
c12) United States Patent
Archak et al.

(54) MULTI-TIER CACHING

(71) Applicant: THE RESEARCH FOUNDATION
FOR THE STATE UNIVERSITY OF
NEW YORK, Albany, NY (US)

(72) Inventors: Shrikar Archak, Bangalore (IN); Sagar
Dixit, Pune (MH); Richard P. Spillane,
Clifton Park, NY (US); Erez Zadok,
Stony Brook, NY (US)

(73) Assignee: THE RESEARCH FOUNDATION
FOR THE STATE UNIVERSITY OF
NEW YORK, Albany, NY (US)

(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by 49 days.

This patent is subject to a terminal dis
claimer.

(21) Appl. No.: 15/133,872

(22) Filed: Apr. 20, 2016

(65)

(63)

(60)

(51)

Prior Publication Data

US 2016/0232169 Al Aug. 11, 2016

Related U.S. Application Data

Continuation of application No. 13/159,039, filed on
Jun. 13, 2011, now Pat. No. 9,355,109.

Provisional application No. 61/354,054, filed on Jun.
11, 2010.

Int. Cl.
G06F 12100
G06F 13100
G06F 13128
G06F 17130

(2006.01)
(2006.01)
(2006.01)
(2006.01)

111111 111
US009959279B2

(10) Patent No.: US 9,959,279 B2
(45) Date of Patent: *May 1, 2018

G06F 1210802 (2016.01)
C12Q 1168 (2018.01)

(52) U.S. Cl.
CPC G06F 17130094 (2013.01); C12Q 116886

(2013.01); G06F 1210802 (2013.01); G06F
17130132 (2013.01); C12Q 2600/158
(2013.01); G06F 22121225 (2013.01)

(58) Field of Classification Search
CPC G06F 17/30132; G06F 12/0802; G06F

17/30094; G06F 2212/225
USPC .. 711/117
See application file for complete search history.

(56) References Cited

U.S. PATENT DOCUMENTS

4,799,152 A * 111989 Chuang G06F 7/24
5,261,066 A * 1111993 Jouppi G06F 12/0862

7111122

(Continued)

Primary Examiner- Sheng-Jen Tsai
(74) Attorney, Agent, or Firm- F. Chau & Associates,
LLC

(57) ABSTRACT

A method for maintaining an index in multi-tier data struc
ture includes providing a plurality of a storage devices
forming the multi-tier data structure, caching an index of
key-value pairs across the multi-tier data structure, wherein
each of the key-value pairs includes a key, and one of a data
value and a data pointer, the key-value pairs stored in the
multi-tier data structure, providing a journal for interfacing
with the multi-tier data structure, providing a plurality of
zone allocators recording which zones of the multi-tier data
structure are in used, and providing a plurality of zone
managers for controlling access to cache lines of the multi
tier data structure through the journal and zone allocators,
wherein each zone manager maintains a header object
pointing to data to be stored in an allocated zone.

24 Claims, 6 Drawing Sheets

501 Metadata A.R.

US 9,959,279 B2
Page 2

(56) References Cited 2009/0276577 A1 * 1112009 Bell G06F 17/30563
7111137

U.S. PATENT DOCUMENTS 2009/0310412 A1 * 12/2009 Jang G06F 12/0246
365/185.11

5,530,832 A * 6/1996 So . G06F 12/0811 2009/0313449 A1 * 12/2009 Kepner G06F 12/0897
7111119 7111165

5,546,559 A * 8/1996 Kyushima G06F 12/127 2010/0064347 A1 * 3/2010 More G06F 2116218
7111133 726/4

5,968,109 A * 10/1999 Israni . G01C 21132 2010/0281230 A1 * 1112010 Rabii G06F 3/0605
7011532 7111165

7,136,867 B1 * 1112006 Chatterjee G06F 17/30961 201110099342 A1 * 4/2011 Ozdemir G06F 1112066
707/690 7111162

7,707,504 B2 * 4/2010 Quang G06F 17/3007 201110113194 A1 * 5/2011 Terry . G06F 3/0607
709/232 7111114

7,809,759 B1 * 10/2010 Bruso G06F 17/30327 201110246503 A1 * 10/2011 Bender G06F 17/30306
707/797 707/769

8,290,972 B1 * 10/2012 Deshmukh G06F 17/30489 201110258179 A1 * 10/2011 Weissman G06F 17/303 89
707/758 7071714

8,370,315 B1 * 212013 Efstathopoulos . . . G06F 17/30 15 2012/0072656 A1 3/2012 Archak eta!.
707/696 2012/0210041 A1 * 8/2012 Flynn G06F 11183

8,549,518 B1 10/2013 Aron et al. 71113
8,868,576 B1 10/2014 Faibish et a!. 2012/0210047 A1 * 8/2012 Peters G06F 17/30578
9,355,109 B2 * 5/2016 Archak G06F 17/30132 7111103

2002/0073282 A1 * 6/2002 Chauvel G06F 11206 2012/0226712 A1 * 9/2012 Vermeulen G06F 17/30212
7111122 707/770

2002/0188821 A1 * 12/2002 Wiens G06F 12/0831 2012/0310916 A1 * 12/2012 Abadi G06F 17/30445
7111220 7071713

2003/0028551 A1 * 2/2003 Sutherland G06F 17/3056 2013/0060922 A1 * 3/2013 Koponen H04L 12/4633
2005/0138160 A1 * 6/2005 Klein H04L 411024 709/223

709/223 2014/0250088 A1 * 9/2014 Klose G06F 1111453
2008/0158958 A1 * 7/2008 Sokolov . G11C 16/26 707/692

365/185.08 2014/0280771 A1 * 9/2014 Bosworth H04L 67/10
2009/0006179 A1 * 112009 Billingsley G06Q 10/06375 709/219

705/7.37 2014/0324821 A1 * 10/2014 Meiyyappan G06F 17/30492
2009/0049234 A1 * 212009 Oh G06F 12/0246 7071715

7111103 2017/0090775 A1 * 3/2017 Kowles G06F 3/0608
2009/0248987 A1 * 10/2009 Jung G06F 12/0804

7111135 * cited by examiner

U.S. Patent

Client Nodes

(1 01)

May 1, 2018

106

First-tier Nodes "
(102)

Second-tier Nodes __..

(103)

Nth-tier Nodes __ ..,..

(104)

Storage Nodes __ _..,..

(105)

Sheet 1 of 6 US 9,959,279 B2

FIG.l

107 108

U.S. Patent May 1, 2018 Sheet 2 of 6 US 9,959,279 B2

204 FIG. 2
"/\

RAM Higher Tiers

SSD

I (205)

SSD

DISK

NFS

FIG. 3A FIG. 3B
301

Disk J~~~,), . . . ··.···, , ·.

;~~'~i~j,"~1~=~~~~;~~1' ~~~~~~

U.S. Patent May 1, 2018 Sheet 3 of 6 US 9,959,279 B2

FIG. 3C

(D HBase 3-COLA:

305
Clearing space for flush

~

0 CHISL Multi-Tier SAMT

Clearing space for flush After flushing memtable

RAM~ rn After flushing memtable

rn
304

ci !IT] ssoj C1 ~Qijll j C1 0000 j

Disk c2 DIJ ' >

C3l . I . l> <I u:,~:.:::::~··=J =· :::::tz==''=····===.~l Diskl__c_::-=~=PJ=--CJ=··. ~----'(6=-=o-CJ-·J

0 Cassandra SAMT:

Clearing space for flush

RAM~

cl • ~~B ·: ·. , •·•·
II} I , , (•

Disk C2 efww!H
-~ /./

c·· .. '""l<:~<:f 3~·.·--···

After flushing memtable
0 CHISL Multi-Tier SAMT

~

Disk

FIG. 4

Secondary
Indexes
'-...

