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MULTI-TIER CACHING 

CROSS-REFERENCE TO RELATED 
APPLICATION 

This application is a continuation of co-pending U.S. 
application Ser. No. 13/159,039 filed Jun. 13, 2011, which 
claims the benefit of U.S. Provisional Application, Ser. No. 
61/354,054 filed on Jun. 11, 2010 in the United States Patent 
and Trademark Office, the contents of which are herein 
incorporated by reference in its entirety. 

BACKGROUND OF THE INVENTION 

1. Technical Field 
The present invention relates to key-value storage, index

ing, and more particularly to tiered key-value storage and 
indexing machines comprising a cluster of databases, file 
systems, or any other storage-stack software. 

2. Discussion of Related Art 
The volume of index data being generated by network

connected devices is outpacing data storage technologies' 
speed, capacity, or abilities. Examples of these devices 
include systems for automatically generating tags, indexing 
constantly captured video, social-networking services 
indexing a growing database, and systems that generate 
large volumes of index data. 

Applications that create index data include data-dedupli
cation and provenance systems. Data deduplication is one 
technology used to compensate for these large databases, 
where redundant data may be eliminated. Data deduplication 
relies on indexing to maintain performance levels. Auto
mated provenance collection and indexing are examples of 
additional growing applications. Automatic provenance col
lection describes systems that observe processes and data 
transformations inferring, collecting, and maintaining prov
enance about them. 

2 
journal and block allocators, wherein each zone manager 
maintains a header object pointing to data to be stored in all 
allocated blocks. 

According to an embodiment of the present disclosure, a 
method for inserting and retrieving key-value pairs in a 
machine in communication with multiple storage devices 
managed in a hierarchy of tiers includes inserting the 
key-value pairs in the machine and retrieving the key-value 
pairs from the machine. Inserting the key-value pairs in the 

10 machine includes transferring first lists of sorted key-value 
pairs from a first memory on the machine to a higher (or 
highest) storage tier of the machine according to a merging 
method, if there is space available on the higher (or highest) 

15 
storage tier, transferring second lists from the higher storage 
tiers to the lower storage tiers within the machine according 
to the merging method to create space in the higher storage 
tiers, and transferring third lists from higher machine tiers 
including the machine to lower machine tiers according to 

20 the merging method and conflict resolution algorithm to 
create space in the higher storage tiers. Retrieving the 
key-value pairs from the machine includes searching for a 
first value with a valid key in the first memory on the 
machine, searching for a second value with the valid key in 

25 the highest storage tier of the machine if not present in first 
memory on the machine, searching for a value with the valid 
key in the lower storage tiers of the machine if not present 
on the highest storage tier of the machine, and searching for 
a value with the valid key in lower machine tiers if not 

30 present on higher machine tiers of the machine. 
According to an embodiment of the present disclosure, a 

method for maintaining an index in multi-tier data structure 
includes managing a plurality of resources within a multi-

35 tier storage system, inserting a copy of at least one of the 
resources into the multi-tier storage system, detecting, at a 
selective time, the copy of the at least one resource, and 
performing a merging method to redistribute the plurality of 
resources within the multi-tier storage system. 

Individual machines that form a larger database cluster 
such as those used by Google's BigTable and Yahoo's 
Hadoop and HBase perform indexing tasks as well. These 40 

machines are referred to as 'Tablet Servers' in the literature. 
Even database engines such as MySQL's InnoDB, ISAM 
(Indexed Sequential Access Method), Berkeley DB, and 
other such key-value stores must perform indexing for 
traditional RDBMS (relational database management sys
tem) workloads. Indexing is being applied to system logs, 
file metadata, databases, database clusters, media tagging, 
and more. 

According to an embodiment of the present disclosure, a 
method for maintaining an index in multi-tier data structure 
includes managing a plurality of resources within a multi
tier storage system, and performing a merging method to 
redistribute the plurality of resources within the multi-tier 

45 storage system, wherein the merging method is automati
cally tuned for a workload without disabling the machine. 

BRIEF DESCRIPTION OF THE DRAWINGS 
In these contexts, and others, indexing is an important 

component of a variety of platforms and applications. 

SUMMARY OF THE INVENTION 

50 Preferred embodiments of the present invention, as well 
as definitions and meanings of abbreviations, will be 
described below in more detail, with reference to the accom
panying drawings: 

According to an embodiment of the present disclosure, a 
method for maintaining an index in multi-tier data structure 
includes providing a plurality of storage devices forming the 
multi-tier data structure, caching a list of key-value pairs 
stored on one or more tiers of the multi-tier data structure as 

FIG. 1 is a diagram of a tiered storage system according 
55 to an embodiment of the present application; 

a plurality of sub-lists according to a caching method, 
wherein each of the key-value pairs includes a key, and 60 

either a data value, a data pointer, the key-value pairs stored 
in the multi-tier data structure, providing a journal for 
interfacing with the multi-tier data structure, providing a 
plurality of block allocators recording which blocks of the 
multi-tier data structure are in use, and providing a plurality 65 

of zone managers for controlling access to blocks within 
individual tiers of the multi-tier data structure through the 

FIG. 2 is an exemplary CHISL multi-tier system accord
ing to an embodiment of the present application; 

FIGS. 3A-C show exemplary merging methods according 
to an embodiment of the present application; 

FIG. 4 shows an exemplary SAMT with multiple slots, 
secondary indexes, and filters according to an embodiment 
of the present application; 

FIG. 5 shows SAMT tier header and block allocators 
according to an embodiment of the present application; 

FIG. 6 shows three processes, p0 ... p2 , each maintaining 
an ongoing transaction that has modified three SAMTs, 
according to an embodiment of the present application; 



US 9,959,279 B2 
3 

FIG. 7 is an exemplary CHISL configuration having one 
or more slots or lists per level or cache line according to an 
embodiment of the present application; 

FIG. 8 shows an exemplary merge and cache method in an 
exemplary CHISL implementation according to an embodi
ment of the present application; 

FIG. 9 shows an exemplary CHISL structure employed as 
a multi-tier colunm store by storing colunms as nested 
key-value pairs using the CHISL multi-tier hierarchy 
according to an embodiment of the present application; and 10 

FIG. 10 shows exemplary CHISL reconfigurations, 
dynamically shifting from a write-optimized merging 
method to a more read -optimized merging method according 
to an embodiment of the present application. 

DETAILED DESCRIPTION OF EXEMPLARY 
EMBODIMENTS 

15 

According to an embodiment of the present disclosure, a 
high-throughput, transactional, consistent, multi-tier index 20 

and caching system seamlessly spans different storage tech
nologies, exploiting useful properties of each storage tech
nology. Transactional semantics can be full, partial, or none. 
The multi-tier system, referred to herein as Cascading Hier
archy of Sorted Lists (CHISL), maintains insertion through- 25 

puts in excess of a single-node Cassandra installation, a 
single-node HBase installation, Voldemort, Hypertable, the 
best-case log-structured index, Berkeley DB, MySQL, XFS, 
or Ext3 index implementations, and the like, regardless of 
the storage technology. 30 

CHISL can be used as a storage engine in a single 
RDBMS, embedded database, a cluster of databases, a local 
or networked or distributed file system, a deduplication 
mechanism, and any other implementation in which a key-
value store may be used. 35 

FIG. 1 is an exemplary multi-tier index and caching 
system including a plurality of different types of nodes. The 
nodes may be one or more client type 101, one of first 
through N tier 102-104 or storage type 105. Different tier 
storage devices are employed at each node type. The tiers 40 

may be prioritized, for example, first through third-tier 
storage devices 106-108. The storage devices may be hosted 
within one physical machine, or connected by a network. 
For example, one or more storage tiers may be hosted within 
a client to a cluster. One or more tiers may be stored at the 45 

nodes within the cluster responsible for storing that range of 
key-value pairs within that key space. 

