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Abstract

We present Dmdedup, a versatile and practical primary-
storage deduplication platform suitable for both regular
users and researchers. Dmdedup operates at the block
layer, so it is usable with existing file systems and appli-
cations. Since most deduplication research focuses on
metadata management, we designed and implemented
a flexible backend API that lets developers easily build
and evaluate various metadata management policies. We
implemented and evaluated three backends: an in-RAM
table, an on-disk table, and an on-disk COW B-tree. We
have evaluated Dmdedup under a variety of workloads
and report the evaluation results here. Although it was
initially designed for research flexibility, Dmdedup is
fully functional and can be used in production. Under
many real-world workloads, Dmdedup’s throughput ex-
ceeds that of a raw block device by 1.5–6×.

1 Introduction

As storage demands continue to grow [2], even continu-
ing price drops have not reduced total storage costs. Re-
moving duplicate data (deduplication) helps this prob-
lem by decreasing the amount of physically stored infor-
mation. Deduplication has often been applied to backup
datasets because they contain many duplicates and rep-
resent the majority of enterprise data [18, 27]. In recent
years, however, primary datasets have also expanded
substantially [14], and researchers have begun to ex-
plore primary storage deduplication [13, 21].

Primary-storage deduplication poses several challenges
compared to backup datasets: access locality is less
pronounced; latency constraints are stricter; fewer du-
plicates are available (about 2× vs. 10× in backups);
and the deduplication engine must compete with other
processes for CPU and RAM. To facilitate research in
primary-storage deduplication, we developed and here
present a flexible and fully operational primary-storage
deduplication system, Dmdedup, implemented in the
Linux kernel. In addition to its appealing properties
for regular users, it can serve as a basic platform both
for experimenting with deduplication algorithms and
for studying primary-storage datasets and workloads.
In earlier studies, investigators had to implement their
own deduplication engines from scratch or use a closed-
source enterprise implementation [3, 21, 23]. Dmdedup
is publicly available under the GPL and we submitted
the code to the Linux community for initial review. Our
final goal is the inclusion in the mainline distribution.

Deduplication can be implemented at the file system
or block level, among others. Most previous primary-
storage deduplication systems were implemented in the
file system because file-system-specific knowledge was
available. However, block-level deduplication does not
require an elaborate file system overhaul, and allows any
legacy file system (or database) to benefit from dedupli-
cation. Dmdedup is designed as a stackable Linux ker-
nel block device that operates at the same layer as soft-
ware RAID and the Logical Volume Manager (LVM). In
this paper, we present Dmdedup’s design, demonstrate
its flexibility, and evaluate its performance, memory us-
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age, and space savings under various workloads.

Most deduplication research focuses on metadata man-
agement. Dmdedup has a modular design that allows
it to use different metadata backends—data structures
for maintaining hash indexes, mappings, and reference
counters. We designed a simple-to-use yet expressive
API for Dmdedup to interact with the backends. We
implemented three backends with different underlying
data structures: an in-RAM hash table, an on-disk hash
table, and a persistent Copy-on-Write B-tree. In this
paper, we present our experiences and lessons learned
while designing a variety of metadata backends, and in-
clude detailed experimental results. We believe that our
results and open-source deduplication platform can sig-
nificantly advance primary deduplication solutions.

2 Design

In this section, we classify Dmdedup’s design, discuss
the device-mapper framework, and finally present Dmd-
edup’s architecture and its metadata backends.

2.1 Classification

Levels. Deduplication can be implemented at the ap-
plication, file system, or block level. Applications can
use specialized knowledge to optimize deduplication,
but modifying every application is impractical.

Deduplication in the file system benefits many applica-
tions. There are three approaches: (1) modifying an ex-
isting file system such as Ext3 [15] or WAFL [21]; (2)
creating a stackable deduplicating file system either in-
kernel [26] or using FUSE [11,20]; or (3) implementing
a new deduplicating file system from scratch, such as
EMC Data Domain’s file system [27]. Each approach
has drawbacks. The necessary modifications to an ex-
isting file system are substantial and may harm stabil-
ity and reliability. Developing in-kernel stackable file
systems is difficult, and FUSE-based systems perform
poorly [19]. A brand-new file system is attractive but
typically requires massive effort and takes time to reach
the stability that most applications need. Currently, this
niche is primarily filled by proprietary products.

Implementing deduplication at the block level is eas-
ier because the block interface is simple. Unlike many
file-system-specific solutions, block-level deduplication

can be used beneath any block-based file system such
as Ext4, GPFS, BTRFS, GlusterFS, etc., allowing re-
searchers to bypass a file system’s limitations and de-
sign their own block-allocation policies. For that rea-
son, we chose to implement Dmdedup at the block level.
Our design means that Dmdedup can also be used with
databases that require direct block-device access.

The drawbacks of block-level deduplication are three-
fold: (1) it must maintain an extra mapping (beyond the
file system’s map) between logical and physical blocks;
(2) useful file-system and application context is lost;
and (3) variable-length chunking is more difficult at
the block layer. Dmdedup provides several options for
maintaining logical-to-physical mappings. In the future,
we plan to recover some of the lost context using file
system and application hints.

