
Efficient I/O Scheduling with
Accurately Estimated Disk Drive Latencies

Vasily Tarasov1, Gyumin Sim1, Anna Povzner2, and Erez Zadok1

1Stony Brook University, 2IBM Research—Almaden

Abstract—
Modern storage systems need to concurrently support appli-

cations with different performance requirements ranging from
real-time to best-effort. An important aspect of managing per-
formance in such systems is managing disk I/O with the goals
of meeting timeliness guarantees of I/O requests and achieving
high overall disk efficiency. However, achieving both of these
goals simultaneously is hard for two reasons. First, the need to
meet deadlines imposes limits on how much I/O requests can
be reordered; more pessimistic I/O latency assumptions limit
reordering even further. Predicting I/O latencies is a complex
task and real-time schedulers often resort to assuming worst-
case latencies or using statistical distributions. Second, it is
more efficient to keep large internal disk queues, but hardware
queueing is usually disabled or limited in real-time systems to
tightly bound the worst-case I/O latencies.

This paper presents a real-time disk I/O scheduler that uses an
underlying disk latency map to improve both request reordering
for efficiency and I/O latency estimations for deadline scheduling.
We show that more accurate estimation of disk I/O latencies
allows our scheduler to provide reordering of requests with
efficiency better than traditional LBN-based approaches; this
eliminates the need of keeping large internal disk queues. We
also show that our scheduler can enforce I/O request deadlines
while maintaining high disk performance.

I. INTRODUCTION

Modern general-purpose computers and large-scale enter-
prise storage systems need to support a range of applications
with different performance and timeliness requirements. For
example, audio and video streams in multimedia applica-
tions require timely data delivery guarantees, while concur-
rent interactive applications remain responsive. In large-scale
enterprise storage systems, the rise of storage consolidation
and virtualization technologies [1], [2] requires the system to
support multiple applications and users while meeting their
performance constraints. For example, Internet-based services
that share a common infrastructure expect I/O performance for
each service in accordance with its service level agreement [3].

Managing disk I/O is an essential aspect of managing
storage system performance, as disks remain a primary storage
component and one of the top latency bottlenecks. A classic
way to improve disk performance is to reorder disk I/O
requests, because disk performance largely depends on the
order of requests sent to the disk device. With an additional
requirement of providing timeliness guarantees, the traditional
goal of maximizing overall disk efficiency remains an im-
portant requirement. As a result, many real-time disk I/O
schedulers [4], [5], [6] combine reordering algorithms (such as
SCAN) with real-time scheduling (such as EDF) to optimize

disk performance while meeting guarantees. Similarly, fair-
or proportional-sharing schedulers reorder some requests to
improve disk efficiency.

Since operating systems have a limited knowledge of disks,
existing disk I/O schedulers perform reordering based on
the requests’ Logical Block Number (LBN). I/O schedulers
assume that the larger the difference between two LBN ad-
dresses, the longer it takes to access the second LBN address
after accessing the first one. Although this assumption used
to be reasonable in the past, we will demonstrate that it no
longer holds and is misleading due to complex specifics of the
modern disk drive design. The disk drive itself has an internal
queue and a built-in scheduler that can exploit the detailed
information about the drive’s current state and characteristics.
Consequently, built-in disk drive schedulers are capable of
performing request scheduling with a higher efficiency than
LBN-based schedulers can at the OS level.

Best-effort disk I/O schedulers improve their performance
and overcome inefficiencies of LBN-based scheduling by
keeping as many requests as possible outstanding at the
underlying disk device so they are scheduled by the drive’s
internal scheduler. However, disk I/O schedulers with real-time
guarantees cannot take advantage of the drive’s internal sched-
uler, because the I/O scheduler loses control over requests sent
to the drive and the drive’s internal scheduler is not aware
of the host-level request deadlines. Thus, existing real-time
schedulers keep inefficient internal disk queues of only one or
two requests, or allow more outstanding requests at the disk
drive for soft guarantees, but they require frequent draining of
internal disk queues in order to meet request deadlines [7].

If OS would have a more accurate source of information
about disk drive latencies, it could perform efficient scheduling
while meeting request deadlines. But how large can potential
benefits of accurate latency estimation be? In this paper, we
first propose a novel request reordering algorithm based on
maintaining a disk drive latency map within the OS kernel.
The map allows us to accurately estimate the actual latency
between any pair of LBN addresses anywhere on the disk. We
designed and implemented a real-time disk I/O scheduler that
meets request deadlines as long as the disk can sustain the
required throughput. The scheduler learns the disk latencies
and adapts to them dynamically; it uses our request reordering
algorithm to maintain high efficiency while meeting request
deadlines. Real-time schedulers that use a distribution of
I/O execution times over all disk-block addresses, tend to
overestimate I/O execution times; in contrast, our disk drive

ATA/SATA

SCSI/SAS LBN−based

interface

LBN−based

interface
PCI/PCI−X

Operating System

Disk Controller

I/O scheduler

I/O scheduler

Disk

Host Bus Adapter

Fig. 1. I/O architecture of commodity servers. The OS accesses the block
devices through a standard LBN-based interface that hides the device’s
physical characteristics.

latency map provides more accurate per-LBN-pair execution
time.

We show that while allowing only one request to the
underlying disk drive, our reordering algorithm can achieve
performance up to 28% better compared to LBN-based sched-
ulers. We also demonstrate that our scheduler enforces request
deadlines while providing higher throughput than LBN-based
schedulers. We address CPU trade-offs using approximation
algorithms and user-defined memory limits. For large datasets
our map size can become too large to fit in RAM. Given the
benefits of accurate latency prediction as demonstrated in this
paper, we expect that various techniques can be used in the
future to reduce map sizes and thus provide similar benefits
for larger devices.

The rest of the paper is organized as follows. Section II
presents experimental results that motivated the creation of our
scheduler. In Section III, we describe how latency estimation
in our design allows to increase disk throughput for batch
applications and enforce deadlines for real-time applications.
Section IV details the implementation and Section V evaluates
our scheduler against others. In Section VI, we survey related
work. We conclude in Section VII and discuss future directions
in Section VIII.

