
Cryptographic File Systems Performance: What You Don’t Know Can
Hurt You

Charles P. Wright, Jay Dave, and Erez Zadok
Stony Brook University

Appears in the proceedings of the 2003 IEEE Security In Storage Workshop (SISW 2003)

Abstract

Securing data is more important than ever, yet cryp-
tographic file systems still have not received wide use.
One barrier to the adoption of cryptographic file systems
is that the performance impact is assumed to be too high,
but in fact is largely unknown. In this paper we first
survey available cryptographic file systems. Second,
we perform a performance comparison of a representa-
tive set of the systems, emphasizing multiprogrammed
workloads. Third, we discuss interesting and counterin-
tuitive results. We show the overhead of cryptographic
file systems can be minimal for many real-world work-
loads, and suggest potential improvements to existing
systems. We have observed not only general trends with
each of the cryptographic file systems we compared but
also anomalies based on complex interactions with the
operating system, disks, CPUs, and ciphers.

Keywords: secure storage, performance, crypto-
graphic file systems, stackable file systems, loop de-
vices, user-level file servers

1 Introduction
Securing data is more important than ever. As the In-
ternet has become more pervasive, security attacks have
grown. Widely-available studies report millions of dol-
lars of lost revenues due to security breaches [23]. There
is a wide range of systems and techniques that can ensure
data confidentiality. We believe there are three primary
factors when evaluating security systems: security, per-
formance, and ease-of-use. These concerns often com-
pete; for example, if a system is too difficult to use,
then users simply circumvent it entirely. Furthermore,
if users perceive encryption to slow down their work,
they just turn it off. Though performance is an important
concern when evaluating cryptographic file systems, no
rigorous real-world comparison of their performance has
been done to date.

Riedel described a taxonomy for evaluating the per-
formance and security that each type of system could
theoretically provide [25]. His evaluation encompassed
a broad array of choices, but because it was not practical
to benchmark so many systems, he only drew theoreti-
cal conclusions. In practice, however, deployed systems

interact with disks, caches, and a variety of other com-
plex system components — all having a dramatic effect
on performance.

In this paper we perform a real world performance
comparison between several systems that are used
to secure file systems on laptops, workstations, and
moderately-sized file servers. We also emphasize multi-
programming workloads, which are not often inves-
tigated. Multi-programmed workloads are becoming
more important even for single user machines, in which
Windowing systems are often used to run multiple appli-
cations concurrently. We expect cryptographic file sys-
tems to become a commodity component of future oper-
ating systems.

We present results from a variety of benchmarks, an-
alyzing the behavior of file systems for metadata op-
erations, raw I/O operations, and combined with CPU
intensive tasks. We also use a variety of hardware to
ensure that our results are valid on a range of systems:
Pentium vs. Itanium, single CPU vs. SMP, and IDE
vs. SCSI. We observed general trends with each of the
cryptographic file systems we compared. We also inves-
tigated anomalies due to complex, counterintuitive in-
teractions with the operating system, disks, CPU, and
ciphers. We propose future directions and enhancements
to make systems more reliable and predictable.

The rest of this paper is organized as follows. Section
2 surveys existing cryptographic file systems. Section 3
discuss various ciphers used for cryptographic file sys-
tems. Section 4 compares the performance of a cross
section of cryptographic file systems. We conclude in
Section 5.

2 File Encryption Systems
This section describes a range of available techniques
of encrypting data and is organized by increasing levels
of abstraction: block-based systems, native disk file sys-
tems, network-based file systems, stackable file systems,
and encryption applications.

2.1 Block-Based Systems
Block-based encryption systems operate below the file
system level, encrypting one disk block at a time. This
is advantageous because they do not require knowledge

1

of the file system that resides on top of them, and can
even be used for swap partitions or applications that re-
quire access to raw partitions (such as database servers).
Also, they do not reveal information about individual
files (such as sizes and owners) or directory structure.

Cryptoloop The Linux loopback device driver
presents a file as a block device, optionally transforming
the data before it is written and after it is read from the
native file, usually to provide encryption. Linux kernels
include a cryptographic framework, CryptoAPI [1] that
exports a uniform interface for all ciphers and hashes.
Presently, IPsec and the Cryptoloop driver use these
facilities.