403

U.S. Patent May 1, 2018 Sheet 4 of 6

FIG. 5

501 Metadata A.R.

STORAGE MTSAMT
0

FIG. 6

MTSAMT
1

US 9,959,279 B2

MTSAMT
2

U.S. Patent

803

May 1, 2018 Sheet 5 of 6

FIG. 7

RAM D xl

D x3 x3
TieroD x9

D x45 x5
Tier 1 c=J x225
: c::J
Tier Nc=J

Legend:

~Read sub-list
Write sub-list

FIG. 8

804

US 9,959,279 B2

U.S. Patent May 1, 2018 Sheet 6 of 6 US 9,959,279 B2

FIG. 9

RAM
Tier 1

~ier N 11IJ I I 1···
I

Key Value {sorted array of variable length pairs)

Extern a I Storage/Partition
RAM
Tier 1

Tier N

Key Value (pointer to other data)

Before dynamic reconfiguration:
RAM D xl
--------·•n-«•--~-·~---.·~*-·~~·--••••

[IJJ x3 x3
Tier oDJJ x9

IIIJI) x45 xS
Tier 10IDJ x225

---~~-·--

: c=J

FIG. 10

_Tier Nc=J ____ 1001

1100~ ~
After dynamic reconfiguration: After dynamic reconfiguration:
RAM D xl RAM D xl

OJ x2 x2 D x3 x3
Tierom x4 TieroD x9

CD x8 x2 D x45 xs
Tier 1~ xl6 T Tier lB x225

Tier Nc=J 1 002 Tier Nc=J

US 9,959,279 B2
1

MULTI-TIER CACHING

CROSS-REFERENCE TO RELATED
APPLICATION

This application is a continuation of co-pending U.S.
application Ser. No. 13/159,039 filed Jun. 13, 2011, which
claims the benefit of U.S. Provisional Application, Ser. No.
61/354,054 filed on Jun. 11, 2010 in the United States Patent
and Trademark Office, the contents of which are herein
incorporated by reference in its entirety.

BACKGROUND OF THE INVENTION

1. Technical Field
The present invention relates to key-value storage, index

ing, and more particularly to tiered key-value storage and
indexing machines comprising a cluster of databases, file
systems, or any other storage-stack software.

2. Discussion of Related Art
The volume of index data being generated by network

connected devices is outpacing data storage technologies'
speed, capacity, or abilities. Examples of these devices
include systems for automatically generating tags, indexing
constantly captured video, social-networking services
indexing a growing database, and systems that generate
large volumes of index data.

Applications that create index data include data-dedupli
cation and provenance systems. Data deduplication is one
technology used to compensate for these large databases,
where redundant data may be eliminated. Data deduplication
relies on indexing to maintain performance levels. Auto
mated provenance collection and indexing are examples of
additional growing applications. Automatic provenance col
lection describes systems that observe processes and data
transformations inferring, collecting, and maintaining prov
enance about them.

2
journal and block allocators, wherein each zone manager
maintains a header object pointing to data to be stored in all
allocated blocks.

According to an embodiment of the present disclosure, a
method for inserting and retrieving key-value pairs in a
machine in communication with multiple storage devices
managed in a hierarchy of tiers includes inserting the
key-value pairs in the machine and retrieving the key-value
pairs from the machine. Inserting the key-value pairs in the

10 machine includes transferring first lists of sorted key-value
pairs from a first memory on the machine to a higher (or
highest) storage tier of the machine according to a merging
method, if there is space available on the higher (or highest)

15
storage tier, transferring second lists from the higher storage
tiers to the lower storage tiers within the machine according
to the merging method to create space in the higher storage
tiers, and transferring third lists from higher machine tiers
including the machine to lower machine tiers according to

20 the merging method and conflict resolution algorithm to
create space in the higher storage tiers. Retrieving the
key-value pairs from the machine includes searching for a
first value with a valid key in the first memory on the
machine, searching for a second value with the valid key in

25 the highest storage tier of the machine if not present in first
memory on the machine, searching for a value with the valid
key in the lower storage tiers of the machine if not present
on the highest storage tier of the machine, and searching for
a value with the valid key in lower machine tiers if not

30 present on higher machine tiers of the machine.
According to an embodiment of the present disclosure, a

method for maintaining an index in multi-tier data structure
includes managing a plurality of resources within a multi-

35 tier storage system, inserting a copy of at least one of the
resources into the multi-tier storage system, detecting, at a
selective time, the copy of the at least one resource, and
performing a merging method to redistribute the plurality of
resources within the multi-tier storage system.

Individual machines that form a larger database cluster
such as those used by Google's BigTable and Yahoo's
Hadoop and HBase perform indexing tasks as well. These 40

machines are referred to as 'Tablet Servers' in the literature.
Even database engines such as MySQL's InnoDB, ISAM
(Indexed Sequential Access Method), Berkeley DB, and
other such key-value stores must perform indexing for
traditional RDBMS (relational database management sys
tem) workloads. Indexing is being applied to system logs,
file metadata, databases, database clusters, media tagging,
and more.

According to an embodiment of the present disclosure, a
method for maintaining an index in multi-tier data structure
includes managing a plurality of resources within a multi
tier storage system, and performing a merging method to
redistribute the plurality of resources within the multi-tier

45 storage system, wherein the merging method is automati
cally tuned for a workload without disabling the machine.

BRIEF DESCRIPTION OF THE DRAWINGS
In these contexts, and others, indexing is an important

component of a variety of platforms and applications.

SUMMARY OF THE INVENTION

50 Preferred embodiments of the present invention, as well
as definitions and meanings of abbreviations, will be
described below in more detail, with reference to the accom
panying drawings:

According to an embodiment of the present disclosure, a
method for maintaining an index in multi-tier data structure
includes providing a plurality of storage devices forming the
multi-tier data structure, caching a list of key-value pairs
stored on one or more tiers of the multi-tier data structure as

FIG. 1 is a diagram of a tiered storage system according
55 to an embodiment of the present application;

a plurality of sub-lists according to a caching method,
wherein each of the key-value pairs includes a key, and 60

either a data value, a data pointer, the key-value pairs stored
in the multi-tier data structure, providing a journal for
interfacing with the multi-tier data structure, providing a
plurality of block allocators recording which blocks of the
multi-tier data structure are in use, and providing a plurality 65

of zone managers for controlling access to blocks within
individual tiers of the multi-tier data structure through the

FIG. 2 is an exemplary CHISL multi-tier system accord
ing to an embodiment of the present application;

FIGS. 3A-C show exemplary merging methods according
to an embodiment of the present application;

FIG. 4 shows an exemplary SAMT with multiple slots,
secondary indexes, and filters according to an embodiment
of the present application;

FIG. 5 shows SAMT tier header and block allocators
according to an embodiment of the present application;

FIG. 6 shows three processes, p0 ... p2 , each maintaining
an ongoing transaction that has modified three SAMTs,
according to an embodiment of the present application;

US 9,959,279 B2
3

FIG. 7 is an exemplary CHISL configuration having one
or more slots or lists per level or cache line according to an
embodiment of the present application;

FIG. 8 shows an exemplary merge and cache method in an
exemplary CHISL implementation according to an embodi
ment of the present application;

FIG. 9 shows an exemplary CHISL structure employed as
a multi-tier colunm store by storing colunms as nested
key-value pairs using the CHISL multi-tier hierarchy
according to an embodiment of the present application; and 10

FIG. 10 shows exemplary CHISL reconfigurations,
dynamically shifting from a write-optimized merging
method to a more read -optimized merging method according
to an embodiment of the present application.

DETAILED DESCRIPTION OF EXEMPLARY
EMBODIMENTS

15

According to an embodiment of the present disclosure, a
high-throughput, transactional, consistent, multi-tier index 20

and caching system seamlessly spans different storage tech
nologies, exploiting useful properties of each storage tech
nology. Transactional semantics can be full, partial, or none.
The multi-tier system, referred to herein as Cascading Hier
archy of Sorted Lists (CHISL), maintains insertion through- 25

puts in excess of a single-node Cassandra installation, a
single-node HBase installation, Voldemort, Hypertable, the
best-case log-structured index, Berkeley DB, MySQL, XFS,
or Ext3 index implementations, and the like, regardless of
the storage technology. 30

CHISL can be used as a storage engine in a single
RDBMS, embedded database, a cluster of databases, a local
or networked or distributed file system, a deduplication
mechanism, and any other implementation in which a key-
value store may be used. 35

FIG. 1 is an exemplary multi-tier index and caching
system including a plurality of different types of nodes. The
nodes may be one or more client type 101, one of first
through N tier 102-104 or storage type 105. Different tier
storage devices are employed at each node type. The tiers 40

may be prioritized, for example, first through third-tier
storage devices 106-108. The storage devices may be hosted
within one physical machine, or connected by a network.
For example, one or more storage tiers may be hosted within
a client to a cluster. One or more tiers may be stored at the 45

nodes within the cluster responsible for storing that range of
key-value pairs within that key space.