Timeliness. Deduplication can be performed in-line
with incoming requests or off-line via background
scans. In-line deduplication saves bandwidth by avoid-
ing repetitive reads and writes on the storage device and
permits deduplication on a busy system that lacks idle
periods. But it risks negatively impacting the perfor-
mance of primary workloads. Only a few studies have
addressed this issue [21, 24]. Dmdedup performs inline
deduplication; we discuss its performance in Section 4.

2.2 Device Mapper

The Linux Device Mapper (DM) framework, which has
been part of mainline Linux since 2005, supports stack-
able block devices. To create a new device type, one
builds a DM target and registers it with the OS. An
administrator can then create corresponding target in-
stances, which appear as regular block devices to the
upper layers (file systems and applications). Targets rest
above one or more physical devices (including RAM)
or lower targets. Typical examples include software
RAID, the Logical Volume Manager (LVM), and en-
crypting disks. We chose the DM framework for its per-
formance and versatility: standard, familiar tools man-
age DM targets. Unlike user-space deduplication solu-
tions [11, 13, 20] DM operates in the kernel, which im-
proves performance yet does not prohibit communica-
tion with user-space daemons when appropriate [19].
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Figure 1: Dmdedup high-level design.

2.3 Dmdedup Components

Figure 1 depicts Dmdedup’s main components and a
typical setup. Dmdedup is a stackable block device
that rests on top of physical devices (e.g., disk drives,
RAIDs, SSDs), or stackable ones (e.g., encryption DM
target). This approach provides high configurability,
which is useful in both research and production settings.

Dmdedup typically requires two block devices to op-
erate: one each for data and metadata. Data devices
store actual user information; metadata devices track the
deduplication metadata (e.g., a hash index). Dmdedup
can be deployed even if a system has only one storage
device, simply by creating two partitions. Although any
combination of data and metadata devices can be used,
we believe that using an HDD for data and an SSD for
metadata is practical in a modern system. Deduplication
metadata sizes are much smaller than the data size—
often less than 1% of the data—but metadata is critical
enough to require low-latency access. This combination
matches well with today’s SSD size and performance
characteristics, and ties into the growing trend of com-
bining disk drives with a small amount of flash.

To upper layers, Dmdedup provides a conventional
block interface: reads and writes with specific sizes and
offsets. Every write to a Dmdedup instance is checked
against all previous data. If a duplicate is detected, the
corresponding metadata is updated and no data is writ-
ten. Conversely, a write of new content is passed to the
data device and tracked in the metadata.

Dmdedup main components are (Figure 1): (1) dedu-
plication logic that chunks data, computes hashes, and
coordinates other components; (2) a hash index that

tracks the hashes and locations of the chunks; (3) a map-
ping between Logical Block Numbers (LBNs) visible to
upper layers and the Physical Block Numbers (PBNs)
where the data is stored; (4) a space manager that tracks
space on the data device, maintains reference counts, al-
locates new blocks, and reclaims unreferenced data; and
(5) a chunk store that saves user data to the data device.

2.4 Write Request Handling

Figure 2 shows how Dmdedup processes write requests.

Chunking. The deduplication logic first splits all in-
coming requests into aligned, subrequests or chunks
with a configurable power-of-two size. Smaller chunks
allow Dmdedup to detect more duplicates but increase
the amount of metadata [14], which can harm perfor-
mance because of the higher metadata cache-miss rate.
However, larger chunks can also hurt performance be-
cause they can require read-modify-write operations. To
achieve optimal performance, we recommend that Dmd-
edup’s chunk size should match the block size of the file
system above. In our evaluation we used 4KB chunking,
which is common in many modern file systems.

Dmdedup does not currently support Content-Defined
Chunking (CDC) [16] although the feature could be
added in the future. We believe that CDC is less vi-
able for inline primary-storage block-level deduplica-
tion because it produces a mismatch between request
sizes and the underlying block device, forcing a read-
modify-write operation for most write requests.

After chunking, Dmdedup passes subrequests to a pool
of working threads. When all subrequests originating
from an initial request have been processed, Dmdedup
notifies the upper layer of I/O completion. Using sev-
eral threads leverages multiple CPUs and allows I/O
wait times to overlap with CPU processing (e.g., dur-
ing some hash lookups). In addition, maximal SSD and
HDD throughput can only be achieved with multiple re-
quests in the hardware queue.

Hashing. For each subrequest, a worker thread first
computes the hash. Dmdedup supports over 30 hash
functions from the kernel’s crypto library. Some are
implemented using special hardware instructions (e.g.,
SPARC64 crypt and Intel SSE3 extensions). As a
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Figure 2: Dmdedup write path. PBNnew is the PBN
found in the hash index: a new physical location for
incoming data. PBNold is the PBN found in the LBN
mapping: the old location of data, before the write ends.

rule, deduplication hash functions should be collision-
resistant and cryptographically strong, to avoid inadver-
tent or malicious data overwrites. Hash sizes must be
chosen carefully: a larger size improves collision resis-
tance but increases metadata size. It is also important
that the chance of a collision is significantly smaller than
the probability of a disk error, which has been empir-
ically shown to be in the range 10−18–10−15 [9]. For
128-bit hashes, the probability of collision is less than
10−18 as long as the number of unique chunks is less
than 2.6× 1010. For 4KB chunking, this corresponds
to almost 100TB of unique data. Assuming a primary-
storage deduplication ratio of 2× [12], Dmdedup can
support up to 200TB of logical space in such configura-
tion. In our experiments we used 128-bit MD5 hashes.