II. BACKGROUND

In this section we describe the overall Input/Output mecha-
nism relevant to the I/O scheduler, deficiencies of this mecha-
nism, and the experiments that led us to create a new scheduler.
To the OS I/O scheduler, the disk device appears as a linear
array where the Logical Block Number (LBN) is the index

LatencySeek Time
Rotational

Wait Time Access Time Transfer Time

Service Time

Fig. 2. Decomposition of the request response time.

into this array. Such address representations are used by many
I/O protocols (e.g., SATA and SCSI). When the disk scheduler
sends a request to the underlying disk device, the Host Bus
Adapter (HBA) passes these requests to the disk controller,
which in turn maps LBNs to the physical location on the disk.
The disk drive has its own internal queue and a scheduler
that services requests one by one and then returns completion
notifications back to the OS, as seen in Figure 1.

Figure 2 depicts a typical timeline for the request’s execu-
tion. Response time is the time from the request submission to
the I/O scheduler to the request’s completion. Response time
consists of wait time and service time. Wait time is the time
spent in the I/O scheduler’s queue. Service time is the time
from when the request is picked from the queue for service and
until the moment the request completes. Service time consists
of access time and transfer time. Access time is required to
locate the data; transfer time is the time to transfer the data.
For disk drives, the access time consists of the time to position
the arm (seek time) and the time until the platter reaches the
required position (rotational latency).

Request reordering at the I/O scheduler directly affects
access and service times. Indirectly it also affects wait time
because shorter service times lead to shorter queues. The
OS I/O scheduler knows only about the requests’ LBNs
and sizes; it is the only criterion OS schedulers can use to
perform request scheduling (apart from the knowledge about
the request owners, the processes). A common assumption
is that the shorter the distance between two LBN addresses
is, the smaller is the access time between them. Given this
assumption, the scheduler can, for example, sort all requests
by their LBNs and submit them in that order (enforcing any
required deadlines if necessary).

This assumption used to be true in the early days of
disk drives when seek time dominated the rotational latency.
Since then, manufacturers significantly improved their disk
positioning mechanisms and nowadays rotational latency is of
the same magnitude as seek time (e.g., 4msec vs. 2msec for
a typical 15K RPM drive). Moreover, the variety of devices
and their complexity increased dramatically. ZCAV/ZBR tech-
nology, error correction, block remapping, improvements in
short seeks, and increased block sizes are just some of many
the complex features in modern disk drives. As the number
of sophisticated disk technologies grows, the variation among
disk models increases [8]. Consequently, one has a large
selection of very different devices available on the market. The
fact that I/O schedulers still assume a common linear disk drive

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 10 20 30 40 50 60

R
e

s
p

o
n

s
e

 t
im

e
 (

m
s
)

LBN Distance (GB)

Assumed by the LBN-based schedulers
Empirical data

(a) 10,000 RPM 3.5” 80GB SCSI Disk

 0

 2

 4

 6

 8

 10

 12

 14

 16

 0 20 40 60 80 100 120

R
e

s
p

o
n

s
e

 t
im

e
 (

m
s
)

LBN Distance (GB)

Assumed by the LBN-based schedulers
Empirical data

(b) 15,000 RPM 2.5” 146GB SAS Disk

Fig. 3. I/O request response time depends on the LBN distance. The empirical dependency is more complex than the one assumed by common LBN-based
schedulers and is unique to specific disk drive models.

model, intuitively, should hurt LBN-based scheduling quality.

We checked how the access time depends on the LBN
distance between two data blocks. Figure 3 depicts this de-
pendency for two different devices. The regular I/O scheduler
assumes that the access time increases linearly (or at least
monotonically) with the LBN distance. However, from the fig-
ure we can clearly see that the dependency is not monotonous.
The coefficient of linearity is 0.57 and 0.42 for the SCSI
and SAS drives, respectively (1.00 corresponds to a perfectly
linear dependency). Moreover, the graphs demonstrate that
dependencies are different for different models.

An optimal I/O request schedule heavily depends on the
specifics of the underlying hardware. Therefore, it seems rea-
sonable to make the storage controller responsible for request
scheduling. In fact, both SCSI and SATA standards support
command queueing that allow the OS to submit multiple
requests to the disk controller, which in turn determines
the optimal request sequence [9], [10]. However, there is
no way to transfer to the controller the information about
desired request deadlines, which are important for real-time
applications. According to our measurements, disk controllers
can postpone request execution by more than 1.2 seconds
if a block address is not on the optimal scheduling path.
The situation is worsened by the fact that disk vendors keep
their firmwares closed and the user has no control over the
scheduling algorithms used within the controllers. Ironically,
the only thing that the OS can do to provide more predictable
service times is to disable hardware queuing entirely or flush it
periodically. But in that case, disk utilization falls dramatically
as the OS is unaware of drive’s physical characteristics. In this
work we propose to augment the OS’s I/O scheduler with the
knowledge of the drive’s physical characteristics. This allows
our OS scheduler to enforce deadlines while providing high
throughput.

III. DESIGN

Section III-A explains our approach to estimate disk laten-
cies. In Section III-B we explain how our scheduler achieves
high throughput. Section III-C describes an additional al-
gorithm that allows the scheduler to enforce deadlines of
individual requests.

A. Disk Latency Estimation
A queue of N requests can be ordered in N ! different ways.

The general task of an I/O scheduler is to pick the order that
satisfies two criteria:

1) The order is the fastest when executed by a disk drive;
and

2) Individual request response times are within certain
limits.

The first criterion provides optimal throughput, and the second
one ensures that the deadlines are met. In this paper, we argue
that satisfying both criteria is hard and requires an accurate
estimation of disk I/O latencies. Assume there is a function
T (o) that returns the execution time of some order o of N
requests. One can experimentally collect the values of this
function and then schedule the requests using it. Here we
assume that experimentally collected values are reproducible:
i.e., if the same sequence of requests is issued again, its
execution time remains the same or sufficiently close. Our
measurements indicate that this assumption is true for modern
disk drives. For more than a 1,000,000 randomly selected
orders, the deviation in execution time was within 1% for
1,000,000 iterations. However, the number of possible orders
is so large that it is practically infeasible to collect latencies
of all orders.

