
PLEASE: Policy Language for Easy Administration of
SELinux

A Thesis Presented
by

David Patrick Quigley

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Master of Science

in

Computer Science

Stony Brook University

Technical Report FSL-07-02
May 2007

Stony Brook University

The Graduate School

David Patrick Quigley

We, the thesis committee for the above candidate for the

Master of Science degree, hereby recommend

acceptance of this thesis.

Dr. Erez Zadok, Thesis Advisor
Professor Computer Science

Dr. Scott D. Stoller, Chairperson of Defense
Professor Computer Science

Dr. Robert Johnson
Professor Computer Science

This thesis is accepted by the Graduate School

Lawrence Martin
Dean of the Graduate School

ii

Abstract of the Thesis

PLEASE: Policy Language for Easy Administration of SELinux

by

David Patrick Quigley

Master of Science

in

Computer Science

Stony Brook University

May 2007

With the growing importance of security, alternate access control methods have become com-
monplace. The emergence of systems such as SELinux has provided a new means to restrict
access beyond Linux’s traditional capability-based system. Unfortunately, writing a policy for
applications in SELinux is difficult, even for experienced policy developers. Previous attempts to
simplify policy development, such as Tresys’s Cross Domain Framework, rely on an existing pol-
icy and govern interactions between policies. Other attempts, such as Virgil, over-simplify policy
development, restricting the developer too much.

To reduce the complexity of the policy development process, we developed PLEASE, a high-
level language for writing SELinux policies. PLEASE is designed to integrate into the SELinux
reference policy by making use of the interfaces and types already present, allowing for sections
of the reference policy to be rewritten in it. We provide the developer with facilities to specify
SELinux policy statements directly from PLEASE, to be analogous with the relationship between
C and assembly. This preserves the power and flexibility of low-level policy statements while still
allowing the developer to use our higher-level abstractions. We experimented with PLEASE and
found that its abstractions yield considerable savings in policy size, ranging from a factor of 3 to
8 reduction in common cases to as much as 24 in certain special cases.

iii

To my mom and dad.
Without you I would not be where I am today.

Contents

1 Introduction 1
1.1 Motivation . 2
1.2 Thesis Organization . 3

2 SELinux Overview 5

3 PLEASE Language 8
3.1 Overview . 8
3.2 Resource Classes . 9
3.3 Application Policies . 10
3.4 Modifiers . 10
3.5 Type Enforcement Keywords . 11
3.6 Network Resource Classes . 14
3.7 Resource Permissions . 16
3.8 Static Resources . 16
3.9 Object/Permission Inheritance . 17
3.10 Interactions/Interfaces . 17

4 Implementation 22

5 Use Cases 23
5.1 Corecommands Abstractions . 23
5.2 Access Pattern Abstractions . 24

6 Related Work 26
6.1 Policy Generation Tools . 26
6.2 Higher-Level Policy Languages . 27

7 Future Work 28

8 Conclusion 30

v

A PLEASE Policy Examples 33
A.1 Application Policy Example . 33
A.2 CoreCommands Policy Examples . 35
A.3 Sample Policy for Pattern Abstraction . 37

B PLEASE Language Description 41
B.1 Lexical Issues . 41
B.2 PLEASE Grammar: . 42

vi

Acknowledgments
I would like to express my utmost gratitude to the following people...

My advisor, Dr. Erez Zadok, for his ideas, insight, and faith in me to allow me the free-
dom to explore my own research. Kim Albrecht for all the time, effort and dedication she put
into our project to make it a success. All my lab mates in the FSL who made my time here
enjoyable and “very educational,” particularly Avishay who is giving me last minute corrections
as I write this. Radu Sion for providing comments on this thesis early on. Dr. Scott Stoller for
providing valuable feedback on this thesis, chairing my committee, and being a valuable advisor
during my time as an SBCS officer. Dr. Rob Johnson for providing crucial advice concerning the
structure of the paper and for asking the hard questions during my defense. The National Science
Foundation whose Scholarship for Service program provided me with the opportunity to attend
graduate school. Steve Smalley and Pete Loscocco at the National Security Agency for giving me
the chance to learn first hand about SELinux. Finally, my friends Chris, Lisa, and Katie for being
patient and understanding as I disappeared for two years to accomplish this.

This work was made possible partially thanks to NSF awards CCR-0310493 (CyberTrust) and
DUE-0417103 (Scholarship for Service in Information Assurance).

Chapter 1

Introduction

Networked computer systems are now a part of everyday life. Because of this, standard access
control methods have been shown to be increasingly ineffective. This has created an effort to
provide stronger methods of access control to modern operating systems. SELinux is one such
form of mandatory access control [7]. SELinux is an attempt to regulate access to important
objects in both the kernel and user space. However, SELinux does have its shortcomings.

SELinux is a mandatory access control mechanism for the Linux kernel. There are several
distinctions between the discretionary access control (DAC) models of traditional Unix systems
and the mandatory access controls (MAC) in SELinux. In a DAC system, the owner of a file
determines who has access to it. In a MAC system, the policy administrator specifies a policy that
determines the access to resources, such as files and directories.

A second distinction between these systems is that in Unix’s DAC implementation, the gran-
ularity of access control is limited. Only the access rights of the owner, the group of the file, and
individual users can be specified. Also, there is no distinction between the actual types of files.
According to the Unix paradigm, a file does not accurately reflect the true nature of a system.
However, there are actually several types of files, such as character files, block files, regular files,
and symlinks. Unix treats sockets as files, even though the semantics of sockets and files are dif-
ferent. However, in MAC systems, and particularly in SELinux, the distinctions among file types
are important. A policy developer can make the distinction between different types of files, and
thus provide different access rights to each accordingly. Because SELinux uses an object labeling
mechanism, several different applications can each have separate access rights to a particular re-
source. Unix can provide different access rights to a file in only three different ways (user, group,
other) without the use of Access Control Lists (ACLs).

Another major distinction between MAC and DAC systems is that in DAC, there are only
two classes of users: unprivileged users and super users. In a MAC system, there is no user with
complete control over the system. By giving system administrators the ability to create users with
varying levels of access, instead of complete control, they can create separate administrative users
for individual tasks in the system. Since SELinux’s MAC implementation is a white list, meaning
it only allows actions that are explicitly specified, an application cannot be tricked into performing
actions on an object that it is not supposed to have access to. In traditional systems, however, if
a process ran as root and was exploited, it could be used to take control and manipulate any file

1

Number of Types and Attributes:
Types: 1,483
Attributes 147

Number of Type Enforcement Rules:
allow 75,678
neverallow 0
auditallow 27
dontaudit 4,687
type transition 1,348

RBAC Elements and Rules:
Roles 6
Users 3
allow 5

Number of Other Context Statements:
Portcons 260
NetifCons 0
Nodecons 8

Table 1.1: Relevant statistics derived from the apol policy summary of the targeted policy provided with
Fedora Core 6 [2]

in the system. Since SELinux only allows what the policy specifies, even if an application is
compromised, it cannot access a file for reading or writing if it is not given permission to do this.
This is one of DAC’s main flaws, since even an unprivileged user’s application can be tricked into
leaking information or destroying the files that it actually has access to.

1.1 Motivation
Even though SELinux provides strong access mechanisms and better system security, it is not as
widely used as it could be. This is due to several drawbacks currently associated with SELinux.
Writing an SELinux policy is difficult and time-consuming. Since SELinux is based on an object-
labeling mechanism, a policy developer must first have a working knowledge of what types exist
in the system. Tresys Systems maintains a set of system and application policies that is used in
several Linux distributions, called the SELinux Reference Policy [16]. Although the reference
policy is a good foundation to build upon, it is a very complex and long set of policies, as can be
seen in Table 1.1.

Despite an extensive effort to expand the reference policy, it is far from being comprehensive.
There are many applications from major distributions, such as RedHat and Debian, which make it
impractical to run an SELinux system effectively under the strict policy. There is a targeted

2

policy which covers network daemons and other sensitive services, but this only provides a subset
of needed system security. Because of this, many people choose to disable SELinux rather than
deal with the complications of not having a comprehensive policy. This is not the fault of the
distributions, but rather a symptom of the difficulty of policy development. A distribution such as
Debian contains 18,733 packages [3], making it impractical for distribution maintainers to write
and maintain policy for all of them. This responsibility should instead fall to the application
developers.

One reason for the lack of security policies is that most application developers do not un-
derstand all of the mechanisms used by SELinux. Application developers, however, are the best
people to write these policies, since they know what their application should and should not be al-
lowed to do. However, many application developers are not actually trained in the field of security.
Even if they have some knowledge of security, they may have other priorities while developing
their applications. This has made it difficult for administrators to easily specialize policy for their
environment, and handle third party applications.