Hash index and LBN mapping lookups. The main
deduplication logic views both the hash index and the
LBN mapping as abstract key-value stores. The hash in-
dex maps hashes to 64-bit PBNs; the LBN map uses the
LBN as a key to look up a 64-bit PBN. We use PBNnew

to denote the value found in the hash index and PBNold
for the value found in the LBN mapping.

Metadata updates. Several cases must be handled;
these are represented by branches in Figure 2. First,
the hash might be found in the index (left branch), im-
plying that the data already exists on disk. There are
two sub-cases, depending on whether the target LBN
exists in the LBN→PBN mapping. If so, and if the cor-
responding PBNs are equal, the upper layer overwrote
a location (the LBN) with data that was already there;
this is surprisingly common in certain workloads [13].
If the LBN is known but mapped to a different PBN,
then the data on the LBN must have changed; this is
detected because the hash-to-PBN mapping is one-to-
one, so PBNold serves as a proxy for a different hash.
Dmdedup decrements PBNold’s reference count, adds
the LBN→PBNnew mapping, and increments PBNnew’s
reference count. On the other hand, if the hash→PBN
mapping is found but the LBN→PBN one is not (still
on the left side of the flowchart), we have a chunk of
data that has been seen before (i.e., a duplicate) being
written to a previously unknown LBN. In this case we
add a LBN→PBNnew mapping and increment PBNnew’s
reference count.

The flowchart’s right side deals with the case where the
hash is not found: a data chunk hasn’t been seen be-
fore. If the LBN is also new (right branch of the right
side), we proceed directly to allocation. If it is not new,
we are overwriting an existing block with new data, so
we must first dereference the data that used to exist on
that LBN (PBNold). In both cases, we now allocate
and write a PBN to hold the new data, add hash→PBN
and LBN→PBN mappings, and update the reference
counts. We increment the counts by two in these cases
because PBNs are referenced from both hash index and
LBN mapping. For PBNs that are referenced only from
the hash index (e.g., due to LBN overwrite) reference
counts are equal to one. Dmdedup decrements reference
counts to zero during garbage collection.

Garbage collection. During overwrites, Dmdedup
does not reclaim blocks immediately, nor does it remove
the corresponding hashes from the index. This approach
decreases the latency of the critical write path. Also, if
the same data is rewritten after a period of non-existence
(i.e., it is not reachable through the LBN mapping),
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it can still be deduplicated; this is common in certain
workloads [17]. However, data-device space must even-
tually be reclaimed. We implemented an offline garbage
collector that periodically iterates over all data blocks
and recycles those that are not referenced.

If a file is removed by an upper-layer file system, the
corresponding blocks are no longer useful. However,
Dmdedup operates at the block layer and thus is un-
aware of these inaccessible blocks. Some modern file
systems (e.g., Ext4 and NTFS) use the SATA TRIM com-
mand to inform SSDs that specific LBNs are not ref-
erenced anymore. Dmdedup takes advantage of these
TRIMs to reclaim unused file system blocks.

2.5 Read Request Handling

In Dmdedup, reads are much simpler to service than
writes. Every incoming read is split into chunks
and queued for processing by worker threads. The
LBN→PBN map gives the chunk’s physical location on
the data device. The chunks for the LBNs that are not
in the LBN mapping are filled with zeroes; these cor-
respond to reads from an offset that was never written.
When all of a request’s chunks have been processed by
the workers, Dmdedup reports I/O completion.

2.6 Metadata Backends

We designed a flexible API that abstracts metadata man-
agement away from the main deduplication logic. Hav-
ing pluggable metadata backends facilitates easier ex-
ploration and comparison of different metadata man-
agement policies. When constructing a Dmdedup tar-
get instance, the user specifies which backend should
be used for this specific instance and passes the appro-
priate configuration parameters. Our API includes ten
mandatory and two optional methods—including basic
functions for initialization and destruction, block alloca-
tion, lookup, insert, delete, and reference-count manipu-
lation. The optional methods support garbage collection
and synchronous flushing of the metadata.

An unusual aspect of our API is its two types of key-
value stores: linear and sparse. Dmdedup uses a lin-
ear store (from zero to the size of the Dmdedup device)
for LBN mapping and a sparse one for the hash index.
Backend developers should follow the same pattern, us-
ing the sparse store for key spaces where the keys are

uniformly distributed. In both cases the interface pre-
sented to the upper layer after the store has been created
is uniform: kvs_insert, kvs_lookup, and kvs_delete.

When designing the metadata backend API, we tried to
balance flexibility with simplicity. Having more func-
tions would burden the backend developers, while fewer
functions would assume too much about metadata man-
agement and limit Dmdedup’s flexibility. In our experi-
ence, the API we designed strikes the right balance be-
tween complexity and flexibility. During the course of
the project, several junior programmers were asked to
develop experimental backends for Dmdedup; anecdo-
tally, they were able to accomplish their task in a short
time and without changing the API.

We consolidated key-value stores, reference counting,
and block allocation facilities within a single metadata
backend object because they often need to be managed
together and are difficult to decouple. In particular,
when metadata is flushed, all of the metadata (reference
counters, space maps, key-value stores) needs to be writ-
ten to the disk at once. For backends that support trans-
actions this means that proper ordering and atomicity of
all metadata writes are required.

