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Abstract. Although sophisticated runtime bug detection tools exist to root out
several kinds of concurrency errors, they cannot easily be used at the kernel level.
Our Redflagframework and system seeks to bring these essential techniques to
the Linux kernel by addressing issues faced by other tools. First, other tools typi-
cally examine every potentially concurrent memory access,which is infeasible in
the kernel because of the overhead it would introduce. Redflag minimizes over-
head by using offline analysis together with an efficient in-line logging system
and by supporting targeted configurable logging of specific kernel components
and data structures. Targeted analysis reduces overhead and avoids presenting de-
velopers with error reports for components they are not responsible for. Second,
other tools do not take into account some of the synchronization patterns found
in the kernel, resulting in false positives. We explore two algorithms for detecting
concurrency errors: one for race conditions and another foratomicity violations;
we enhanced them to take into account some specifics of synchronization in the
kernel. In particular, we introduce Lexical Object Availability (LOA) analysis to
deal with multi-stage escape and other complex order-enforcing synchronization.
We evaluate the effectiveness and performance of Redflag on two file systems
and a video driver.

1 Introduction

As the kernel underlies all of a system’s concurrency, it is the most important front for
eliminating concurrency errors. In order to design a highlyreliable operating system,
developers need tools to find concurrency errors before theycause real problems in
production systems. Understanding concurrency in the kernel is difficult. Unlike many
user-level applications, almost the entire kernel runs in amulti-threaded context, and
much of it is written by experts who rely on intricate synchronization techniques.

Runtime analysis is a powerful and flexible approach to detection of concurrency
errors. We designed theRedflagframework and system with the goal of airlifting this
approach to the kernel front lines. Redflag takes its name from stock car and formula
racing, where officials signal with a red flag to end a race. It has two main parts:

1. Fast Kernel Logginguses compiler plug-ins to providemodular instrumentation
that targets specific data structures in specific kernel subsystems for logging. It



reserves an in-memory buffer to log operations on the targeted data structures with
the best possible performance.

2. Theoffline Redflag analysistool performs post-mortem analyses on the resulting
logs. Offline analysis reduces runtime overhead and allows any number of analysis
algorithms to be applied to the logs.

Currently, Redflag implements two kinds of concurrency analyses:Lockset[15]
analysis for data races andblock-based[19] analysis for atomicity violations. We de-
veloped several enhancements to improve the accuracy of these algorithms, including
Lexical Object Availability(LOA) analysis, which eliminates false positives caused by
complicated initialization code. We also augmented Lockset to support Read-Copy-
Update (RCU) [12] synchronization, a synchronization toolnew to the Linux kernel.

The paper is organized as follows. Section 2 describes our system. Section 3 presents
experimental results. Section 4 discusses related work. Section 5 concludes and dis-
cusses future work.

2 Design

2.1 Instrumentation and Logging

Redflag inserts targeted instrumentation using a suite of GCC compiler plug-ins that
we developed specifically for Redflag. Plug-ins are a recent GCC feature that we con-
tributed to the development of. Compiler plug-ins execute during compilation and have
direct access to GCC’s intermediate representation of the code [2]. Redflag’s GCC plug-
ins search for relevant operations and instrument them withfunction calls that serve as
hooks into Redflag’s logging system.

Redflag currently logs four types of operations: (1) Field access: read from or write
to a field in astruct ; (2) Synchronization: acquire/release operation on a lockor
wait/signal operation on a condition variable; (3) Memory allocation: creation of a ker-
nel object, necessary for tracking memory reuse (Redflag canalso track deallocations,
if desired); (4) System call (syscall) boundary: syscall entrance/exit (used for atomicity
checking).

When compiling the kernel with the Redflag plug-ins, the developer provides a list
of struct s to target for instrumentation. Field accesses and lock acquire/release opera-
tions are instrumented only if they operate on a targetedstruct . A lock acquire/release
operation is considered to operate on astruct if the lock it accesses is a field within
that struct . Some locks in the kernel are not members of anystruct : these global
locks can be directly targeted by name.