We can simplify the problem by noticing that T (o) can be
calculated as a sum of service times of all requests in the
queue:

T (o) =
N∑

i=1

Si

where Si is the service time of the i-th request. Si is a function
of multiple variables, but for disk drives it depends mostly on
two factors: the LBNs of the i-th and the (i − 1)-th request.
This is due to the fact that modern disk drives spend most of
their time to locate the data (access time), while transfer time
does not contribute much to the service time. Our experiments
did not show any difference between read and write service
times, but our approach tolerates potential differences [11] by
using the worst service time of the two. Large I/O sizes can
be addressed by logically dividing a request into smaller sizes.

So, Si is an approximate function of two variables:

Si ≈ Function(LBNi, LBNi−1)

At this point it becomes feasible to collect service times for
many pairs of requests. This function can be represented as
a matrix of M × M elements, where M is the number of
LBN addresses that are covered by the matrix. Ideally, the
matrix should cover the disk’s sub-region that is accessed more
frequently than the rest of the disk. Assuming that the size of
on-disk “hot” dataset is 5GB, the matrix granularity is 128KB,
and the size of the matrix entry is 4 bits, then the total size
of the matrix is around (5G/128K)2× 0.5B/2 = 400MB. We
divide by two because the matrix is symmetric, so we need
to store only half of it. In our experiments, 128KB and 4 bits
were enough to demonstrate significant improvements.

The matrix needs to reside in RAM or at least in a fast
Flash memory; otherwise, the OS has to perform additional
reads from the disk drive just to schedule an I/O request and
this would make scheduling completely inefficient. 400MB
is a significant amount of memory, but if one spends this
400MB on caching the data, the throughput improvement is
only around 8% (400MB/5GB) for a random workload. Our
scheduling can improve throughput by up to 28%, as shown
in Section V. Therefore, spending expensive memory on just
a cache is not justified in this case and it is wiser to use RAM
for such a matrix.

A single matrix can be shared across an array of hundreds
of identical disk drives (e.g., in a filer), which saves signifi-
cant amount of RAM. Furthermore, some workloads prohibit
caching, e.g., database writes are usually synchronous. In this
case, all available RAM can be devoted to the matrix. E.g., a
machine with 32GB of RAM and 100 disks can cover a dataset
of 4.5TB size ((4, 500G/100/128K)2 × 0.5B/2 = 32GB).

However, this matrix approach scales poorly with the size
of the single device: if a disk drive contains M blocks then
the size of the matrix covering the whole disk is proportional
to M2. Another way to obtain the value of Si is to model
the drive and get Si as the output of this model. In this
case memory consumption can be significantly reduced but
several other concerns emerge: how accurate is the model, how
universal is it, and how high is the modeling CPU overhead.
The accuracy of the model is crucial for optimal scheduling.
We used DiskSim [12] to emulate several disk drives and
compared the access times it predicted with the values from
a pre-collected matrix. We found out that the accuracy was
within 5% for 99.9% of all blocks. Our measurements also

2

3

1 4

3m
s

4m
s

4m
s

3m
s4m

s
2m

s

3m
s

3ms

5
m
s

6
m
s

2m
s

4ms

Fig. 4. Request scheduling problem as a TSP problem.

showed that CPU consumption increases by 2–3% when
DiskSim is used, which we believe is a reasonable trade-off
for the memory we saved.

Hardware schedulers achieve high throughput using efficient
reordering. Internally they use mathematical models that prove
that it is possible to predict latency accurately; our work
demonstrates how much benefits one can get provided that
there is an accurate source of latency prediction. Our approach
works for small devices, but modeling can extend it to larger
ones.

B. Achieving High Throughput

When a service time for 2 consequent requests is available,
the problem of scheduling to optimize disk efficiency resem-
bles the well-known Traveling Salesman Problem (TSP). For
example, assume that there are 4 requests in the queue and they
are enumerated in the order they came from the applications;
see Figure 4. Each request can be thought of as a vertex in
a graph. The edges of the graph represent the possibility of
scheduling one request after the other. As any order of requests
is possible, all vertices are connected to each other (a fully
connected graph). An edge’s weight represents the time to
service one request after the other. To find the optimal order
of requests one needs to find the shortest path that covers all
vertices. From Figure 4 we can see that although the requests
come in the order 1-2-3-4, it is more optimal to execute them
in the order 2-1-4-3, because it constitutes the shortest path.

It is well known that finding an exact solution to a TSP
is exponentially hard. We initially implemented a scheduler
that solves TSP exactly, but as expected it did not scale well
with the queue size. There are a number of approximation
algorithms that solve TSP. We picked an algorithm that is
quick, easy, and provides reasonable precision, the Nearest
Insertion Algorithm [13]. It works as follows:

1) Initialize the Shortest Path Edges set SPE and the
Shortest Path Vertices set SPV to the empty sets.

2) For each graph vertex Vi that is not in the SPV :
a) For each edge VjVk in the SPE set, calculate

the SPE path increase IVjVk
if the edge VjVk is

replaced by the VjVi and ViVk edges:

IVjVk
= WVjVi + WViVk

−WVjVk

where Wedge is the weight of the edge.
b) For boundary vertices Vb1 and Vb2 in the SPV set

(i.e., the vertices that have less than two adjacent
edges in the SPE), calculate the path increases
Ib1 and Ib2 if edges ViVb1 and VjVb2 are added to
SPE, in order:

Ib1 = WViVb1 , Ib2 = WVjVb2

Only one boundary vertex exists in the very first
cycle of this loop.

c) Pick the smallest one among IVjVk
, Ib1, Ib2 and

add the corresponding edge (VjVi, ViVb1, or VjVb2)
to the SPE set.

d) Add Vi to the SPV set.
3) When all graph vertices are in SPV , the SPE set

contains an approximate solution of the TSP.
The complexity of this algorithm is O(N2), which is

reasonable even for a relatively long queue. Queues that are
longer than 256 requests are rare in real servers because
they dramatically increase the wait time [14]. The worst case
approximation ratio of the described algorithm is 2 (i.e.,
the resulting path might be twice longer than the optimal
one). Although there are algorithms with better approximation
ratios, they are much more difficult to implement, their running
time is worse for small graphs, and they are often not space-
efficient. The Nearest Insertion Algorithm is considered to be
the most applicable one in practice [15].