Dmdedup performs 2–8 metadata operations for each
write. But depending on the metadata backend and the
workload properties, every metadata operation can gen-
erate zero to several I/O requests to the metadata device.

Using the above API, we designed and implemented
three backends: INRAM (in RAM only), DTB (disk ta-
ble), and CBT (copy-on-write B-tree). These backends
have significantly different designs and features; we de-
tail each backend below.

2.6.1 INRAM Backend

INRAM is the simplest backend we implemented. It
stores all deduplication metadata in RAM and conse-
quently does not perform any metadata I/O. All data,
however, is still stored on the data device as soon as
the user’s request arrives (assuming it is not a dupli-
cate). INRAM metadata can be written persistently to
a user-specified file at any time (e.g., before shutting the
machine down) and then restored later. This facilitates
experiments that should start with a pre-defined meta-
data state (e.g., for evaluating the impact of LBN space
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fragmentation). The INRAM backend allows us to de-
termine the baseline of maximum deduplication perfor-
mance on a system with a given amount of CPU power.
It can also be used to quickly identify a workload’s
deduplication ratio and other characteristics. With the
advent of DRAM backed by capacitors or batteries, this
backend can become a viable option for production.

INRAM uses a statically allocated hash table for the
sparse key-value store, and an array for the linear store.
The linear mapping array size is based on the Dmdedup
target instance size. The hash table for the sparse store
is allocated (and slightly over-provisioned) based on the
size of the data device, which dictates the maximum
possible number of unique blocks. We resolve colli-
sions with linear probing; according to standard analysis
the default over-provisioning ratio of 10% lets Dmdedup
complete a successful search in an average of six probes
when the data device is full.

We use an integer array to maintain reference counters
and allocate new blocks sequentially using this array.

2.6.2 DTB Backend

The disk table backend (DTB) uses INRAM-like data
structures but keeps them on persistent storage. If
no buffering is used for the metadata device, then ev-
ery lookup, insert, and delete operation causes one ex-
tra I/O, which significantly harms deduplication perfor-
mance. Instead, we use Linux’s dm-bufio subsystem,
which buffers both reads and writes in 4KB units and
has a user-configurable cache size. By default, dm-
bufio flushes all dirty buffers when more than 75% of the
buffers are dirty. If there is no more space in the cache
for new requests, the oldest blocks are evicted one by
one. Dm-bufio also normally runs a background thread
that evicts all buffers older than 60 seconds. We disabled
this thread for deduplication workloads because we pre-
fer to keep hashes and LBN mapping entries in the cache
as long as there is space. The dm-bufio code is simple
(1,100 LOC) and can be easily modified to experiment
with other caching policies and parameters.

The downside of DTB is that it does not scale with the
size of deduplication metadata. Even when only a few
hashes are in the index, the entire on-disk table is ac-
cessed uniformly during hash lookup and insertion. As
a result, hash index blocks cannot be buffered efficiently
even for small datasets.

Internal node

Leaf node

Shadowing

Shadowing

Shadowing

Leaf node

Root

Internal node

Superblock

Transaction end

COW Updates
Original Tee

Figure 3: Copy-on-Write (COW) B-trees.

2.6.3 CBT Backend

Unlike the INRAM and DTB backends, CBT provides
true transactionality. It uses Linux’s on-disk Copy-On-
Write (COW) B-tree implementation [6, 22] to organize
its key-value stores (see Figure 3). All keys and values
are stored in a B+-tree (i.e., values are located only in
leaves). When a new key is added, the corresponding
leaf must be updated. However, the COW B-tree does
not do so in-place; instead, it shadows the block to a
different location and applies the changes there. Next,
the internal nodes of the B-tree are updated to point to
the new leaf, again using shadowing. This procedure
continues up to the root, which is referenced from a pre-
defined location on the metadata device—the Dmdedup
superblock. Multiple changes are applied to the B-tree
in COW fashion but the superblock is not updated until
Dmdedup explicitly ends the transaction. At that point,
the superblock is atomically updated to reference the
new root. As a result, if a system fails in the middle of a
transaction, the user sees old data but not a corrupted de-
vice state. The CBT backend also allocates data blocks
so that data overwrites do not occur within the transac-
tion; this ensures both data and metadata consistency.

Every key lookup, insertion, or deletion requires logb N
I/Os to the metadata device (where b is the branching
factor and N is the number of keys). The base of the
logarithm is large because many key-pointer entries fit
in a single 4KB non-leaf node (approximately 126 for
the hash index and 252 for the LBN mapping). To im-
prove CBT’s performance we use dm-bufio to buffer
I/Os. When a transaction ends, dm-bufio’s cache is
flushed. Users can control the length of a transaction
in terms of the number of writes.
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Because CBT needs to maintain intermediate B-tree
nodes, its metadata is larger than DTB’s. Moreover, the
COW update method causes two copies of the updated
blocks to reside in the cache simultaneously. Thus, for a
given cache size, CBT usually performs more I/O than
DTB. But CBT scales well with the amount of metadata.
For example, when only a few hashes are in the index,
they all reside in one block and can be easily cached.