To address some of the issues present in existing SELinux technologies, we have developed
PLEASE. PLEASE is an object-oriented, high-level language for writing SELinux policies that
strives to reduce the complexity of the policy development process. This is accomplished by
providing language-level features for resource and permission abstraction. In addition to these
abstractions, PLEASE is designed in a manner such that a developer can ignore the existence of
types. We also provide developers with a mechanism to use custom types, along with features
that allow the developer to attach interfaces to an application in a structured manner. Finally,
PLEASE provides the developer with facilities to specify SELinux policy statements directly, to
be analogous with writing a block of assembly within C code. This allows the developer to use the
higher-level abstractions of PLEASE while still exploiting the power and flexibility of the existing
low-level policy statements. Brooks has speculated that the use of such high-level languages
increases productivity by a factor of five, in addition to significantly improving reliability and
simplicity [1].

Over the course of the development of PLEASE, we studied five use cases which demonstrate
the potential for policy size reduction. Interfaces that are defined to aid in policy development
throughout the reference policy cause some of the policy statements to be replicated. PLEASE
has been able to reduce policy size by a factor of 3 to 8 in common cases, and reduced policy
size by a factor of 24 in several specific cases. Since many of the defined interfaces are built by
compounding other interfaces, features such as resource and permission inheritance in PLEASE
yield substantial savings.

1.2 Thesis Organization
The rest of this thesis is organized as follows. In Chapter 2 we give a brief overview of the internals
of SELinux and the base policy language. In Chapter 3 we outline the constructs and semantics of
PLEASE and how they relate to base SELinux policy concepts. In Chapter 4 we briefly discuss the
technologies and work put into the PLEASE compiler. In Chapter 5 we look at two examples of
PLEASE policy. The first example explores an existing reference policy abstraction that has been
rewritten using PLEASE. The second example is a sample of converting some of the M4 based

3

SELinux macros into a set of structured and efficient resource classes. In Chapter 6 we provide
additional information about other works in the field of SELinux and how PLEASE addresses their
deficiencies. In Chapter 7 we look at additional constructs and concepts that we hope to develop in
the future. We conclude in Chapter 8. Appendix A contains the policy source mentioned in Chap-
ter 5. Finally, Appendix B contains additional language information about PLEASE, including
lexical issues and the grammar.

4

Chapter 2

SELinux Overview

In this section, we will discuss some basic concepts of SELinux, such as how the Linux kernel
and the SELinux security server make access decisions and how the information for the security
server is presented. We will then discuss how PLEASE can be integrated into the whole system.
It is important to note that the actual implementation of SELinux is more complex than what is
discussed in this section. Since the goal of this section is to provide the reader with only a working
background of SELinux, some irrelevant concepts have been abstracted or omitted. We will be
skipping over the specifics of Identity-Based Access Control (IBAC), Role-Based Access Control
(RBAC), and Multi-Level Security (MLS), since they will be addressed in future work.

SELinux is an implementation of the FLASK architecture for Linux [14]. A main component
of the original FLASK architecture is the separation of the policy from the actual enforcement of
the policy. This is why there are three components in the Linux kernel for SELinux: the Security
Server, the Access Vector Cache, and the Object Manager. The security server is responsible for
making the actual access decisions for the system. The Access Vector Cache (AVC) is an opti-
mization of the security server such that each access check does not require that the access rights
be recalculated. The object manager is responsible for enforcing the decisions made by the secu-
rity server. The Linux kernel provides a framework in which the object manager and other security
mechanisms can be implemented. This is called the Linux Security Modules (LSM) Framework.
The LSM Framework provides a global structure that contains a series of function pointers, similar
to the Virtual File System (VFS) operations vectors. An LSM developer implements the functions
defined by the framework in a manner consistent with the interfaces and the access model that
they are trying to provide. A series of hooks are placed in the kernel code to make calls to the
appropriate functions in the module. Normally, these calls are placed to either mimic the existing
DAC checks or to provide further restrictions. In an increasingly larger number of places in the
Linux kernel, these hooks are placed to ensure that security modules can provide finer-grained
security access [7].

In SELinux’s security module, the calls to the module first check the AVC to see if the ac-
cess decisions have already been made. When the kernel checks this, it gathers security identi-
fiers (SIDs). SIDs are internal representations of the policy language types for both the source and
the target of the action. With these two SIDs and the object class it wishes to access, the kernel
looks up the permissions in a table. The entry in the table is a bit mask with bits set for the allowed

5

permissions. If an entry is found in the table, the desired access is checked against the bit mask.
If such an entry exists and it matches the bit mask, the access is granted.

In the event of a cache miss in the AVC, the request is sent to the security server. Through
a function called security compute av, the security server performs two checks before it
allows access. First, it creates a mask representing the object permissions allowed, in accordance
with the Type Enforcement (TE) allow rules in the policy. Second, it removes permissions that are
disallowed by any constraints [8].

SIDs are the internal representations of types. Types are the foundation of the Type Enforce-
ment (TE) mechanism that SELinux provides. However, the type is only one component of an
object label. The SELinux model itself is a combination of several existing security models.
The security context holds information to provide for Identity Based Access Control (IBAC),
Role-Based Access Control (RBAC), Type Enforcement (TE), and Multi-Level Security (MLS).
Although all of these are present, they do not necessarily have to be used in every system.

SELinux’s model of access control inherently denies all actions by default, unless the actions
are specified as allowed. Rules of this type are referred to as Access Vector (AV) rules, and are
formatted as follows:

<AVRule> <source> <target> : <class> {<permissions>};

Internally, SELinux indexes access permissions by the source, target, and class tokens in the
rule. The permissions specify the bit mask generated for this triplet. The AVRule token of the
access rule can be one of four keywords. The allow keyword specifies that the permission is to
be allowed. The auditallow keyword specifies that successful acquisition of the permission
is to be audited. This is to provide auditing support for privileged operations, such as changing
passwords. The dontaudit keyword allows SELinux to omit certain access failures from the
auditing system. These two keywords are in place to modify SELinux’s default auditing behavior
of only auditing failed accesses. The neverallow keyword is used to mark assertions to be
checked by the policy compiler, and does not map to the internal kernel mechanism.

The source and target tokens of the above AV rules can be one of several possibilities. When
a type is defined in SELinux through the type keyword, aliases for the type may be specified,
along with the attributes that it possesses. Aliases are mainly used for backward compatibility
with existing policy. For example, when a type in the main policy changes, there may still be
policy modules that refer to the old type. In order to give developers time to migrate their modules
from the old type to the new one, they may alias the original type to this new type [8]. PLEASE
addresses this differently: by removing the need to define actual types in PLEASE policy, the old
type is automatically replaced when the compiler regenerates the module.

Aliases provide a means to access a single type through many identifiers, but SELinux also
provides the inverse. When declaring a type, a series of attributes that the type possesses may also
be declared. These attributes may be used in any of the type enforcement rules. Because of this, a
single identifier can be used to grant access on all of the types that possess that attribute. PLEASE
addresses this concept through its attribute construct. This is discussed in Section 3.5.

Aliases and attributes are declared when the type is declared. After a type has been declared,
additional aliases may be added with the typealias keyword, and additional attributes may be
added with the typeattribute keyword. The arguments for both are the type to be aliased or

6

attributed to, and a list of the respective types. The purpose of these keywords is to allow a policy
module to apply attributes and aliases to types that are defined in the base policy. This allows a
developer to make minor changes to an application policy, without modifying and recompiling the
entire reference policy. PLEASE is designed to define entire application policies. Because of this,
we do not address policy modules and their associated keywords; they are easy to address using
the base policy language once the policy is created.

The runcon utility in the SELinux core utilities allows applications to be executed in ar-
bitrary domains as long as they have the appropriate permissions. If this were the only method
for executing a program in its appropriate application domain , it would be tedious and not user-
friendly. However, the type transition keyword accounts for this. This keyword describes
the default types for new subjects and objects if no explicit type was specified. They do not pro-
vide access themselves, so they must be coupled with appropriate access rules. There are multiple
possible sets of access rules that may be appropriate which usually contains a minimal core set.
The main use of this keyword in the reference policy is to specify the domain to transition to when
a user to executes an application. In this case the minimal core set is execute, transition,
and entrypoint. PLEASE addresses this functionality through the application block ab-
straction, which is described in Section 3.3. There are also alternate uses of this keyword to label
transient objects, which we discuss in Section 7.

There is a concept in SELinux called object tranquility which states that once an object is
created in the system, its label should not change. When the labels on a system are changed,
the system needs to relabel itself based on the current policy. The reason for this is that once
labels in a system are changed, the policy cannot be verified to be correct. There are two methods
for doing this. The first method is to order the system to relabel on boot. This can be a time
consuming process but is necessary when the system policy is changed. The second method
involves a program called restorecon. This application will query the kernel for the necessary
information to determine what it believes to be the label for the object.

7

Chapter 3

PLEASE Language

In this section, we discuss the key concepts of PLEASE and the language-level features that make
policy development easier. Most elements in this section define both resource classes and appli-
cation policy. The syntax and semantics for assigning values to members of resource classes is
similar to that used in defining the resource classes themselves. Resource classes have additional
modifiers to particular parts of the language primitives, which are not valid in the application
section of the policy.