According to an embodiment of the present disclosure,
CHISL is an end-to-end transactional indexing storage sys
tem. Because Internet data can be stored anywhere from 50

directly attached devices, to near-line ones, to remote
clouds, CHISL may scale across arbitrary hierarchies of
heterogeneous storage devices and servers, including Flash
based storage. The number of nodes within a single tier, or
the number of tiers is not limited. 55

CHISL insertions may avoid random reads or writes
entirely, contributing to its scalability, by utilizing sorted
array merge-trees (SAMT), Cache-Oblivious Look-ahead
Array (COLA), other write-optimized indexing technolo-
gies, filters such as Bloom filters, etc. 60

Glossary of Terms

Some terms are used repeatedly throughout the present
disclosure and for clarity are defined both when first used, 65

and in this glossary. These definitions apply unless otherwise
noted.

4
Pair: A pair is a variable length key-value pair, where the

value can be a nested array of variable length key-value
pairs. A value can also be a pointer or an offset to a
location in RAM (Random Access Memory) or storage.
The key can be sorted with a plurality of sort orders,
sorting first by the primary sort ordering. When two
keys are considered incomparable or equal by the
primary sort ordering, they are sorted by the secondary
sort ordering, and so on. Storing an array within a value
may be done by first storing a simple secondary index
at the beginning of the series of bytes comprising the
value, and storing the element key-value pairs within
the array. The secondary index may include the offsets
to each key, where every K'h offset (for a configurable
K) also includes that pair's key, or part of key, or K is
allowed some variance so that only short keys are
chosen. Several configurations of a pair or key-value
pair are shown in FIG. 9.

Secondary Index: A secondary index may find a value
within an array in a single block or data transfer to the
storage device. The secondary index may store one
entry for many entries in the array in storage. For
example, the offsets of all pairs may be stored within a
block at the beginning of the block, and the first pair's
key may be stored in the secondary index along with
the offset of the block. Further improvements permit
efficient mixing of large and small keys. By layering
secondary indexes on top of each other a B+-tree index
may be created.

Hierarchy: A hierarchy is a structure that stores pointers to
all lists within the store. These pointers may be sorted
by the age of their lists. For example, if a list A was
created before a list B, then the pointer to A will come
before B in the hierarchy.

Merging method: Merging methods may use a hierarchy
of lists to combine some of these lists together and
create a new list based on their age and their size.

Lock resolution method: Lock resolution methods deter
mine what should be done if two pairs have the same
value key during a merge. These methods can also be
called conflict resolution methods. Common conflict
resolution methods include, for example, selecting the
pair coming from the younger list, stopping the merge
and issuing an error (for example, to retry a transac
tion), or reporting the conflict in a sorted list of con
flicting pairs that can be scanned by a program or
machine to determine what to do in the case of each
conflict specially.

Caching method: A caching method may be used to
determine how to split a list into component sub-lists,
and in which tiers to transfer (or not transfer) a sub-list
when there is a need to perform a compaction (e.g., to
maintain efficient lookup and scan performance, or to
create free space). For example a multi-tier read cach
ing method may use 40% of its space to store sub-lists
containing only re-inserted inserted reads so as to keep
frequently read values in faster storage devices (e.g.,
Flash, Phase-change Memory, or other memory tech
nology higher in the cache hierarchy). If there is need
for space from younger and/or more frequently read
sub-lists, older and/or less frequently read sub-lists may
be transferred to a storage device lower/slower in the
cache hierarchy to make memory available.

Deduplication method: A deduplication method is a spe
cialization of a lock resolution method, where a conflict
in keys indicates a duplicate entry, and a message is
sent to a block or storage manager to take note of the

US 9,959,279 B2
5

duplicate for purposes of consistency, performance,
efficiency, load balancing, or to reduce unneeded space
utilization.

Sequential Optimizations: A exemplary merging method
that avoids multiple writes of data that is already sorted,
or data that does not require sorting, for example, either
because it the data is not complex enough to justify
indexing, or the data is large and is always read in
whole.

Filtering Method: An extension to the search operation of
a merging method where a structure F is maintained for
each list and optionally sub-list where unneeded
searches are avoided by consulting this structure. This
structure may be a compact negative cache. A (com
pact) negative cache is a compact data structure that
supports membership queries on a set. Queries on the
negative cache have a small probability of reporting
items as being members of the set when they are not.
A Bloom filter is an example of a compact negative
cache. If a query indicates an item is not a member of
the set, the item is not a member of the set. If a list is
stored on a device T, the structure F may be stored in

6
insertions while maintaining efficient and bounded lookup
and scan performance, or vice verse, according to workload
conditions.

According to an embodiment of the present disclosure, a
position of each list may be stored within the multi-tier
storage in a fast storage device, for example the machine's
RAM. Alternatively, each list's position within the multi-tier
storage hierarchy may be determined before a merge is
performed according to the merging method. Regardless of

10 whether the hierarchy is stored continuously, or only deter
mined selectively, all such machines are embodiments of the
present disclosure.

To perform an insertion of key-value pairs with poten
tially completely random values, merging methods may be

15 employed where key-value pairs are sorted in RAM, and
merged with sorted lists already on a storage device. By
selecting a number of lists to merge together when trans
ferring key-value pairs from RAM to storage, based on age,
the overall time spent inserting many key-value pairs may be

20 reduced. There are several methods by which a sorted list of
the most recently inserted key-value pairs in RAM can be
merged with sorted lists already in storage, called merging
methods. a higher tier or faster storage device C. In such a

configuration the time spent consulting the structure
stored in C is less than the time that would be needed 25

According to an embodiment of the present disclosure,
list merging may be performed in connection with a plurality
of storage devices with different random and serial read and
write throughputs. These storage devices may be connected
to one or more machines. According to an embodiment of
the present disclosure, lists may be stored as sub-lists that

to perform the search in the device T where the list is
stored. The structure can be generated when the list or
sub-list is created in T, and then either immediately, or
at a later time the generated structure can be transferred
to the faster device C.

TSSL!Pair Store: The Tablet Server Storage Layer
(TSSL) is a database or database-like storage software
which may be installed on every node in a cluster of
databases. The TSSL controls a plurality of pair stores:
data structures designed to store key-value pairs or
pairs. CHISL is a suitable pair store for a TSSL, and can
be used as a component of a column store or any other
database store.

SSTable: Another name for a list stored on a storage
device.

Memtable: Another name for the C0 buffer stored in a fast
storage device such as RAM or some other suitable
memory technology.

1. Merging Method Adaptations Overview and Analysis

30 store different kinds of information. For example entries that
were inserted to speed lookups may be separated from
entries that were inserted to update existing key-value pairs.
The separation of lists into sub-lists permits managing
methods to keep recently read information in more efficient

35 storage devices, while recently inserted information is trans
ferred to another storage device, for example one with
comparable cost (e.g., monetary) that is slower but larger.
Further, the separation of lists may allow a device to
effectively store structured data typically stored in an

40 RDBMS, database engine, or database cluster node in a
cache hierarchy of storage devices, where all devices are
comparable in cost, but larger storage devices are slower to
access. In addition, the separation oflists may allow devices
to store the same amount of structured data, and to speed up

45 workloads that access a portion of this data too large to fit
in RAM, small enough to fit in a storage device slower and
larger than RAM, and faster and smaller than disk or a
device that can store more structured data as compared to

According to an embodiment of the present disclosure, a
multi-tier storage hierarchy may be implemented having an
arbitrary merging method and caching method, with a lock
resolution, duplicate management, sequential optimizations,
and dynamic reconfiguration method. Exemplary merging
methods are described in this section. Exemplary embodi- 50

ments of a CHISL multi-tier method are described herein.

other devices when cost is comparable.
Exemplary merging method adaptations described herein

can store which lists are to be merged based on age,
frequency of use, or other criteria in RAM at all times, or
alternatively can determine which lists are to be merged
according to this criteria before merging them into a larger

Further, implementations of a merging method compatible
with embodiments of the present disclosure, extending a
SAMT merging method using a CHISL multi-tier method,
are described.