To minimize runtime overhead, and to allow logging in contexts where potentially
blocking I/O operations are not permitted (e.g., in interrupt handlers or while holding
a spinlock), Redflag stores logged information in a lock-free in-memory buffer. I/O is
deferred until logging is complete.

When logging is finished, a backend thread empties the bufferand writes the records
to disk. With 1GB of memory allocated for the buffer, it is possible to log 7 million
events, which was enough to provide useful results for all our analyses.
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2.2 Lockset Algorithm

Lockset is a well known algorithm for detectingdata racesthat result from variable
accesses that are not correctly protected by locks. Our Lockset implementation is based
on Eraser [15]. Adata raceoccurs when two accesses to the same variable, at least one
of them a write, can execute together without intervening synchronization. Not all data
races are bugs. A data race isbenignwhen it does not affect the program’s correctness.

Lockset maintains acandidate setof locks for each monitored variable. The candi-
date lockset represents the locks that have consistently protected the variable. A variable
with an empty candidate lockset is potentially involved in arace. Before the first access
to a variable, its candidate lockset is the set of all possible locks. The algorithm tracks
the current lockset for each thread. Each lock-acquire event adds a lock to its thread’s
lockset. The corresponding release removes the lock.

When an access to a variable is processed, the variable’s candidate lockset is refined
by intersecting it with the thread’s current lockset. In other words, the algorithm sets
the variable’s candidate lockset to be the set of locks that were held foreveryaccess
to the variable. When a candidate lockset becomes empty, thealgorithm revisits every
previous access to the same variable, and if no common locks protected both the current
access and that previous one, we report the pair as a potential data race.

Redflag produces at most one report for each pair of lines in the source code, so
the developer does not need to examine multiple reports for the same race. Each report
contains every stack trace that led to the race for both linesof code and the list of locks
that were held at each access.

Beyond the basic algorithm described above, there are several common refinements
that eliminate false positives (false alarms) due to pairs of accesses that do not share
locks but cannot occur concurrently for other reasons.

Variable initialization. When a thread allocates a new object, no other thread has ac-
cess to that object. until the thread stores the new object’saddress in globally accessible
memory. Most initialization routines in the kernel exploitthis to avoid the cost of lock-
ing during initialization. As a result, most accesses during initialization appear to be
data races to the basic Lockset algorithm.

The Eraser algorithm solves this problem by tracking which threads access variables
to determine when each variable become shared by multiple threads [15]. We implement
a variant of this idea: when a variable is accessed by more than one thread or accessed
while holding a lock, it is considered shared. Accesses to a variable before its first
shared access are marked as thread local, and Lockset ignores them.

Memory reuse.When a region of memory is freed, allocating new data structures in
the same memory can cause false positives in Lockset, because variables are identified
by their location in memory. Eraser solves this problem by reinitializing the candidate
lockset for every memory location in a newly allocated region [15]. Redflag also logs
calls to allocation functions, so that it can similarly account for reuse.
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2.3 Block-Based Algorithms

Redflag includes two variants of Wang and Stoller’s block-based algorithm [18, 19].
These algorithms check foratomicity, which is similar to serializability of database
transactions and provides a stronger guarantee than freedom from data races. Two
atomic functions executing in parallel always produce the same result as if they exe-
cuted in sequence, one after the other.

When checking atomicity for the kernel, system calls provide a natural unit of atom-
icity. By default, we check atomicity for each syscall execution. Not all syscalls need to
be atomic, so Redflag provides a simple mechanism to specify smaller atomic regions
(see Section 2.5).

We implemented two variants of the block-based algorithm: asingle-variable vari-
ant that detects violations involving just one variable anda two-variable variant that
detects violations involving more than one variable.