3.1 Overview
The main design decision behind PLEASE is the develop a language that is modular and concep-
tually easy to understand. An administrator understands a system in terms of components. To
illustrate this consider a program named Crunch. Crunch is a simple program that takes files in a
particular directory and then hashes them and emits the results to its own ad hoc log file. This is a
practical example since this behavior is actually a subset of the functionality provided by integrity
checking tools such as Tripwire [17]. Crunch relies on three items to perform its task. The first of
these is a configuration file the second is the log file; and the third is the shared library containing
the required cryptographic functionality. A possible application for a program such as this is to
check for changes in key system files. Because of this we want to restrict Crunch to certain ac-
tions. We do not want Crunch to be able to write to its configuration file since an attacker could
remove a particular file from the list of files to be checked and avoid detection. The second action
we want to prevent is the ability to remove an old log file and write a new one in its place. To
prevent this we want to grant append access to the log but not read or write since that will allow an
attacker the ability to recreate the log with doctored information. We will use Crunch as much as
possible in the explanation of the PLEASE language constructs. In all of the examples PLEASE
language keywords are highlighted in bold text.

Since the underlying idea of PLEASE is its modular and hierarchical organization, we decided
to use an Object-Oriented paradigm. The reason policy development is well suited to this model
is that there already exist many components in the reference policy which attempt to represent
objects. In addition to this reference policy interfaces provide in an ad hoc manner the concept of
member functions for these objects. By creating a language that takes these two loosely imple-

8

mented concepts and provides a well-structured mechanism to represent them, we can reduce the
conceptual complexity of policy development.

3.2 Resource Classes
The written description of Crunch yields important insight into how an application policy can be
developed. We clearly see three modular units that are needed by the application: the log, the
configuration file, and shared libraries. The base SELinux language does not have the concept of
an object, so there have been attempts to create these abstractions through attributes and interfaces.
An example of this is the device node attribute in the SELinux reference policy. In an attempt
to encapsulate the idea of a device node, an attribute named device node has a separately
defined set of interfaces to this “object” [16].

PLEASE solves this problem by providing Resource Classes, a structured mechanism that
allows developers to design abstracted resources for use in application policies. By an abstract
resource we mean that the object describes a desired functionality. This functionality is then
turned into concrete access statements when the object is used. These objects are plugged into a
policy in a modular manner without concern for underlying types. Whereas resource classes are
used to define higher-level abstractions, their control is still limited to the object classes provided
by SELinux.

PLEASE is designed to allow the creation of resource objects without any language modifica-
tions. This is possible with several abstractions that are commonly used at the lowest levels of the
SELinux policy. These primitives are used as building blocks to construct resource classes. Re-
source classes are then used as building blocks themselves, either to develop additional compound
resource classes, or as blocks to define application policies.

Resource classes are perceived by the developer as one unit, with the primitives actually repre-
senting the three types of files present in the SELinux reference policy. As we outline the PLEASE
language primitives, we relate them to the contents and constructs of the *.te, *.if, and *.fc
files of the reference policy. Each of these types of files contain a specific set of information for
the particular application policy. The *.te files contain the Access Vector (AV) rules for the
policy, interface invocations, and macro usage. The *.if files contain interfaces which grant
access to components of the application policy. Finally, the *.fc files contain path globs and file
contexts that are used to relabel the file system. These paths can be used when the entire system
is relabeled, or when restorecon is called on a particular file.

resource File {
}

Figure 3.1: Declaration of a resource class

The declaration of a resource class is specified using the resource keyword. In Figure 3.1,
we see the declaration of an empty resource class named File. We use this example and build upon
it for the remainder of the resource class examples, and as an instance in the application policy
examples. The full definition of the File resource class can be seen in Appendix A.3.

9

3.3 Application Policies
The second part of PLEASE is the use of resource classes in application policies. The Application
keyword declares the top-level block that defines an application policy. Application declarations
contain instances of primitives, resource classes, and interfaces. When an application block is
defined, the name of the application defines an entry point type and the main application type.
Application resources inherit their type from the main application block, under the conditions out-
lined in Sections 3.4 through 3.9. An example of a policy definition can be seen in Figure 3.15
where we use the File resource class to define the behavior of Crunch.

3.4 Modifiers
Resource class definitions and object instantiations use three modifiers: default, isolated,
and optional. The default and isolated modifiers are used for only certain purposes.
However, optional is applicable in almost all cases.
default: The first of the special-purpose keywords is default. This modifier serves as a
marker to denote the main label or attribute for a resource object. This keyword is primarily used
when a developer defines a resource class with multiple label primitives. Since we do not use
types explicitly in access rules, we infer the type for the rule based on the resource class instances
it uses. Because of this, the developer must specify one of the labels in the resource class to be the
default. Additionally, the default keyword specifies the default element of a class set in a class
primitive declaration. The latter use of this keyword can be seen in the definition of the File object
class. In Figure 3.6 a class named file type is declared and its first element is declared as
default. This means that in the event that file type is left uninitialized, this will be its default
value.
isolated: Currently, when an application policy contains more than one type, it is to provide
different security domains. By creating multiple types, different accesses can be given to separate
resources that the application is going to use. Since we are encapsulating resources in resource
classes, we also need a mechanism to separate them into different domains. One way to do this
is to declare a label explicitly in a resource class. However, to avoid the need for types, we mark
the resource class with the isolated keyword. This means that instead of specifying a type, we
implicitly create a type based on the identifier of the application and of the resource class instance.
In Figure 3.2 we have created two isolated instances of File resources in the application Crunch.
Since the name of the application is Crunch, and the identifier on the File instances are config
and log, the resource has an implicit type of crunch config t, and crunch log t. As the
purpose of isolated is to provide a domain separation abstraction while removing the need
for type information, it overrides explicit definitions of types. This means that if the developer
specifies the types explicitly in the instantiation of the object or as a default label in the object
class definition, the types are ignored.
optional: Each of the primitives in PLEASE have a default value associated with them. This
specifies that some of the object class components do not need to be specified in its instantiation.
In Section 3.5, we state the default value for each primitive.

10

application crunch {
isolated File config; //type for /etc/crunch.conf
isolated File log; //type for /var/log/crunch

}

Figure 3.2: Instantiation of two isolated File resources in an application

3.5 Type Enforcement Keywords
In this section, we discuss all of the PLEASE keywords that provide control over the type en-
forcement mechanisms of SELinux. The basic SELinux concepts of attributes and labeling are
expressible, as well as the more complex network labeling constructs. The network labeling por-
tions of SELinux are currently being overhauled to comply with LSPP (Labeled Security Protec-
tion Profile) certification. This means that PLEASE will have to re-address these concepts at a
later point in time. The keywords described in this section are based on a simple format, as seen
in Figure 3.3.

<modifiers> <primitive> <identifier> <body>

Figure 3.3: Syntax for primitive declarations

Label: As explained at the beginning of Chapter 3, each of the keywords are used in two con-
texts. The first usage of the Label primitive is as a component in a resource class. Figure 3.4
shows the label primitive in the context of a resource declaration. This figure also displays the
default and optional primitives mentioned in Section 3.4.

default label var con {
optional user = user_u;
optional role = role_r;
optional type = type_t;

};
optional label context2;

Figure 3.4: Declaration of two label primitives with modifier keywords

In Figure 3.4, var con uses the primary label for the object. We also see the optional
modifier used in two different ways. In the case of the label primitive, optional acts as a modi-
fier to the label keyword, or to any of its components. The first three instances of optional are
placed on each component of the label primitive, specifying any combination of user, role and
type for this label. The last instance of optional specifies that the entire entry for context2
need not be specified.

The use of label in an application block is almost identical to that of context in
Figure 3.4. The only difference is that optional cannot be placed on the members of the
label primitive, or on the primitive itself. In the application block, all components of the
primitives are considered optional, allowing the developer to specify what they need in the label.

There are four rules that determine what label is associated with a resource class instance. The

11

compiler checks these rules in the following order, until one succeeds:

1. Use the label that is explicitly defined when the resource class is instantiated.

2. Use the default value for the label, as seen in Figure 3.4.

3. If the resource is marked as isolated, then generate a new type based on the application
identifier and the identifier of the resource class instance.

4. Use the application block’s label or the label of the group it belongs to.

As both SELinux and PLEASE do not extensively use the role and user members of the label,
we set the default to the values commonly used in the reference policy. In the case of role and
user the default values are staff r and user u, respectively. We allow the developer to easily
specify complete labels on the static resources, as described in Section 3.8. This also creates a base
for future extensions to PLEASE that would handle RBAC.
Group: We allow the developer to create resource classes to encapsulate ideas, making policy de-
velopment conceptually easier. However, even though the ideas the developer is trying to represent
may be disjoint, the security domain may be the same. The group keyword allows the developer
to group a set of resource objects together under a common identifier, assigning the group a shared
label. Since the label is now associated with the group instead of a particular resource, a conflict
is possible. Conflicts are resolved by allowing only one element of the group to define the group’s
label.

File contents {
member = group1;
file_type = Regular;
file_list {

/* Label our source directory and its files */
/opt/crunch
/opt/crunch/*

}
};
Socket output {

member = group1;
context = {

type = crunch_output_t;
}

};

Figure 3.5: Declaration of two resources classes that share a group.