According to an embodiment of the present disclosure, 
CHISL is an end-to-end transactional indexing storage sys
tem. Because Internet data can be stored anywhere from 50 

directly attached devices, to near-line ones, to remote 
clouds, CHISL may scale across arbitrary hierarchies of 
heterogeneous storage devices and servers, including Flash
based storage. The number of nodes within a single tier, or 
the number of tiers is not limited. 55 

CHISL insertions may avoid random reads or writes 
entirely, contributing to its scalability, by utilizing sorted
array merge-trees (SAMT), Cache-Oblivious Look-ahead 
Array (COLA), other write-optimized indexing technolo-
gies, filters such as Bloom filters, etc. 60 

Glossary of Terms 

Some terms are used repeatedly throughout the present 
disclosure and for clarity are defined both when first used, 65 

and in this glossary. These definitions apply unless otherwise 
noted. 

4 
Pair: A pair is a variable length key-value pair, where the 

value can be a nested array of variable length key-value 
pairs. A value can also be a pointer or an offset to a 
location in RAM (Random Access Memory) or storage. 
The key can be sorted with a plurality of sort orders, 
sorting first by the primary sort ordering. When two 
keys are considered incomparable or equal by the 
primary sort ordering, they are sorted by the secondary 
sort ordering, and so on. Storing an array within a value 
may be done by first storing a simple secondary index 
at the beginning of the series of bytes comprising the 
value, and storing the element key-value pairs within 
the array. The secondary index may include the offsets 
to each key, where every K'h offset (for a configurable 
K) also includes that pair's key, or part of key, or K is 
allowed some variance so that only short keys are 
chosen. Several configurations of a pair or key-value 
pair are shown in FIG. 9. 

Secondary Index: A secondary index may find a value 
within an array in a single block or data transfer to the 
storage device. The secondary index may store one 
entry for many entries in the array in storage. For 
example, the offsets of all pairs may be stored within a 
block at the beginning of the block, and the first pair's 
key may be stored in the secondary index along with 
the offset of the block. Further improvements permit 
efficient mixing of large and small keys. By layering 
secondary indexes on top of each other a B+-tree index 
may be created. 

Hierarchy: A hierarchy is a structure that stores pointers to 
all lists within the store. These pointers may be sorted 
by the age of their lists. For example, if a list A was 
created before a list B, then the pointer to A will come 
before B in the hierarchy. 

Merging method: Merging methods may use a hierarchy 
of lists to combine some of these lists together and 
create a new list based on their age and their size. 

Lock resolution method: Lock resolution methods deter
mine what should be done if two pairs have the same 
value key during a merge. These methods can also be 
called conflict resolution methods. Common conflict 
resolution methods include, for example, selecting the 
pair coming from the younger list, stopping the merge 
and issuing an error (for example, to retry a transac
tion), or reporting the conflict in a sorted list of con
flicting pairs that can be scanned by a program or 
machine to determine what to do in the case of each 
conflict specially. 

Caching method: A caching method may be used to 
determine how to split a list into component sub-lists, 
and in which tiers to transfer (or not transfer) a sub-list 
when there is a need to perform a compaction (e.g., to 
maintain efficient lookup and scan performance, or to 
create free space). For example a multi-tier read cach
ing method may use 40% of its space to store sub-lists 
containing only re-inserted inserted reads so as to keep 
frequently read values in faster storage devices (e.g., 
Flash, Phase-change Memory, or other memory tech
nology higher in the cache hierarchy). If there is need 
for space from younger and/or more frequently read 
sub-lists, older and/or less frequently read sub-lists may 
be transferred to a storage device lower/slower in the 
cache hierarchy to make memory available. 

Deduplication method: A deduplication method is a spe
cialization of a lock resolution method, where a conflict 
in keys indicates a duplicate entry, and a message is 
sent to a block or storage manager to take note of the 
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duplicate for purposes of consistency, performance, 
efficiency, load balancing, or to reduce unneeded space 
utilization. 

Sequential Optimizations: A exemplary merging method 
that avoids multiple writes of data that is already sorted, 
or data that does not require sorting, for example, either 
because it the data is not complex enough to justify 
indexing, or the data is large and is always read in 
whole. 

Filtering Method: An extension to the search operation of 
a merging method where a structure F is maintained for 
each list and optionally sub-list where unneeded 
searches are avoided by consulting this structure. This 
structure may be a compact negative cache. A (com
pact) negative cache is a compact data structure that 
supports membership queries on a set. Queries on the 
negative cache have a small probability of reporting 
items as being members of the set when they are not. 
A Bloom filter is an example of a compact negative 
cache. If a query indicates an item is not a member of 
the set, the item is not a member of the set. If a list is 
stored on a device T, the structure F may be stored in 

6 
insertions while maintaining efficient and bounded lookup 
and scan performance, or vice verse, according to workload 
conditions. 

According to an embodiment of the present disclosure, a 
position of each list may be stored within the multi-tier 
storage in a fast storage device, for example the machine's 
RAM. Alternatively, each list's position within the multi-tier 
storage hierarchy may be determined before a merge is 
performed according to the merging method. Regardless of 

10 whether the hierarchy is stored continuously, or only deter
mined selectively, all such machines are embodiments of the 
present disclosure. 

To perform an insertion of key-value pairs with poten
tially completely random values, merging methods may be 

15 employed where key-value pairs are sorted in RAM, and 
merged with sorted lists already on a storage device. By 
selecting a number of lists to merge together when trans
ferring key-value pairs from RAM to storage, based on age, 
the overall time spent inserting many key-value pairs may be 

20 reduced. There are several methods by which a sorted list of 
the most recently inserted key-value pairs in RAM can be 
merged with sorted lists already in storage, called merging 
methods. a higher tier or faster storage device C. In such a 

configuration the time spent consulting the structure 
stored in C is less than the time that would be needed 25 

According to an embodiment of the present disclosure, 
list merging may be performed in connection with a plurality 
of storage devices with different random and serial read and 
write throughputs. These storage devices may be connected 
to one or more machines. According to an embodiment of 
the present disclosure, lists may be stored as sub-lists that 

to perform the search in the device T where the list is 
stored. The structure can be generated when the list or 
sub-list is created in T, and then either immediately, or 
at a later time the generated structure can be transferred 
to the faster device C. 

TSSL!Pair Store: The Tablet Server Storage Layer 
(TSSL) is a database or database-like storage software 
which may be installed on every node in a cluster of 
databases. The TSSL controls a plurality of pair stores: 
data structures designed to store key-value pairs or 
pairs. CHISL is a suitable pair store for a TSSL, and can 
be used as a component of a column store or any other 
database store. 

SSTable: Another name for a list stored on a storage 
device. 

Memtable: Another name for the C0 buffer stored in a fast 
storage device such as RAM or some other suitable 
memory technology. 