We investigated three backing stores for the loopback
driver: (1) a preallocated file created using dd filled with
random data, (2) a raw device (e.g., /dev/hda2), and
(3) a sparse backing file created using truncate(2).
The left of Figure 1 shows the path that data takes from
an application to the file system, when using a raw de-
vice as a backing store. The right of Figure 1 shows
the path when a file is used as the backing store. The
major difference between the two systems is that there
is an additional file system between the application and
the disk when using a file instead of a device. Using
files rather than devices adds performance penalties in-
cluding cutting the effective buffer cache in half because
blocks are stored in memory both as encrypted and un-
encrypted data. Each of these methods has advantages
and disadvantages related to security and ease-of-use as
well. Using preallocated files is more secure than using
sparse files, because an attacker can not distinguish ran-
dom data in the file from encrypted data. However, to
use a preallocated file, space must be set aside for en-
crypted files ahead of time. Using a sparse backing store
means that space does not need to be preallocated for
encrypted data, but reveals more about the structure of
the file system (since the attacker knows where and how
large the holes are). Using a raw device allows an entire
disk or partition to be encrypted, but requires reparti-
tioning, which is more complex than simply creating a
file. Typically there are also a limited number of parti-
tions available, so on multi-user systems encrypted raw
devices are not as scalable as using files as the backing
store.

CGD The CryptoGraphic Disk driver, available in
NetBSD, is similar to the Linux loopback device, and
other loop-device encryption systems, but it uses a na-
tive disk or partition as the backing store [9]. CGD has
a fully featured suite of user-space configuration utili-
ties that include n-factor authentication and PKCS#5 for
transforming user passwords into encryption keys [26].
This system is similar to Cryptoloop using a raw device
as a backing store.

File System

Application

(e.g., /dev/hda1)

CryptoLoop

Application

CryptoLoop

File System 1

File System 2

Raw DeviceRaw Device
(e.g., /dev/hda1)

Figure 1: Cryptoloop stacked on top of a raw device (left) and
a file (right)

GBDE GEOM-base disk encryption (GBDE) is based
on GEOM, which provides a modular framework to
perform transformations ranging from simple geometric
displacement for disk partitioning, to RAID algorithms,
to cryptographic protection of the stored data. GBDE
is a GEOM transform that enables encrypting an entire
disk [13]. GBDE hashes a user-supplied passphrase into
512 bits of key material. GBDE uses the key material
to locate and encrypt a 2048 bit master key and other
metadata on four distinct lock sectors. When an individ-
ual sector is encrypted, the sector number and bits of the
master key are hashed together using MD5 to create a
kkey. A randomly generated key, the sector key, is en-
crypted with the kkey, and then written to disk. Finally,
the sector’s payload is encrypted with the sector key and
written to disk. This technique, though more complex,
is similar to Cryptoloop using a raw device as a backing
store.

SFS SFS is an MSDOS device driver that encrypts an
entire partition [11]. SFS is similar to Cryptoloop using
a raw device as a backing store. Once encrypted, the
driver presents a decrypted view of the encrypted data.
This provides the convenient abstraction of a file sys-
tem, but relying on MSDOS is risky because MSDOS
provides none of the protections of a modern operating
system.

BestCrypt BestCrypt is a commercially available
loopback device driver supporting many ciphers [12].
BestCrypt supports both Linux and Windows, and uses
a normal file as a backing store (similar to using a preal-
located file with Cryptoloop).

vncrypt vncrypt is the cryptographic disk driver for
FreeBSD, based on the vn(4) driver that provides a disk-
like interface to a file. vncrypt uses a normal file as a
backing store (similarly to using a preallocated file with
Cryptoloop) and provides a character device interface,
which FreeBSD uses for file systems and swap devices.
vncrypt is similar to using Cryptoloop with a file as a
backing store.

OpenBSD vnd Encrypted file systems support is part
of OpenBSD’s Vnode Disk Driver, vnd(4). vnd uses

2

two modes: one bypasses the buffer cache, the second
uses the buffer cache. For encrypted devices, the buffer
cache must be used to ensure cache coherency on un-
mount. The only encryption algorithm implemented so
far is Blowfish. vnd is similar to using Cryptoloop with
a file as a backing store.

2.2 Disk-Based File Systems
Disk-based file systems that encrypt data are located at
a higher level of abstraction than block-based systems.
These file systems have access to all per-file and per-
directory data, so they can perform more complex au-
thorization and authentication than block-based systems,
yet at the same time disk-based file systems can control
the physical data layout. This means that disk-based file
systems can limit the amount of information revealed to
an attacker about file size and owner, though in practice
these attributes are often still revealed in order to pre-
serve the file system’s on-disk structure. Additionally,
since there is no additional layer of indirection, disk-
based file systems can have performance benefits over
other techniques described in this section (including the
loop devices).