The example in Figure 3.5 shows two resource classes that share the group “group1.” There
can only be one group declaration in a resource class, and this variable can contain only one
element. The group keyword has an implicit optional modifier applied to it since the default
value of empty is acceptable in most cases. Because two elements share the same group, only
one may define the type of the group. In this example the explicit type declared for Socket is the
type value for the group.

12

Class: In certain circumstances, multiple types of the same resource are needed. However, the
developer has to declare the same object several times just to change the underlying object class
that the resource references. The class keyword provides a method for mapping an identifier to
a string, which is needed to define abstractions for several object classes. The class keyword
can also be used to declare class elements without associated strings. This allows the developer to
conditionally include a policy, based on the class of the object. One use of this is when defining
an encapsulation for a protocol’s packet. The default label or actions within a permission can be
specified, based on the class of the object.

class file_type
{

default Regular = "file";
Symlink = "lnk_file";
FIFO = "fifo_file";
BlockFile = "blk_file";
CharFile = "chr_file";
SockFile = "sock_file";

}

Figure 3.6: file type class used to abstract file object classes

Using a class in an application policy is as simple as assigning one of the values to the mem-
ber. Since a class is used as additional meta data to generate a policy, it always needs a valid
default value. Because of this, the optional keyword is not allowed on a class definition.
The developer can specify one of the keys in the class as default. In the example in Figure 3.6,
Regular is marked as the default class for this resource object. The utility of this construct can
be seen in Appendix A.3 in the File resource class example. In the permission for getattr, the
file type identifier is used in place of an SELinux object class. This means that the string cor-
responding to the current value of file typewill be substituted in for the object class, allowing
the six object classes to be represented with one identifier.
Attribute: Although the group keyword allows a set of objects to be grouped together for
type purposes, PLEASE still needs to be able to associate permissions with traditional SELinux
attributes. The purpose of the attributes in the original language is to grant access rules on a large
number of types at once. Types may have attributes associated with them, which can then be used
as the target of access rules, instead of using a specific type.

When an object is defined in an application policy, any values assigned to the resource’s at-
tribute identifier translate into attributes assigned to the generated type for the resource object. At
this point, the attributes used can be referenced wherever access rules are allowed. For the purpose
of specifying multiple attributes, the set syntax used in SELinux is also applicable for attributes.

attribute attrs = { file_type exec_type };

Figure 3.7: Declaration of an attribute with default values

Normally, the attribute keyword has a default value of the empty set. This allows developers
to define an attribute primitive as a member of a resource class, while not forcing them to assign

13

the attribute primitive to anything. In Figure 3.7, the default value is overridden by the specified
set. In Appendix A.2 we see the same example in the Bin resource class. In this case, since we
have a default type of bin t for the resource class, the attributes file type and exec type
will be added to the type.

3.6 Network Resource Classes
PLEASE needs to be able to handle the existing labeling and access methods for the network ob-
ject classes to be effective in writing SELinux policy. It is hard to generalize the existing labeling
keywords (netifcon, portcon, and nodecon) into primitives to build resource classes upon.
We provide three compound primitives to use as building blocks to accomplish this. These com-
pound primitives are resource classes which the language defines for use in providing network
functionality. When considering how to abstract these into primitives, we considered allowing
the existing keywords to be used. However, this required more knowledge of the base policy lan-
guage than we thought necessary for the developer. The compound primitives are instantiated and
extended in the same way as any other resource class.
netif: The first network resource class addresses the functionality provided by the SELinux
keyword netifcon. This keyword labels all traffic entering or exiting on an interface in a
particular manner, and gives the developer a way to label the interface itself for access rules.
The netif resource class contains the fields name used to specify the interface as it appears
in ifconfig, the interface context ifcon for the interface object, and packetcon, the context
for packets entering and exiting the interface. These fields translate directly into a netifcon
statement, as seen in Figure 3.8. In addition, the ifcon and packetcon fields may be used
in access rules. Other objects may inherit from the netif object, so a developer can associate
permissions with the particular interface.

netif eth0 {
name = eth0;
ifcon = {

user = user_u;
role = staff_r;
type = if_type_t;

}
packetcon = {

user = user_u;
role = staff_r;
type = packet_type_t;

}
}

Emitted Policy:

netifcon eth0 user_u:staff_r:if_type_t user_u:staff_r:packet_type_t

Figure 3.8: Example of a netif instantiation and its resulting translation

node: Figure 3.9 shows the node resource class that provides the functionality that is present in

14

the nodecon SELinux keyword. The keyword nodecon specifies the context for data coming
from a group of network nodes. The statement accepts both IPv4 and IPv6 addresses and subnets.
Like the netif keyword, node contains fields for each of the sections of its corresponding base
keyword. In this case, the three fields are an IPv4 or IPv6 address, subnet, and the node
context nodecon. As with netif, the node resource class can also be inherited from, and its
members may be accessed in a similar fashion.

node appnode {
address = 192.168.0.1;
subnet = 255.255.255.255;
nodecon = {

user = user_u;
role = staff_r;
type = internal_t;

}
}

Emitted Policy:

nodecon 192.168.0.1 255.255.255.255 user_u:staff_r:internal_t

Figure 3.9: Example of a nodecon instantiation and its resulting translation

port: The final networking resource class, port, is provided to address the portcon keyword.
A portcon statement specifies a port or ports in the form of either a single number, a comma-
separated list of numbers, or a hyphenated range and the context associated to it. As seen in
Figure 3.10, the PLEASE port object contains a port number, the protocol protocol (udp,
tcp), and the context used to label the object portcon. Like netif and node, the port object
is extensible to allow for permissions to be defined, and has accessible members.

port appport {
port = 21, 70-75, 30060;
protocol = tcp;
portcon = {

user = user_u;
role = staff_r;
type = app_data_t;

}
}

Emitted Policy:

portcon tcp 21 user_u:staff_r:app_data_t
portcon tcp 70-75 user_u:staff_r:app_data_t
portcon tcp 30060 user_u:staff_r:app_data_t

Figure 3.10: Example of a portcon instantiation and its resulting translation

15

3.7 Resource Permissions
Many applications in the reference policy define several different target types with identical in-
terfaces. PLEASE addresses this with a permission keyword that declares permission blocks.
Since the permissions are associated with the resource class, the developer does not need to code
the interfaces for each application they are using. To avoid the need to specify types for the per-
missions, PLEASE infers the types for the access rules. The source for the rule comes from using
the permission in an application block. The target of the rule is either derived from the type of the
resource object, or, in the case of an object having multiple labels, the identifier of a label.

permission Read extends SearchBase {
allow context:file_type { getattr read };
if(file_type != Symlink && file_type != SockFile) {

allow context:file_type { lock ioctli };
}

}

Figure 3.11: Example of a resource permission

In Figure 3.11, we see the declaration of a permission named read. The allow keyword
is the same as the SELinux keyword with the same name. Normally, there would be two types
after each of the keywords, as seen in Figure 3.12. However, since we eliminate the need to be
concerned with types, these are not needed.

allow crunch_t bin_t:file { getattr read };
dontaudit crunch_t bin_t:file { getattr read };

Figure 3.12: Example of SELinux access rules

3.8 Static Resources
PLEASE specifies the default file context for files in the namespace. Normally, these statements
are issued in the *.fc files of the reference policy. This requires the developer to specify a
path and the context associated with the path. Static blocks remove the need to manage these
contexts. These static resources are created by trusted sources and always exist in the namespace
in specific locations. Static blocks can only be placed within a resource or application definition.
All resources listed generate the appropriate statements in a corresponding *.fc file based on
the label assigned to either that particular resource or the application type. An example of a static
block is shown in Figure 3.13.

As a resource may have more than one label, it is important to allow the developer to specify
which label is associated with this static block. The format of a static block specifies the
identifier which refers to the block and the label associated with the block. In this case, we have
two default values for the static resource block. If this area was blank, all desired paths would
have to be specified when the object is instantiated. At this time we do not know the value of

16

resource File {
label var_con;
static file_list var_con {

/opt/crunch
/opt/crunch/*

}
}

Figure 3.13: Example of a static resource block

var con so that will be filled in later. When var con is finally instantiated, the entries for the two
paths will be created in the crunch.fc file with the label given to var con.

3.9 Object/Permission Inheritance
Many of the interfaces defined in SELinux share many commonalities. For instance, the ability
to write to a file is frequently defined as having both the read and write permissions on the file.
Because of this, PLEASE defines object and permission inheritances for resource classes and their
associated permissions. PLEASE allows multiple inheritance of object permissions and provides
special syntax for specifying base permissions. Also, the default behavior for inheritance is to ex-
tend the base functionality instead of overriding it. We provide the modifier keyword override
to signify that the compiler should not include the base definition.

Figure 3.14 shows a brief example of using a base object for further abstractions. The Direc-
tory and File resource classes share a common base containing a group, two labels, and a static
block. The extends keyword for the File declaration means that all of PatternBase’s members
and permissions are accessible in our object. If PatternBase contained a Read permission, then the
read permission in File would compose the rules in the base resource, with the ones we specified
to form the final permission.