In order for a TSP solution to be optimal for a real disk, an
accurate service time matrix is required. Our scheduler does
not require a special tool to collect this information. It collects
the matrix as it runs, inferring the latency information from
the requests submitted by the applications. Initially the map
is empty and the scheduler orders the requests so that it can
fill empty cells. For example, if there are requests rq1, rq2,
and rq3 in the queue and the map contains information about
the service time for only the (rq1, rq2) and (rq2, rq3) pairs,
but no information about the (rq1, rq3) pair, our scheduler
schedules the request rq3 after rq1. As more and more matrix
cells are filled with numbers, and the model becomes more
precise, scheduling becomes more efficient. We demonstrate
this behavior in Section V.

C. Deadlines Enforcement

More accurate estimation of disk I/O latencies allows our
reordering algorithm to provide high performance without the
need to keep large internal disk queues. This allows a real-time
scheduler using such a reordering scheme to tightly control
request service times while maintaining high efficiency. This
section describes how we extended our I/O scheduler described
earlier to support the notion of deadlines and guarantee request
completion times as long as device’s throughput allows that.

Let us formulate this problem in terms of the graph theory
as we did in the previous section. Again, we have a fully

connected graph with N vertices which represent requests in
the queue. All edges of the graph are weighted in accordance
with the service time, WViVj . In addition to that there is a
deadline DVi for each vertex Vi. Deadlines are measured in
the same time units as the weights of the edges. A traveling
salesman should visit every vertex in the graph and it is
important for him to be in certain vertices within the certain
deadlines.

Assume that the salesman has picked some path through
the vertices. Then it will visit each vertex Vi at specific time
Ci (completion time). We call the overtime OVi the time by
which the salesman was late at vertex Vi:

OVi
= max(0, CVi

−DVi
)

The problem of TSP with deadlines, or I/O scheduling with
guarantees, is to find a sequence of vertices V1V2...Vi...VN ,
such that:

max
i

(OVi))→ min (1)

i=N−1∑
i=1

WViVi+1 → min (2)

Equation (1) expresses the fact that no overtime, or min-
imal overtime, should be found. Equation (2) states that the
path should be minimal. The order of these requirements is
important: we first guarantee minimal overtime; then, among
the remaining solutions, we pick the one that provides the
shortest path. If the system is not overloaded, overtime will be
zero for all vertices, so the algorithm enforces hard deadlines.
Notice, however, that this is under the assumption that esti-
mated latency matrix is accurate enough. Our scheduler keeps
updating the values in the matrix as it works. It stores only the
worst time it has ever observed for a pair of LBN addresses.
This allows to enforce deadlines with a very high probability.
According to our experiments, after 100 measurements the
probability to observe an even worse service time is less
than 10−6%. Storing only the worst time also addresses
potential problems with the very fast accesses to the disk cache
hits. Updating the values in the matrix makes our scheduler
adaptive to the changes in the device characteristics, which
happens, for example, when bad blocks are remapped.

This problem is proven to be NP-complete [16]. We de-
veloped an approximation algorithm to solve it. The classic
method to solve deadline scheduling is the Earliest Deadline
First (EDF) algorithm. It simply executes requests in the
deadline order. EDF provides minimal overtime, but does not
take into account service time variation among requests and
consequently does not find an optimal throughput (i.e., it does
not pick the shortest path in terms of the graph). Somasundara
et al. solved a similar problem for mobile-element scheduling
in sensor networks [16]. However, there are two important
differences between mobile-element scheduling and I/O re-
quest scheduling. First, every I/O request should be eventually
serviced even if it cannot meet its deadline. Second, once
the request is serviced, it is removed from the original set
and there is no deadline update. We merged the EDF and

Disk Model Interf. Cap. (GB) RPM Avg Seek (ms) HBA
3.5” Maxtor 6Y200P0 PATA 200 7,200 9.3 ServerWorks CSB6

3.5” Seagate ST380013AS SATA 80 7,200 8.5 Intel 82801FB
3.5” Seagate ST373207LW SCSI 73 10,000 4.9 Adaptec 29320A
2.5” Seagate ST9146852SS SAS 146 15,000 2.9 Dell PERC 6/i

TABLE I
DEVICES USED IN THE EVALUATION

the k-lookahead algorithm by Somasundara et al. to provide
deadline enforcement in our scheduler. Our algorithm operates
as follows:

1) Sort vertices by the deadline in the ascending order.
2) Pick the first k vertices from the sorted list L.
3) For all permutations Pl = (V1V2...Vk) of k vertices:

a) Calculate the maximum overtime MPl
for Pl:

MPl
= max

1..k
(OVi

)

b) Calculate the sum of weights SPl
for Pl:

SPl
=

i=k−1∑
i=1

WViVi+1

4) Among all Pl (l = 1..k!), pick the permutations that
minimize MPl

.
5) If there are multiple permutations with the same minimal

MPl
, then pick the case for which SPl

is minimal.
6) Add the first vertex in the selected permutation Pl to the

final sequence F and remove this vertex from the sorted
list L.

7) Repeat Steps 2–6 if there are still vertices in L.
8) At the end, the final sequence F contains an approximate

solution of the problem.
This algorithm looks through permutations of k vertices and
picks the next vertex to follow among them. Because k
nodes make k! permutations, the overall running time of the
algorithm is O(Nk!). The approximation ratio in this case is
O(N/k). There is a trade-off in selecting the value of the
constant k. If one sets k to a large value, the precision of the
algorithm becomes higher (i.e., when k = N the solution is
absolutely optimal). However, CPU consumption grows with
k. Our experiments showed that the increase of k value beyond
4 does not yield benefits, so our scheduler sets k to 4 by
default, but this can be tuned.

IV. IMPLEMENTATION

We implemented our matrix-based schedulers in Linux ker-
nel version 2.6.33. Linux has a convenient plugable interface
for I/O schedulers, so our code conveniently resides in a single
C file of less than 2,000 LoC. We also wrote several tools for
matrix analysis which total to about 1,000 LoC. All sources
can be downloaded from the following URL: https://avatar.
fsl.cs.sunysb.edu/groups/mapbasedioscheduler/. Our scheduler
exports a number of tunable parameters through the sysfs
interface:

ls /sys/block/sdb/queue/iosched/

latency_matrix
deadlines
lookahead_k
timesource

Servers are occasionally rebooted for maintenance and
because of the power outages. We incorporated the ability
to save and restore the matrix in our disk scheduler through
the latency_matrix file. This feature also helps the user to
shorten the scheduler’s learning phase. If one has a matrix for
some disk drive, then it makes sense to reuse it on the other
machines with identical drives. If there are differences in the
device characteristics, they will be automatically detected by
the scheduler and the matrix will be updated accordingly.