The single-variable block-based algorithm decomposes each syscall execution into
a set ofblocks, which represent sequential accesses to a variable. Each block includes
two accesses to the same variable in the same thread, as well as the list of locks that
were held for the duration of the block (i.e., all locks acquired before the first access
and not released until after the second access). The algorithm then checks each block,
searching all other threads for any access to the block’s variable that might interleave
with the block in an unserializable way. An access can interleave a block if it is made
without holding any of the block’s locks, and the interleaving is unserializable if it
matches any of the patterns in Figure 1(a).

tid-1 tid-2

read(var)

read(var)

write(var)

write(var)

write(var)

read(var)

write(var)

read(var)

write(var)

read(var)

write(var)

final-write(var)

tid-1 tid-2

1:

2:

3:

4:

(a) Single variable

write(v1)

write(v2)

write(v1)

write(v2)

read(v1)

write(v2)

write(v2)

write(v1)

tid-1 tid-2

write(v1)

write(v2)

write(v2)

write(v1)

write(v1)

write(v2)

read(v2)

write(v1)

tid-1 tid-2

read(v1)

write(v2)

write(v1)

read(v2)

read(v1)

read(v2)

write(v2)

write(v1)

tid-1 tid-2

1:

2:

3:

4:

5:

6:
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Fig. 1. The illegal interleavings in the single- and double-variable block-based algo-
rithms [19]. Note that a final write is the last write to a variable during the execution of
an atomic region.

The two-variable block-based algorithm also begins by decomposing each syscall
execution into blocks. A two-variable block comprises two accesses todifferent vari-
ables in the same thread and syscall execution. The algorithm searches for pairs of
blocks in different threads that can interleave illegally.Each block includes enough in-
formation about which locks were held, acquired, or released during its execution to
determine which interleavings are possible. Figure 1(b) shows the six illegal interleav-
ings for the two-variable block-based algorithm; Wang and Stoller give details of the
locking information saved for each block [19].
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Together, these two variants are sufficient to determine whether any two syscalls
in a trace can violate each other’s atomicity [19]. In other words, these algorithms can
detect atomicity violations involving any number of variables.

Analogues of the Lockset refinements in Section 2.2 are used in the block-based
algorithm to eliminate false positives due to variable initialization and memory re-use.

2.4 Algorithm Enhancements

The kernel is a highly concurrent environment and uses several different styles of syn-
chronization. Among these, we found some that were not addressed by previous work
on detecting concurrency violations. This section discusses two new synchronization
methods that Redflag handles: multi-stage escape and RCU.

Multi-stage escape.As explained in Section 2.2, objects within their initialization
phases are effectively protected against concurrent access, because other threads do
not have access to them. However, an object’s accessibilityto other threads is not nec-
essarily binary. An object may be available to a limited set of functions during a sec-
ondary initialization phase and then become available to a wider set of functions when
that phase completes. During the secondary initialization, some concurrent accesses
are possible, but the initialization code is still protected against interleaving with many
functions. We call this phenomenonmulti-stage escape. As an example, inode objects
go through two stages of escape. First, after a short first-stage initialization, the inode
gets placed on a master inode list in the file system’s superblock. File-system–specific
code performs a second initialization and then assigns the inode to a dentry.

The block-based algorithm reported illegal interleavingsbetween accesses in the
second-stage initialization and syscalls that operate on files, likeread() andwrite() .
These interleavings are not possible, however, because filesyscallsalwaysaccess in-
odes through a dentry. Before an object is assigned to a dentry—its second escape—the
second-stage initialization code is protected against concurrent accesses from any file
syscalls. Interleavings are possible with functions that traverse the superblock’s inode
list, such as the writeback thread, but they do not result in atomicity violations, because
they were designed to interleave correctly with second-stage initialization.

To avoid reporting these kinds of false interleavings, we introduceLexical Object
Availability (LOA) analysis, which produces a relation on field accesses for each tar-
getedstruct . Intuitively, the LOA relation encodes observed ordering among lines of
code. We use these orderings to infer when an object becomes unavailable to a region
of code, marking the end of an initialization phase.

In the inode example, any access from a file syscall serves as evidence that first-
and second-stage initialization are finished, meaning thataccesses from those initial-
ization routines are no longer possible. Accesses from the writeback thread are weaker
evidence, showing that first-stage initialization is finished.