The second usage of extends is in inheriting rules from permissions. As seen in Figure 3.14,
there are several uses of extends on permissions. Since all of the permissions require a com-
mon set of permissions on the container directory, we define searchbase as a parent permission.
From here we implement read and mmap as normal. The final use of extends is to generate an
exec permission by extending mmap to include execute no trans. This forms a chain of
inheritance making the final exec permission a composition of exec, mmap and searchbase.
When specifying the permission to extend, the compiler first uses the permissions from the current
resource. In the event that the current resource does not posses the desired permission, it checks
up the inheritance chain for the permission. Additionally the developer may specify a specific
parent class to inherit from.

3.10 Interactions/Interfaces
In this section, we outline the methods for defining interactions between resources and an appli-
cation and between an applications resources and another application’s policy. Because of the

17

resource PatternBase {
optional group member;
optional label context;
optional label container;
optional static file_list;

}

resource File extends PatternBase {
permission searchbase {

allow container:dir { getattr search };
}

permission read extends searchbase {
allow context:file_type { getattr read };
if(file_type != Symlink && file_type != SockFile) {

allow context:file_type { lock ioctli };
}

}

permission mmap extends searchbase {
if(file_type != Regular) {

#not allowed should throw refpolcy warning
}
allow context:Regular { getattr read execute };

}
permission exec extends mmap {

allow context:Regular { execute_no_trans };
}

}

Figure 3.14: Excerpts from the File resource class definition.

18

abstraction of types, when a particular object is specified to interact with another, it is not neces-
sarily the only object with that type.
action: An application policy contains one action block that specifies all of the access rules.
In Section 3.7 we defined permissions which are templates for use in an action block. In addition to
this, application blocks may define a similar construct, called an interface. Permissions
are abstract and are filled in based on the instance of the resource class they belong to. When
defining an interface, all the relevant type information is available so that it can be defined in a
more concrete manner. In Figure 3.15 we see a series of permissions being invoked in the action
block. At this point we have the source type which comes from our application block and
our target type which is present in our resource class instances. In the case of the config.Read
statement, the target type is crunch config t since it is an isolated resource and our source
type is crunch t.

In addition to permissions and interfaces, there are two more groups of access keywords. The
first of these mirrors the four original Access Vector (AV) rules that SELinux defines. The last
keyword, verbatim, is used for backwards compatibility. This allows the developer to use
statements from the original policy code, if they are not expressible through PLEASE.
interface: Although interfaces may be used in an action block, they are defined outside of
the action block. Interfaces are defined in a way similar to how permissions are defined for a
resource class. The difference is that when defining a permission in a resource class, we do not
know the source for the target at that time. However, since we know the source and the target for
an interface, we have an extended version of the access rules that allows the developer to specify
both. In Figure 3.15 we define two interfaces. There, config has a solidified type which can be
exposed to other applications. This is very similar to a permission except that we derive the target
type from the calling application.
allow, auditallow, dontaudit, neverallow: The four access vector rules have the
same meaning as their SELinux counterparts. The only difference in the syntax is that the PLEASE
keywords are specified by the identifier of a resource object or by a particular label within that
object. In addition to specifying the target and source via an identifier, one can also use a special
identifier named self to refer to the object containing the rule. In the case of an application
block, this is the base type of the application itself. In the case of a resource class instance, it is
the type of that instance. In Figure 3.15 we see a dontaudit statement that is using a member
variable from the File resource class. This means that when the rule is constructed in the output
file, this context will be pulled from config.context instead of the resource class’s type.
verbatim: The last of the action keywords is verbatim which tells the compiler to emit the
text in this block as is. The placement of this text is determined by where in the code it appears.
The compiler places the verbatim text immediately after the rule it follows.

The emitted policy code in Figure 3.15 is actually shorter than the PLEASE policy code needed
to generate it, due to PLEASE’s more structured but sometimes more verbose nature. This slight
increase in lines of code is only seen when using the PLEASE abstractions. The emitted abstrac-
tions, however, still decrease the total size compared to the original reference policy. Essentially,
PLEASE slightly increases the size of the *.te files, while substantially decreasing the size of

19

application crunch {
isolated File config; //type for /etc/crunch.conf
isolated File log; //type for /var/log/crunch
//resource class for contents of a crunch directory
File contents {

file_type = Regular;
file_list {

/* Label our source directory and its files */
/opt/crunch
/opt/crunch/*

}
};
//System’s shared libraries.
libso shared_libraries;

action {
config.Read;
config.Mmap;
log.Append;
contents.Read;
contents.Mmap;
shared_libraries.Use;

dontaudit config.context:file { getattr read execute };
}
interface ReadConfig {

config.Read;
}
interface ReadLog {

log.Read;
}

}

Emitted Policy:
type crunch_t;
type crunch_exec_t;
allow crunch_exec_t crunch_t: \
file { entrypoint read getattr lock execute ioctl };

type crunch_config_t;
type crunch_log_t;

allow crunch_t crunch_config_t:file { getattr read mmap };
allow crunch_t crunch_log_t:file { getattr append lock ioctl };
allow crunch_t self:file { getattr read mmap };

libs_use_ld_so(crunch_t);

dontaudit crunch_t crunch_config_t:file { getattr read execute };

interface(‘ReadConfig’,‘
gen_require(‘

type crunch_config_t;
’)
allow $1 crunch_config_t:file { getattr read };

’)
interface(‘ReadLog’,‘

gen_require(‘
type crunch_log_t;

’)
allow $1 crunch_log_t:file { getattr read };

’)

Figure 3.15: Application policy for crunch and the emitted code

20

the *.if files and maintaining the size of the *.fc files, yielding an overall significant decrease
in lines of policy. In addition to the reduction in policy size, PLEASE code is more readable; for
example, the emitted policy contains M4 style macros and quoting which are harder to read and
understand.

21

Chapter 4

Implementation

The PLEASE compiler is implemented in Java with two common technologies for generating
parsers and abstract syntax trees: JJTree and JavaCC [15]. JJTree describes the nodes of the ab-
stract syntax tree and then emits a grammar file for JavaCC. This grammar file contains additional
Java code for creating the tree. JavaCC is similar to Yacc, in that it takes a grammar and emits
a parser. These two technologies allow us to create a compiler that is cross-platform without any
additional effort.

The PLEASE compiler is an ongoing effort, but has made reasonable progress so far. Our
two-person team has put roughly 40 man-hours of time into the compiler, to date. The input
file to JJTree contains 456 lines, describing the complete grammar for PLEASE. This yields an
additional 3,272 lines of Java. This, coupled with additional code, such as the symbol table, brings
the total up to 4,210 lines of code.

22

Chapter 5

Use Cases

Although it is possible to create a new policy for SELinux from the ground up, there are already
worthwhile abstractions that exist in the reference policy. In this section, we discuss two areas
where PLEASE has been used to reduce the size and complexity of Reference policy abstractions.
The first example shows a way to recreate some of the high-level concepts represented in the
corecommands series of files. The second example shows that the base abstractions of the
reference policy can be recreated to greatly reduce the code size and complexity. In both of these
examples, we reduce the code size by a factor of 2.8 overall. However, the two examples contain
five individual use cases that yield reductions ranging from a factor of 3 to 8 for the more common
cases, and as high as a factor of 24 for certain special cases.

5.1 Corecommands Abstractions
After a survey of the reference policy, we decided to choose the corecommands abstraction as
a sample use case. The corecommands abstraction contains several types and interfaces that
provide access to the common system binaries. From an inspection of the types in the file and
determining commonalities, it is clear that the bin t type is the key component of the abstraction
since several of the other types are aliases of that type. There is also an exec type attribute
which is placed on all executable types. The purpose of this type and attribute is to grant rights on
a large number of executable types.

The type for generic binary files is bin t. PLEASE intends to abstract concepts such as this.
The corecommands.if file yields a list of interfaces that could be called on this type, and
many of these interfaces share common access statements. For example, all of the read interfaces
require the same search permissions on directories. The permission to search directories of type
bin t is declared to be used as a base for other permissions. The exec permission is defined with
multiple inheritance, as it is based on listing directory contents and reading symlinks, which
are two previously defined permissions.

The ability to inherit permissions reduces the number of lines of code needed to represent the
corecommands resource class. However, the same interfaces are also defined for the sbin t
type. These interfaces are defined as calls to the bin interface, but with different types. Even
though their interfaces contain mostly the same code, they still need to be redefined. In PLEASE,

23

the only thing needed for the sbin t interface is a new resource that extends bin and overrides
the default type, making it sbin t instead of bin t.

In addition to sbin t and bin t, the attribute exec type is placed on all executable types.
Some of the permissions in the interfaces for exec type share commonalities with the Bin
resource class permissions. Because of this, the code can be reused by inheriting from Bin. Many
of the interfaces for exec type require list permissions on directories of type bin t. The class
to inherit from is specified, to avoid ambiguities in resolving which list permission to use. In
this case, we specify Bin.list as the base for the getattr and exec permissions.