1. Merging Method Adaptations Overview and Analysis 

30 store different kinds of information. For example entries that 
were inserted to speed lookups may be separated from 
entries that were inserted to update existing key-value pairs. 
The separation of lists into sub-lists permits managing 
methods to keep recently read information in more efficient 

35 storage devices, while recently inserted information is trans
ferred to another storage device, for example one with 
comparable cost (e.g., monetary) that is slower but larger. 
Further, the separation of lists may allow a device to 
effectively store structured data typically stored in an 

40 RDBMS, database engine, or database cluster node in a 
cache hierarchy of storage devices, where all devices are 
comparable in cost, but larger storage devices are slower to 
access. In addition, the separation oflists may allow devices 
to store the same amount of structured data, and to speed up 

45 workloads that access a portion of this data too large to fit 
in RAM, small enough to fit in a storage device slower and 
larger than RAM, and faster and smaller than disk or a 
device that can store more structured data as compared to 

According to an embodiment of the present disclosure, a 
multi-tier storage hierarchy may be implemented having an 
arbitrary merging method and caching method, with a lock 
resolution, duplicate management, sequential optimizations, 
and dynamic reconfiguration method. Exemplary merging 
methods are described in this section. Exemplary embodi- 50 

ments of a CHISL multi-tier method are described herein. 

other devices when cost is comparable. 
Exemplary merging method adaptations described herein 

can store which lists are to be merged based on age, 
frequency of use, or other criteria in RAM at all times, or 
alternatively can determine which lists are to be merged 
according to this criteria before merging them into a larger 

Further, implementations of a merging method compatible 
with embodiments of the present disclosure, extending a 
SAMT merging method using a CHISL multi-tier method, 
are described. 

According to an embodiment of the present disclosure, a 
merging method may be tuned or selected for a level of 
insertion ingestion. The merging method may be automati
cally changed to merge more frequently in order to maintain 
fewer lists, wherein lookups need only query a small number 
of lists, at the expense of more time spent merging and 
therefore a lower insertion throughput. The tuning or selec
tion of a merging method is complementary to embodiments 
described herein and can be used to create a flexible multi
tier storage system capable of managing duplicate resources, 
caching sub-lists in different storage tiers according to the 
caching method, and processing either high volumes of 

55 list to be transferred to some storage tier in the multi-tier 
hierarchy. The information used to determine which lists are 
to be merged and in what order is called a hierarchy. 
Whether an adaptation constructs its hierarchy before the 
merge or maintains its hierarchy continuously is an imple-

60 mentation detail and does not alter an adaptation of the 
present disclosure. 

Amortized versions of two alternate merging methods, 
specifically the COLA Merging Method Adaptation and the 
SAMT Merging Method Adaptation are described herein. 

65 Techniques described herein from adapting these merging 
methods to utilize a multi-tier structure according to an 
embodiment of the present disclosure are applicable to other 



US 9,959,279 B2 
7 8 

merging methods including deamortized versions. The spe
cific method by which an adaptation is performed is an 
implementation detail. One exemplary technique to achieve 
deamortization is to perform a portion of a next set of merges 
during each insertion. This can be achieved by performing 5 
merges asynchronously in the storage tiers while using a 
timer to throttle insertions into C0 , or by synchronously 
performing a portion of the next scheduled merge before 
each insertion into C0 . 

may be configured to provide faster insertions and slower 
lookups by organizing compactions differently. The struc
ture adopted by Cassandra's TSSL and CHISL is referred to 
as a Sorted Array Merge Tree (SAMT). As shown in FIG. 
3C, panel 2, the SAMT stores K lists, or slots on a plurality 
oflevels C0 -C3 . The memtable or C0 can be flushed K times 
before a compaction is performed. The slots in C1 are 
merged into a slot in C2 . In the example depicted, a cascade 
of compactions is performed: the slots in C2 are merged into 

Metric of Abstract Analysis 10 a slot in C3 , so that the slots in C1 can be merged into a slot 
in C2 and the memtable can be flushed to C1 . 

According to an embodiment of the present disclosure, a 
multi-tier storage hierarchy may be scaled. Current systems 
utilize merging methods that are insensitive to the problems 
faced by a multi-tier hierarchy. Two existing compaction 15 

methods are discussed herein, and in Section 2, extensions 
are described for applications to a multi-tier regime accord
ing to an embodiment of the present disclosure. Compaction 
performance of the methods is analyzed using the Disk
Access Model (DAM) for cost. DAM divides the system 20 

into a memory M and storageS. The unit of transfer from S 
toM is a block ofb bytes. Operations and manipulations of 
data in M are at no cost. Blocks transferred either from M 

Comparison of COLA and SAMT 

It should be understood that panels 1 (HBase 3-COLA) 
and 2 (Cassandra SAMT) of FIG. 3C are not multi-tier 
structures. Although the HBase 3-COLA method permits 
more aggressive merging during insertion to decrease 
lookup latency by increasing R, it may not favor insertions 
beyond its default configuration. This permits faster scan 
performance on disk, but for 64 byte or larger keys, random 
lookup performance is already optimal for the default con
figuration. This is because for most lookups, Bloom filters 
on each SSTable avoid alllogR(N) SSTables except the one 
which contains the sought after pair. Furthermore, on Flash 
SSD the 3-COLA is less optimal, as even the seeking 

to S or from S to M cost 1. For the remainder of this analysis, 
B=b/<size of key-value pair> is used instead of b. This 25 

means each data structure is penalized 1 unit for reading or 
writing a key-value pair to a random location in storage S, incurred from scanning is mitigated by the Flash SSD's 

obliviousness toward random and serial reads. Conversely, 
the SAMT can be configured to further favor insertions by 

or is penalized 1 unit for reading or writing a series of B 
key-value pairs to a random location in storage S. 

COLA Merging Method Adaptation 

HBase is a variation of the Cache-Oblivious Lookahead 
Array (R-COLA). The R-COLA supports increasingly more 
read-optimized configurations as its R parameter is 
increased. HBase sets R=3, which is optimal in practice for 
the R-COLA, and the particular HBase configuration may be 
referred to as a 3-COLA. FIG. 3C, panel 1, shows an 
R-COLA including flogR(N)l arrays of exponentially 
increasing size, stored contiguously (C0 through C3 ). In this 
example, R=3. C1 through C3 on storage 304 can be thought 
of as three lists (e.g., SSTables), and C0 in RAM 305 can be 
thought of as a buffer in a fast storage device such as RAM 
(memtable). The memtable is a write-back cache storing 
data that may be looked up by key. When the memtable is 
serialized to disk 304 and turned into an SSTable, the 
R-COLA checks to see iflevel 0 is full. Iflevel 0 is not full, 
it performs a merging compaction on level 0, on all adjacent 
subsequent arrays that are also full, and on the first non-full 
level, into that same level. In FIG. 3C panel 2, C0 through 
C3 are merged into C3 ; after the merge, the original contents 
ofC3 have been written twice to C3 . Each level can tolerate 
R-1 merges before it needs to be included in the merge into 
the level beneath it. This means that every pair is written R -1 
times to each level. C0 can be serialized to a slot in C1 . As 
every element visits each level once, and merges are done 
serially, logx(N) disk transfers are performed per insertion. 
Because there are K slots per level, and logx(N) levels, 
K*logx(N) disk transfers are performs per lookup. The cost 
oflookup with the SAMT is the same forK =2 and K =4, but 
K=4 provides faster insertions. K=4 may be used as a 
default. 