The LOA algorithm first divides the log file into sub-traces. Each sub-trace contains
all accesses to one particular instanceo of a targetedstruct S. For each sub-trace,
which is for some instance of somestruct S, the algorithm adds an entry for a pair
of statements in the LOA relation forS when it observes that one of the statements
occurred after the other in a different thread in that sub-trace. Specifically, for astruct
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S and read/write statementsa andb, (a, b) is included inLOAS iff there exists a sub-
trace for an instance ofstruct S containing eventsea andeb such that:

1. ea is performed by statementa, andeb is performed by statementb, and
2. ea occurs beforeeb in the sub-trace, and
3. ea andeb occur in different threads.

We modified the block-based algorithm to report an atomicityviolation only if the
interleaving statements that caused the violation are allowed to interleave by theirLOA

relation. For an event produced by statementb to interleave a block produced by state-
mentsa andc, theLOA relation must contain the pairs(a, b) and(b, c). Otherwise, the
algorithm considers the interleaving impossible.

Returning to the inode example, considera andc to be statements from the sec-
ondary initialization stage andb to be a statement in a function called by theread

syscall. Because statementb cannot access the inode until after secondary initialization
is done,(b, c) cannot be inLOAinode, theLOA relation for inodes.

We also added LOA analysis to the Lockset algorithm: it reports that two statements
a andb can race only if both(a, b) and(b, a) are in theLOA relation for thestruct

thata andb access.
Although we designed LOA analysis specifically for multi-stage escape, it can also

infer other kinds of order-enforcing synchronization. Forexample, we found that the
kernel sometimes uses condition variables to protect against certain operations to in-
odes that are in a startup state, which lasts longer than its initialization. We constructed
the happened-before relation [8] to determine which potential interleavings were pre-
cluded by condition variables, but all such interleavings were already filtered by LOA.
LOA analysis can also inferdestructionphases, when objects typically return to being
exclusive to one thread.

Because LOA filters interleavings based on the observed order of events, it can
cause false negatives (i.e., it can eliminate warnings corresponding to actual errors).
The common technique of filtering based on when variables become shared (see Section
2.2) has the same problem: if a variable becomes globally accessible but is not promptly
accessed by another thread, neither technique recognizes that such an access is possible.
Dynamic escape analysis addresses this problem by determining precisely when an
object becomes globally accessible [19], but it accounts for only one level of escape.

Syscall interleavings.Engler and Ashcraft observed that dependencies on data prevent
some kinds of syscalls from interleaving [4]. For example, awrite operation on a file
never executes in parallel with anopen operation on the same file, because userspace
programs have no way to callwrite beforeopen finishes.

These dependencies are actually a kind of multi-stage escape. The return fromopen

is an escape for the file object, which then becomes availableto other syscalls, such as
write . For functions that are called only from one syscall, our LOAanalysis already
rules out impossible interleavings between syscalls with this kind of dependency.

However, when a function is reused in several syscalls, theLOA relation, as de-
scribed above, cannot distinguish executions of the same statement that were executed
in different syscalls. As a result, ifLOA analysis sees that an interleaving in a shared
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function is possible between one pair of syscalls, it will believe that the interleaving is
possible between any pair of syscalls.

To overcome this problem, we augment theLOA relation to contain entries of the
form ((syscall, statement), (syscall, statement)). As a result, LOA analysis treats
a function called from different syscalls as separate functions. Statements that do not
execute in a syscall are instead paired with the name of the kernel thread they execute
in. The augmentedLOA relations can express dependencies caused by both multi-stage
escape during initialization and dependencies among syscalls.

RCU. Read-Copy Update (RCU) synchronization is a recent addition to the Linux ker-
nel that allows very efficient read access to shared variables [12]. A typical RCU-write
first copies the protected data structure, modifies the localcopy, and then replaces the
pointer to the original copy with a pointer to the updated copy. RCU synchroniza-
tion does not protect against lost updates, so writers must use their own locking. A
reader needs only to surround read-side critical sections with rcu read lock() and
rcu read unlock() , which ensure that the shared data structure does not get freed
during the critical section.

We extended Lockset to test for correctness of RCU use. When athread enters
a read-side critical section by callingrcu read lock() , our implementation adds a
virtual RCU lock to the thread’s lockset. We do not report a data race between a read and
a write if the read access has the virtual RCU lock in its lockset. However, conflicting
writes to an RCU-protected variable will still produce a data race report.

