rseabout atomicity.

To facilitate fencepost placement, Redflag determineshwihies of code, if marked
as fenceposts, would filter the most atomicity violationsyAine of code that executes
in the same thread as a block between the first and last opesatf the block (see
Section 2.3 for a description of blocks) can serve as a fevatapat filters all violations
involving that block. After the block-based analysis proési a list of atomicity viola-
tions with corresponding blocks, fencepost inference @eds by greedily choosing the
fencepost that will filter the most violations, removinggbeviolations from its list, and
repeating until no violations remain. The resultis a lispofential fenceposts sorted by
the number of violations they filter. The user can examinsdlwandidate fenceposts to
see whether they lie on the boundaries of logical atomicregin the code.

3 Evaluation

To evaluate Redflag’s accuracy and performance, we exdritiea three kernel com-
ponents: Btrfs, Wrapfs, and Noveau. Btrfs is a complex imetlgpment on-disk file



system. Wrapfs is a pass-through stackable file system ¢éhe¢sas a stackable file
system template. Because of the interdependencies bestaskable file systems and
the underlying virtual file system (VFS), we instrumentdd/&S data structures along
with Wrapfs's data structures. We exercised Btrfs and Waapth Racer [16], a work-
load designed to test a variety of file-system system callcw@woently. Nouveau is a
video driver for Nvidia video cards. We exercised Nouveauplgying a video and
running several instances gikgears , a simple 3D OpenGL example.

Lockset resultsL ockset revealed two confirmed locking bugs in Wrapfs. Thst fiug
results from an unprotected access to a field infiteatruct , which is a VFS data
structure instrumented in our Wrapfs tests. A Lockset regloows that parallel calls
to thewrite syscall can access tipes field simultaneously. Investigating this race,
we found an article describing a bug resulting from it: platalrites to a file may
write their data to the same location in a file, in violationREDSIX requirements [3].
Proposed fixes carry an undesirable performance cost,sbugiremains.

The second bug is in Wrapfs itself. Theapfs _setattr ~ function copies a data
structure from the wrapped file system (tlosver inodg to a Wrapfs data structure
(the upper inodé but does not lock either inode, resulting in several Lotksports.
We discovered that file truncate operations call thapfs _setattr ~ function after
modifying the lower inode. If a truncate operation’s cal@pfs _setattr  races with
another call tovrapfs _setattr , the updates to the lower inode from the truncate can
sometimes be lost in the upper inode. We confirmed this buyWitapfs developers.

Lockset detected numerous benignraces: 8 in Btrfs, andWsapfs. In addition, it
detected benign races involving thiat  syscall in Wrapfs, which copies file metadata
from an inode to a user process without locking the inode. Uigotected copy can
race with operations that update the inode, caustistg to return inconsistent (partially
updated) results. This behavior is well known to Linux depelrs, who consider it
preferable to the cost of locking [1], so we filter out the 28a#s involvingstat .

Lockset produced some false positives due to untraced :I&ksr Wrapfs, and
11 for Noveau. These false positives are due to variablesaeseprotected by locks
external to the tracestruct s. These reports can be eliminated by telling Redflag to
trace those locks.

Block-based algorithms result3able 1 summarizes the results of the block-based algo-
rithms. We omitted foustruct s in Btrfs from the analysis, because they are modified
frequently and are not expected to update atomically forraimeesyscall. The two-
variable block-based algorithm is compute- and memorgrsitve, so we applied it to
only part of the Btrfs and Wrapfs logs.

For Wrapfs, thevrapfs _setattr ~ bug described above causes atomicity violations
as well as races; these are counted in the “setattr” colume.r&sults for Wrapfs do
not count 86 reports for the file system that Wrapfs was sthoketop of (Btrfs in our
test). These reports were produced because we told Redfiagttoment all accesses
to targeted VFS structures, but they are not relevant to Widgvelopment.

For Wrapfs, the unprotected reads &t described above cause two-variable
atomicity violations, which are counted in the “stat” colanThese reads do not cause
single-variable atomicity violations, because incomsistresults fromstat involve



useless struct |luntrace
setattfistatjatime| read |lcounting|granularity] lock ||othe

Btrfs 5 61 6/| 2 40
Wrapfs || 34 6| (1443 2
Nouvea 1 21 2 1

Table 1.Summary of results of block-based algorithms. From leftgbt; the columns
show: reports caused lwrapfs _setattr , reports caused byuch _atime , reports
caused by reads with no effect, reports involving countingables, reports caused
by coarse-grained reporting efruct accesses, and reports that do not fall into the
preceding categories. Each column has two sub-columnis,regtults for the single-
variable and two-variable algorithms, respectively. Eyrgatlls represent zero.

multiple inode fields, some read before an update by a comcuaperation on the
file, and some read afterwards.