SAMT Merging Method Adaptation 

The R-COLA used by HBase has faster lookups and 
slower insertions by increasing R. CHISL and Cassandra 

30 increasing K, while maintaining lookup performance on 
Flash SSD and disk by using Bloom filters, and maintaining 
scan performance on Flash SSD. Although Bloom filters 
defray the cost of unneeded lookups in SSTables, as the 
number of filters increases, the total effectiveness of the 

35 approach may decrease. When performing a lookup in the 
SAMT with a Bloom filter on each SSTable, the probability 
of having to perform an urmeeded lookup in some SSTable 
is 1-(1-f)NB where NB is the number of Bloom filters, and 
f is the false positive rate of each filter. This probability is 

40 about equal to f*NB for small values off. Bloom filters may 
be effective as long as the number of SSTables remains 
finite. For a Bloom filter filtering method, having the number 
of each tree/colunm-family being less than about 40 is 
sufficient, other filtering methods may have different values 

45 depending on their space efficiency for higher false positive 
rates. 
2. Exemplary Design and Implementation 

CHISL utilizes several extensions to the SAMT (dis
cussed in Section 3). As shown in FIG. 3C panels 3 and 4, 

50 CHISL supports storage device specific optimizations at 
each tier, e.g., RAM, SSD and Disk. CHISL migrates 
recently written and read data between tiers to improve both 
insertion and lookup throughput and permit caching in 
storage tiers larger than RAM. Referring to FIG. 7, CHISL 

55 may be configured to have different numbers of slots or lists 
per level or cache lines according to an embodiment of the 
present application. 

TSSL efficiency is related to overall cluster efficiency. 
CHISL extends the scan cache and buffer cache architecture 

60 used by existing TSSLs. CHISL avoids the need to maintain 
a buffer cache while avoiding common memory-mapping 
(MMAP) overheads. CHISL further exploits Bloom filters 
so that they have equal or more space in RAM than the scan 
cache. Although Web-service MapReduce workloads do not 

65 typically require more than atomic insertions, parallel 
DBMS (Database Management System) architectures and 
many scientific workloads use more substantial transactional 
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semantics. CHISL introduces an optional transactional 
architecture that allows clients to commit transactions as 
either durable or non-durable. Durable transactions exploit 
group-commit as in other TSSL architectures. CHISL also 
allows non-durable transactions, and these can avoid writing 
to the journal completely for heavy insertion workloads 
without compromising recoverability. In addition, CHISL 
provides the infrastructure to support transactions that can 
perform multiple reads and writes atomically and with full 
isolation. 

Exemplary CHISL Method 

A CHISL multi-tier method (CHISL method) permits the 
modification of a merging, caching, lock resolution, dupli
cate management, sequential optimization, filtering method, 
and dynamic reconfiguration method to operate within a 
multi-tier storage environment, where multiple devices are 
grouped into multiple tiers. 

There may be many such groupings for the same set of 
devices. An example is shown in FIG. 1, where the CHISL 
method groups devices (Nodes) with similar random and 
serial read and write storage characteristics into tiers. Nodes 
within a tier are responsible for merging lists of data sent to 
that node from one or more nodes in another tier, and then 
at some point transferring these lists to one or more nodes in 
another tier. The example in FIG. 1 shows one grouping of 
machines where one or more nodes of the Client type 
transfer lists to one or more nodes of the First type. At some 
point these lists along with subsequent lists are merged 
together according to the merging method, and according to 
the caching and merging method a time is chosen where 
these lists are then transferred to one or more nodes of the 
Second-tier type. The same decision is repeatedly made and 
the data percolates whole or in part down (from Client to 
Storage) through the tiers. Although the example in FIG. 1 
shows only three nodes within each tier, it is explicitly noted 
that any nnmber of nodes may belong to a single tier, and 
there may be any nnmber of tiers. Furthermore, the channels 

10 
secondary index in C. If the pair is not found in T, the search 
proceeds to other nodes. Searches of nodes can be paral
lelized across tiers, and can simultaneously be performed in 
order of the fastest tiers to slowest tiers, in this way, it is 
more likely that the C tier for some T tier will be more 
quickly located and accessed, thus possibly eliminating the 
need to consult the slower T tier at all. 

To improve read throughput, when the work-set size is 
small enough to fit in a RAM, e.g., the C tier, using RAM 

10 as a cache, e.g., the T tier, may provide the improved 
performance. A filter may be used on each of the slots in 
levels too large to fit in a given tier, e.g., C. In an exemplary 
lookup in 403 of FIG. 4, no key is found in C0 . Thereafter, 
filters are sequentially checked. In the example, C1. 0 's filter 

15 reports "No," as does Cu and C1.2 's, and C1.3 's reports 
"Maybe," and the block is inspected using its' correspond
ing secondary index 404. In the example, the key is not 
found and the method continues to C1 .4, and finding the key 
there, the key is copied back into C0 for reading 405. For 

20 medinm sized (e.g., 128 byte) key-value pairs, filters may 
enable 1 I/0 per lookup, despite being write-optimized. 
Secondary indexes consnme an equivalent amount of 
resources as the immediate parents of the leaf nodes in a 
B-Tree, which are typically cached in RAM. As seen in FIG. 

25 4, a filtering method may be used to avoid searches in lists 
where the sought after pair is not present. Typically the 
structures consulted by this method would be stored in the 
faster storage device C,, and the lists for which searches are 
avoided would be stored in storage device T,. In some 

30 embodiments of the filtering method, the structures that 
must be consulted would likely be generated at the time the 
lists are first constructed by the merging method. Either the 
structures would be created in corresponding C, simultane
ously, or would be transferred there with a sequential read 

35 and write at some later time, determined by the filtering 
method. The storage device C, in which these structures are 
stored need not be the highest or fastest such storage device, 
typically as long as C, is faster than the corresponding T,, 
this would be sufficient. 

Insertion of data into CHISL begins with a client or user 
selecting a pair to insert, modifY, or read. According to a lock 
resolution method, the user may be required to notify one, 
some, or all of the nodes that the pair is being accessed. 
Space within each node may be divided according to the 

by which data is sent from one node to another may be any 40 

medium, either an Ethernet device, or any WAN/LAN 
networking medium suitable for a bus between devices not 
within close proximity of each other, or a bus such as SCSI, 
SATA, or any medinm suitable for a bus between devices 
within close proximity of each other. 45 caching method, for example as shown in FIG. 8, into read 

caching space and write caching space. FIG. 8 shows an 
exemplary merge and cache method using CHISL to retain 
a sub-list 801 of a list that contains frequently read data in 

Retrieval of data from CHISL begins with a client or user 
selecting a pair to lookup or scan. According to a lock 
resolution method, the user may be required to notify one, 
some, or all of the nodes of this access. As shown in FIG. 4, 
each node organizes its memory in order of most randomly 50 

accessible to least randomly accessible. When comparing 
storage devices within different tiers, and which may exist 
either within the same machine or on different machines, one 
tier is more randomly accessible than the other. This more 
randomly accessible tier is the cache for the less randomly 55 

accessible tier. For example, in the two-tier example of FIG. 
4, a slot in a lower level 401 (the less randomly accessible 
tier) needs to be able to contain all the slots 402 in the lowest 
level of the next higher level (the more randomly accessible 
tier). The cache tier C for some other tier T may contain 60 

secondary indexes and space-efficient filters. If they exist, 
these secondary indexes and filters are consulted on tier C 
before searching for the pair in the tier T. If the pair can be 
proven to not exist by the filters, then lookup may stop, 
otherwise if the exact key of the pair is not kuown or the 65 

existence of the pair is still in question a lookup may proceed 
with the optional locational information provided by the 

a relative high tier (tier 0), while transferring a sub-list 802 
of the same list that contains writes (e.g., insertions, updates, 
and deletions) to a relatively low tier (tier 1). A merge 
method may be applied to the structure 803 to move a write 
sub-list 802, while the cache method will leave the read 
sub-list 801 in place. The merge and cache method result in 
the structure 804, wherein the write sub-lists have been 
moved to a lower tier (tier 1). 