2.5 Filtering False Positives and Benign Warnings

/ * [Thread 1] * / / * [Thread 2] * /
spin_lock(inode->lock);
inode->i_state |= I_SYNC;
spin_unlock(inode->lock);

spin_lock(inode->lock);
if (inode->i_state & I_CLEAR) {

/ * ... * /
}
spin_unlock(inode->lock);

spin_lock(inode->lock);
inode->i_state &= ˜I_SYNC;
spin_unlock(inode->lock);

Fig. 2.An interleaving that appears to violate the atomicity of thei state field. How-
ever, this is a false alarm, because the two threads access different bits of the field.

Bit-level granularity We found that many false positives in the block-based algorithms
were caused byflag variables, like the i state field in Figure 2, which group several
boolean values into one integer variable. Because several flags are stored in the same
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variable, an access to any individual flag appears to access all flags in the variable.
Erickson et al. observed this same pattern in the Windows 7 kernel and account for it in
their DataCollider race detector [5].

Figure 2 shows an example of an interleaving that the single-variable block-based
algorithm would report as a violation. The two bitwise assignments in thread 1 both
write to thei state field. These two writes form a block between which the condi-
tional in thread 2 can interleave; this is one of the illegal patterns shown in Figure 1(a).
However, there is no atomicity problem, because thread 1 writes only theI SYNCbit,
and thread 2 reads only theI CLEARbit.

We eliminate such false positives by modifying the block-based algorithms to treat
any variable that is sometimes accessed using bitwise operators as 64 individual vari-
ables (on 64-bit systems). Our analysis still detects interleavings between bitwise ac-
cesses to individual flags and accesses that involve the whole variable.

Idempotent operationsAn operation isidempotentif, when it is executed multiple times
on the same variable, only the first execution changes the variable’s value. For example,
setting a bit in a flag variable is an idempotent operation. When two threads execute
an idempotent operation, the order of these operations doesnot matter, so atomicity
violations involving them are false positives. The user canannotate lines that perform
idempotent operations. Our algorithms filter out warnings that involve only these lines.

Choosing atomic regionsWe found that many atomicity violations initially reportedby
the block-based algorithms are benign: the syscalls involved are not atomic, but are not
required to be atomic. For example, thebtrfs file write() function in the Btrfs
file system loops through each page that it needs to write. Thebody of the loop, which
writes one page, should be atomic, but the entire function does not need to be.

Redflag lets the user break up atomic regions by marking linesof code asfenceposts.
A fencepost ends the current atomic region and starts a new one. For example, placing
a fencepost at the beginning of the page-write loop inbtrfs file write() prevents
Redflag from reporting atomicity violations spanning two iterations of the loop. Fence-
posts provide a simple way for developers to express expectations about atomicity.

To facilitate fencepost placement, Redflag determines which lines of code, if marked
as fenceposts, would filter the most atomicity violations. Any line of code that executes
in the same thread as a block between the first and last operations of the block (see
Section 2.3 for a description of blocks) can serve as a fencepost that filters all violations
involving that block. After the block-based analysis produces a list of atomicity viola-
tions with corresponding blocks, fencepost inference proceeds by greedily choosing the
fencepost that will filter the most violations, removing these violations from its list, and
repeating until no violations remain. The result is a list ofpotential fenceposts sorted by
the number of violations they filter. The user can examine these candidate fenceposts to
see whether they lie on the boundaries of logical atomic regions in the code.

3 Evaluation

To evaluate Redflag’s accuracy and performance, we exercised it on three kernel com-
ponents: Btrfs, Wrapfs, and Noveau. Btrfs is a complex in-development on-disk file
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system. Wrapfs is a pass-through stackable file system that serves as a stackable file
system template. Because of the interdependencies betweenstackable file systems and
the underlying virtual file system (VFS), we instrumented all VFS data structures along
with Wrapfs’s data structures. We exercised Btrfs and Wrapfs with Racer [16], a work-
load designed to test a variety of file-system system calls concurrently. Nouveau is a
video driver for Nvidia video cards. We exercised Nouveau byplaying a video and
running several instances ofglxgears , a simple 3D OpenGL example.