EFS EFS is the Encryption File System found in Mi-
crosoft Windows, based on the NT kernel (Windows
2000 and XP) [18]. It is an extension to NTFS and uti-
lizes Windows authentication methods as well as Win-
dows ACLs [19, 25]. Though EFS is located in the ker-
nel, it is tightly coupled with user-space DLLs to per-
form encryption and the user-space Local Security Au-
thentication Server for authentication [30]. This pre-
vents EFS from being used for protecting files or fold-
ers in the root or \winnt directory. Encryption keys
are stored on the disk in a lockbox that is encrypted us-
ing the user’s login password. This means that when
users change their password, the lockbox must be re-
encrypted. If an administrator changes the user’s pass-
word, then all encrypted files become unreadable. Ad-
ditionally, for compatibility with Windows 2000, EFS
uses DESX [28] by default and the only other available
cipher is 3DES (included in Windows XP or in the Win-
dows 2000 High Encryption pack).

StegFS StegFS is a file system that employs steganog-
raphy as well as encryption [17]. If adversaries inspect
the system, then they only know that there is some hid-
den data. They do not know the contents or extent of
what is hidden. This is achieved via a modified Ext2
kernel driver that keeps a separate block-allocation table
per security level. It is not possible to determine how
many security levels exist without the key to each secu-
rity level. When the disk is mounted with an unmodified
Ext2 driver, random blocks may be overwritten, so data
is replicated randomly throughout the disk to avoid loss

of data. Although StegFS achieves plausible deniabil-
ity of data’s existence, the performance degradation is a
factor of 6–196, making it impractical for most applica-
tions.

2.3 Network Loopback Based Systems
Network-based file systems (NBFSs) operate at a higher
level of abstraction than disk-based file systems, so
NBFSs can not control the on-disk layout of files.
NBFSs have two major advantages: (1) they can operate
on top of any file system, and (2) they are more portable
than disk-based file systems. NBFS’s major disadvan-
tages are performance and security. Since each request
must travel through the network stack, more data copies
are required and performance suffers. Security also suf-
fers because NBFS are vulnerable to all of the weak-
nesses of the underlying network protocol (usually NFS
[29, 35]).

CFS CFS is a cryptographic file system that is imple-
mented as a user-level NFS server [4]. The cipher and
key are specified when encrypted directories are first cre-
ated. The CFS daemon is responsible for providing the
owner with access to the encrypted data via an attach
command. The daemon, after verifying the user ID and
key, creates a directory in the mount point directory that
acts as an unencrypted window to the user’s encrypted
data. Once attached, the user accesses the attached di-
rectory like any other directory. CFS is a carefully de-
signed, portable file system with a wide choice of built-
in ciphers. Its main problem, however, is performance.
Because it runs in user mode, it must perform many con-
text switches and data copies between kernel and user
space. As can be seen on the left of Figure 2, since CFS
has an unmodified NFS client which communicates with
a modified NFS server, it must run only over the loop-
back network interface, lo.

File System

Application

NFS Server

Network Interface

TCFS NFS Client

File System

Application

Loopback Network

CFS NFS Server
User−Level

Raw DeviceRaw Device

NFS Client

Figure 2: Call path of network-based systems. CFS is on the
left, TCFS is on the right.

TCFS TCFS is a cryptographic file system that is im-
plemented as a modified kernel-mode NFS client. Since
it is used in conjunction with an NFS server, TCFS
works transparently with the remote file system, elimi-
nating the need for specific attach and detach commands.

3

To encrypt data, a user sets an encrypted attribute on di-
rectories and files within the NFS mount point [6]. TCFS
integrates with the UNIX authentication system in lieu
of requiring separate passphrases. It uses a database in
/etc/tcfspwdb to store encrypted user and group
keys. Group access to encrypted resources is limited to
a subset of the members of a given UNIX group, while
allowing for a mechanism (called threshold secret shar-
ing) for reconstructing a group key when a member of a
group is no longer available. As can be seen on the right
of Figure 2, TCFS uses a modified NFS client, which
must be implemented in the kernel. This does, how-
ever, allow it to operate over any network interface and
to work with remote servers.