Linux has system calls to assign I/O priorities to processes
and we used those to propagate deadline information to our
scheduler. The mapping between priority levels and deadlines
is loaded through the deadlines file. The parameter k for
the lookahead algorithm is set through the lookahead_k

file. We used two time sources: a timer interrupt and the
RDTSC instruction. One can set up the time source through the
timesource file. In our experiments the RDTSC time source
provided better results due to its higher precision.

We also implemented several other LBN-based scheduling
algorithms to evaluate our scheduler against. We provide de-
tails in Section V-B. To experiment with hardware scheduling
we modified a few HBA drivers so that one can explicitly set
the size of the hardware’s internal queue.

V. EVALUATION

Section V-A details the hardware we used. In Section V-B
we summarize the schedulers we evaluated. In Section V-C we
demonstrate that accurately estimated latency map allows to
achieve better throughput than LBN-based OS I/O schedulers.
Finally, in Section V-D we show that hardware scheduling does
not provide adequate deadlines support, while our scheduler
does.

A. Devices

We experimented with several disks to evaluate our sched-
uler. Table I lists the key characteristics of the drives and HBAs
we used. We picked devices that differ by interface, form
factor, capacity, and performance to ensure that our scheduler
is universal. We present the results for the SCSI disk only,
but our experiments found approximately the same degree of
improvements and the behavioral trends on all of the listed
devices.

 0 0

 50
 50

 100

 100

 150

 150

 200

 200

 250

 250

 300

 300

 350

 2 16 4 32 6 48 8 64 10 80 12 96 14 112 16 128 18 144 20 160 22 176 24 192 26 208 28 224 30 240 32

T
h

ro
u

g
h

p
u

t
(o

p
s
/s

e
c
)

Queue length

 256

T
h

ro
u

g
h

p
u

t
(o

p
s
/s

e
c
)

Queue length

noop noop
cfq cfq

deadline deadline
satf−lbn satf−lbn

satf−map satf−map
fsatf−lbn fsatf−lbn

fsatf−map
fsatf−map−exact

TCQ 4
TCQ 64

fsatf−map
fsatf−map−exact

TCQ 4
TCQ 64

Fig. 5. Throughput depending on the queue length for different schedulers. We show the graph for 1–256 requests on the left. We zoom into the 1–32 range
of requests on the right.

B. Schedulers

We picked several schedulers to compare against ours:

1) We implemented a SATF-LBN scheduler that calculates
access times purely by the LBN distance and uses SATF
(Shortest Access Time First) policy for scheduling.
SATF is known to provide the best possible throughput
among all scheduling policies [17].

2) The FSATF-LBN scheduler is identical to SATF-LBN but
it freezes the queue during each dispatch round, meaning
that the new incoming requests are sorted in a separate
queue (FSATF). This algorithm is important because
unlike SATF, it prevents postponing requests indefinitely.

3) The first variation of our scheduler, SATF-MAP, imple-
ments the algorithm described in Section III-B. It finds
the shortest path using the latencies stored in the map.

4) The second variation of our scheduler, FSATF-MAP, is
identical to SATF-MAP but uses a FSATF freeze policy.

5) The FSATF-MAP-EXACT scheduler solves the corre-
sponding TSP problem exactly, without approximation.

6) NOOP is a slightly modified version of Linux’s NOOP
scheduler that uses pure FCFS policy (without modifi-
cations it performs sorting by LBN addresses). It serves
as a baseline for the results of the other schedulers.

7) TCQ4 is hardware scheduling with a queue length of 4.
We confirmed that the selection of the OS I/O scheduler
does not matter in this case. In fact, the hardware
completely ignores the request order enforced by the
OS and applies its own ordering rules.

8) TCQ64 is the same as TCQ4, but the queue length is 64.
9) For the sake of completeness we also include the results

of CFQ and DEADLINE schedulers. The Linux CFQ
scheduler is the default one in most Linux distributions,
so its performance results would be interesting for a lot
of users. The Linux DEADLINE scheduler is often recom-
mended for database workloads. It uses the SCAN policy

but also maintains an expiration time for each request.
If some request is not completed within its expiration
time, the scheduler submits this request immediately,
bypassing the SCAN policy.

C. Throughput

In this section, we evaluate the efficiency of our reordering
algorithm. We used Filebench to emulate random-like work-
loads [18]. Filebench allows us to encode and reproduce a
large variety of workloads using its rich model language. In
this experiment, N processes shared the disk and each process
submitted I/Os synchronously, sending next I/O after the
previous one completed. We varied the number of processes
from 1 to 256, which changed the scheduler’s queue size
accordingly (since each process had one outstanding request
at a time). Processes performed random reads and writes
covering the entire disk surface.

To speed-up the benchmarking process (in terms of matrix
collection), we limited the number of I/O positions to 10,000.
We picked positions randomly and changed them periodically
to ensure fairness. We set the I/O size to 1–4KB, which
corresponds to Filebench’s OLTP workload. We set the matrix
granularity to 128KB and collected performance numbers
when the matrix was filled.

Figure 5 depicts how the throughput depends on the queue
length for different schedulers. The left figure shows the results
for the queue lengths from 1–256 and the right one zooms into
the results for 1–32 queue lengths.

The NOOP scheduler’s throughput does not depend on the
queue length and is equal to the native throughput of the
disk: slightly higher than 130 IOPS. This performance level
corresponds to the situation when no scheduling is done.
CFQ’s throughput is identical to NOOP’s, because each request
is submitted synchronously by a separate process (as it is
common in database environments). CFQ iterates over the
list of processes in a round-robin fashion, servicing only the

requests corresponding to the currently selected process. If
there is only a single request from a currently selected process,
CFQ switches to the next process. For synchronous processes
this effectively corresponds to NOOP: dispatch requests in the
order they are submitted by the applications. The DEADLINE
scheduler uses the SCAN policy based on the LBN distance.
Consequently, its throughput is up to 50% higher compared
to NOOP and CFQ. However, when requests pass a certain ex-
piration time (500ms by default), it starts to dispatch requests
in FCFS order. This is seen in the graph: after a certain queue
length, the line corresponding to DEADLINE starts to approach
NOOP’s line.