Lockset results.Lockset revealed two confirmed locking bugs in Wrapfs. The first bug
results from an unprotected access to a field in thefile struct , which is a VFS data
structure instrumented in our Wrapfs tests. A Lockset report shows that parallel calls
to thewrite syscall can access thepos field simultaneously. Investigating this race,
we found an article describing a bug resulting from it: parallel writes to a file may
write their data to the same location in a file, in violation ofPOSIX requirements [3].
Proposed fixes carry an undesirable performance cost, so this bug remains.

The second bug is in Wrapfs itself. Thewrapfs setattr function copies a data
structure from the wrapped file system (thelower inode) to a Wrapfs data structure
(the upper inode) but does not lock either inode, resulting in several Lockset reports.
We discovered that file truncate operations call thewrapfs setattr function after
modifying the lower inode. If a truncate operation’s call towrapfs setattr races with
another call towrapfs setattr , the updates to the lower inode from the truncate can
sometimes be lost in the upper inode. We confirmed this bug with Wrapfs developers.

Lockset detected numerous benign races: 8 in Btrfs, and 45 inWrapfs. In addition, it
detected benign races involving thestat syscall in Wrapfs, which copies file metadata
from an inode to a user process without locking the inode. Theunprotected copy can
race with operations that update the inode, causingstat to return inconsistent (partially
updated) results. This behavior is well known to Linux developers, who consider it
preferable to the cost of locking [1], so we filter out the 29 reports involvingstat .

Lockset produced some false positives due to untraced locks: 2 for Wrapfs, and
11 for Noveau. These false positives are due to variable accesses protected by locks
external to the tracedstruct s. These reports can be eliminated by telling Redflag to
trace those locks.

Block-based algorithms results.Table 1 summarizes the results of the block-based algo-
rithms. We omitted fourstruct s in Btrfs from the analysis, because they are modified
frequently and are not expected to update atomically for an entire syscall. The two-
variable block-based algorithm is compute- and memory-intensive, so we applied it to
only part of the Btrfs and Wrapfs logs.

For Wrapfs, thewrapfs setattr bug described above causes atomicity violations
as well as races; these are counted in the “setattr” column. The results for Wrapfs do
not count 86 reports for the file system that Wrapfs was stacked on top of (Btrfs in our
test). These reports were produced because we told Redflag toinstrument all accesses
to targeted VFS structures, but they are not relevant to Wrapfs development.

For Wrapfs, the unprotected reads bystat described above cause two-variable
atomicity violations, which are counted in the “stat” column. These reads do not cause
single-variable atomicity violations, because inconsistent results fromstat involve
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useless struct untraced
setattrstat atime read countinggranularity lock other

Btrfs 5 61 6 2 40
Wrapfs 34 6 14 43 2
Nouveau 1 21 2 1

Table 1.Summary of results of block-based algorithms. From left to right, the columns
show: reports caused bywrapfs setattr , reports caused bytouch atime , reports
caused by reads with no effect, reports involving counting variables, reports caused
by coarse-grained reporting ofstruct accesses, and reports that do not fall into the
preceding categories. Each column has two sub-columns, with results for the single-
variable and two-variable algorithms, respectively. Empty cells represent zero.

multiple inode fields, some read before an update by a concurrent operation on the
file, and some read afterwards.

For Noveau, the report in the “Untraced lock” column involves variables protected
by the Big Kernel Lock (BKL), which we track.

The “counting” column counts reports whose write accesses are increments or decre-
ments (e.g., accesses to reference count variables). Typically, these reports can be ig-
nored, because the order in which increments and decrementsexecute does not matter—
the result is the same. Our plug-ins mark counting operations in the log, so Redflag can
automatically classify reports of this type.

The “struct granularity” column counts reports involvingstruct s whose fields are
grouped together by Redflag’s logging. Accesses to astruct that isnot targeted get
logged when the non-targetedstruct is a field of somestruct that is targeted and the
access is made through the targetedstruct . However, all the fields in the non-targeted
struct are labeled as accesses to the field in the targetedstruct , so they are treated
as accesses to a single variable. This can cause false positives, in the same way that bit-
level operations can (cf. Section 2.5). These false positives can be eliminated by adding
the non-targeted struct to the list of targeted structs.