TCFS has several weaknesses that make it less useful
for deployment. First, the reliance on login passwords
as user keys is not safe. Also, storing encryption keys on
disk in a key database further reduces security. Finally,
TCFS is available only on systems with Linux kernel
2.2.17 or earlier, limiting its availability.

2.4 Stackable File Systems

Stackable file systems are a compromise between
kernel-level disk-based file systems and loopback net-
work file systems. Stackable file systems can operate
on top of any file system; they do not have to copy data
across the user-kernel boundary or through the network
stack; and they are portable to several operating systems
[38].

Cryptfs Cryptfs is the stackable, cryptographic file
system and part of the FiST toolkit [37]. Cryptfs was
never designed to be a secure file system, but rather a
proof-of-concept application of FiST [38]. Cryptfs sup-
ports only one cipher and implements a limited key man-
agement scheme. Cryptfs serves as the basis for several
commercial and research systems (e.g., ZIA [7]). Figure
3 shows Cryptfs’s operation. A user application invokes
a system call through the Virtual File System (VFS). The
VFS calls the stackable file system, which again invokes
the VFS after encrypting or decrypting the data. The
VFS calls the lower level file system, which writes the
data to its backing store.

File System

VFS

Cryptfs

Application

VFS

Raw Device

Figure 3: Call path of stackable file systems.

NCryptfs NCryptfs is our stackable cryptographic file
system, designed with the explicit aim of balancing se-
curity, convenience, and performance [34]. NCryptfs
allows system administrators and users to customize
NCryptfs according to their specific needs. NCryptfs
supports multiple concurrent authentication methods,
multiple dynamically-loadable ciphers, ad-hoc groups,
and challenge-response authentication. Keys, active ses-
sions, and authorizations in NCryptfs all have timeouts.
NCryptfs can be configured to transparently suspend and
resume processes based on key, session or authorization
validity. NCryptfs also enhanced the kernel to discard
cleartext pages and notify the file system on process exit
in order to expunge invalid authentication entries.

2.5 Applications

File encryption can be performed by applications such as
GPG [16] or crypt(1) that reside above the file system.
This solution, however, is quite inconvenient for users.
Each time they want to access a file, users must manu-
ally decrypt or encrypt it. The more user interaction is
required to encrypt or decrypt files, the more often mis-
takes are made, resulting in damage to the file or leaking
confidential data [33]. Additionally, the file may reside
in cleartext on disk while the user is actively working on
it.

File encryption can also be integrated into each appli-
cation (e.g., text editors or mail clients), but this shifts
the burden from users to applications programmers. Of-
ten applications developers do not believe the extra effort
of implementing features is justified when only a small
fraction of users would take advantage of those features.
Even if encryption is deemed an important enough fea-
ture to be integrated into most applications there are still
two major problems with this approach. First, each ad-
ditional application that the user must trust to function
correctly reduces the overall security of the system. Sec-
ond, since each application may implement encryption
slightly differently it would make using files in separate
programs more difficult.

3 Ciphers

For cryptographic file systems there are several ciphers
that may be used, but those of interest are generally sym-
metric block ciphers. This is because block ciphers are
efficient and versatile. We discuss DES variants, Blow-
fish, and Rijndael because they are often used for file en-
cryption, and are believed to be secure. There are many
other block ciphers available, including CAST, GOST,
IDEA, MARS, Serpent, RC5, RC6, and TwoFish. Most
of them have similar characteristics with varying block
and key sizes.

4

DES DES is a block cipher designed by IBM with as-
sistance from the NSA in the 1970s [28]. DES was the
first encryption algorithm that was published as a stan-
dard by NIST with enough details to be implemented in
software. DES uses a 56-bit key, a 64-bit block size,
and can be implemented efficiently in hardware. DES
is no longer considered to be secure. There are sev-
eral more secure variants of DES, most commonly 3DES
[20]. 3DES uses three separate DES encryptions with
three different keys, increasing the total key length to
168 bits. 3DES is considered secure for government
communications. DESX is a variant designed by RSA
Data Security that uses a second 64-bit key for whiten-
ing (obscuring) the data before the first round and after
the last round of DES proper, thereby reducing its vul-
nerability to brute-force attacks, as well as differential
and linear cryptanalysis [28].