After rewriting the abstractions in PLEASE we checked the line count of the original reference
policy abstractions against our new implementation. The original reference policy implementation
has 204 lines of code, while the PLEASE implementation of the abstractions has only 74 lines: a
factor of 2.8 reduction in size. Although a large portion of this was due to the sbin t interfaces
being exact duplicates of the bin t interfaces, we expect to see a reduction on this order for most
of the abstractions.

5.2 Access Pattern Abstractions
There are several files in the reference policy that contain support macros and definitions. One of
these contains a series of macros, referred to as patterns. The patterns are common access rights
that can be issued on a type. These are broken up into file and IPC access patterns. We look at
the patterns pertaining to files, including directories, regular files, sockets, named pipes, symlinks,
character, and block files. This area is an example where the abstractions provided by PLEASE
can drastically decrease code size.

The patterns in this file grant access either on objects of the dir object class or on objects
of one of the file object classes. The opportunity to reuse code exists in both of these sets.
However, the file set shows an example of how permission inheritance and use of the class
keyword can drastically lower the amount of code needed.

As the benefits of creating a directory resource class were shown in the first use case, we
will now focus on file resource classes. There are six types of files that have object classes in
SELinux. The permissions needed to grant particular access rights on each file type are often
identical. The ability to search the container directory of the files is needed for many of these
patterns. We implemented this as a base permission called searchbase, which extends many
of the permissions. In addition to this, permissions such as create and delete need the ability
to add and remove entries from the container directory. These were also extracted into two base
permissions. Finally, rename and manage need full read and write access to the container
directory, yielding a fourth base permission. This took only twelve lines of code to implement,
while the original file patterns contain 79 distinct statements to granting search permissions on the
container directory. By having these permissions implicitly added through permission inheritance,
we reduce the code size for those shared statements by a factor of 6.6.

Another large reduction in code comes from the ability to replace the specific object class
with a class variable. In Figure 3.6 we show the use of the class keyword in abstracting
a file resource class. This mapping allows us to condense six separate patterns into just one
PLEASE permission. Permissions such as setattr, getattr, create, and unlink are

24

identical except for the object class. By using a class variable named file type, we are able
to substitute that identifier into the object class portion of the access rule. This turned 24 lines of
patterns into a three line permission that inherits from a common base and contains one access
rule. This represents a factor of 8 code size reduction.

Some of the permissions defined for the file abstraction are actually more complex than those
mentioned above, but they still exhibit a reduction in code size. Permissions such as rename and
manage have several special cases to take into account. The conditional statements in PLEASE
allow us to conditionally add policy, based on the value of the file type variable. The fifo
and sock file object classes do not have defined permissions for rename. This conditionally
throws a reference policy warning. This adds three lines to our policy, but removes eight lines of
invalid patterns. The remaining object classes all share the same permissions for rename, which
offsets the lines used by the conditional statement.

PLEASE yields even more substantial gains in many instances. For example, the pattern rw
is just a combination of read and write, and the pattern relabel is just a combination of
relabelto and relabelfrom. In the reference policy, there are six separate macros to repre-
sent each of these two patterns. In PLEASE, each is represented in only one line. By composing
rw as a permission that inherits from both read and write, no additional access rules are re-
quired. Whereas this is a special case, it reduces 24 lines of reference policy code into just one
line of PLEASE code.

25

Chapter 6

Related Work

There have been several other attempts to address all of the problems present in SELinux, as
discussed in Section 1.1. These projects can be placed into two categories: tools that generate
SELinux policy code, and alternate languages for SELinux policy. The second category includes
the approach similar to our own of making a higher-level policy language on top of the existing
SELinux policy language. Although each attempt has different benefits, they each also have some
limitations.

6.1 Policy Generation Tools
MITRE’s Polgen [13] is a tool that generates SELinux policy code automatically, with the help
of some human-made annotations. Polgen uses the information flow patterns it detects from the
strace of an application to generate the appropriate policy for it. The developer assists in
making policy decisions when there is not enough information for the tool to guess itself. Although
this can be a useful start, the process of using learning models as a form of generated policy has
several flaws. Learning models do not necessarily exercise all possible paths, and the data used
to train the learning model must not be malicious. This tool is meant for developers who are not
necessarily familiar with the Linux capabilities system.

Virgil [4] is a tool that generates SELinux policy code according to the specifications that a
user has selected through its graphical user interface. This tool only allows a policy developer to
create isolated domains, with no ability to specify any interactions between domains. Though it
makes it significantly faster to generate policy, Virgil still requires that the developer understands
SELinux and its capabilities system. Virgil is rooted in the abstractions provided by the Reference
Policy, and is limited in what it can express.

The SELinux Policy Editor (SEEdit) [9] by HitachiSoft and George Washington University
is composed of a graphical user interface and a simplified version of the policy language. The
developer only needs to understand the application that needs policy, without needing any other
knowledge of SELinux. The simplified language is easier to understand because it does not include
the type label. However, removing types takes away the ability to express some important aspects
of the original policy.

26

6.2 Higher-Level Policy Languages
Tresys Technologies created the CDSFramework [12] policy language based on cross-domain so-
lutions. CDSFramework is a higher-level policy language that focuses on information flow and
domain separation. It provides a framework to develop guard applications for cross-domain so-
lutions. This language allows the policy to be derived directly from the specified security archi-
tecture. Although this is important, it relies on having functioning policies for the applications
that interact with each other. Tresys is also working on a CDSFramework IDE, a graphical user
interface that an application developer can use to generate the desired SELinux policy code.

Purdue University’s SENG [6] introduces well-defined abstractions on top of the existing pol-
icy, potentially eliminating the need for complex macros throughout the policy language. These
abstractions can then be translated into the original policy language. SENG provides some useful
extensions to the base SELinux policy language, such as permission sets, custom type transitions,
and abstract resources and permission. SENG’s abstract resources and permissions are structured
in a procedural manner, and still requires that the policy developer has some knowledge of types.
Removing the need for the M4 macros in the policy language makes it possible to automatically
analyze the policy created for an application [19].

Lopol [5], by the University of Tulsa, uses a deductive database system to rewrite the existing
policy into a higher-level set of logical rules, making it more readable. Lopol is able to represent
what security rules a particular application policy must follow, making it possible to enforce these
rules through rewriting the policy. However, these rules have not yet been formalized.

27

Chapter 7

Future Work

Additional Language Features. There are several additional features that we would like to see
in the base PLEASE language. The first of these is the ability to embed resource class instances
in the definition of other resource classes. This would allow for a more robust system where
the developer can include functionality already implemented in another resource class in the new
resource class.

The second feature we see being useful is the ability to pass in instances of primitives or
resource classes into calls to permissions and interfaces. This would allow similar functionality
to embedded resource instances. However, it would allow the developer to utilize this without
having the embedded resource. This functionality should be type checked to provide facilities for
proper error reporting. Without resource types being enforced, the system would act simply as a
macro-expansion mechanism.

Another feature that we see being beneficial to developers is a clearer method for understand-
ing and representing type transitions. As of now, there are few direct uses of the type transition
rule in the reference policy. Most of these references are found in the interface that allows a file of
a certain label to transition into a security domain through the program’s execution. However, this
is not the sole use of this functionality. Type transitions are also used to specify the labeling on
transient objects such as pipes, temporary files, message queues and their corresponding messages,
etc. If we provide a better mechanism for this, the developer can properly create sub-domains for
these transient files and limit access to them further.

Policy Analysis Plugin Architecture. One thing that policy developers want is to be able to
verify the correctness of their policy. There have been several attempts at creating policy analysis
tools for SELinux [2, 5, 10, 11]. One benefit of having used JJTree and JavaCC for the PLEASE
compiler is that they already have a plug-able architecture for performing actions based on the
abstract syntax tree. Without an additional framework to aid in policy analysis, a person who
wished to analyze their policy would have to know about the internal compiler representation of
PLEASE, and would also have to be familiar with Java and the internals of JJTree and JavaCC.
A proposed solution for this is to first develop some use cases based on common policy analysis
tasks. Then develop an intermediate representation that best expresses the needs of these tasks,
and a visitor that outputs this representation. After this, a tool can be developed to visualize this

28

data and verify constraints against it.

Graphical Interface. When designing PLEASE, we were careful to design the language in a
way that would be easily expressed in a graphical form. One idea we have for such a tool is an
application that allows the developer to build resource objects in a fashion similar to UML. In this
model, the developer would have a catalog of all the PLEASE primitives and existing resource
classes and would be able to drop them into boxes representing resource classes. Defining per-
missions for a particular object class could be done by allowing the developer to pick from either
permissions from embedded resources or SELinux object classes and the associated permissions.
An application like this would be able to house code snippets similar to the way other IDEs contain
macros or templates for common actions that developers perform. The application would contain
a library of such snippets for use in defining permissions and interfaces. Defining an application’s
policy and its interfaces would be the same as designing a resource class, except that access to
other application’s interfaces are allowed in addition to primitives and resource classes.

Multi-Level Security. At a later time PLEASE could be extended to take into account defining
security levels and categories to support MLS policies. One way of doing this would be to extend
the label statements to contain an MLS field. This field would be another primitive that allowed
the developer to specify the sensitivities and categories for the system in a way that represents its
hierarchical nature [18]. In this method, the developer could specify a group of MLS objects and
in the definition of one object specify that it dominates another object. One consideration with
addressing this method is that there may cycles in the hierarchy.