The allotment may change over time as performance 
requirements change depending on the workload according 
to the dynamic reorganization method. If there is not enough 
space to accommodate the potentially newly updated or read 
pair, then according to the merging method, the lists occu-
pying the memory are transferred to another node according 
to the merging method. If there is more than one list being 
transferred, none, some, or all of these lists may be merged 
at the time of transfer. The number of lists merged is 
determined by the merging method, the sequential optimi-
zation method, and the dynamic reorganization method, 
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which examine the number, the size, the complexity of the 
list's secondary index and filters, and the desired insertion, 
update, delete, scan, and lookup performance of the work
load and/ or user. If the determination to merge is made, then 
during merge, a lock resolution and deduplication method 
are utilized to determine how to handle pairs with conflicting 
keys, where keys conflict if they are incomparable or are 
equal in value. At this point a lock resolution method may 
stop the merge and alert a conflict resolution authority, such 

12 
Operations may be categorized as either reads or writes. 

Reads include: (1) finding an exact value if it exists or 
find-exact, and (2) range queries. Writes include: (1) insert, 
(2) delete, and (3) update. 

Write: Pairs can be inserted between existing pairs. 
Updates and deletes change the value of a pair or remove it 
entirely. After elements are deleted, new elements can be 
inserted again. Inserts fail with an ENOSPC error (no space 
left on device) when the allotted space is full. 

Referring to FIG. 3A, new key-value pairs are inserted 
into the cache in RAM, called C0 301. When there is no more 
RAM for insertions, C0 flushes all key-value pairs in sorted 
order as a contiguous serial write to an empty slot in C1 , 

which is then marked full. C1 has two slots 302a and 302b, 

as an automated process, or a user by issuing a human 10 

understandable error. At this same point a deduplication 
method may notifY a duplicate pair manager that two pairs 
with potentially duplicate key values exist, and this entity 
may decide to remove the duplicate to save space, or move 

15 each of which can hold as much data as C0 ; this relationship 
holds for each C, and C,-1 with the exception of a lowest
order slot (explained below). When a cache line C,-1 has no 
empty slots, SAMT merges the contents of both of its slots 
into one of the slots in ci 303a. It then marks the slot in ci 

it physically to another node for performance, reliability, 
security, or any other reason. 

Once enough space has been created to accommodate the 
new pair(s) by transferring and possibly merging already 
present lists, they are transferred from the user's or client's 
memory to the node and form a new list or modifY an 
existing list. According to a caching method, not all lists may 

20 full and both slots of C,-1 free. This may result in a 
cascading merge; FIG. 3A shows a multi-tiered cache before 
cascading and FIG. 3B shows a multi-tiered cache after 
cascading wherein portions of cache, e.g., 301, 302b, 303b, 
and 303c are flushed. 

be transferred at this time. For example, in FIG. 8, the list is 
broken into a read and write sub-lists, where only the write 
sub-lists are transferred to another node, and the read 25 

sub-lists remain unless further space is needed, or perfor
mance or security requirements change according to the 
dynamic reorganization method. 

The dynamic reorganization method may alter the thresh
olds used to determine if a merge or list transferal is required 30 

as shown in FIG. 10. For example, the number of slots/lists 
in each tier can be reconfigured to induce more merging 
during regular operation of the merging method, deamortiz
ing read optimization across multiple evictions/transfers 

35 
1000 or lists on the same level (slots) can be merged together 
for aggressive read optimization 1001 or 1002. 

As shown in FIG. 2, multiple pair types (201-203) can be 
stored across a series of devices 204 from higher tiers 205 
to lower tiers 206. As shown in FIG. 9, colunm and row 40 

storage, along with other localization and data locality 
optimizations may be achieved by configuration of the pairs 
used within a pair type. For example, CHISL may be 
employed as a multi-tier colunm store by storing colunms as 
nested key-value pairs using the CHISL multi-tier hierarchy. 45 

For each tier that a particular key-value pair occupies, 
CHISL maintains a tier header, depicted in FIG. 5, to 
manage metadata associated with the portion of a key-value 
pair structure within that tier. Each slot in a key-value pair 
structure is divided into blocks. By representing slots as a 
series of blocks, unused space from partially filled slots may 
be re-used, and multiple snapshots of the key-value pair 
structure may be stored to simplifY a transactional imple
mentation. The size of the blocks may be set to reduce or 
avoid fragmentation, e.g., 1 GB. 

FIG. 5 shows a portion of a tier header corresponding to 
a single slot 501 residing on an SSD. The blocks 502 (zO 
through z3) are mapped out of order to the slot. The blocks 
size ensures good serial write performance. The offsets of 
blocks are in turn managed by a block allocator. The 
partition of storage that each block allocator manages is 
called its allocation region. Block allocators maintain a 
bitmap of which blocks are free or not. For example, for 1 
GB blocks, a 4 KB bitmap can represent 32 TB worth of 
blocks, and a bitmap will flush quickly to the journal and 
consume little memory. In FIG. 5 there are two block 
allocators 503 and 504 controlling this SSD (m0 and m 1). 

Block allocator m0 allocates 1 GB blocks for slot blocks 
from a data allocation region (Data A.R.). Block allocator 
m 1 allocates 8 MB blocks to store tier header information 

A properly suitable sequential optimization method can be 
used to avoid re-writing portions of lists during a merge by 
identifying which pair types or arrays within pairs need to be 
sorted, and which do not, along with performance require
ments for scans and lookups. 50 and both block allocators' bitmaps (Metadata A.R.). Larger 

blocks avoid seeking during list merges. Small blocks avoid 
wasting space for storing metadata. The filter and secondary 
index are resident in some fast storage device (could be 

FIGS. 3A-B show a configuration with a single device, 
organizing its storage into three tiers, where the bus is a 
SATA and memory bus connection, where the number of 
lists within a tier is configured at two, and one in the highest 

55 
tier (RAM in this case). 

As seen in FIG. 3A, the key-value store is divided into an 
in-RAM cache and an on-storage set of sorted lists. The 
cache includes a red-black tree of pairs. The on-storage 
component includes a series of levels, where each level 60 
holds two or more slots. A slot is a sorted array of pairs. The 
key-value store uses red-black trees as a cache structure, and 
when these caches are full, it will flush their contents in large 
serial writes to the slots and levels of the on-storage com
ponent. Throughout operation, a merging regiment on these 65 

slots and levels is used to maintain high insert, delete, and 
update throughput. 

RAM, but not necessarily), and may also be stored on disk 
to be recoverable after a crash. The offsets of the locations 
of the filter and secondary index are maintained by the 
header in block b0 505 and block s0 506, respectively. 