According to an embodiment of the present disclosure, a
merging method may be tuned or selected for a level of
insertion ingestion. The merging method may be automati
cally changed to merge more frequently in order to maintain
fewer lists, wherein lookups need only query a small number
of lists, at the expense of more time spent merging and
therefore a lower insertion throughput. The tuning or selec
tion of a merging method is complementary to embodiments
described herein and can be used to create a flexible multi
tier storage system capable of managing duplicate resources,
caching sub-lists in different storage tiers according to the
caching method, and processing either high volumes of

55 list to be transferred to some storage tier in the multi-tier
hierarchy. The information used to determine which lists are
to be merged and in what order is called a hierarchy.
Whether an adaptation constructs its hierarchy before the
merge or maintains its hierarchy continuously is an imple-

60 mentation detail and does not alter an adaptation of the
present disclosure.

Amortized versions of two alternate merging methods,
specifically the COLA Merging Method Adaptation and the
SAMT Merging Method Adaptation are described herein.

65 Techniques described herein from adapting these merging
methods to utilize a multi-tier structure according to an
embodiment of the present disclosure are applicable to other

US 9,959,279 B2
7 8

merging methods including deamortized versions. The spe
cific method by which an adaptation is performed is an
implementation detail. One exemplary technique to achieve
deamortization is to perform a portion of a next set of merges
during each insertion. This can be achieved by performing 5
merges asynchronously in the storage tiers while using a
timer to throttle insertions into C0 , or by synchronously
performing a portion of the next scheduled merge before
each insertion into C0 .

may be configured to provide faster insertions and slower
lookups by organizing compactions differently. The struc
ture adopted by Cassandra's TSSL and CHISL is referred to
as a Sorted Array Merge Tree (SAMT). As shown in FIG.
3C, panel 2, the SAMT stores K lists, or slots on a plurality
oflevels C0 -C3 . The memtable or C0 can be flushed K times
before a compaction is performed. The slots in C1 are
merged into a slot in C2 . In the example depicted, a cascade
of compactions is performed: the slots in C2 are merged into

Metric of Abstract Analysis 10 a slot in C3 , so that the slots in C1 can be merged into a slot
in C2 and the memtable can be flushed to C1 .

According to an embodiment of the present disclosure, a
multi-tier storage hierarchy may be scaled. Current systems
utilize merging methods that are insensitive to the problems
faced by a multi-tier hierarchy. Two existing compaction 15

methods are discussed herein, and in Section 2, extensions
are described for applications to a multi-tier regime accord
ing to an embodiment of the present disclosure. Compaction
performance of the methods is analyzed using the Disk
Access Model (DAM) for cost. DAM divides the system 20

into a memory M and storageS. The unit of transfer from S
toM is a block ofb bytes. Operations and manipulations of
data in M are at no cost. Blocks transferred either from M

Comparison of COLA and SAMT

It should be understood that panels 1 (HBase 3-COLA)
and 2 (Cassandra SAMT) of FIG. 3C are not multi-tier
structures. Although the HBase 3-COLA method permits
more aggressive merging during insertion to decrease
lookup latency by increasing R, it may not favor insertions
beyond its default configuration. This permits faster scan
performance on disk, but for 64 byte or larger keys, random
lookup performance is already optimal for the default con
figuration. This is because for most lookups, Bloom filters
on each SSTable avoid alllogR(N) SSTables except the one
which contains the sought after pair. Furthermore, on Flash
SSD the 3-COLA is less optimal, as even the seeking

to S or from S to M cost 1. For the remainder of this analysis,
B=b/<size of key-value pair> is used instead of b. This 25

means each data structure is penalized 1 unit for reading or
writing a key-value pair to a random location in storage S, incurred from scanning is mitigated by the Flash SSD's

obliviousness toward random and serial reads. Conversely,
the SAMT can be configured to further favor insertions by

or is penalized 1 unit for reading or writing a series of B
key-value pairs to a random location in storage S.

COLA Merging Method Adaptation

HBase is a variation of the Cache-Oblivious Lookahead
Array (R-COLA). The R-COLA supports increasingly more
read-optimized configurations as its R parameter is
increased. HBase sets R=3, which is optimal in practice for
the R-COLA, and the particular HBase configuration may be
referred to as a 3-COLA. FIG. 3C, panel 1, shows an
R-COLA including flogR(N)l arrays of exponentially
increasing size, stored contiguously (C0 through C3). In this
example, R=3. C1 through C3 on storage 304 can be thought
of as three lists (e.g., SSTables), and C0 in RAM 305 can be
thought of as a buffer in a fast storage device such as RAM
(memtable). The memtable is a write-back cache storing
data that may be looked up by key. When the memtable is
serialized to disk 304 and turned into an SSTable, the
R-COLA checks to see iflevel 0 is full. Iflevel 0 is not full,
it performs a merging compaction on level 0, on all adjacent
subsequent arrays that are also full, and on the first non-full
level, into that same level. In FIG. 3C panel 2, C0 through
C3 are merged into C3 ; after the merge, the original contents
ofC3 have been written twice to C3 . Each level can tolerate
R-1 merges before it needs to be included in the merge into
the level beneath it. This means that every pair is written R -1
times to each level. C0 can be serialized to a slot in C1 . As
every element visits each level once, and merges are done
serially, logx(N) disk transfers are performed per insertion.
Because there are K slots per level, and logx(N) levels,
K*logx(N) disk transfers are performs per lookup. The cost
oflookup with the SAMT is the same forK =2 and K =4, but
K=4 provides faster insertions. K=4 may be used as a
default.

SAMT Merging Method Adaptation

The R-COLA used by HBase has faster lookups and
slower insertions by increasing R. CHISL and Cassandra

30 increasing K, while maintaining lookup performance on
Flash SSD and disk by using Bloom filters, and maintaining
scan performance on Flash SSD. Although Bloom filters
defray the cost of unneeded lookups in SSTables, as the
number of filters increases, the total effectiveness of the

35 approach may decrease. When performing a lookup in the
SAMT with a Bloom filter on each SSTable, the probability
of having to perform an urmeeded lookup in some SSTable
is 1-(1-f)NB where NB is the number of Bloom filters, and
f is the false positive rate of each filter. This probability is

40 about equal to f*NB for small values off. Bloom filters may
be effective as long as the number of SSTables remains
finite. For a Bloom filter filtering method, having the number
of each tree/colunm-family being less than about 40 is
sufficient, other filtering methods may have different values

45 depending on their space efficiency for higher false positive
rates.
2. Exemplary Design and Implementation

CHISL utilizes several extensions to the SAMT (dis
cussed in Section 3). As shown in FIG. 3C panels 3 and 4,

50 CHISL supports storage device specific optimizations at
each tier, e.g., RAM, SSD and Disk. CHISL migrates
recently written and read data between tiers to improve both
insertion and lookup throughput and permit caching in
storage tiers larger than RAM. Referring to FIG. 7, CHISL

55 may be configured to have different numbers of slots or lists
per level or cache lines according to an embodiment of the
present application.

TSSL efficiency is related to overall cluster efficiency.
CHISL extends the scan cache and buffer cache architecture

60 used by existing TSSLs. CHISL avoids the need to maintain
a buffer cache while avoiding common memory-mapping
(MMAP) overheads. CHISL further exploits Bloom filters
so that they have equal or more space in RAM than the scan
cache. Although Web-service MapReduce workloads do not

65 typically require more than atomic insertions, parallel
DBMS (Database Management System) architectures and
many scientific workloads use more substantial transactional

US 9,959,279 B2
9

semantics. CHISL introduces an optional transactional
architecture that allows clients to commit transactions as
either durable or non-durable. Durable transactions exploit
group-commit as in other TSSL architectures. CHISL also
allows non-durable transactions, and these can avoid writing
to the journal completely for heavy insertion workloads
without compromising recoverability. In addition, CHISL
provides the infrastructure to support transactions that can
perform multiple reads and writes atomically and with full
isolation.