Statistics. Dmdedup collects statistics on the number
of reads and writes, unique and duplicated writes, over-
writes, storage and I/O deduplication ratios, and hash
index and LBN mapping sizes, among others. These
statistics were indispensable in analyzing our own ex-
periments (Section 4).

Device size. Most file systems are unable to dynam-
ically grow or shrink in response to changing device
size. Thus, users must currently specify the Dmdedup
device’s size at construction time. However, the device’s
logical size depends on the actual deduplication ratio,
which changes dynamically. Some studies offer tech-
niques to predict dataset deduplication ratios [25], and
we provide a set of tools to compute deduplication ra-
tios in an existing dataset. If the deduplication ratio ever
falls below expectations and the free data space nears to
zero, Dmdedup warns the user via the OS’s console or
system log. The user can then remove unnecessary files
from the device and force an immediate garbage collec-
tion, or add more data devices to the pool.

3 Implementation

The latest Dmdedup code has been tested against
Linux 3.14 but we performed experimental evalua-
tion on version 3.10.9. We kept the code base small
to facilitate acceptance to the mainline and to allow
users to investigate new ideas easily. Dmdedup’s core
has only 1,400 lines of code; the INRAM, DTB, and
CBT backends have 500, 1,400, and 600 LOC, respec-
tively. Over the course of two years, fifteen develop-
ers of varying skill levels have worked on the project.
Dmdedup is open-source and was submitted for ini-
tial review to dm-devel@ mailing list. The code
is also available at git://git.fsl.cs.sunysb.
edu/linux-dmdedup.git.

When constructing a Dmdedup instance, the user spec-
ifies the data and metadata devices, metadata backend
type, cache size, hashing algorithm, etc. In the fu-
ture, we plan to select or calculate reasonable defaults
for most of these parameters. Dmdedup exports dedu-
plication statistics and other information via the device
mapper’s STATUS ioctl, and includes a tool to display
these statistics in a human-readable format.

4 Evaluation

In this section, we first evaluate Dmdedup’s perfor-
mance and overheads using different backends and un-
der a variety of workloads. Then we compare Dmd-
edup’s performance to Lessfs [11]—an alternative, pop-
ular deduplication system.

4.1 Experimental Setup

In our experiments we used three identical Dell Pow-
erEdge R710 machines, each equipped with an Intel
Xeon E5540 2.4GHz 4-core CPU and 24GB of RAM.
Using lmbench we verified that the performance of all
machines was within 4% of each other. We used an In-
tel X25-M 160GB SSD as the metadata device and a
Seagate Savvio 15K.2 146GB disk drive for the data.
Although the SSD’s size is 160GB, in all our experi-
ments we used 1.5GB or less for metadata. Both drives
were connected to their hosts using Dell’s PERC 6/i In-
tegrated controller. On all machines, we used CentOS
Linux 6.4 x86_64, upgraded to Linux 3.10.9 kernel. Un-
less otherwise noted, every experiment lasted from 10
minutes (all-duplicates data write) to 9 hours (Mail trace
replay). We ran all experiments at least three times. Us-
ing Student’s t distribution, we computed 95% confi-
dence intervals and report them on all bar graphs; all
half-widths were less than 5% of the mean.

We evaluated four setups: the raw device, and Dmd-
edup with three backends—INRAM, disk table (DTB),
and COW B-Tree (CBT). In all cases Dmdedup’s logical
size was set to the size of the data device, 146GB, which
allowed us to conduct experiments with unique data
without running out of physical space. 146GB corre-
sponds to 1330MB of metadata: 880MB of hash→PBN
entries (24B each), 300MB of LBN→PBN entries (8B
each), and 150MB of reference counters (4B each). We
used six different metadata cache sizes: 4MB (0.3% of
all metadata), 330MB (25%), 660MB (50%), 990MB
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(75%), 1330MB (100%), and 1780MB (135%). A 4MB
cache corresponds to a case when no significant RAM is
available for deduplication metadata; the cache acts as a
small write buffer to avoid doing I/O with every meta-
data update. As described in Section 2.6.2, by default
Dmdedup flushes dirty blocks after their number ex-
ceeds 75% of the total cache size; we did not change this
parameter in our experiments. When the cache size is
set to 1780MB (135% of all metadata) the 75% thresh-
old equals to 1335MB, which is greater than the total
size of all metadata (1330MB). Thus, even if all meta-
data is dirty, the 75% threshold cannot be reached and
flushing never happens.

4.2 Dmdedup

To users, Dmdedup appears as a regular block device.
Using its basic performance characteristics—sequential
and random read/write behavior—one can estimate the
performance of a complete system built using Dmd-
edup. Thus, we first evaluated Dmdedup’s behavior with
micro-workloads. To evaluate its performance in real
deployments, we then replayed three production traces.

4.2.1 Micro-workloads

Unlike traditional (non-deduplicating) storage, a dedu-
plication system’s performance is sensitive to data con-
tent. For deduplication systems, a key content charac-
teristic is its deduplication ratio, defined as the number
of logical blocks divided by the number of blocks physi-
cally stored by the system [7]. Figures 4, 5, and 6 depict
write throughput for our Unique, All-duplicates, and
Linux-kernels datasets, respectively. Each dataset rep-
resents a different point along the content-redundancy
continuum. Unique contains random data obtained from
Linux’s /dev/urandom device. All-duplicates consists
of a random 4KB block repeated for 146GB. Finally,
Linux-kernels contains the sources of 40 Linux kernels
(more details on the format follow).