Exemplary SAMT Multi-Tier Extensions 

CHISL may extend the SAMT merging method in mul
tiple ways. For example, (1) Client reads can be optionally 
re-inserted to keep recently read (hot) data in faster tiers 
(e.g., a Flash SSD). (2) Lists of recently inserted data are 
automatically promoted into faster tiers if they fit. (3) 
Different tiers can have different values of K (the number of 
slots in each level. 
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According to an embodiment of the present disclosure, a 
SAMT the Multi-tier SAMT or MTSAMT is described. The 
exemplary implementation includes support for full dele
tion, variable-length keys and values, and allows the logical 
layer to specifY whatever format, bits, or timestamps 
deemed necessary by the logical layer, as other TSSLs do. 

Exemplary Re-Insertion Caching 

Whenever a pair is inserted, updated, deleted, or read, the 
C0 (fastest) cache may be updated. The cache may be 
configured to hold a preset number of pairs. When a pair is 
inserted or updated, it is marked DIRTY, and the number of 
pairs in the cache is increased. Similarly, after a key is read 
into the C0 cache, it is marked as RD_CACHED, and the 
number of pairs is increased. Once a pre-set limit is met, the 
cache evicts into the MTSAMT structure using the merging 
process depicted in FIG. 3C panel 3. By including 
RD_CACHED pairs in this eviction as regular updates, we 
can answer future reads from C1 rather than a slower lower 
level. However, if the key-value pairs are large, this can 
consume additional write bandwidth. This feature is desir
able when the working-set is too large for C0 (RAM) but 
small enough to fit in a fast-enough device residing at one of 
the next several levels (e.g., C1 and C2 on Flash SSD). 
Alternatively, this feature can be disabled for workloads 
where saving the cost of reading an average pair is not worth 
the additional insertion overhead, such as when we are not 
in a multi-tier scenario. All RD_CACHED values are omit
ted during a major compaction, and RD_CACHED values 
are omitted during a merging compaction if another pair 
with the same key can be emitted instead. Therefore, no 
additional space is used by inserting RD_CACHED pairs. 
When scanning through trees (MTSAMTs), if read caching 
is enabled, the scanner inserts scanned values into the cache, 
and marks them as RD_CACHED. Experimentally, we 
found that randomly reading larger tuples (>4096 KB) can 
make effective use of a Flash SSD tier; however, for smaller 
tuples (<64 B) the time taken to warm the Flash SSD tier 
with reads is dominated by the slower random read through
put of the magnetic disk in the tier below. By allowing scans 
to cache read tuples, applications can exploit application
specific locality to pre-fetch pairs within the same or adja
cent rows whose contents are likely to be later read. Evic
tions of read-cached pairs can clear out a Flash SSD cache 
if those same pairs are not intelligently brought back into the 
higher tier they were evicted from after a cross-tier merging 
compaction. In FIG. 3C panel 4, evicted pairs are copied 
back into the tier they were evicted from. This is called 
reclamation, and it allows SSTables, including read-cached 
pairs, that were evicted to magnetic disks (or other lower-tier 
devices) to be automatically copied back into the Flash SSD 
tier if they can fit. 

Exemplary Sub-List Optimization 

14 
merge. By leaving the read-cached pairs in place, and only 
transferring the inserted pairs, reads can still be serviced at 
the speed of the faster storage device. 

Exemplary Space Management and Reclamation 

An MTSAMT may be designed for so that more fre
quently accessed lists would be located at higher levels, or 
at C, for the smallest i possible. After a merge, the resulting 

10 list may be smaller than the slot it was merged into because 
of resolved deletes and updates. If the resultant list can fit 
into one of the higher (and faster) slots from which it was 
merged (which are now clear), then it may be moved 
upward, along with any other slots at the same level that can 

15 also fit. This process is called reclamation. 
In the example in FIG. 3C, the result of the merging 

compaction in panel 4 is small enough to fit into the two 
(half of four) available slots in Cu and specifically in this 
example requires only one slot. If multiple slots were 

20 required, the SSTable would be broken up into several 
smaller SSTables. This is possible because CHISL manages 
blocks in the underlying storage device directly, rather than 
treating SSTables as entire files on the file system, which 
allows for this kind of optimization. Reclamation across 

25 levels within the same tier is inexpensive, as this includes 
moving SSTable blocks by adjusting pointers to the block, 
rather than copying them across devices. If these rules are 
obeyed, then partially filled slots may be guaranteed to 
always move upward, eliminating the possibility that small 

30 lists of pairs remain stuck in lower and slower levels. The 
exemplary MTSAMT implementation has been designed for 
throughput. The exemplary design considers space on stor
age with high latency and high read/write throughput char
acteristics (e.g., disk) to be cheaper than other hardware 

35 (e.g., RAM or Flash SSD). CHISL can operate optimally 
until 1h of total storage is consumed; after that, performance 
degrades gradually until the entire volume is full, save a 
small amount of reserve space (usually 5% of the storage 
device). Such space-time trade-offs are common in storage 

40 systems, such as HBase, Cassandra, and even Flash SSD 
devices. 

At this point, only deletes and updates may be accepted. 
These operations are processed by performing the equivalent 
of a major compaction: if there is not enough space to 

45 perform a merging compaction into the first free slot, then an 
in-place compaction of all levels in the MTSAMT is per
formed using the CHISL's reserve space. As tuples are 
deleted, space is reclaimed, freeing it for more merging 
compactions that intersperse major compactions until 1h of 

50 total storage is again free; at that point, only merging 
compactions need be performed, regaining the original opti
mal insertion throughput. 

To exploit decoupling, compaction-based systems such as 
CHISL have some overhead to maintain optimal insertion 

55 throughput in the steady state. Without this space, their 
throughput will degrade. 

Read-cached values need not be stored in the same lists as 
other pairs, but can instead be segregated into a separate list 
which is created at the same time, but holds only read
cached values. When a merging compaction takes place, and 60 

lists from one tier are merged together, and the result is 
written to another or lower tier, the read-cached list can 
remain where it is, or can be moved to a higher or faster tier. 
This allows an operator of the machine or system to con
figure a proportion of faster storage devices to use an allotted 65 

space for caching. Without separating reads into sub-lists, 
they would be carried downward to another tier during the 

Exemplary Committing and Stacked Caching 

The exemplary MTSAMT extends the SAMT to operate 
efficiently in a multi -tier environment. In addition to efficient 
compaction, reclamation, and caching as discussed above, 
the efficiency of the memtable or C0 as well as how effi
ciently it can be serialized to storage as an SSTable is also 
discussed. The architecture of a transaction manager and 
caching infrastructure affects insertion throughput for small 
key-value pairs (<1 KB). CHISL's architecture is mindful of 
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cache efficiency, while supporting new transactional features 
(asynchronous commits) and complex multi -operation trans
actions. 

Exemplary Cache Stacking 

The transactional design of CHISL may be implemented 
in terms ofCHISL's concise cache-stacking feature. CHISL 
maintains a memtable to store key-value pairs. CHISL uses 
a red-black tree with an LRU implementation, and DIRTY 
flags for each pair. An instance of this cache for caching 
pairs in a particular colunm family or tree is called a scan 
cache. Unlike other TSSL architectures, this scan cache can 
be stacked on top of another cache holding pairs from the 
same tree or MTSAMT. In this scenario the cache on top or 
the upper cache evicts into the lower cache when it becomes 
full by locking the lower cache and moving its pairs down 
into the lower cache. In addition to the memtable cache, like 
other TSSLs, CHISL may use a buffer cache. The buffer 
cache need not fully implement a user-level buffer cache. 