Exemplary CHISL Method

A CHISL multi-tier method (CHISL method) permits the
modification of a merging, caching, lock resolution, dupli
cate management, sequential optimization, filtering method,
and dynamic reconfiguration method to operate within a
multi-tier storage environment, where multiple devices are
grouped into multiple tiers.

There may be many such groupings for the same set of
devices. An example is shown in FIG. 1, where the CHISL
method groups devices (Nodes) with similar random and
serial read and write storage characteristics into tiers. Nodes
within a tier are responsible for merging lists of data sent to
that node from one or more nodes in another tier, and then
at some point transferring these lists to one or more nodes in
another tier. The example in FIG. 1 shows one grouping of
machines where one or more nodes of the Client type
transfer lists to one or more nodes of the First type. At some
point these lists along with subsequent lists are merged
together according to the merging method, and according to
the caching and merging method a time is chosen where
these lists are then transferred to one or more nodes of the
Second-tier type. The same decision is repeatedly made and
the data percolates whole or in part down (from Client to
Storage) through the tiers. Although the example in FIG. 1
shows only three nodes within each tier, it is explicitly noted
that any nnmber of nodes may belong to a single tier, and
there may be any nnmber of tiers. Furthermore, the channels

10
secondary index in C. If the pair is not found in T, the search
proceeds to other nodes. Searches of nodes can be paral
lelized across tiers, and can simultaneously be performed in
order of the fastest tiers to slowest tiers, in this way, it is
more likely that the C tier for some T tier will be more
quickly located and accessed, thus possibly eliminating the
need to consult the slower T tier at all.

To improve read throughput, when the work-set size is
small enough to fit in a RAM, e.g., the C tier, using RAM

10 as a cache, e.g., the T tier, may provide the improved
performance. A filter may be used on each of the slots in
levels too large to fit in a given tier, e.g., C. In an exemplary
lookup in 403 of FIG. 4, no key is found in C0 . Thereafter,
filters are sequentially checked. In the example, C1. 0 's filter

15 reports "No," as does Cu and C1.2 's, and C1.3 's reports
"Maybe," and the block is inspected using its' correspond
ing secondary index 404. In the example, the key is not
found and the method continues to C1 .4, and finding the key
there, the key is copied back into C0 for reading 405. For

20 medinm sized (e.g., 128 byte) key-value pairs, filters may
enable 1 I/0 per lookup, despite being write-optimized.
Secondary indexes consnme an equivalent amount of
resources as the immediate parents of the leaf nodes in a
B-Tree, which are typically cached in RAM. As seen in FIG.

25 4, a filtering method may be used to avoid searches in lists
where the sought after pair is not present. Typically the
structures consulted by this method would be stored in the
faster storage device C,, and the lists for which searches are
avoided would be stored in storage device T,. In some

30 embodiments of the filtering method, the structures that
must be consulted would likely be generated at the time the
lists are first constructed by the merging method. Either the
structures would be created in corresponding C, simultane
ously, or would be transferred there with a sequential read

35 and write at some later time, determined by the filtering
method. The storage device C, in which these structures are
stored need not be the highest or fastest such storage device,
typically as long as C, is faster than the corresponding T,,
this would be sufficient.

Insertion of data into CHISL begins with a client or user
selecting a pair to insert, modifY, or read. According to a lock
resolution method, the user may be required to notify one,
some, or all of the nodes that the pair is being accessed.
Space within each node may be divided according to the

by which data is sent from one node to another may be any 40

medium, either an Ethernet device, or any WAN/LAN
networking medium suitable for a bus between devices not
within close proximity of each other, or a bus such as SCSI,
SATA, or any medinm suitable for a bus between devices
within close proximity of each other. 45 caching method, for example as shown in FIG. 8, into read

caching space and write caching space. FIG. 8 shows an
exemplary merge and cache method using CHISL to retain
a sub-list 801 of a list that contains frequently read data in

Retrieval of data from CHISL begins with a client or user
selecting a pair to lookup or scan. According to a lock
resolution method, the user may be required to notify one,
some, or all of the nodes of this access. As shown in FIG. 4,
each node organizes its memory in order of most randomly 50

accessible to least randomly accessible. When comparing
storage devices within different tiers, and which may exist
either within the same machine or on different machines, one
tier is more randomly accessible than the other. This more
randomly accessible tier is the cache for the less randomly 55

accessible tier. For example, in the two-tier example of FIG.
4, a slot in a lower level 401 (the less randomly accessible
tier) needs to be able to contain all the slots 402 in the lowest
level of the next higher level (the more randomly accessible
tier). The cache tier C for some other tier T may contain 60

secondary indexes and space-efficient filters. If they exist,
these secondary indexes and filters are consulted on tier C
before searching for the pair in the tier T. If the pair can be
proven to not exist by the filters, then lookup may stop,
otherwise if the exact key of the pair is not kuown or the 65

existence of the pair is still in question a lookup may proceed
with the optional locational information provided by the

a relative high tier (tier 0), while transferring a sub-list 802
of the same list that contains writes (e.g., insertions, updates,
and deletions) to a relatively low tier (tier 1). A merge
method may be applied to the structure 803 to move a write
sub-list 802, while the cache method will leave the read
sub-list 801 in place. The merge and cache method result in
the structure 804, wherein the write sub-lists have been
moved to a lower tier (tier 1).

The allotment may change over time as performance
requirements change depending on the workload according
to the dynamic reorganization method. If there is not enough
space to accommodate the potentially newly updated or read
pair, then according to the merging method, the lists occu-
pying the memory are transferred to another node according
to the merging method. If there is more than one list being
transferred, none, some, or all of these lists may be merged
at the time of transfer. The number of lists merged is
determined by the merging method, the sequential optimi-
zation method, and the dynamic reorganization method,

US 9,959,279 B2
11

which examine the number, the size, the complexity of the
list's secondary index and filters, and the desired insertion,
update, delete, scan, and lookup performance of the work
load and/ or user. If the determination to merge is made, then
during merge, a lock resolution and deduplication method
are utilized to determine how to handle pairs with conflicting
keys, where keys conflict if they are incomparable or are
equal in value. At this point a lock resolution method may
stop the merge and alert a conflict resolution authority, such

12
Operations may be categorized as either reads or writes.

Reads include: (1) finding an exact value if it exists or
find-exact, and (2) range queries. Writes include: (1) insert,
(2) delete, and (3) update.

Write: Pairs can be inserted between existing pairs.
Updates and deletes change the value of a pair or remove it
entirely. After elements are deleted, new elements can be
inserted again. Inserts fail with an ENOSPC error (no space
left on device) when the allotted space is full.

Referring to FIG. 3A, new key-value pairs are inserted
into the cache in RAM, called C0 301. When there is no more
RAM for insertions, C0 flushes all key-value pairs in sorted
order as a contiguous serial write to an empty slot in C1 ,

which is then marked full. C1 has two slots 302a and 302b,

as an automated process, or a user by issuing a human 10

understandable error. At this same point a deduplication
method may notifY a duplicate pair manager that two pairs
with potentially duplicate key values exist, and this entity
may decide to remove the duplicate to save space, or move

15 each of which can hold as much data as C0 ; this relationship
holds for each C, and C,-1 with the exception of a lowest
order slot (explained below). When a cache line C,-1 has no
empty slots, SAMT merges the contents of both of its slots
into one of the slots in ci 303a. It then marks the slot in ci

it physically to another node for performance, reliability,
security, or any other reason.

Once enough space has been created to accommodate the
new pair(s) by transferring and possibly merging already
present lists, they are transferred from the user's or client's
memory to the node and form a new list or modifY an
existing list. According to a caching method, not all lists may

20 full and both slots of C,-1 free. This may result in a
cascading merge; FIG. 3A shows a multi-tiered cache before
cascading and FIG. 3B shows a multi-tiered cache after
cascading wherein portions of cache, e.g., 301, 302b, 303b,
and 303c are flushed.

be transferred at this time. For example, in FIG. 8, the list is
broken into a read and write sub-lists, where only the write
sub-lists are transferred to another node, and the read 25

sub-lists remain unless further space is needed, or perfor
mance or security requirements change according to the
dynamic reorganization method.