Filtering. Table 2 shows how many reports were filtered from the results of the single-
variable block-based algorithm (which produced the most reports) by manually chosen
fenceposts, bit-level granularity, and LOA analysis. The “unfiltered” column shows the
number of reports not filtered by any of these techniques. We used fewer than ten manu-
ally chosen fenceposts each for Btrfs and Wrapfs. Choosing these fenceposts took only
a few hours of work. We did not use fenceposts for our analysisof Nouveau because
we found that entire Nouveau syscalls are atomic.

LOA analysis is the most effective among these filters. Only afew struct s in each
of the modules we tested go through a multi-stage escape, butthosestruct s are widely
accessed. It is clear from the number of false positives removed that a technique like
LOA analysis is necessary to cope with the complicated initialization procedures in
systems code.
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FencepostsBit-level granularityLOA Unfiltered
Btrfs 44 0 159 108
Wrapfs 81 6 215 79
Nouveau - 2 70 22

Table 2.Number of false positives filtered out by various techniques.

Some reports filtered by LOA analysis may be actual atomicityviolations, as dis-
cussed in Section 2.4. This happened with a bug in Btrfs’ inode initialization that we
discovered during our experiments. The Btrfs file creation function initializes the new
inode’s file operations vector just after the inode is linkedto a dentry. This linking is the
inode’s second stage of escape, as discussed Section 2.4. When the dentry link makes
the new inode globally available, there is a very narrow window during which another
thread can open the inode while the inode’s file operations vector is still empty. This
bug is detected by the single-variable block-based algorithm, but the report is filtered
out by LOA analysis. LOA analysis will determine that the empty operations vector is
available to theopen syscall only if an open occurs during this window in the logged
execution, which is unlikely. Dynamic escape analysis correctly recognizes the possible
interleaving in any execution, but has other drawbacks, because it accounts for only one
level of escape. In particular, the bug can be fixed by moving the file operations vector
initialization earlier in the function: before the inode islinked to a dentry, but still after
the inode’s first escape. Dynamic escape analysis would still consider the interleaving
possible, resulting in a false positive.

We tested the fencepost inference algorithm in Section 2.5 on Btrfs. We limited it
to placing fenceposts in Btrfs functions (not, e.g., library functions called from Btrfs
functions). The algorithm produced a useful list of candidate fenceposts. For example,
the first fencepost on the list is just before the function that serializes an inode, which
is reasonable because operations that flush multiple inodesto disk are not generally
designed to provide an atomicity guarantee across all theirinode operations.

Performance.To evaluate the performance of our instrumentation and logging, we mea-
sured overhead with a micro-benchmark that stresses the logging system by constantly
writing to a targeted file system. For this experiment, we stored the file system on a
RAM disk to ensure that I/O costs did not hide overhead. This experiment was run on
a computer with two 2.8GHz single-core Intel Xeon processors. The instrumentation
targeted Btrfs running as part of the 2.6.36-rc3 Linux kernel. We measured an overhead
of 2.44× for an instrumented kernel without logging, and 2.65× with logging turned
on. The additional overhead from logging includes storing event data, copying the call
stack, and reserving buffer space using atomic memory operations.

Schedule sensitivity of LOA.Although LOA is very effective at removing false pos-
itives, it is sensitive to the observed ordering of events, potentially resulting in false
negatives, as discussed in Section 2.4. We evaluated LOA’s sensitivity to event or-
derings by repeating a workload under different configurations: single-core, dual-core,

11



quad-core, and single-core with kernel preemption disabled. We then analyzed the logs
with the single-variable block-based algorithm. The analysis results were quite stable
across these different configurations, even though they generate different schedules.
The biggest difference is that the non-preemptible log misses 13 of the 201 violations
found in the quad-core log. There were only three violationsunique to just one log.

4 Related Work

A number of techniques, both runtime and static, exist for tracking down difficult con-
currency errors. This section discusses tools from severalcategories: runtime race de-
tectors, static analyzers, model checkers, and runtime atomicity checkers.