Exemplary Buffer Caching 

According to an embodiment of the present disclosure, on 
operating system (OS) kernel, such as Linux, may be used 
for all caching of pages read from zones by mmap-ing 
(maping files or devices into memory) storage in 1 GB slabs, 

16 
insertion-throughput, and larger transactions that can be 
either asynchronous or durable. This lets the same TSSL 
architecture to be used in a cluster operating under either 
consistency model, if desired. MTSAMT's design and 
operation and its associated cache or memtable (C0 ). As 
mentioned before, each MTSAMT corresponds to a tree or 
column family in a cloud storage center. CHISL operates on 
multiple MTSAMTs to support row insertions across mul
tiple colunm families, and more complex multi-operation 

10 transactions as required by stronger consistency models. 
Applications interact with the MTSAMTs through a trans
actional API: BEGIN, COMMIT_DURABLE, and COM
MIT_ASYNC. CHISL's transaction manager (TM) man
ages all transactions for all threads. As shown in FIG. 6, the 

15 TM maintains a stacked scan cache called the staged cache 
on top of each tree's CO (also a scan cache). When an 
application begins a transaction with BEGIN, the TM cre
ates a handler for that transaction, and gives the application 
a reference to it. At any time, when a thread modifies a tree, 

20 a new scan cache is created if one does not already exist, and 
is stacked on top of that tree's staged cache. The new scan 
cache is placed in that transaction's handler. This new scan 
cache is called a private cache. In FIG. 6 we see three 
handlers, each in use by three separate threads PO through 

25 P2. Each thread has modified each of the three trees (MT
SAMTO through MTSAMT2). Transactions managed by 
CHISL's TM are in one of three states: or chunks. This simplifies a design implementation by 

avoiding implementing a buffer cache. 64-bit machines' 
address spaces are sufficiently large and the cost of a random 
read input/output (I/0) exceeds the time spent on a TLB 30 

miss. Serial writes may be used on a map, incurring reads as 
the underlying operating system kernel reads the page into 
the cache, even on a write fault. This may cause overhead on 
serial writes due to the additional reads. To avoid this 
problem, an operation such as PWRITE may be used during 
merges, compactions, and serializations, wherein the 
affected mapping may be invalidated using, for example, 
MSYNC with MS_INVALIDATE. As the original slots are 

(1) they are uncommitted and still exist only with the 
handler's private caches; 

(2) they are committed either durably or asynchronously 
and are in either the staged cache or CO of the trees they 
effect; or 

(3) they are entirely written to disk. 
Transactions begin in state (1), move to state (2) when 

35 committed by a thread, and when CHISL performs a snap
shot of the system, they move to state (3) and are atomically 
written to storage as part of taking the snapshot. Durable and 
asynchronous transactions can both be committed. We com
mit transactions durably by moving their transaction to state in place during the merge, reads can continue while a merge 

takes place, until the original list must be deallocated. 
Once deallocated, reads can now be directed to the newly 

created slot. The result is that the only cache which need be 
manually maintained for write-ordering purposes is the 
journal cache, which is an append-only cache similar to that 
implemented by the POSIX FILE C API, which is light
weight, and simple. All TSSLs that employ MMAP, even 
without additionally optimizing for serial writes like CHISL, 
typically avoid read overheads incurred by a user-space 
buffer cache. On the other hand, traditional DBMSes can not 
use mmap as provided by commodity operating systems. 
This is because standard kernels (e.g., Linux) currently have 
no portable method of pinning dirty pages in the system page 
cache. Without this, or some other write-ordering mecha
nism, traditional DBMSes that require overwrites (e.g., due 
to using B+-trees), will violate write-ordering and break 
their recoverability. Therefore, they are forced to rely on 
complex page cache implementations based on MALLOC or 
use complex kernel-communication mechanisms. TSSLs 
utilized in cloud-based data stores such as Cassandra, 
HBase, or CHISL never overwrite data during the serializa
tion of a memtable to storage, and therefore need not pin 
buffer-cache pages, greatly simplifying these designs. 

Exemplary Transactional Support 

CHISL's optional transactional architecture permits for 
atomic durable insertions, hatched insertions for higher 

40 (2), and then scheduling and waiting for the system to 
perform a snapshot. While the system is writing a snapshot 
to storage, the staged cache is left unlocked so other threads 
can commit (similar to EXT3). A group commit of durable 
transactions occurs when multiple threads commit to the 

45 staged cache while the current snapshot is being written, and 
subsequently wait on the next snapshot together as a group 
before returning from COMMIT. Asynchronous transactions 
can safely commit to the staged cache and return immedi
ately from COMMIT. After a snapshot the staged cache and 

50 the CO cache swap roles: the staged cache becomes the CO 
cache. 

As shown in FIG. 6, the TM maintains a stacked cache 
called the staged cache on top of each pair type's C0 601. 
When an application begins a transaction with BEGIN, the 

55 TM creates a handler for that transaction and gives the 
application a reference to it. The first time the application 
reads or modifies a particular pair type, a new private cache 
txnO 602 is stacked on top of the staged cache 603 to hold 
those changes. Depending on whether the flusher is running 

60 or not, the application will commit differently. If the flusher 
is not running, the staged cache will be empty, and the TM 
will evict all the application's private caches into the cor
responding C0 directly. If the application is committing 
durably, it will initiate flush and wait for it to complete; 

65 otherwise it will return directly. If the flusher is running, the 
TM will evict the application's private caches into the staged 
cache. If the application is committing durably, it will 
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enqueue itself onto the group commit queue. If it is com
mitting asynchronously, it will return immediately. 

CHISL's flush protocol ensures that all pair type caches 
are atomically written. Therefore, at the time of flush, the 
method determines whether the private caches of a transac
tion are wholly in the C0 cache 601 or its staged cache 603 
(or not). Using the C0 cache 601 and the staged cache 603, 
it can be guaranteed that the private caches of a transaction 
exists in one of the C0 cache 601 and the staged cache 603. 

18 
computer system is a general purpose computer system that 
becomes a specific purpose computer system when execut
ing the routine of the present invention. 

Exemplary Snapshot, Truncate, and Recovery 
Operations 

The computer platform also includes an operating system 
and micro instruction code. The various processes and 
functions described herein may either be part of the micro 
instruction code or part of the application program (or a 
combination thereof) which is executed via the operating 
system. In addition, various other peripheral devices may be 

10 connected to the computer platform such as an additional 
data storage device and a printing device. 

It is to be further understood that, because some of the 
constituent system components and method steps depicted CHISL manages blocks directly, not using separate files 

for each SSTable. A block allocator manages each storage 
device. Every block allocator uses a bitmap to track that 
blocks are in use. The block size used is 128MB to prevent 
excessive fragmentation, but the operating system page 
cache still uses 4 KB pages for reads into the buffer cache. 
Each tree (column family) maintains a cluster of offsets and 
metadata information that points to the location of all 
SSTable block offsets, secondary index block offsets, and 
Bloom filter block offsets. This cluster may be called the 
header. When a snapshot is performed, all data referred to by 

15 
in the accompanying figures may be implemented in soft
ware, the actual connections between the system compo
nents (or the process steps) may differ depending upon the 
manner in which the present invention is progrmed. 
Given the teachings of the present invention provided 

20 herein, one of ordinary skill in the related art will be able to 
contemplate these and similar implementations or configu
rations of the present invention. 