The dynamic reorganization method may alter the thresh
olds used to determine if a merge or list transferal is required 30

as shown in FIG. 10. For example, the number of slots/lists
in each tier can be reconfigured to induce more merging
during regular operation of the merging method, deamortiz
ing read optimization across multiple evictions/transfers

35
1000 or lists on the same level (slots) can be merged together
for aggressive read optimization 1001 or 1002.

As shown in FIG. 2, multiple pair types (201-203) can be
stored across a series of devices 204 from higher tiers 205
to lower tiers 206. As shown in FIG. 9, colunm and row 40

storage, along with other localization and data locality
optimizations may be achieved by configuration of the pairs
used within a pair type. For example, CHISL may be
employed as a multi-tier colunm store by storing colunms as
nested key-value pairs using the CHISL multi-tier hierarchy. 45

For each tier that a particular key-value pair occupies,
CHISL maintains a tier header, depicted in FIG. 5, to
manage metadata associated with the portion of a key-value
pair structure within that tier. Each slot in a key-value pair
structure is divided into blocks. By representing slots as a
series of blocks, unused space from partially filled slots may
be re-used, and multiple snapshots of the key-value pair
structure may be stored to simplifY a transactional imple
mentation. The size of the blocks may be set to reduce or
avoid fragmentation, e.g., 1 GB.

FIG. 5 shows a portion of a tier header corresponding to
a single slot 501 residing on an SSD. The blocks 502 (zO
through z3) are mapped out of order to the slot. The blocks
size ensures good serial write performance. The offsets of
blocks are in turn managed by a block allocator. The
partition of storage that each block allocator manages is
called its allocation region. Block allocators maintain a
bitmap of which blocks are free or not. For example, for 1
GB blocks, a 4 KB bitmap can represent 32 TB worth of
blocks, and a bitmap will flush quickly to the journal and
consume little memory. In FIG. 5 there are two block
allocators 503 and 504 controlling this SSD (m0 and m 1).

Block allocator m0 allocates 1 GB blocks for slot blocks
from a data allocation region (Data A.R.). Block allocator
m 1 allocates 8 MB blocks to store tier header information

A properly suitable sequential optimization method can be
used to avoid re-writing portions of lists during a merge by
identifying which pair types or arrays within pairs need to be
sorted, and which do not, along with performance require
ments for scans and lookups. 50 and both block allocators' bitmaps (Metadata A.R.). Larger

blocks avoid seeking during list merges. Small blocks avoid
wasting space for storing metadata. The filter and secondary
index are resident in some fast storage device (could be

FIGS. 3A-B show a configuration with a single device,
organizing its storage into three tiers, where the bus is a
SATA and memory bus connection, where the number of
lists within a tier is configured at two, and one in the highest

55
tier (RAM in this case).

As seen in FIG. 3A, the key-value store is divided into an
in-RAM cache and an on-storage set of sorted lists. The
cache includes a red-black tree of pairs. The on-storage
component includes a series of levels, where each level 60
holds two or more slots. A slot is a sorted array of pairs. The
key-value store uses red-black trees as a cache structure, and
when these caches are full, it will flush their contents in large
serial writes to the slots and levels of the on-storage com
ponent. Throughout operation, a merging regiment on these 65

slots and levels is used to maintain high insert, delete, and
update throughput.

RAM, but not necessarily), and may also be stored on disk
to be recoverable after a crash. The offsets of the locations
of the filter and secondary index are maintained by the
header in block b0 505 and block s0 506, respectively.

Exemplary SAMT Multi-Tier Extensions

CHISL may extend the SAMT merging method in mul
tiple ways. For example, (1) Client reads can be optionally
re-inserted to keep recently read (hot) data in faster tiers
(e.g., a Flash SSD). (2) Lists of recently inserted data are
automatically promoted into faster tiers if they fit. (3)
Different tiers can have different values of K (the number of
slots in each level.

US 9,959,279 B2
13

According to an embodiment of the present disclosure, a
SAMT the Multi-tier SAMT or MTSAMT is described. The
exemplary implementation includes support for full dele
tion, variable-length keys and values, and allows the logical
layer to specifY whatever format, bits, or timestamps
deemed necessary by the logical layer, as other TSSLs do.

Exemplary Re-Insertion Caching

Whenever a pair is inserted, updated, deleted, or read, the
C0 (fastest) cache may be updated. The cache may be
configured to hold a preset number of pairs. When a pair is
inserted or updated, it is marked DIRTY, and the number of
pairs in the cache is increased. Similarly, after a key is read
into the C0 cache, it is marked as RD_CACHED, and the
number of pairs is increased. Once a pre-set limit is met, the
cache evicts into the MTSAMT structure using the merging
process depicted in FIG. 3C panel 3. By including
RD_CACHED pairs in this eviction as regular updates, we
can answer future reads from C1 rather than a slower lower
level. However, if the key-value pairs are large, this can
consume additional write bandwidth. This feature is desir
able when the working-set is too large for C0 (RAM) but
small enough to fit in a fast-enough device residing at one of
the next several levels (e.g., C1 and C2 on Flash SSD).
Alternatively, this feature can be disabled for workloads
where saving the cost of reading an average pair is not worth
the additional insertion overhead, such as when we are not
in a multi-tier scenario. All RD_CACHED values are omit
ted during a major compaction, and RD_CACHED values
are omitted during a merging compaction if another pair
with the same key can be emitted instead. Therefore, no
additional space is used by inserting RD_CACHED pairs.
When scanning through trees (MTSAMTs), if read caching
is enabled, the scanner inserts scanned values into the cache,
and marks them as RD_CACHED. Experimentally, we
found that randomly reading larger tuples (>4096 KB) can
make effective use of a Flash SSD tier; however, for smaller
tuples (<64 B) the time taken to warm the Flash SSD tier
with reads is dominated by the slower random read through
put of the magnetic disk in the tier below. By allowing scans
to cache read tuples, applications can exploit application
specific locality to pre-fetch pairs within the same or adja
cent rows whose contents are likely to be later read. Evic
tions of read-cached pairs can clear out a Flash SSD cache
if those same pairs are not intelligently brought back into the
higher tier they were evicted from after a cross-tier merging
compaction. In FIG. 3C panel 4, evicted pairs are copied
back into the tier they were evicted from. This is called
reclamation, and it allows SSTables, including read-cached
pairs, that were evicted to magnetic disks (or other lower-tier
devices) to be automatically copied back into the Flash SSD
tier if they can fit.

Exemplary Sub-List Optimization

14
merge. By leaving the read-cached pairs in place, and only
transferring the inserted pairs, reads can still be serviced at
the speed of the faster storage device.

Exemplary Space Management and Reclamation

An MTSAMT may be designed for so that more fre
quently accessed lists would be located at higher levels, or
at C, for the smallest i possible. After a merge, the resulting

10 list may be smaller than the slot it was merged into because
of resolved deletes and updates. If the resultant list can fit
into one of the higher (and faster) slots from which it was
merged (which are now clear), then it may be moved
upward, along with any other slots at the same level that can

15 also fit. This process is called reclamation.
In the example in FIG. 3C, the result of the merging

compaction in panel 4 is small enough to fit into the two
(half of four) available slots in Cu and specifically in this
example requires only one slot. If multiple slots were

20 required, the SSTable would be broken up into several
smaller SSTables. This is possible because CHISL manages
blocks in the underlying storage device directly, rather than
treating SSTables as entire files on the file system, which
allows for this kind of optimization. Reclamation across

25 levels within the same tier is inexpensive, as this includes
moving SSTable blocks by adjusting pointers to the block,
rather than copying them across devices. If these rules are
obeyed, then partially filled slots may be guaranteed to
always move upward, eliminating the possibility that small

30 lists of pairs remain stuck in lower and slower levels. The
exemplary MTSAMT implementation has been designed for
throughput. The exemplary design considers space on stor
age with high latency and high read/write throughput char
acteristics (e.g., disk) to be cheaper than other hardware

35 (e.g., RAM or Flash SSD). CHISL can operate optimally
until 1h of total storage is consumed; after that, performance
degrades gradually until the entire volume is full, save a
small amount of reserve space (usually 5% of the storage
device). Such space-time trade-offs are common in storage

40 systems, such as HBase, Cassandra, and even Flash SSD
devices.