Runtime race detectionOur Lockset algorithm is based on the Eraser algorithm [15].
Several other variants of Lockset exist, implemented for a variety of languages. LOA
analysis is the main distinguishing feature of our version.Some features of other race
detectors could be integrated into Redflag, for example, theuse of sampling to reduce
overhead, at the cost of possibly missing some errors, as in LiteRace [11].

Microsoft Research’s DataCollider [5] is the only other runtime data race detector
that has been applied to an OS kernel, to the best of our knowledge. Specifically, it has
been applied to several modules in the Windows kernel and detected numerous races.
It detects actual data races when they occur, in contrast to Lockset-based algorithms
that analyze synchronization to detect possible races. At runtime, DataCollider pauses
a thread about to perform a memory access and then uses hardware watchpoints to inter-
cept conflicting accesses that occur within the pause interval. This approach produces
no false positives but may take longer to find races and may miss races that happen only
rarely. DataCollider uses sampling to reduce overhead.

Static analysisStatic analysis tools, typically based on the Lockset approach of finding
variables that lack a consistent locking discipline, have uncovered races even in some
large systems. For example, RacerX [4] and RELAY [17] found data races in the Linux
kernel. Static race detection tools generally produce manyfalse positives, due to the
well-known difficulties of analyzing aliasing, function pointers, calling context, etc.

Static analysis of atomicity has been studied (e.g., [7, 14]) but not applied to large
systems software. Generally, these analyses check whetherthe code follows certain safe
synchronization patterns.

Runtime atomicity checking.To the best of our knowledge, we are the first to apply a
runtime atomicity checker to components of an OS kernel. Although we used the block-
based algorithms, other runtime techniques for checking atomicity and similar proper-
ties could be adapted to work on Redflag’s logs. Atomicity checkers based on Lipton’s
reduction theorem [9, 6, 19] are computationally much cheaper than the block-based al-
gorithms, because they check a simpler condition that is sufficient but not necessary for
ensuring atomicity. As a result, however, they usually produce more false positives.

AVIO [10] and CTrigger [13] use heuristics to infer programmers’ expectations
about atomicity, and then check for violations thereof (i.e., atomicity violations). An
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important difference from our work is that the block-based algorithm reports potential
and actual atomicity violations, while AVIO and CTrigger report only actual atomicity
violations (i.e., atomicity violations that manifest in the monitored run). They actively
perturb the schedule to increase the likelihood that atomicity bugs will manifest during
testing. Also, they do not detect atomicity violations involving multiple variables. As
a result, they are computationally cheaper and produce fewer false positives, but they
are more schedule-sensitive and may miss bugs that the block-based algorithms would
report. Their implementations use binary instrumentationand are not integrated with
the compiler, so it would be difficult to target their analysis to specific data structures.

5 Conclusions

We have described the design of Redflag and shown that it can successfully detect data
races and atomicity violations in components of the Linux kernel. To the best of our
knowledge, Redflag is the first runtime race detector appliedto the Linux kernel, and
the first runtime atomicity detector for any OS kernel.

Redflag’s runtime analyses are designed to detect potentialconcurrency problems
even if actual errors occur only in rare schedules not seen during testing. The analyses
are based on well-known algorithms but contain a number of extensions that signifi-
cantly improve accuracy, such as LOA analysis. Although thecost of thorough logging
can be high, we have shown that Redflag’s performance is sufficient to capture traces
that exercise many system calls and execution paths.

Future work We plan to extend Redflag with dynamic escape analysis and active analy-
sis (i.e., schedule perturbation) and experiment with the interaction between these tech-
niques and LOA analysis. We also plan to extend Redflag with ananalysis that identi-
fies where memory barriers are needed. Memory barriers, which are usually necessary
only in low-level systems code, prevent memory operation reorderings that would oth-
erwise be allowed by the weak (not sequentially consistent)memory models used in
modern compilers and processors. Another direction for future work is to apply Red-
flag for performance improvement of concurrent code. By examining locking and ac-
cess patterns in execution logs, Redflag could identify critical sections that can employ
double-checked locking and data structures that would benefit from RCU use. We plan
to release the entire Redflag framework and tools publicly under an open source license.
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