For Noveau, the report in the “Untraced lock” column inva@wariables protected
by the Big Kernel Lock (BKL), which we track.

The “counting” column counts reports whose write accesemarements or decre-
ments (e.g., accesses to reference count variables).allypihese reports can be ig-
nored, because the order in which increments and decremeruste does not matter—
the result is the same. Our plug-ins mark counting operatiothe log, so Redflag can
automatically classify reports of this type.

The “struct granularity” column counts reports involvistguct s whose fields are
grouped together by Redflag’s logging. Accesses ¢ouet that isnot targeted get
logged when the non-targetsiuct  is a field of someatruct  thatis targeted and the
access is made through the targetedct . However, all the fields in the non-targeted
struct are labeled as accesses to the field in the targated |, so they are treated
as accesses to a single variable. This can cause falsespsgiti the same way that bit-
level operations carcf. Section 2.5). These false positives can be eliminated bingdd
the non-targeted struct to the list of targeted structs.

Filtering. Table 2 shows how many reports were filtered from the resfittseosingle-
variable block-based algorithm (which produced the magsbrs) by manually chosen
fenceposts, bit-level granularity, and LOA analysis. Theffltered” column shows the
number of reports not filtered by any of these techniques. $&d tewer than ten manu-
ally chosen fenceposts each for Btrfs and Wrapfs. Chookieggtfenceposts took only
a few hours of work. We did not use fenceposts for our analysiMouveau because
we found that entire Nouveau syscalls are atomic.

LOA analysis is the most effective among these filters. Orimastruct s in each
of the modules we tested go through a multi-stage escapthdmestruct s are widely
accessed. It is clear from the number of false positives veichdhat a technique like
LOA analysis is necessary to cope with the complicatedalittion procedures in
systems code.
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FenceposiBit-level granularity OA|Unfiltereg
Btrfs 44 0 159 108
Wrapfs 81 6 215 79
Nouveal - 2 7 22

Table 2. Number of false positives filtered out by various techniques

Some reports filtered by LOA analysis may be actual atomidityations, as dis-
cussed in Section 2.4. This happened with a bug in Btrfs’ énindtialization that we
discovered during our experiments. The Birfs file creatiamcfion initializes the new
inode’s file operations vector just after the inode is linked dentry. This linking is the
inode’s second stage of escape, as discussed Section 2eh. théhdentry link makes
the new inode globally available, there is a very narrow wimdiuring which another
thread can open the inode while the inode’s file operatiowtoves still empty. This
bug is detected by the single-variable block-based algoritut the report is filtered
out by LOA analysis. LOA analysis will determine that the dyngperations vector is
available to theopen syscall only if an open occurs during this window in the logge
execution, which is unlikely. Dynamic escape analysisexily recognizes the possible
interleaving in any execution, but has other drawbacksb&e it accounts for only one
level of escape. In particular, the bug can be fixed by moviedile operations vector
initialization earlier in the function: before the inoddiiked to a dentry, but still after
the inode’s first escape. Dynamic escape analysis woulastikider the interleaving
possible, resulting in a false positive.

We tested the fencepost inference algorithm in Section 2.Btd's. We limited it
to placing fenceposts in Btrfs functions (not, e.g., ligréunctions called from Btrfs
functions). The algorithm produced a useful list of canthdanceposts. For example,
the first fencepost on the list is just before the functiort Heaializes an inode, which
is reasonable because operations that flush multiple inmddisk are not generally
designed to provide an atomicity guarantee across all it@ite operations.

Performance.To evaluate the performance of our instrumentation andiaggve mea-
sured overhead with a micro-benchmark that stresses tg@lpgystem by constantly
writing to a targeted file system. For this experiment, weestahe file system on a
RAM disk to ensure that 1/O costs did not hide overhead. Thig&ment was run on
a computer with two 2.8GHz single-core Intel Xeon processthe instrumentation
targeted Btrfs running as part of the 2.6.36-rc3 Linux keM& measured an overhead
of 2.44x for an instrumented kernel without logging, and 2x6%ith logging turned
on. The additional overhead from logging includes storimgne data, copying the call
stack, and reserving buffer space using atomic memory tipesa

Schedule sensitivity of LOAAIthough LOA is very effective at removing false pos-
itives, it is sensitive to the observed ordering of eventgeptially resulting in false
negatives, as discussed in Section 2.4. We evaluated L@ASsitsvity to event or-
derings by repeating a workload under different configorei single-core, dual-core,
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quad-core, and single-core with kernel preemption digshiWe then analyzed the logs
with the single-variable block-based algorithm. The asialyesults were quite stable
across these different configurations, even though thegrgés different schedules.
The biggest difference is that the non-preemptible log essks3 of the 201 violations
found in the quad-core log. There were only three violatiamsjue to just one log.