At this point, only deletes and updates may be accepted.
These operations are processed by performing the equivalent
of a major compaction: if there is not enough space to

45 perform a merging compaction into the first free slot, then an
in-place compaction of all levels in the MTSAMT is per
formed using the CHISL's reserve space. As tuples are
deleted, space is reclaimed, freeing it for more merging
compactions that intersperse major compactions until 1h of

50 total storage is again free; at that point, only merging
compactions need be performed, regaining the original opti
mal insertion throughput.

To exploit decoupling, compaction-based systems such as
CHISL have some overhead to maintain optimal insertion

55 throughput in the steady state. Without this space, their
throughput will degrade.

Read-cached values need not be stored in the same lists as
other pairs, but can instead be segregated into a separate list
which is created at the same time, but holds only read
cached values. When a merging compaction takes place, and 60

lists from one tier are merged together, and the result is
written to another or lower tier, the read-cached list can
remain where it is, or can be moved to a higher or faster tier.
This allows an operator of the machine or system to con
figure a proportion of faster storage devices to use an allotted 65

space for caching. Without separating reads into sub-lists,
they would be carried downward to another tier during the

Exemplary Committing and Stacked Caching

The exemplary MTSAMT extends the SAMT to operate
efficiently in a multi -tier environment. In addition to efficient
compaction, reclamation, and caching as discussed above,
the efficiency of the memtable or C0 as well as how effi
ciently it can be serialized to storage as an SSTable is also
discussed. The architecture of a transaction manager and
caching infrastructure affects insertion throughput for small
key-value pairs (<1 KB). CHISL's architecture is mindful of

US 9,959,279 B2
15

cache efficiency, while supporting new transactional features
(asynchronous commits) and complex multi -operation trans
actions.

Exemplary Cache Stacking

The transactional design of CHISL may be implemented
in terms ofCHISL's concise cache-stacking feature. CHISL
maintains a memtable to store key-value pairs. CHISL uses
a red-black tree with an LRU implementation, and DIRTY
flags for each pair. An instance of this cache for caching
pairs in a particular colunm family or tree is called a scan
cache. Unlike other TSSL architectures, this scan cache can
be stacked on top of another cache holding pairs from the
same tree or MTSAMT. In this scenario the cache on top or
the upper cache evicts into the lower cache when it becomes
full by locking the lower cache and moving its pairs down
into the lower cache. In addition to the memtable cache, like
other TSSLs, CHISL may use a buffer cache. The buffer
cache need not fully implement a user-level buffer cache.

Exemplary Buffer Caching

According to an embodiment of the present disclosure, on
operating system (OS) kernel, such as Linux, may be used
for all caching of pages read from zones by mmap-ing
(maping files or devices into memory) storage in 1 GB slabs,

16
insertion-throughput, and larger transactions that can be
either asynchronous or durable. This lets the same TSSL
architecture to be used in a cluster operating under either
consistency model, if desired. MTSAMT's design and
operation and its associated cache or memtable (C0). As
mentioned before, each MTSAMT corresponds to a tree or
column family in a cloud storage center. CHISL operates on
multiple MTSAMTs to support row insertions across mul
tiple colunm families, and more complex multi-operation

10 transactions as required by stronger consistency models.
Applications interact with the MTSAMTs through a trans
actional API: BEGIN, COMMIT_DURABLE, and COM
MIT_ASYNC. CHISL's transaction manager (TM) man
ages all transactions for all threads. As shown in FIG. 6, the

15 TM maintains a stacked scan cache called the staged cache
on top of each tree's CO (also a scan cache). When an
application begins a transaction with BEGIN, the TM cre
ates a handler for that transaction, and gives the application
a reference to it. At any time, when a thread modifies a tree,

20 a new scan cache is created if one does not already exist, and
is stacked on top of that tree's staged cache. The new scan
cache is placed in that transaction's handler. This new scan
cache is called a private cache. In FIG. 6 we see three
handlers, each in use by three separate threads PO through

25 P2. Each thread has modified each of the three trees (MT
SAMTO through MTSAMT2). Transactions managed by
CHISL's TM are in one of three states: or chunks. This simplifies a design implementation by

avoiding implementing a buffer cache. 64-bit machines'
address spaces are sufficiently large and the cost of a random
read input/output (I/0) exceeds the time spent on a TLB 30

miss. Serial writes may be used on a map, incurring reads as
the underlying operating system kernel reads the page into
the cache, even on a write fault. This may cause overhead on
serial writes due to the additional reads. To avoid this
problem, an operation such as PWRITE may be used during
merges, compactions, and serializations, wherein the
affected mapping may be invalidated using, for example,
MSYNC with MS_INVALIDATE. As the original slots are

(1) they are uncommitted and still exist only with the
handler's private caches;

(2) they are committed either durably or asynchronously
and are in either the staged cache or CO of the trees they
effect; or

(3) they are entirely written to disk.
Transactions begin in state (1), move to state (2) when

35 committed by a thread, and when CHISL performs a snap
shot of the system, they move to state (3) and are atomically
written to storage as part of taking the snapshot. Durable and
asynchronous transactions can both be committed. We com
mit transactions durably by moving their transaction to state in place during the merge, reads can continue while a merge

takes place, until the original list must be deallocated.
Once deallocated, reads can now be directed to the newly

created slot. The result is that the only cache which need be
manually maintained for write-ordering purposes is the
journal cache, which is an append-only cache similar to that
implemented by the POSIX FILE C API, which is light
weight, and simple. All TSSLs that employ MMAP, even
without additionally optimizing for serial writes like CHISL,
typically avoid read overheads incurred by a user-space
buffer cache. On the other hand, traditional DBMSes can not
use mmap as provided by commodity operating systems.
This is because standard kernels (e.g., Linux) currently have
no portable method of pinning dirty pages in the system page
cache. Without this, or some other write-ordering mecha
nism, traditional DBMSes that require overwrites (e.g., due
to using B+-trees), will violate write-ordering and break
their recoverability. Therefore, they are forced to rely on
complex page cache implementations based on MALLOC or
use complex kernel-communication mechanisms. TSSLs
utilized in cloud-based data stores such as Cassandra,
HBase, or CHISL never overwrite data during the serializa
tion of a memtable to storage, and therefore need not pin
buffer-cache pages, greatly simplifying these designs.

Exemplary Transactional Support

CHISL's optional transactional architecture permits for
atomic durable insertions, hatched insertions for higher

40 (2), and then scheduling and waiting for the system to
perform a snapshot. While the system is writing a snapshot
to storage, the staged cache is left unlocked so other threads
can commit (similar to EXT3). A group commit of durable
transactions occurs when multiple threads commit to the

45 staged cache while the current snapshot is being written, and
subsequently wait on the next snapshot together as a group
before returning from COMMIT. Asynchronous transactions
can safely commit to the staged cache and return immedi
ately from COMMIT. After a snapshot the staged cache and

50 the CO cache swap roles: the staged cache becomes the CO
cache.

As shown in FIG. 6, the TM maintains a stacked cache
called the staged cache on top of each pair type's C0 601.
When an application begins a transaction with BEGIN, the

55 TM creates a handler for that transaction and gives the
application a reference to it. The first time the application
reads or modifies a particular pair type, a new private cache
txnO 602 is stacked on top of the staged cache 603 to hold
those changes. Depending on whether the flusher is running

60 or not, the application will commit differently. If the flusher
is not running, the staged cache will be empty, and the TM
will evict all the application's private caches into the cor
responding C0 directly. If the application is committing
durably, it will initiate flush and wait for it to complete;

65 otherwise it will return directly. If the flusher is running, the
TM will evict the application's private caches into the staged
cache. If the application is committing durably, it will

US 9,959,279 B2
17

enqueue itself onto the group commit queue. If it is com
mitting asynchronously, it will return immediately.

CHISL's flush protocol ensures that all pair type caches
are atomically written. Therefore, at the time of flush, the
method determines whether the private caches of a transac
tion are wholly in the C0 cache 601 or its staged cache 603
(or not). Using the C0 cache 601 and the staged cache 603,
it can be guaranteed that the private caches of a transaction
exists in one of the C0 cache 601 and the staged cache 603.