As expected, the SATF-LBN and FSATF-LBN schedulers
exhibit better throughput compared to the previously discussed
schedulers. Specifically, SATF-LBN’s throughput is the best one
that scheduling algorithms can achieve if they use LBN dis-
tance solely as the access-time metric. For queues shorter than
100 requests, SATF-LBN outperforms FSATF-LBN, because
SATF-LBN inserts requests in the live queue, allowing more
space for optimal reordering. However, with longer queues,
SATF-LBN needs to perform more sorting than FSATF-LBN,
and this causes SATF-LBN to perform worse.

The SATF-MAP scheduler, which implements the same
SATF policy as SATF-LBN, but uses the matrix to solve the
problem, performs up to 28% better. This is where the value of
the latency matrix is seen: the better knowledge of the access
times allows us to perform more optimal scheduling.

We implemented a FSATF-MAP-EXACT scheduler that finds
the exact optimal solution of the TSP problem. As expected, its
performance did not look appealing. When the queue length
reaches 8 requests, its throughput drops rapidly because of
the exponential complexity of the algorithm. Approximate
solutions to the TSP problem performed well. The FSATF-
MAP scheduler was up to 17% better than FSATF-LBN, and
13% better on average.

Finally, hardware-implemented algorithms’ performance de-
pends on the controller’s internal queue length. TCQ4 pro-
vides higher throughput compared to not scheduling requests
at all (NOOP), but does not outperform other OS-level I/O
schedulers. TCQ64’s throughput is higher than any other
scheduler. Our scheduler cannot reach this level because there
is an inherent overhead in submitting one request at a time
compared to giving multiple requests to the scheduler at once.
We believe this can be addressed by allowing the controller to
accept multiple requests at a time, but forcing it to preserve
the order. Although it should be possible by setting a ordered
queue tag on every request in the SCSI queue, it did not
work for our controller. Block trace analysis revealed that the
controller ignores this flag. Although TCQ64 provides high
throughput, it is impossible to guarantee response times. In
Section V-D we discuss this problem in more details.

To demonstrate the adaptive nature of our scheduler, we
collected the behavior of its throughput over time (Figure 6).
It is noticeable that in the beginning of the run the scheduler’s
performance is relatively low because it picks the request
orders that lead to completion of the matrix, not the orders that

 120

 130

 140

 150

 160

 170

 180

 190

 200

 0 100 200 300 400 500 600 700 800 900 1000 1100 1200 1300 1400 1500 1600 1700 1800

T
h

ro
u

g
h

p
u

t
(o

p
s
/s

e
c
)

Time (sec)

queue length 8
queue length 16
queue length 32

Fig. 6. Adaptive behavior of our scheduler: performance improves with time.
Note: the Y axis starts at 120 ops/sec.

optimize throughput. As the matrix gets filled with the latency
numbers, throughput starts to improve. Interesting is a hollow
in the beginning of the graph. This happens because when
the matrix is mostly empty, the scheduler reorders requests
by LBN while still trying to extract the required information,
which hurts performance temporarily. As time passes, the
number of request sequences that have ordered LBNs (and still
are not in the matrix) decreases, which leads to the drop in the
throughout. After the matrix is filled with missing values, the
throughput starts to grow and surpasses the original number.

Thus far we discussed random workloads, but what about
workloads that are more sequential? Sequential workloads are
characterized by larger request sizes or requests that arrive
in serial order. When the request size is around 400KB,
transfer times reach the same magnitude as access times. If
two subsequent requests are adjacent to each other, access
time becomes almost zero. All that make I/O reordering less
effective because it only optimizes access time. This is true
for all disk schedulers, including ours. However, our scheduler
does not hurt performance of sequential workloads, so keeping
the scheduler enabled for sequential or mixed workloads is
completely valid.

D. Deadlines Enforcement

To show that our scheduler from Section III-C can effi-
ciently enforce request deadlines, we designed the following
experiment in Filebench [18]. We created 8 low-priority and
8 high-priority threads. All requests submitted by the low-
priority threads were assigned 200ms deadline. We set the
deadline for requests from the high-priority threads to 100ms.
We collected the maximum response time and throughput
for each thread at the user level. Table II shows the results
for four schedulers: Earliest Deadline First (EDF), Guaranteed
matrix (G-MATRIX), and hardware schedulers with queue sizes
4 and 64. We present the results of hardware schedulers
to demonstrate that they cannot guarantee response times,

Sched.
Max response (ms) Aggr.
100ms 200 ms Thrpt.

deadline deadline (ops/sec)
EDF 99 198 130
G-MATRIX 86 192 172
TCQ4 407 419 169
TCQ64 955 1,272 236

TABLE II
RESPONSE TIMES FOR LOW (200MS) AND HIGH (100MS) PRIORITY

THREADS

though show a good throughput. We do not present the results
for other OS I/O schedulers because those schedulers were
not designed to enforce deadlines, so their poor results are
expected.

EDF enforces deadlines well: maximum response time is
always lower than the deadline. This is how it should be
because EDF is the most optimal algorithm if the overtime is
the only optimization criterion. However, it does not optimize
for throughput. Our G-MATRIX scheduler also enforces the
deadlines, but its throughput is 32% higher. The hardware
schedulers ignore the order in which the OS submits requests
and violates the deadlines. As you can see from the table, the
maximum response time for TCQ4 is twice over the deadline
and 6–9 times worse for TCQ64. By breaking the deadlines,
TCQ64 significantly improves throughput (by 37% compared
to G-MATRIX). We explained this phenomenon earlier in
Section V-C.