We experimented with two types of micro-workloads:
large sequential writes (subfigures (a) in Figures 4–6)
and small random writes (subfigures (b) in Figures 4–
6). I/O sizes were 640KB and 4KB for sequential and
random writes, respectively. We chose these combi-
nations of I/O sizes and access patterns because real
applications tend either to use a large I/O size for se-
quential writes, or to write small objects randomly (e.g.,

databases) [5]. 4KB is the minimal block size for mod-
ern file systems. Dell’s PERC 6/i controller does not
support I/O sizes larger than 320KB, so large requests
are split by the driver; the 640KB size lets us account for
the impact of splitting. We started all experiments with
an empty Dmdedup device and ran them until the device
became full (for the Unique and All-kernels datasets) or
until the dataset was exhausted (for Linux-kernels).

Unique (Figure 4). Unique data produces the lowest
deduplication ratio (1.0, excluding metadata space). In
this case, the system performs at its worst because the
deduplication steps need to be executed as usual (e.g.,
index insert), yet all data is still written to the data de-
vice. For the sequential workload (Figure 4(a)), the IN-
RAM backend performs as well as the raw device—
147MB/sec, matching the disk’s specification. This
demonstrates that the CPU and RAM in our system are
fast enough to do deduplication without any visible per-
formance impact. However, it is important to note that
CPU utilization was as high as 65% in this experiment.

For the DTB backend, the 4MB cache produces
34MB/sec throughput—a 75% decrease compared to
the raw device. Metadata updates are clearly a bottle-
neck here. Larger caches improve DTB’s performance
roughly linearly up to 147MB/sec. Interestingly, the dif-
ference between DTB-75% and DTB-100% is signifi-
cantly more than between other sizes because Dmdedup
with 100% cache does not need to perform any metadata
reads (though metadata writes are still required). With a
135% cache size, even metadata writes are avoided, and
hence DTB achieves INRAM’s performance.

The CBT backend behaves similarly to DTB but its per-
formance is always lower—between 3–95MB/sec de-
pending on the cache and transaction size. The reduced
performance is caused by an increased number of I/O
operations, 40% more than DTB. The transaction size
significantly impacts CBT’s performance; an unlimited
transaction size performs best because metadata flushes
occur only when 75% of the cache is dirty. CBT with a
transaction flush after every write has the worst perfor-
mance (3–6MB/sec) because every write to Dmdedup
causes an average of 14 writes to the metadata device:
4 to update the hash index, 3 to update the LBN map-
ping, 5 to allocate new blocks on the data and metadata
devices, and 1 to commit the superblock. If a transac-
tion is committed only after 1,000 writes, Dmdedup’s
throughput is 13–34MB/sec—between that of unlimited
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Figure 4: Sequential and random write throughput for the Unique dataset. Results are for the raw device and for
Dmdedup with different metadata backends and cache sizes. For the CBT backend we varied the transaction size:
unlimited, every I/O, and 1,000 writes.
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Figure 5: Sequential and random write throughput for the All-duplicates dataset. Results are for the raw device
and for Dmdedup with different backends and cache sizes. For the CBT backend, we varied the transaction size:
unlimited, every I/O, and 1,000 writes.
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Figure 6: Sequential and random write throughput for the Linux-kernels dataset. Results are for the raw device and
for Dmdedup with different metadata backends and cache sizes. For the CBT backend, the transaction size was set
to 1,000 writes.

and single-write transactions. Note that in this case, for
all cache sizes over 25%, performance does not depend
on the cache size but only on the fact that Dmdedup
flushes metadata after every 1,000 writes.

For random-write workloads (Figure 4(b)) the raw de-
vice achieves 420 IOPS. Dmdedup performs signifi-
cantly better than the raw device—between 670 and
11,100 IOPS (in 4KB units)—because it makes random
writes sequential. Sequential allocation of new blocks is
a common strategy in deduplication systems [13,23,27],
an aspect that is often overlooked when discussing dedu-
plication’s performance impact. We believe that write

sequentialization makes primary storage deduplication
significantly more practical than commonly perceived.

All-duplicates (Figure 5). This dataset is on the other
end of the deduplication ratio range: all writes contain
exactly the same data. Thus, after the first write, noth-
ing needs to be written to the data device. As a result,
Dmdedup outperforms the raw device by 1.4–2× for the
sequential workload in all configurations except CBT
with per-write transactions (Figure 5(a)). In the latter
case, Dmdedup’s throughput falls to 12MB/sec due to
the many (ten) metadata writes induced by each user
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Trace Duration Written Written unique Written unique Read Dedup Dedup Ranges
(days) (GB) by content (GB) by offset (GB) (GB) ratio block size (B) accessed (GB)

Web 21 42.64 22.45 0.95 11.89 2.33 4,096 19.07
Mail 20 1,483.41 110.39 8.28 188.94 10.29 4,096 278.87
Homes 21 65.27 16.83 4.95 15.46 3.43 512 542.32

Table 1: Summary of FIU trace characteristics

write. Write amplification is lower for All-duplicates
than for Unique because the hash index is not updated
in the former case. The throughput does not depend on
the cache size here because the hash index contains only
one entry and fits even in the 4MB cache. The LBN
mapping is accessed sequentially, so a single I/O brings
in many cache entries that are immediately reaccessed.