Blowfish Blowfish is a block cipher designed by Bruce
Schneier with a 64-bit block size and key sizes up to
448 bits [28]. Blowfish had four design criteria: speed,
compact memory usage, simple operations, and variable
security. Blowfish works best when the key does not
change often, as is the case with file encryption, because
the key setup routines require 521 iterations of Blowfish
encryption. Blowfish is widely used for file encryption.

AES (Rijndael) AES is the successor to DES, selected
by a public competition. Though all of the six finalists
were judged to be sufficiently secure for AES, the final
choice for AES was Rijndael based on the composite of
the three selection criteria (security, cost, and algorithm
characteristics) [21]. Rijndael is a block cipher based on
the Square cipher that uses S-boxes (substitution), shift-
ing, and XOR to encrypt 128-bit blocks of data. Rijndael
supports 128, 192, and 256 bit keys.

4 Performance Comparison
To compare the performance of cryptographic systems
we chose one system from each category in Section 2,
because we were interested in evaluating properties of
techniques, not specific systems. We chose benchmarks
that measure file system operations, raw I/O operations,
and a simulated user workload. Throughout the com-
parisons we ran multi-programmed tests to compare in-
creasingly parallel workloads and scalability.

We did not benchmark an encryption application, be-
cause other programs can not transparently access en-
crypted data. As representatives from each category we
chose Cryptoloop, EFS, CFS, and NCryptfs. We chose
Cryptoloop, EFS, and CFS because they are widely
used, and up-to-date. Cryptoloop can be run on top of
raw devices and normal files, which makes it compara-
ble to a wider range of block-based systems than a block-
based system that uses only files or only block devices.

We chose NCryptfs over Cryptfs because NCryptfs is
more secure. We also tried to choose systems that run
on a single operating system, so that operating system
effects would be consistent. We used Linux for most sys-
tems, but for disk-based file systems we chose Windows.
There was no suitable and widely-used disk-based solu-
tion for Linux, large part because block-based systems
are generally used on Linux. From previous studies, we
also knew that TCFS and BestCrypt had performance
problems and we therefore omitted them [34].

We chose workloads that stressed file system and I/O
operations, particularly when there are multiple users.
We did not use a compile benchmark or other similar
workloads, because they do not effectively measure file
system performance under heavy loads [31]. In Sec-
tion 4.1 we describe our experimental setup. In Sec-
tion 4.2 we report on PostMark, a benchmark that ex-
ercises file system meta-data operations such as lookup,
create, delete, and append. In Section 4.3 we report on
PGMeter, a benchmark that exercises raw I/O through-
put. In Section 4.4 we report on AIM Suite VII, a bench-
mark that simulates large multiuser workloads. Finally,
in Section 4.5 we report other interesting results.

4.1 Experimental Setup
To provide a basis for comparison we also perform
benchmarks on Ext2 and NTFS. Ext2 is the baseline for
Cryptoloop, CFS, and NCryptfs. NTFS is the baseline
for EFS. We chose Ext2 rather than other Linux file sys-
tems because it is widely used and well-tested. We chose
Ext2 rather than the Ext3 journaling file system, because
the loopback device’s interaction with Ext3 has the ef-
fect of disabling journaling. For performance reasons,
the default journaling mode of Ext3 does not journal
data, but rather only journals meta-data. When a loop-
back device is used with a backing store in an Ext3 file,
the Ext3 file system contained inside the file does jour-
nal meta-data, but it writes the journal to the lower-level
Ext3 file as data, which is not journaled. Additionally,
journaling file systems create more complicated I/O ef-
fects by writing to the journal as well as normal file sys-
tem data.

We used the following configurations:

• A vanilla Ext2 file system.
• A loopback device using a raw partition as a back-

ing store. Ext2 is used inside the loop device. We
refer to this configuration as LOOPDEV.

• A loopback device using a preallocated backing
store. Both the underlying file system and the file
system contained within the loop device are Ext2.
We refer to this configuration as LOOPDD.

• CFS using an Ext2 file system as a backing store.
• A vanilla NTFS file system.
• An encrypted folder within an NTFS file system

5

(EFS).
• NCryptfs stacked on top of an Ext2 file system.

System Setup For Cryptoloop and NCryptfs we used
four ciphers: the Null (identity) transformation to
demonstrate the overhead of the technique without cryp-
tography; Blowfish with a 128-bit key to demonstrate
overhead with a cipher commonly used in file systems;
AES with a 128-bit key because AES is the successor to
DES [8]; and 3DES because it is an often-used cipher
and it is the only cipher that all of the tested systems
supported. We chose to use 128-bit keys for Blowfish
and AES, because that is the default key size for many
systems. For CFS we used Null, Blowfish, and 3DES
(we did not use AES because CFS only supports 64-bit
ciphers). For EFS we used only 3DES, since the only
other available cipher is DESX.