VI. RELATED WORK

Improving disk efficiency was a main focus of early disk
scheduling algorithms, that observed that ordering of I/O
requests can significantly improve disk performance. Most
of the algorithms were designed to minimize the disk head
movement to reduce seek times, such as SCAN [19] and
Shortest Seek Time First (SSTF), while other algorithms tried
to minimize total positioning delays by minimizing rotational
latencies as well as seek times [14], [20]. Coffman et al.
analyzed the Freezing SCAN (FSCAN) policy compared to
FCFS, SSTF, and SCAN [21]. The FSCAN scheduler freezes
the request queue before the start of each arm sweep. This
improves response time and fairness compared to SCAN. Hefri
performed extensive theoretical and simulation-based analysis
of FCFS and SSTF, showing that SSTF exhibits the best
throughput under almost all workloads but its response time
variance can be large, delaying some requests by a substantial
amount of time [17]. Geist et al. presented a parameterized al-
gorithm that represents a continuum of scheduling algorithms
between SSTF and SCAN [22].

All the studies mentioned above assumed that a scheduling
algorithm has access to the detailed physical characteristics
and current state of the drive. Since modern hard drives
hide their internal details and expose only a limited Logical
Block Number (LBN) interface, these algorithms had to be
implemented in the disk controller’s firmware, which is only
possible by drive vendors. Our scheduling approach brings

detailed device characteristics to the upper layer so that better
scheduling can be performed by the OS. Due to the closed-
source nature of disk drives’ firmware, researchers mostly used
simulators (such as DiskSim [12] or specially written ones)
or theoretical calculations to demonstrate the performance of
their algorithms. All the experiments in this paper, however,
were conducted on real hardware without emulation.

Other disk schedulers optimized disk performance by using
LBN-based approximation of seek-reducing algorithms [23].
Linux is the richest OS in terms of I/O schedulers, and it
includes noop, anticipatory, deadline, and CFQ schedulers. All
of these schedulers rely on the regular LBN interface [24].
Our reordering scheme is based on more accurate information
about disk I/O latencies and it is more efficient than LBN-
based approaches.

Many real-time schedulers aim to optimize performance
while meeting real-time guarantees by combining a reordering
algorithm to optimize disk efficiency, such as SCAN, with
Earliest Deadline First (EDF) real-time scheduling. Some of
them use LBN-based reordering [6], [5] and others rely on
the detailed knowledge of the disk [25]. Our approach for
accurate I/O latency estimation and our reordering scheme
is complementary to many of these scheduling algorithms,
and can be used to improve overall disk efficiency in these
schedulers.

Reuther et al. proposed to take rotational latency into
account for improving performance of their real-time sched-
uler [4]. The authors used a simplified disk model and as a re-
sult they were only able to calculate maximum response times.
The implementation Reuther et al. had was for the Dresden
Real-Time Operating System [26]. Our implementation is for
much more common Linux kernel and consequently we were
able to compare our scheduler to other schedulers available in
Linux. Michiels et al. used the information about disk zones
to provide guaranteed throughput for applications [27]. How-
ever, they were mainly concerned about throughput fairness
among applications, not response time guarantees. Lamb et al.
proposed to utilize the disk’s rotational latency to serve I/O
requests from background processes [28]. This is another way
to increase disk utilization, providing high throughput while
enforcing response time deadlines [29].

Yu et al. conducted the study similar to ours [30]. They
examined the behavior of several Linux I/O schedulers running
on top of a command-queuing capable device. Their analysis
provided the evidence of possible redundant scheduling, I/O
starvation, and difficulties with prioritizing I/O requests when
command queuing is enabled. The authors also proposed a
mechanism for overcoming these problems. Their idea is to
switch command queuing on and off depending on the value
of a specially developed metric. The disadvantage of their
approach is that the metric has a number of tunable parameters
which are difficult to set appropriately. Moreover, the appropri-
ate values depend on the hardware specifics. Conversely, our
approach is simpler and more general: it moves all scheduling
decisions to the OS level, works for virtually any device
and performs all tuning automatically. The CPU usage of

our solution is negligible because we use computationally
lightweight approximation algorithms, and our memory usage
can be limited by the administrator.

VII. CONCLUSIONS

Hardware schedulers are capable of providing excellent
throughput but a user cannot control response times of in-
dividual requests. OS schedulers can strictly enforce response
time deadlines but their throughput is significantly lower than
what a disk can provide. The ability to estimate disk latencies
at the OS level allows to achieve higher throughput while
enforcing the deadlines. We designed and implemented an
I/O scheduler that collects a matrix of service times for and
underlying disk drive. It then performs request scheduling
by finding an approximate solution of a corresponding TSP
problem. The design of our scheduler incorporates a number
of trade-offs between CPU usage, memory usage, universality,
and simplicity. The scheduler does not require a distinct
learning phase: it collects hardware information on the fly
and performs better as more information becomes available.
We successfully tested our scheduler on a variety physical
disks and showed it to be up to 28% more efficient than other
schedulers. Compared to hardware level scheduling solutions,
our scheduler enforces deadlines as requested by the processes.

VIII. FUTURE WORK

We plan to work towards memory footprint reduction in our
scheduler. We believe that pattern recognition techniques are
especially promising in this respect because latency matrices
contain a lot of fuzzy patterns which regular compression
algorithms cannot detect. We plan to work on extending
our scheduler to a wider set of devices, specifically solid-
state drives and hybrid devices. We expect that matrix design
will require modifications to reflect storage devices with sig-
nificantly different hardware characteristics. Virtualization is
another direction for future work, because virtualization layers
tend to further perturb, or randomize, I/O access patterns. We
successfully tested a prototype of our scheduler inside a virtual
machine and the scheduler was capable of detecting significant
latency differences in the underlying storage.

REFERENCES

[1] A. Gulati, C. Kumar, and I. Ahmad, “Storage workload characterization
and consolidation in virtualized environments,” in Proceedings of 2nd
International Workshop on Virtualization Performance: Analysis, Char-
acterization, and Tools (VPACT), 2009.

[2] D. Sears, “IT Is Heavily Invested in ERP, Application Consolida-
tion Rising,” 2010, www.eweek.com/c/a/IT-Management/IT-Is-Heavily-
Invested-in-ERP-Application-Consolidation-Rising-244711/.

[3] C. Li, G. Peng, K. Gopalan, and T. cker Chiueh, “Performance guarantee
for cluster-based internet services,” in in The 23rd IEEE International
Conference on Distributed Computing Systems (ICDCS), 2003.