For random workloads (Figure 5(b)), Dmdedup im-
proves performance even further: 2–140× compared to
the raw device. In fact, random writes to a disk drive are
so slow that deduplicating them boosts overall perfor-
mance. But unlike the sequential case, the DTB backend
with a 4MB cache performs poorly for random writes
because LBNs are accessed randomly and 4MB is not
enough to hold the entire LBN mapping. For all other
cache sizes, the LBN mapping fits in RAM and perfor-
mance was thus not impacted by the cache size.

The CBT backend caches two copies of the tree in
RAM: original and modified. This is the reason why
its performance depends on the cache size in the graph.

Linux kernels (Figure 6). This dataset contains the
source code of 40 Linux kernels from version 2.6.0 to
2.6.39, archived in a single tarball. We first used an
unmodified tar, which aligns files on 512B bound-
aries (tar-512). In this case, the tarball size was 11GB
and the deduplication ratio was 1.18. We then modi-
fied tar to align files on 4KB boundaries (tar-4096).
In this case, the tarball size was 16GB and the dedu-
plication ratio was 1.88. Dmdedup uses 4KB chunking,
which is why aligning files on 4KB boundaries increases
the deduplication ratio. One can see that although tar-
4096 produces a larger logical tarball, its physical size
(16GB/1.88 = 8.5GB) is actually smaller than the tar-
ball produced by tar-512 (11GB/1.18 = 9.3GB).

For sequential writes (Figure 6(a)), the INRAM backend
outperforms the raw device by 11% and 45% for tar-512
and tar-4096, respectively. This demonstrates that stor-
ing data in a deduplication-friendly format (tar-4096)

benefits performance in addition to reducing storage re-
quirements. This observation remains true for other
backends. (For CBT we show results for the 1000-write
transaction configuration.) Note that for random writes
(Figure 6(b)), the CBT backend outperforms DTB. Un-
like a hash table, the B-tree scales well with the size of
the dataset. As a result, for both 11GB and 16GB tar-
balls, B-trees fit in RAM, while the on-disk hash table is
accessed randomly and cannot be cached as efficiently.

4.2.2 Trace Replay

To evaluate Dmdedup’s performance under realistic
workloads, we used three production traces from
Florida International University (FIU): Web, Mail, and
Homes [1, 10]. Each trace was collected in a signifi-
cantly different environment. The Web trace originates
from two departments’ Web servers; Homes from a file
server that stores the home directories of a small re-
search group; and Mail from a departmental mail server.
Table 1 presents relevant characteristics of these traces.

FIU’s traces contain data hashes for every request. We
applied a patch from Koller and Rangaswami [10] to
Linux’s btreplay utility so that it generates unique write
content corresponding to the hashes in the traces, and
used that version to drive our experiments. Some of
the reads in the traces access LBNs that were not writ-
ten during the tracing period. When serving such reads,
Dmdedup would normally generate zeroes without per-
forming any I/O; to ensure fairness of comparison to the
raw device we pre-populated those LBNs with appropri-
ate data so that I/Os happen for every read.

The Mail and Homes traces access offsets larger than
our data device’s size (146GB). Because of the indirec-
tion inherent to deduplication, Dmdedup can support a
logical size larger than the physical device, as long as
the deduplication ratio is high enough. But replaying
the trace against a raw device (for comparison) is not
possible. Therefore, we created a small device-mapper
target that maintains an LBN→PBN mapping in RAM
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Figure 7: Raw device and Dmdedup throughput for
FIU’s Web, Mail, and Homes traces. The CBT back-
end was setup with 1000-writes transaction sizes.

and allocates blocks sequentially, the same as Dmdedup.
We set the sizes of both targets to the maximum offset
accessed in the trace. Sequential allocation favors the
raw device, but even with this optimization, Dmdedup
significantly outperforms the raw device.

We replayed all traces with unlimited acceleration. Fig-
ure 7 presents the results. Dmdedup performs 1.6–7.2×
better than a raw device due to the high redundancy in
the traces. Note that write sequentialization can harm
read performance by randomizing the read layout. Even
so, in the FIU traces (as in many real workloads) the
number of writes is higher than the number of reads due
to large file system buffer caches. As a result, Dmd-
edup’s overall performance remains high.

4.2.3 Performance Comparison to Lessfs

Dmdedup is a practical solution for real storage needs.
To our knowledge there are only three other dedupli-
cation systems that are free, open-source, and widely
used: Lessfs [11], SDFS [20], and ZFS [4]. We omit re-
search prototypes from this list because they are usually
unsuitable for production. Both Lessfs and SDFS are
implemented in user space, and their designs have much
in common. SDFS is implemented using Java, which
can add high overhead. Lessfs and Dmdedup are imple-
mented in C, so their performance is more comparable.