4 Related Work

A number of techniques, both runtime and static, exist facking down difficult con-
currency errors. This section discusses tools from seeatafories: runtime race de-
tectors, static analyzers, model checkers, and runtimeieity checkers.

Runtime race detectio®ur Lockset algorithm is based on the Eraser algorithm [15].
Several other variants of Lockset exist, implemented foamety of languages. LOA
analysis is the main distinguishing feature of our versidome features of other race
detectors could be integrated into Redflag, for exampleusigeof sampling to reduce
overhead, at the cost of possibly missing some errors, ageR&ce [11].

Microsoft Research’s DataCollider [5] is the only othertiore data race detector
that has been applied to an OS kernel, to the best of our kdgeleSpecifically, it has
been applied to several modules in the Windows kernel arettiat numerous races.
It detects actual data races when they occur, in contrasbtidet-based algorithms
that analyze synchronization to detect possible racesutime, DataCollider pauses
athread about to perform a memory access and then uses hasdatahpoints to inter-
cept conflicting accesses that occur within the pause iakefhis approach produces
no false positives but may take longer to find races and may races that happen only
rarely. DataCollider uses sampling to reduce overhead.

Static analysisStatic analysis tools, typically based on the Lockset aagiaf finding
variables that lack a consistent locking discipline, hameavered races even in some
large systems. For example, RacerX [4] and RELAY [17] fouathdaces in the Linux
kernel. Static race detection tools generally produce nfalsg positives, due to the
well-known difficulties of analyzing aliasing, function imers, calling context, etc.

Static analysis of atomicity has been studied (e.g., [7), 4] not applied to large
systems software. Generally, these analyses check whbtheode follows certain safe
synchronization patterns.

Runtime atomicity checkinglo the best of our knowledge, we are the first to apply a
runtime atomicity checker to components of an OS kernehd\lgh we used the block-
based algorithms, other runtime techniques for checkiogiity and similar proper-
ties could be adapted to work on Redflag’s logs. Atomicityoklees based on Lipton’s
reduction theorem [9, 6, 19] are computationally much cke#pan the block-based al-
gorithms, because they check a simpler condition that fcgrit but not necessary for
ensuring atomicity. As a result, however, they usually picedmore false positives.
AVIO [10] and CTrigger [13] use heuristics to infer programms’ expectations
about atomicity, and then check for violations thereof. (is#omicity violations). An
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important difference from our work is that the block-baskpbethm reports potential
and actual atomicity violations, while AVIO and CTriggepret only actual atomicity
violations (i.e., atomicity violations that manifest inetmonitored run). They actively
perturb the schedule to increase the likelihood that atityrticigs will manifest during
testing. Also, they do not detect atomicity violations ilwing multiple variables. As
a result, they are computationally cheaper and producerftalse positives, but they
are more schedule-sensitive and may miss bugs that the-blszd algorithms would
report. Their implementations use binary instrumentatiod are not integrated with
the compiler, so it would be difficult to target their anas/t specific data structures.

5 Conclusions

We have described the design of Redflag and shown that it c@essfully detect data
races and atomicity violations in components of the Linusnké To the best of our
knowledge, Redflag is the first runtime race detector apptietie Linux kernel, and
the first runtime atomicity detector for any OS kernel.

Redflag’s runtime analyses are designed to detect poteatieiurrency problems
even if actual errors occur only in rare schedules not seengitesting. The analyses
are based on well-known algorithms but contain a number térestons that signifi-
cantly improve accuracy, such as LOA analysis. Althougtctist of thorough logging
can be high, we have shown that Redflag’s performance is iguffito capture traces
that exercise many system calls and execution paths.

Future work We plan to extend Redflag with dynamic escape analysis aive actaly-
sis (i.e., schedule perturbation) and experiment withrikeraction between these tech-
niques and LOA analysis. We also plan to extend Redflag withretysis that identi-
fies where memory barriers are needed. Memory barriers hadrie usually necessary
only in low-level systems code, prevent memory operatianderings that would oth-
erwise be allowed by the weak (not sequentially consisteetnory models used in
modern compilers and processors. Another direction farréutvork is to apply Red-
flag for performance improvement of concurrent code. By ararg locking and ac-
cess patterns in execution logs, Redflag could identifycatisections that can employ
double-checked locking and data structures that wouldfiigrmm RCU use. We plan
to release the entire Redflag framework and tools publictienan open source license.
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