[4] L. Reuther and M. Pohlack, “Rotational-position-aware real-time disk
scheduling using a dynamic active subset (das),” in Proceedings of the
24th IEEE International Real-Time Systems Symposium, 2003.

[5] A. Povzner, T. Kaldewey, S. Brandt, R. Golding, T. M. Wong,
and C. Maltzahn, “Efficient guaranteed disk request scheduling
with fahrrad,” in Proceedings of the 3rd ACM SIGOPS/EuroSys
European Conference on Computer Systems 2008, ser. Eurosys ’08.
New York, NY, USA: ACM, 2008, pp. 13–25. [Online]. Available:
http://doi.acm.org/10.1145/1352592.1352595

[6] A. L. N. Reddy and J. Wyllie, “Disk scheduling in a multimedia i/o
system,” in Proceedings of the first ACM international conference on
Multimedia, ser. MULTIMEDIA ’93. New York, NY, USA: ACM,
1993, pp. 225–233. [Online]. Available: http://doi.acm.org/10.1145/
166266.166292

[7] M. J. Stanovich, T. P. Baker, and A.-I. A. Wang, “Throttling
on-disk schedulers to meet soft-real-time requirements,” in Proceedings
of the 2008 IEEE Real-Time and Embedded Technology and
Applications Symposium, ser. RTAS ’08. Washington, DC, USA:
IEEE Computer Society, 2008, pp. 331–341. [Online]. Available:
http://dx.doi.org/10.1109/RTAS.2008.30

[8] V. Tarasov, S. Bhanage, E. Zadok, and M. Seltzer, “Benchmarking file
system benchmarking: It *is* rocket science,” in Proceedings of HotOS
XIII:The 13th USENIX Workshop on Hot Topics in Operating Systems,
Napa, CA, May 2011.

[9] B. Dees, “Native Command Queuing - Advanced Performance in
Desktop Storage,” in Potentials. IEEE, 2005, pp. 4–7.

[10] “Tagged Command Queuing,” 2010, http://en.wikipedia.org/wiki/
Tagged Command Queuing.

[11] C. Ruemmler and J. Wilkes, “An introduction to disk drive modeling,”
IEEE Computer, vol. 27, pp. 17–28, 1994.

[12] J. S. Bucy and G. Ganger, The DiskSim Simulation Environment Version
3.0 Reference Manual, 3rd ed., January 2003, www.pdl.cmu.edu/PDL-
FTP/DriveChar/CMU-CS-03-102.pdf.

[13] D. Rosenkrantz, R. Stearns, and P. Lewis, “Approximate Algorithms
for the Traveling Salesperson Problem,” in 15th Annual Symposium on
Switching and Automata Theory (SWAT 1974). IEEE, 1974, pp. 33–42.

[14] M. Seltzer, P. Chen, and J. Ousterhout, “Disk Scheduling Revisited,” in
Proceedings of the Winter Usenix, 1990.

[15] A. Frieze, G. Galbiati, and F. Maffioli, “On the Worst-case Performance
of Some Algorithms for the Asymmetric Traveling Salesman Problem,”
Networks, 1982.

[16] A. Somasundara, A. Ramamoorthy, and M. Srivastava, “Mobile Element
Scheduling for Efficient Data Collection in Wireless Sensor Networks
with Dynamic Deadlines,” in Proceedings of the 25th IEEE Real-Time
Systems Symposium. IEEE, 2004, pp. 296–305.

[17] M. Hofri, “Disk Scheduling: FCFS vs. SSTF revisited,” Communication
of the ACM, vol. 23, no. 11, November 1980.

[18] “Filebench,” http://filebench.sourceforge.net.
[19] P. Denning, “Effects of Scheduling on File Memory Operations,” in

Proceedings of the Spring Joint Computer Conference, 1967.
[20] D. Jacobson and J. Wilkes, “Disk Scheduling Algorithms based on

Rotational Position,” Concurrent Systems Project, HP Laboratories,
Tech. Rep. HPLCSP917rev1, 1991.

[21] E. Coffman, L. Klimko, and B. Ryan, “Analysis of Scanning Policies
for Reducing Disk Seek Times,” SIAM Journal on Computing, vol. 1,
no. 3, September 1972.

[22] R. Geist and S. Daniel, “A Continuum of Disk Scheduling Algorithms,”
ACM Transactions on Computer Systems (TOCS), vol. 5, no. 1, February
1987.

[23] B. Worthington, G. Ganger, and Y. Patt, “Scheduling Algorithms for
Modern Disk Drives,” in Proceedings of the ACM Sigmetrics, 1994.

[24] J. Axboe, “Linux Block I/O — Present and Future,” in Proceedings of
the Ottawa Linux Symposium, 2004.

[25] H.-P. Chang, R.-I. Chang, W.-K. Shih, and R.-C. Chang, “Gsr: A
global seek-optimizing real-time disk-scheduling algorithm,” J. Syst.
Softw., vol. 80, no. 2, pp. 198–215, February 2007. [Online]. Available:
http://dx.doi.org/10.1016/j.jss.2006.03.045

[26] H. Hrtig, R. Baumgartl, M. Borriss, C. Hamann, M. Hohmuth, F. Mehn-
ert, L. Reuther, S. Schnberg, and J. Wolter, “Drops: Os support for
distributed multimedia applications,” in Eighth ACM SIGOPS European
Workshop, 2003.

[27] W. Michiels, J. Korst, and J. Aerts, “On the guaranteed throughput of
multi-zone disks,” IEEE Transactions on Computers, vol. 52, no. 11,
November 2003.

[28] C. R. Lumb, J. Schindler, and G. R. Ganger, “Freeblock scheduling out-
side of disk firmware,” in Proceedings of the First USENIX Conference
on File and Storage Technologies (FAST ’02). Monterey, CA: USENIX
Association, January 2002, pp. 275–288.

[29] Y. Zhu, “Evaluation of scheduling algorithms for real-time disk i/o,”
2007.

[30] Y. Yu, D. Shin, H. Eom, and H. Yeom, “NCQ vs I/O Scheduler:
Preventing Unexpected Misbehaviors,” ACM Transaction on Storage,
vol. 6, no. 1, March 2010.