Role Based Access Controls. At the time of the writing of this thesis, little work has gone
into the RBAC portion of SELinux. The current reference policy only specifies three to five
roles, depending if the MLS policy is running. It would be possible to support the RBAC section
of SELinux by creating a few more basic blocks to handle user definitions and role definitions.
A developer could build a set of roles by assigning particular applications to a role and not be
concerned with the underlying types for the application. This way the developer could easily
define which applications are needed by a role.

29

Chapter 8

Conclusion

Although SELinux is able to provide better system security though its strong access mechanisms,
its complexity has hindered its adoption. Even security experts have difficulty understanding and
using the policy code itself. As a result of this, many administrators and users have problems
adapting the policy to their specific environment and third party applications. Without these capa-
bilities, users and administrators will be slow to adopt SELinux.

PLEASE is a higher-level policy language that conceals the complex nature of SELinux’s type
enforcement. As we have shown, the higher-level abstractions PLEASE provides can increase the
“productivity, reliability, and simplicity” of policy development [1]. PLEASE reduces the amount
of code needed for a policy by a factor of 2.8–8 for the five use cases we discussed in Chapter 5.
In some of these cases, the reduction is as much as a factor of 24. PLEASE makes developing
policy code for applications significantly easier. We believe that once policies are available for a
larger number of applications, SELinux will be a sensible option to use for system security.

30

Bibliography

[1] F. Brooks. The Mythical Man-Month, Anniversary Ed., pages 205–226. Addison-Wesley,
1995. Section: “No Silver Bullet” Refired.

[2] Kevin Carr. apol - selinux policy analysis tool, 2006. http://www.die.net/doc/
linux/man/man1/apol.1.html.

[3] Debian Project. Debian gnu/linux, 2007. http://www.debian.org/.

[4] Daniel H. Jones. Virgil: Selinux policy generator. http://sepolicy-virgil.
sourceforge.net/.

[5] A. Kissinger and J. C. Hale. Lopol: A deductive database approach to policy analysis.
In SELinux Symposium, 2006. http://selinux-symposium.org/2006/papers/
10-lopol.pdf.

[6] P. Kuliniewicz. Seng: An enhanced policy language for selinux. In SELinux Symposium,
2006. http://selinux-symposium.org/2006/papers/09-SENG.pdf.

[7] Peter Loscocco and Stephen Smalley. Integrating flexible support for security policies into
the linux operating system. Technical report, National Security Agency, February 2001.
http://www.nsa.gov/selinux/papers/slinux.pdf.

[8] Frank Mayer, Karl MacMillan, and David Caplan. SELinux by Example. Prentice Hall,
August 2007.

[9] Yuichi Nakamura. Simplifying policy management with selinux policy editor,
2005. http://selinux-symposium.org/2005/presentations/session4/
4-2-nakamura.pdf.

[10] Prasad Naldurg, Stefan Schwoon, Sriram Rajamani, and John Lambert. Netra: Seeing
through access control. In FMSE ’06: Proceedings of the fourth ACM workshop on For-
mal methods in security, pages 55–66, New York, NY, USA, 2006. ACM Press.

[11] Beata Sarna-Starosta and Scott D. Stoller. Policy analysis for security-enhanced linux. In
Proceedings of the 2004 Workshop on Issues in the Theory of Security (WITS), pages 1–12,
April 2004. Available at http://www.cs.sunysb.edu/˜stoller/WITS2004.html.

31

[12] C. Sellers, J. Athey, S. Shimko, F. Mayer A. Wilson, and K. MacMillan. Experiences
implementing a higher-level policy language for selinux. In SELinux Symposium, 2006.
http://www.tresys.com/files/docs/HiLang-SELinux-Symp.pdf.

[13] B. T. Sniffen, D. R. Harris, and J. D. Ramsdell. Guided policy generation for application
authors. Technical report, MITRE, February 2006. http://www.mitre.org/work/
tech_papers/tech_papers_06/06_0046/06_0046.pdf.

[14] Ray Spencer, Stephen Smalley, Peter Loscocco, Mike Hibler, David Andersen, and Jay Lep-
reau. The flask security architecture: System support for diverse security policies. Technical
report, National Security Agency, August 1999. http://www.nsa.gov/selinux/
papers/flask.pdf.

[15] Sun Microsystems. Java compiler compiler (javacc) - the java parser generator, 2007.
https://javacc.dev.java.net/.

[16] Tresys Technology. Reference policy. http://oss.tresys.com/projects/
refpolicy.

[17] Tripwire Inc. Tripwire Software. www.tripwire.com.

[18] US Department of Defense. Trusted computer system evaluation criteria (The Orange Book).
Technical Report DoD 5200.28-STD, National Computer Security Center, Alexandria, VA,
December 1985. www.dynamoo.com/orange.

[19] Gary V. Vaughan. Gnu m4. http://www.gnu.org/software/m4/, 2006.

32

Appendix A

PLEASE Policy Examples

A.1 Application Policy Example
This section defines a sample application policy for an application named “crunch.” Crunch is a
simple program that takes files in a particular directory and then hashes them and emits the results
to its own ad hoc log file. Crunch uses isolated types for its log file and configuration data. In
addition to this it needs access to the system’s shared libraries in order to access cryptographic
functions. We make the assumption that we have already defined a “libso” resource class that con-
tains the permission use, which grants the ability to access and use the system’s libraries. Crunch
also mmaps its configuration and contents files. The mmap operation on Crunch’s configuration
files can fail often so we indicate not to audit these errors to avoid flooding our log.

application crunch {
#type for /etc/crunch.conf
isolated File config;
#type for /var/log/crunch
isolated File log;
#resource class for contents of a crunch directory
File contents {

file_type = Regular;
file_list {

/* Label our source directory and its files */
/opt/crunch
/opt/crunch/*

}
};
#System’s shared libraries.
libso shared_libraries;

action {
config.Read;
config.Mmap;
log.Append;
contents.Read;
contents.Mmap;
shared_libraries.Use;

dontaudit config.context:file { getattr read execute };
}
interface ReadConfig {

33

config.Read;
}
interface ReadLog {

log.Read;
}

}

34

A.2 CoreCommands Policy Examples
Bin Resource Abstraction:
The reference policy defines an abstraction to handle all executable files that are located in the
system’s bin and sbin directories. The Bin resource class is the PLEASE representation of the
same abstraction. The resource contains several components which allow it to function the same
way as the reference policy implementation. The two primitives seen in the example specify that
this object has a default type of bin t and that it should be given the file type attribute. The
second section of the example are the permissions. These are derived straight from the interfaces
provided by the reference policy for the bin and sbin abstractions.

resource Bin
{

attribute attrs = { file_type exec_type };
default label context {

optional user;
optional role;
type = bin_t;

};
permission search {

allow context:dir { getattr search };
}
permission list {

allow context:dir { getattr search read lock ioctl };
}
permission getattr extends search {

allow context:file { getattr };
}
permission read extends getattr {

allow context:file { read lock ioctl };
}
permission readlinks extends search {

allow context:lnk_file { getattr read };
}
permission readpipes extends search {

allow context:fifo_file { getattr read lock ioctl };
}
permission readsockets extends search {

allow context:sock_file { getattr read };
}
permission exec extends { list readlinks } {

allow context:file { read getattr lock execute ioctl execute_no_trans};
}
permission manage {

allow context:dir { read getattr lock search ioctl add_name remove_name write };
allow context:file { create getattr setattr read write append rename link unlink ioctl lock };

}
permission relabel extends search {

allow context:file { getattr relabelfrom relabelto };
}
permission mmap extends search {

allow context:file { getattr read execute };
}

}

35

Extension of the Bin resource to provide SBin:
The SBin resource class is identical so Bin in every way except for the underlying type. This
allows for SBin to be a child class of the Bin resource with the implementation overriding the
default type of the resource class.

resource SBin extends Bin
{

default label context {
optional user;
optional role;
type = sbin_t;

}
}

Example of the Abstraction of an Attribute:
The AllExecutables resource class is an example of using an attribute instead of a type for per-
missions in a resource class. In this example we are specify a default type of exec type for the
attribute variable. If we had specified multiple attributes then each of the rules in the permission
statements would generate multiple allow statements.

resource AllExecutables extends Bin
{

attribute attr = exec_type;

permission getattr extends Bin.list {
allow attr:file { getattr };

}
permission exec extends Bin.list {

allow attr:file { read getattr lock execute ioctl execute_no_trans};
allow attr:lnk_file { getattr read };

}
permission manage {

allow context:dir { read getattr lock search ioctl add_name remove_name write };
allow attr:file { create getattr setattr read write append rename link unlink ioctl lock };
allow attr:lnk_file { create read getattr setattr unlink rename };

}
permission relabel extends Bin.search {

allow attr:file { getattr relabelfrom relabelto }
}
permission mmap extends Bin.search {

allow attr:file { getattr read execute };
}

}

36

A.3 Sample Policy for Pattern Abstraction
Base resource used to create Directory and File:
To eliminate the wasteful replication of policy we use the PatternBase resource class as a parent
for the Directory and File resource classes. The context variable in this example is the label of the
actual object being referred to while the container is the label of the parent directory.