What is claimed is: 
1. A method of storing data as a plurality of key-value 

pairs in a multi-tier storage system, the system comprising 
at least one lower-latency non-volatile memory storage 
device and at least one higher-latency non-volatile memory 

all headers, including blocks containing SSTable informa- 25 

tion, and the bitmaps, are flushed to storage using MSYNC. 
Afterward, the append-only cache of the journal is flushed, 
recording all headers to the journal within a single atomic 
transaction. 

During recovery, the most recent set of headers may be 
read back into RAM, and the state of the system at the time 
that header was committed to the journal may be recovered. 
Traditional TSSLs implement a limited transaction feature-

30 
storage device, the method comprising: 

generating a first zone manager for managing a first 
partition of storage of a first non-volatile memory 
device among the lower-latency non-volatile memory 
storage devices to generate a tier of the multi-tier set that only allows for atomic insertion. CHISL's architec

ture does not exclude distributed transactions and is as fast 35 

as traditional TSSLs like Cassandra or HBase, or a factor of 
2 faster when all three systems use asynchronous commits. 
One feature of CHISL is that high-insertion throughput 
workloads that can tolerate partial durability (e.g., snapshot
ting every 3-5 seconds) need not write the majority of data 40 

into the journal. CHISL can avoid this write because if the 
C0 cache evicts its memtable as an SSTable between snap
shots, the cache will be marked clean, and only the header 
need be serialized to the journal, avoiding double writing. 
This design improves CHISL's performance. 
3. Exemplary Implementations 

It is to be understood that the present invention may be 
implemented in various forms of hardware, software, firm
ware, special purpose processors, or a combination thereof. 

45 

In one embodiment, the present invention may be imple- 50 

mented in software as an application program tangibly 
embodied on a program storage device. The application 
program may be uploaded to, and executed by, a machine 
comprising any suitable architecture. 

According to an embodiment of the present invention, a 55 

computer system for tiered indexing can comprise, inter alia, 
a central processing unit (CPU), a memory and an I/0 
interface. The computer system is generally coupled through 
the I/0 interface to a display and various input devices such 
as a mouse and keyboard. The support circuits can include 60 

circuits such as cache, power supplies, clock circuits, and a 
communications bus. The memory can include random 
access memory (RAM), read only memory (ROM), disk 
drive, tape drive, etc., or a combination thereof. Embodi
ments of the present disclosure can be implemented as a 65 

routine that is stored in memory and executed by the CPU 
to process the signal from the signal source. As such, the 

storage system; 
generating a second zone manager for managing a second 

partition of storage of a second non-volatile memory 
device among the higher-latency non-volatile memory 
storage devices to generate another tier of the multi -tier 
storage system; 

allocating, from a partition managed by the first zone 
manager, bytes pointed at by a first sub-list among all 
the key-value pairs in a key-value relation; 

allocating, from a partition managed by the second zone 
manager, bytes pointed at by a second sub-list among 
all the key-value pairs in the key-value relation; 

allocating bytes from the first zone manager for storing 
meta-data, where the meta-data comprises at least one 
association of the key-value relation with an array of 
pointers to sub-lists belonging to the relation, 

wherein each sub-list includes at least one pointer to bytes 
allocated for sorted key-value pairs comprising the 
corresponding sub-list, wherein each partition com
prises at least one block of a given size, and 

wherein the system maintains a hierarchy structure in one 
of the tiers that stores the key-value relation and 
enables the key-value pairs to be stored in any one of 
the tiers. 

2. The method of claim 1, wherein the first sub-list is 
younger than the second sub-list. 

3. The method of claim 1, wherein the first sub-list is least 
recently used as compared to the second sub-list. 

4. The method of claim 1, further comprising storing in 
one of the sub-lists a pointer to a secondary index and a 
pointer to bytes for data of the sorted list, said secondary 
index stores an index to the sorted list stored in bytes pointed 
at by the one sub-list. 
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5. The method of claim 4, wherein the storing comprises: 
allocating bytes from at least one of the zone managers for 

storing a sorted list of key-value pairs or secondary 
index pairs; 

dividing the sorted list being indexed into a range com
prising at least one key-value pair; and 

storing a secondary index pair to indicate a beginning of 
the range. 

. 6 .. The method of claim 5, wherein the secondary index 
pmr 1s a key and a value where the key is equivalent to a key 10 

of a tuple in the range and the value of an offset of the tuple 
in the range. 

7. The method of claim 1, the hierarchy structure com
prising a first compact negative cache in the first non
volatile memory device and a second compact negative 15 

cache in the second non-volatile memory device, wherein 
the first compact negative cache has a lower latency than the 
second compact negative cache. 

8. The method of claim 7, wherein at least one of the 
compact negative caches is a Bloom Filter. 20 

9. The method of claim 1, wherein at least one of the 
key-value pairs is a variable length key-value pair. 

10. The method of claim 1, the hierarchy structure com
prising a compact negative cache in the second non-volatile 
memory device for each sub-list in the second non-volatile 25 

memory device, and then transferring the hierarchy structure 
from the second non-volatile memory device to the first 
non-volatile memory device. 

11. The method of claim 1, the hierarchy structure com
prising a compact negative cache in the first non-volatile 30 

memory device for each sub-list in the first non-volatile 
memory device, and then transferring the hierarchy structure 
from the first non-volatile memory device to the second 
non-volatile memory device. 

12. The method of claim 1, wherein the system further 35 

comprises a cache that stores one or more of the sub-lists 
from one or more of the tiers, wherein the latency of the 

20 
storage device used for the cache is less than a latency of the 
at least one lower-latency non-volatile memory storage 
device for sequential or random access. 

13. The method of claim 12, wherein the cache is one of 
a volatile memory or a non-volatile memory. 

14. The method of claim 1, wherein at least one of the 
sub-lists is stored using a red-black tree. 

15. The method of claim 1, wherein at least one of the 
sub-lists is stored using a B-tree data structure . 

16. The method of claim 1, wherein at least one of the 
sub-lists is stored using an R-COLA data structure. 

17. The method of claim 1, wherein at least one of the 
sub-lists is stored using a SAMT data structure. 

18. The method of claim 1, where the allocating per
formed by at least one of the zone managers is with respect 
to bytes at multiple offsets. 

19. The method of claim 1, where at least one of the 
sub-lists contains one or more key-value pairs indicating a 
deleted item. 

20. The method of claim 1, where at least one of the 
sub-lists contains one or more key-value pairs indicating an 
updated item. 
. 21. The method of claim 1, further comprising compact
mg a group of the sub-lists in one of the tiers into a fewer 
number of sub-lists according to a merging method. 
. 22. The method of claim 21, further comprising reclaim
mg space resulting from the compacting from the corre
sponding zone manager. 

23. The method of claim 22, further comprising transfer
ring another group of the sub-lists into the reclaimed space. 

24. The method of claim 1, wherein the at least one 
lower-latency non-volatile memory storage device com
prises at least of a solid state disk and a random access 
memory and the at least one higher-latency non-volatile 
memory storage device comprises at least one of a hard disk 
and a network file system. 

* * * * * 