In Table 1 we summarize various system features that
affect performance.

1. Category LOOPDEV and LOOPDD use a block-
based approach. EFS is implemented as an extension to
the NTFS disk-based file system. CFS is implemented
as a user-space NFS server. NCryptfs is a stackable file
system.

2. Location LOOPDEV, LOOPDD, and NCryptfs
are implemented in the kernel. EFS uses a hybrid ap-
proach, relying on user-space DLLs for some crypto-
graphic functions. CFS is implemented in user space.

3. Buffering LOOPDEV and EFS keep only one copy
of the data in memory. LOOPDD, CFS, and NCryptfs
have both encrypted and decrypted data in memory.
Double buffering effectively cuts the buffer cache size
in half.

4. Encryption unit LOOPDEV, LOOPDD, and EFS
use a disk block as their unit of encryption. This defaults
to 512 bytes for our tested systems. CFS uses the cipher
block size as its encryption unit and only supports ci-
phers with 64-bit blocks. NCryptfs uses the PAGE SIZE
as the unit of encryption: on the i386 this is 4KB and on
the Itanium this defaults to 16KB.

5. Encryption mode LOOPDEV and LOOPDD use
CBC encryption. The public literature does not state
what mode of encryption EFS uses, though it is most
probably CBC mode because: (1) the Microsoft Cryp-
toAPI uses CBC mode by default, and (2) it has a fixed
block size that is accommodating to CBC. NCryptfs uses
cipher text stealing (CTS) to encrypt data of arbitrary
length to data of the same length.

CFS does not use standard cipher modes, but rather a
hybrid of ECB and OFB. Chaining modes (e.g., CBC)
do not allow direct random access to files, because to
read or write from the middle of a file all the previ-
ous data must be decrypted or encrypted first. However,
ECB mode permits a cryptanalyst to do structural anal-

ysis. CFS solves this by doing the following: when an
attach is created, half a megabyte of pseudo-random data
is generated using OFB mode and written to a mask file.
Before data is written to a data file, it is XORed with the
contents of the mask file at the same offset as the data
(modulo the size of the mask file), then encrypted with
ECB mode. To read data this process is simply reversed.
This method is used to allow uniform access time to any
portion of the file while preventing structural analysis.
NCryptfs and Cryptoloop achieve the same effect using
initialization vectors (IVs) and CBC on pages and blocks
rather than the whole file.

For Cryptoloop, CFS, and NCryptfs we adapted
the Blowfish, AES, and 3DES implementations from
OpenSSL 0.9.7b to minimize effects of different cipher
implementations [24]. Cryptoloop uses CBC mode en-
cryption for all operations. NCryptfs uses CTS to en-
sure that an arbitrary length buffer can be encrypted to
a buffer of the same length [28]. NCryptfs uses CTS
because size changing algorithms add complexity and
overhead to stackable file systems [36]. CTS mode dif-
fers from CBC mode only for the last two blocks of data.
For buffers that are shorter than the block size of the ci-
pher, NCryptfs uses CFB, since CTS requires at least
one full block of data. We did not change the mode of
encryption that CFS uses.

6. Write Mode LOOPDD does not use a synchronous
file as its backing store, therefore all writes become
asynchronous. CFS uses NFSv2 where all writes on the
server must be synchronous, but CFS violates the speci-
fication by opening all files asynchronously. Due to VFS
calling conventions, NCryptfs does not cause the lower-
level file system to use write synchronously. Asyn-
chronous writes improve performance, but at the ex-
pense of reliability. NCryptfs uses a write-through strat-
egy: whenever a write system call is issued, NCryptfs
passes it to the lower-level file system. The lower-level
file system may not do any I/O, but NCryptfs still en-
crypts data.

Testbed We ran our benchmarks on two machines: the
first represents a workstation or a small work group file
server, and the second represents a mid-range file server.

The workstation machine is a 1.7Ghz Pentium IV with
512MB of RAM. In this configuration all experiments
took place on a 20GB 7200 RPM Western Digital Caviar
IDE disk. For Cryptoloop, CFS, and NCryptfs we used
Red Hat Linux 9 with a vanilla Linux 2.4.21 kernel. For
EFS we used Windows XP (Service pack 1) with high
encryption enabled for EFS.