resource PatternBase {
optional group member;
optional label context;
optional label container;
optional static file_list;

}

Directory resource class:
The Directory resource class is a conversion of the Directory pattern found in the reference policy.
Since Directory extends PatternBase, it contains the three primitives belonging to that class. The
remainder of the implementation is the permission statements which show the use of an identifier
as the target or an access rule.

resource Directory extends PatternBase {

permission searchbase {
allow container:dir { getattr search };

}
permission getattr extends searchbase {

allow context:dir { getatttr };
}
permission setattr extends searchbase {

allow context:dir { setatttr };
}
permission search extends searchbase {

allow context:dir { getattr search };
}
permission list extends searchbase {

allow context:dir { getattr search read lock ioctl };
}
permission add_entry extends list {

allow context:dir { add_name };
}
permission del_entry extends list {

allow context:dir { remove_name };
}
permission create {

allow container:dir { getattr search lock ioctl write add_name };
allow context:dir { getattr create };

}
permission delete {

allow container:dir { getattr search lock ioctl write remove_name };
allow context:dir { getattr rmdir };

}
permission rename {
#omitted since the refpolicy is missing rename_dir_perms

}
permission manage {

allow container:dir { read getattr lock search ioctl add_name remove_name write };

37

allow context:dir { create getattr setattr read write link unlink rename search add_name remove_name reparent rmdir lock ioctl };
}
permission relabelfrom extends searchbase {

allow context:dir { getattr relabelfrom };
}
permission relabelto extends searchbase {

allow context:dir { getattr relabelto };
}
permission relabel extends { relabelfrom relabelto } {}

}

38

File Resource Class:
The File resource class is more complex than the Directory resource class. It shows the extension
of PatternBase while including new primitives. In this case an instance of the class primitive
named “file type” is created. The class primitive serves an important purpose in this case. Since
several of the permissions defined for File are identical except for a change in the underlying
object class we can make use of this commonality with the class primitive. In this case the class
primitive is defined to have six valid variables. Instead of using a specific object class we can
substitute this variable in for the object class field of our allow rule. In the case of getattr and
setattr this condenses the access statement for all six object classes to one statement.

resource File extends PatternBase {

class file_type {
default Regular = "file";
Symlink = "lnk_file";
FIFO = "fifo_file";
BlockFile = "blk_file";
CharFile = "chr_file";
SockFile = "sock_file";

}
// Base permissions
permission searchbase {

allow container:dir { getattr search };
}
permission addentrybase {

allow container:dir { getattr search lock ioctl write add_name };
}
permission delentrybase {

allow container:dir { getattr search lock ioctl write remove_name };
}
permission rwdirbase {

allow container:dir { read getattr lock search ioctl add_name remove_name write };
}
// Common Permissions
permission getattr extends searchbase {

allow context:file_type { getattr };
}
permission setattr extends searchbase {

allow context:file_type { setattr };
}
permission read extends searchbase {

allow context:file_type { getattr read };
if(file_type != Symlink && file_type != SockFile) {

allow context:file_type { lock ioctli };
}

}
permission mmap extends searchbase {

if(file_type != Regular) {
#throw refpolcy warning

}
allow context:Regular { getattr read execute };

}
permission exec extends mmap {

allow context:Regular { execute_no_trans };
}
permission append extends searchbase {

if(file_type == Symlink) {
#throw refpolcy warning

} else {

39

allow context:file_type { getattr append lock ioctl };
}

}
permission write extends searchbase {

if (file_type == SockFile) {
allow context:SockFile { getattr write append };

} else if (file_type == Symlink) {
allow context:Symlink { getattr write lock ioctl };

} else {
allow context:file_type { getattr write append lock ioctl };

}
}
permission rw extends { read write } {}
permission create extends addentrybase {

allow context:file_type { getattr create };
}
permission delete extends delentrybase {

allow context:file_type { getattr unlink };
}
permission rename extends rwdirbase {

if (file_type == FIFO || file_type == SockFile) {
#throw refpolcy warning

} else {
allow context:file_type { getattr rename };

}
}
permission manage extends rwdirbase {

if (file_type == SockFile) {
allow context:SockFile { create getattr setattr read write rename link unlink ioctl lock };

} else if (file_type == Symlink) {
allow context:Symlink { create read getattr setattr unlink rename getattr write lock ioctl };

} else {
allow context:file_type { create getattr setattr read write append rename link unlink ioctl lock };

}
if (file_type == BlkFile || file_type == ChrFile) {

allow self:capability mknod;
}

}
permission relabelfrom extends searchbase {

allow context:file_type { getattr relabelfrom };
}
permission relabelto extends searchbase {

allow context:file_type { getattr relabelto };
}
permission relabel extends { relabelto relabelfrom } {}

}

40

Appendix B

PLEASE Language Description

B.1 Lexical Issues
PLEASE is case-sensitive; for example, “Class” and “class” are two distinct lexical entities.

White Space and Comments: Whitespace (spaces, newlines, and tabs) are used to separate to-
kens; otherwise they are ignored. Whitespace may not appear in any token, even a string constant.
PLEASE supports three types of comments:

• Multi-line (C-Style) comments that start with “/*” and end with “*/”. As in C, these com-
ments may not be nested. These comments are not placed in the output file.

• Single-line comments starting with “//” and ending at the end of the line. These comments
are also not placed in the output file.

• SELinux comments start with “#” and end at the end of the line. These comments are placed
in the output file based on where they appear in the input file.

Reserved Words:
The following are reserved words:

label user role type static group class
attribute optional default isolated override resource permission
extends verbatim application action interface if else
true false allow auditallow dontallow neverallow

Identifiers:
PLEASE identifiers may only contain letters [“a” – “z”] , digits [“0” – “9”] and underscores. An
identifier must start with a letter and then may be followed by any number of letters, digits, and
underscores.

41

Constants:
PLEASE only supports one type of constant. For the purpose of the class construct we allow
strings conforming to the same rules as identifiers.

B.2 PLEASE Grammar:
policy ::= (resource_decl | application_decl)*

resource_decl ::= resource identifier (extends parent_var_list)? { resource_body }

parent_var_list ::= identifier | { (identifier)+ }

resource_body ::= (label_decl | group_decl | attribute_decl
| static_decl | class_decl | permission_decl)*

label_decl ::= (optional | default)? label identifier ({ label_decl_body })? ;

label_decl_body ::= ((optional)? (user | role | type) (= identifier)? ;)*

group_decl ::= (optional)? group identifier group_list ;

group_list ::= { (identifier)+ } | identifier

attribute_decl ::= (optional)? attribute identifier attribute_list ;

attribute_list ::= { (identifier)+ } | identifier

static_decl ::= (optional)? static identifier (identifier)? { }

class_decl ::= class identifier { (class_element)? }

class_element ::= (default)? (identifier = "identifier" ; | identifier ;)

permission_decl ::= (override)? permission identifier (extends parent_list)?
{ permission_body }

parent_list ::= parent_list_element | { (parent_list_element)+ }

parent_list_element ::= identifier | identifier . identifier

permission_body ::= (permission_stmt | permission_conditional_stmt)*

permission_stmt ::= avrule (identifier)? : identifier operation_list ;
| identifier . identifier ; | verbatim_stmt

verbatim_stmt ::= verbatim { }

avrule ::= allow | auditallow | dontaudit | neverallow

operation_list ::= identifier | { (identifier)+ }

permission_conditional_stmt ::= if_stmt (elseif_stmt)* (else_stmt)?

if_stmt ::= if (boolean_expr) { permission_body }

elseif_stmt ::= else if (boolean_expr) { permission_body }

else_stmt ::= else { permission_body }

42

boolean_expr ::= boolean_equals_expr ((&& | ||) boolean_equals_expr)*

boolean_equals_expr ::= identifier . class == identifier

application_decl ::= application identifier { application_body }

application_body ::= (primitive_stmt | resource_stmt | interface_stmt
| action_stmt)*

primitive_stmt ::= label_stmt | group_stmt | attribute_stmt | static_stmt

label_stmt ::= label identifier = label_stmt_body

label_stmt_body ::= ((user | role | type) = identifier ;)*

group_stmt ::= group identifier = group_list ;

attribute_stmt ::= attribute identifier = attribute_list ;

static_stmt ::= static identifier (identifier)? { }

resource_stmt ::= identifier identifier { resource_stmt_body }

resource_stmt_body ::= ((identifier = (label_stmt_body | group_list
| "identifier")) | (identifier identifier { }))*

action_stmt ::= action { action_stmt_body }

action_stmt_body ::= (avrule (identifier)? (identifier)? : identifier
operation_list ; | identifier . identifier ;

| verbatim_stmt)*

interface_stmt ::= interface identifier { interface_stmt_body }

interface_stmt_body ::= (avrule (identifier)? (identifier)? : identifier
operation_list ; | identifier . identifier ;
| verbatim_stmt)*

43