18
computer system is a general purpose computer system that
becomes a specific purpose computer system when execut
ing the routine of the present invention.

Exemplary Snapshot, Truncate, and Recovery
Operations

The computer platform also includes an operating system
and micro instruction code. The various processes and
functions described herein may either be part of the micro
instruction code or part of the application program (or a
combination thereof) which is executed via the operating
system. In addition, various other peripheral devices may be

10 connected to the computer platform such as an additional
data storage device and a printing device.

It is to be further understood that, because some of the
constituent system components and method steps depicted CHISL manages blocks directly, not using separate files

for each SSTable. A block allocator manages each storage
device. Every block allocator uses a bitmap to track that
blocks are in use. The block size used is 128MB to prevent
excessive fragmentation, but the operating system page
cache still uses 4 KB pages for reads into the buffer cache.
Each tree (column family) maintains a cluster of offsets and
metadata information that points to the location of all
SSTable block offsets, secondary index block offsets, and
Bloom filter block offsets. This cluster may be called the
header. When a snapshot is performed, all data referred to by

15
in the accompanying figures may be implemented in soft
ware, the actual connections between the system compo
nents (or the process steps) may differ depending upon the
manner in which the present invention is progrmed.
Given the teachings of the present invention provided

20 herein, one of ordinary skill in the related art will be able to
contemplate these and similar implementations or configu
rations of the present invention.

What is claimed is:
1. A method of storing data as a plurality of key-value

pairs in a multi-tier storage system, the system comprising
at least one lower-latency non-volatile memory storage
device and at least one higher-latency non-volatile memory

all headers, including blocks containing SSTable informa- 25

tion, and the bitmaps, are flushed to storage using MSYNC.
Afterward, the append-only cache of the journal is flushed,
recording all headers to the journal within a single atomic
transaction.

During recovery, the most recent set of headers may be
read back into RAM, and the state of the system at the time
that header was committed to the journal may be recovered.
Traditional TSSLs implement a limited transaction feature-

30
storage device, the method comprising:

generating a first zone manager for managing a first
partition of storage of a first non-volatile memory
device among the lower-latency non-volatile memory
storage devices to generate a tier of the multi-tier set that only allows for atomic insertion. CHISL's architec

ture does not exclude distributed transactions and is as fast 35

as traditional TSSLs like Cassandra or HBase, or a factor of
2 faster when all three systems use asynchronous commits.
One feature of CHISL is that high-insertion throughput
workloads that can tolerate partial durability (e.g., snapshot
ting every 3-5 seconds) need not write the majority of data 40

into the journal. CHISL can avoid this write because if the
C0 cache evicts its memtable as an SSTable between snap
shots, the cache will be marked clean, and only the header
need be serialized to the journal, avoiding double writing.
This design improves CHISL's performance.
3. Exemplary Implementations

It is to be understood that the present invention may be
implemented in various forms of hardware, software, firm
ware, special purpose processors, or a combination thereof.

45

In one embodiment, the present invention may be imple- 50

mented in software as an application program tangibly
embodied on a program storage device. The application
program may be uploaded to, and executed by, a machine
comprising any suitable architecture.

According to an embodiment of the present invention, a 55

computer system for tiered indexing can comprise, inter alia,
a central processing unit (CPU), a memory and an I/0
interface. The computer system is generally coupled through
the I/0 interface to a display and various input devices such
as a mouse and keyboard. The support circuits can include 60

circuits such as cache, power supplies, clock circuits, and a
communications bus. The memory can include random
access memory (RAM), read only memory (ROM), disk
drive, tape drive, etc., or a combination thereof. Embodi
ments of the present disclosure can be implemented as a 65

routine that is stored in memory and executed by the CPU
to process the signal from the signal source. As such, the

storage system;
generating a second zone manager for managing a second

partition of storage of a second non-volatile memory
device among the higher-latency non-volatile memory
storage devices to generate another tier of the multi -tier
storage system;

allocating, from a partition managed by the first zone
manager, bytes pointed at by a first sub-list among all
the key-value pairs in a key-value relation;

allocating, from a partition managed by the second zone
manager, bytes pointed at by a second sub-list among
all the key-value pairs in the key-value relation;

allocating bytes from the first zone manager for storing
meta-data, where the meta-data comprises at least one
association of the key-value relation with an array of
pointers to sub-lists belonging to the relation,

wherein each sub-list includes at least one pointer to bytes
allocated for sorted key-value pairs comprising the
corresponding sub-list, wherein each partition com
prises at least one block of a given size, and

wherein the system maintains a hierarchy structure in one
of the tiers that stores the key-value relation and
enables the key-value pairs to be stored in any one of
the tiers.

2. The method of claim 1, wherein the first sub-list is
younger than the second sub-list.

3. The method of claim 1, wherein the first sub-list is least
recently used as compared to the second sub-list.

4. The method of claim 1, further comprising storing in
one of the sub-lists a pointer to a secondary index and a
pointer to bytes for data of the sorted list, said secondary
index stores an index to the sorted list stored in bytes pointed
at by the one sub-list.

US 9,959,279 B2
19

5. The method of claim 4, wherein the storing comprises:
allocating bytes from at least one of the zone managers for

storing a sorted list of key-value pairs or secondary
index pairs;

dividing the sorted list being indexed into a range com
prising at least one key-value pair; and

storing a secondary index pair to indicate a beginning of
the range.

. 6 .. The method of claim 5, wherein the secondary index
pmr 1s a key and a value where the key is equivalent to a key 10

of a tuple in the range and the value of an offset of the tuple
in the range.

7. The method of claim 1, the hierarchy structure com
prising a first compact negative cache in the first non
volatile memory device and a second compact negative 15

cache in the second non-volatile memory device, wherein
the first compact negative cache has a lower latency than the
second compact negative cache.

8. The method of claim 7, wherein at least one of the
compact negative caches is a Bloom Filter. 20

9. The method of claim 1, wherein at least one of the
key-value pairs is a variable length key-value pair.

10. The method of claim 1, the hierarchy structure com
prising a compact negative cache in the second non-volatile
memory device for each sub-list in the second non-volatile 25

memory device, and then transferring the hierarchy structure
from the second non-volatile memory device to the first
non-volatile memory device.

11. The method of claim 1, the hierarchy structure com
prising a compact negative cache in the first non-volatile 30

memory device for each sub-list in the first non-volatile
memory device, and then transferring the hierarchy structure
from the first non-volatile memory device to the second
non-volatile memory device.

12. The method of claim 1, wherein the system further 35

comprises a cache that stores one or more of the sub-lists
from one or more of the tiers, wherein the latency of the

20
storage device used for the cache is less than a latency of the
at least one lower-latency non-volatile memory storage
device for sequential or random access.

13. The method of claim 12, wherein the cache is one of
a volatile memory or a non-volatile memory.

14. The method of claim 1, wherein at least one of the
sub-lists is stored using a red-black tree.

15. The method of claim 1, wherein at least one of the
sub-lists is stored using a B-tree data structure .

16. The method of claim 1, wherein at least one of the
sub-lists is stored using an R-COLA data structure.

17. The method of claim 1, wherein at least one of the
sub-lists is stored using a SAMT data structure.

18. The method of claim 1, where the allocating per
formed by at least one of the zone managers is with respect
to bytes at multiple offsets.

19. The method of claim 1, where at least one of the
sub-lists contains one or more key-value pairs indicating a
deleted item.

20. The method of claim 1, where at least one of the
sub-lists contains one or more key-value pairs indicating an
updated item.
. 21. The method of claim 1, further comprising compact
mg a group of the sub-lists in one of the tiers into a fewer
number of sub-lists according to a merging method.
. 22. The method of claim 21, further comprising reclaim
mg space resulting from the compacting from the corre
sponding zone manager.

23. The method of claim 22, further comprising transfer
ring another group of the sub-lists into the reclaimed space.

24. The method of claim 1, wherein the at least one
lower-latency non-volatile memory storage device com
prises at least of a solid state disk and a random access
memory and the at least one higher-latency non-volatile
memory storage device comprises at least one of a hard disk
and a network file system.

* * * * *