Table 2 presents the time needed to extract a tarball of
40 Linux kernels (uncompressed) to a newly created
file system. We experimented with plain Ext4, Dmd-
edup with Ext4 on top, and Lessfs deployed above Ext4.
When setting up Lessfs, we followed the best practices
described in its documentation. We experimented with
BerkleyDB and HamsterDB backends with transactions
on and off, and used 4KB and 128KB chunk sizes.
The deduplication ratio was 2.4–2.7 in these configu-
rations. We set the Lessfs and Dmdedup cache sizes to

Ext4 Dm Lessfs
dedup BDB BDB HamsterDB
4KB 4KB 128KB 128KB

TransOFF
Time (sec) 649 521 1,825 1,413 814

Table 2: Time to extract 40 Linux kernels on Ext4,
Dmdedup, and Lessfs with different backends and chunk
sizes. We turned transactions off in HamsterDB for bet-
ter performance.

150MB, which was calculated for our dataset using the
db_stat tool from Lessfs. We configured Dmdedup to
use the CBT backend because it guarantees transaction-
ality, similar to the databases used as Lessfs backends.

Dmdedup improves plain Ext4 performance by 20% be-
cause it eliminates duplicates. Lessfs with the BDB
backend and a 4KB chunk size performs 3.5× slower
than Dmdedup. Increasing the chunk size to 128KB im-
proves Lessfs’s performance, but it is still 2.7× slower
than Dmdedup with 4KB chunks. We achieved the
highest Lessfs performance when using the HamsterDB
backend with 128KB and disabling transactions. How-
ever, in this case we sacrificed both deduplication ra-
tio and transactionality. Even then, Dmdedup performs
1.6× faster than Lessfs while providing transactional-
ity and a high deduplication ratio. The main reason for
poor Lessfs performance is its high CPU utilization—
about 87% during the run. This is caused by FUSE,
which adds significant overhead and causes many con-
text switches [19]. To conclude, Dmdedup performs sig-
nificantly better than other popular, open-source solu-
tions from the same functionality class.

Unlike Dmdedup and Lessfs, ZFS falls into a different
class of products because it does not add deduplication
to existing file systems. In addition, ZFS deduplication
logic was designed to work efficiently when all dedu-
plication metadata fits in the cache. When we limited
the ZFS cache size to 1GB, it took over two hours for
tar to extract the tarball. However, when we made the
cache size unlimited, ZFS was almost twice as fast as
Dmdedup+Ext4. Because of its complexity, ZFS is hard
to set up in a way that provides a fair comparison to
Dmdedup; we plan to explore this in the future.

5 Related Work

Many previous deduplication studies have focused on
backup workloads [18, 27]. Although Dmdedup can be
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used for backups, it is intended as a general-purpose
deduplication system. Thus, in this section we focus on
primary-storage deduplication.

Several studies have incorporated deduplication into ex-
isting file systems [15, 21] and a few have designed
deduplicating file systems from scratch [4]. Although
there are advantages to deduplicating inside a file sys-
tem, doing so is less flexible for users and researchers
because they are limited to that system’s architecture.
Dmdedup does not have this limitation; it can be used
with any file system. FUSE-based deduplication file
systems are another popular design option [11,20]; how-
ever, FUSE’s high overhead makes this approach im-
practical for production environments [19]. To address
performance problem, El-Shimi et al. built an in-kernel
deduplication file system as a filter driver for Win-
dows [8] at the price of extra development complexity.

The systems most similar to ours are Dedupv1 [13] and
DBLK [23], both of which deduplicate at the block
level. Each is implemented as a user-space iSCSI target,
so their performance suffers from additional data copies
and context switches. DBLK is not publicly available.

It is often difficult to experiment with existing research
systems. Many are raw prototypes that are unsuitable
for extended evaluations, and only a few have made
their source code available [4,13]. Others were intended
for specific experiments and lack experimental flexibil-
ity [24]. High-quality production systems have been de-
veloped by industry [3, 21] but it is hard to compare
against unpublished, proprietary industry products. In
contrast, Dmdedup has been designed for experimenta-
tion, including a modular design that makes it easy to
try out different backends.

6 Conclusions and Future Work

Primary-storage deduplication is a rapidly developing
field. To test new ideas, previous researchers had to
either build their own deduplication systems or use
closed-source ones, which hampered progress and made
it difficult to fairly compare deduplication techniques.
We have designed and implemented Dmdedup, a versa-
tile and practical deduplication block device that can be
used by regular users and researchers. We developed an
efficient API between Dmdedup and its metadata back-
ends to allow exploration of different metadata man-
agement policies. We designed and implemented three

backends (INRAM, DTB, and CBT) for this paper and
evaluated their performance and resource use. Extensive
testing demonstrates that Dmdedup is stable and func-
tional, making evaluations using Dmdedup more realis-
tic than experiments with simpler prototypes. Thanks to
reduced I/O loads, Dmdedup improves system through-
put by 1.5–6× under many realistic workloads.

Future work. Dmdedup provides a sound basis for
rapid development of deduplication techniques. By pub-
licly releasing our code we hope to spur further research
in the systems community. We plan to develop further
metadata backends and cross-compare them with each
other. For example, we are considering creating a log-
structured backend.

Compression and variable-length chunking can im-
prove overall space savings but require more complex
data management, which might decrease system perfor-
mance. Therefore, one might explore a combination of
on-line and off-line deduplication.

Aggressive deduplication might reduce reliability in
some circumstances; for example, if all copies of an
FFS-like file system’s super-block were deduplicated
into a single one. We plan to explore techniques to
adapt the level of deduplication based on the data’s im-
portance. We also plan to work on automatic scaling of
the hash index and LBN mapping relative to the size of
metadata and data devices.
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