Our file server machine is a 2 CPU 900Mhz Itanium 2
McKinley (hereafter we refer to this CPU as an Itanium)
with 8GB of RAM running Red Hat Linux 2.1 Advanced
Server with a vanilla SMP Linux 2.4.21 kernel. All ex-

6

Feature LOOPDEV LOOPDD EFS CFS NCryptfs
1 Category Block Based Block Based Disk FS NFS Stackable FS
2 Location Kernel Kernel Hybrid User Space Kernel
3 Buffering Single Double Single Double Double
4 Encryption

unit
512B 512B 512B 8B 4KB/16KB

5 Encryption
mode

CBC CBC CBC (?) OFB+ECB CTS/CFB

6 Write Mode Sync,Async Async Only Sync,Async Async Only Async only, Write-Through

Table 1: Features related to performance

periments took place on a Seagate 73GB 10,000 RPM
Cheetah Ultra160 SCSI disk. Only Ext2, Cryptoloop,
and NCryptfs were tested on this configuration. We did
not test CFS because its file handle and encryption code
are not 64-bit safe. We did not test NTFS or EFS be-
cause 64-bit Windows is not yet commonly used on the
Itanium platform.

All tests were performed on a cold cache, achieved by
unmounting and remounting the file systems between it-
erations. The tests were located on a dedicated partition
in the outer sectors of the disk to minimize ZCAV and
other I/O effects [10].

For multi-process tests we report the elapsed time
as the maximum elapsed time of all processes, which
shows how long it takes to actually get the allotted work
completed. We report the system time as the sum of the
system times of each process and kernel thread involved
in the test. For LOOPDD we add the CPU time of the
kernel thread used by the loopback device to perform en-
cryption. For LOOPDEV we add in the CPU time used by
kupdated, because encryption takes place when sync-
ing dirty buffers. Finally, for CFS we add the user and
system time used by cfsd, because this is CPU time
used on behalf of the process.

As expected there were no significant variations in the
user time of the benchmark tools, because no changes
took place in the user code. We do not report user times
for these tests because we do not vary the amount of
work done in the user process.

We ran all tests several times, and we report instances
where our computed standard deviations were more than
5% of the mean. Throughout this paper, if two values are
within 5%, we do not consider that a significant differ-
ence.

4.2 PostMark
PostMark focuses on stressing the file system by per-
forming a series of file system operations such as direc-
tory lookups, creations, appends, and deletions on small
files. A large number of small files is common in elec-
tronic mail and news servers where multiple users are
randomly modifying small files. We configured Post-
Mark to create 20,000 files and perform 200,000 trans-

actions in 200 subdirectories. To simulate many concur-
rent users, we ran each configuration with 1, 2, 4, 8, 16,
and 32 concurrent PostMark processes. The total num-
ber of transactions, initial files, and subdirectories was
divided evenly among each process. We chose the above
parameters for the number of files and transactions as
they are typically used and recommended for file system
benchmarks [14, 32]. We used many subdirectories for
each process, so that the work could be divided without
causing the number of entries in each directory to affect
the results (Ext2 uses a linear directory structure). We
ran each test at least ten times.

Through this test we demonstrate the overhead of file
system operations for each system. First we discuss the
results on our workstation configuration in Section 4.2.1.
Next, we discuss the results on our file server configura-
tion in Section 4.2.2.

4.2.1 Workstation Results

Ext2 Figure 4 shows elapsed time results for Ext2. For
a single process, Ext2 ran for 121.5 seconds, used 12.2
seconds of system time, and average CPU utilization was
32.1%. When a second process was added, elapsed time
dropped to 37.1 seconds, less than half of the original
time. The change in system time was negligible at 12.5
seconds. System time remaining relatively constant is to
be expected because the total amount of work remains
fixed. The average CPU utilization was 72.1%. For four
processes the elapsed time was 17.4 seconds, system
time was 9.9 seconds, and CPU utilization was 79.4%.
After this point the improvement levels off as the CPU
and disk became saturated with requests.

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25 30 35

E
la

ps
ed

 T
im

e
(s

ec
)

Processes

Ext2

Figure 4: PostMark: Ext2 elapsed time for the workstation

7

LOOPDEV Figure 5 shows elapsed time results for
LOOPDEV, which follows the same general trend as
Ext2. The single process test is dominated by I/O and
subsequent tests improve substantially, until the CPU is
saturated. A single process took 126.5 seconds for Null,
106.7 seconds for Blowfish, 111.8 seconds for AES,
and 136.3 seconds for 3DES. The overhead over Ext2 is
4.2% for Null, -12.2% for Blowfish, -8.0% for AES, and
12.25% for 3DES. The fact that Blowfish and AES are
faster than Ext2 is an artifact of the disks we used. When
we ran the experiment on a ramdisk, a SCSI disk, or a
slower IDE disk, the results were as expected. Ext2 was
fastest, followed by Null, Blowfish, AES, and 3DES.
The system times, shown in Figure 6, were 12.4, 13.5,
14.0, and 27.4 seconds for Null, Blowfish, AES and
3DES, respectively. The average CPU utilization was
31.6%, 38.3%, 36.6%, 40.0% for Null, Blowfish, AES
and 3DES, respectively. When there were eight concur-
rent processes, the elapsed times were 17.3, 18.4, 18.8,
and 22.8 seconds, respectively. The overheads were
1.0–32.2% for eight processes. The average CPU uti-
lization ranged from 64.1–80.1%. The decline in system
time was unexpected, and is due to the decreased elapsed
time. Because dirty buffers have a shorter lifetime when
elapsed time decreases, kupdated does not flush the
short-lived buffers, thereby reducing the amount of sys-
tem time spent during the test.

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25 30 35

E
la

ps
ed

 T
im

e
(s

ec
)

Processes

Ext2
Null

Blowfish
AES

3DES

Figure 5: PostMark: LOOPDEV elapsed time for the worksta-
tion

 0

 5

 10

 15

 20

 25

 30

 0 5 10 15 20 25 30 35

S
ys

te
m

 T
im

e
(s

ec
)

Processes

Ext2
Null

Blowfish
AES

3DES

Figure 6: PostMark: LOOPDEV system time for the worksta-
tion

The results fit the pattern established by Ext2 in that
once the CPU becomes saturated, the elapsed time re-
mains constant. Again, the largest benefit is seen when
going from one to two processes. Encryption does not
have a large user visible impact, even for this intense

workload.

LOOPDD Figure 7 shows the elapsed time results for
the LOOPDD configuration. The elapsed times for a sin-
gle process are 41.4 seconds for Null, 44.5 for Blow-
fish, 45.7 for AES, and 73.9 for 3DES. For eight pro-
cesses, the elapsed times decrease to 23.1, 23.5, 24.5,
and 50.39 seconds for Null, Blowfish, AES, and 3DES,
respectively.

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25 30 35

E
la

ps
ed

 T
im

e
(s

ec
)

Processes

Ext2
Null

Blowfish
AES

3DES

Figure 7: PostMark: LOOPDD elapsed time for the worksta-
tion. Note: Null, Blowfish, and AES additionally have points
for 1–8 in one process increments rather than exponentially
increasing processes.

With LOOPDD we noticed an anomaly at four pro-
cesses. We have repeated this test over 50 times and the
standard deviation remains high at 40% of the mean for
Null, AES, and Blowfish. There is also an inversion be-
tween the elapsed time and the cipher speed. The Null
cipher is the slowest, followed by Blowfish, and then
AES. 3DES is not affected by this anomaly. We have
investigated this anomaly in several ways. We know this
to be an I/O effect, because the system time remains
constant and when the test is run with a ram disk, the
anomaly disappears. We also ran the test for the sur-
rounding points at three, five, six, and seven concurrent
processes. For Null there were no additional anoma-
lies, but for Blowfish and AES the results for 4–6 pro-
cess were erratic and standard deviations ranged from
25–67%. We have determined the anomaly’s cause to
be an interaction with the Linux buffer flushing dae-
mon, bdflush. Flushing dirty buffers in Linux is con-
trolled by three parameters: nfract, nfract stop, and
nfract sync. Each parameter is a percentage of the to-
tal number of buffers available on the system. When a
buffer is marked dirty, the system checks if the number
of dirty buffers exceeds nfract% (by default 30%) of
the total number of buffers. If so, bdflush is woken
up and begins to sync buffers until only nfract stop%
of the system buffers are dirty (by default 20%). Af-
ter waking up bdflush, the kernel checks if more than
nfract sync% of the total buffers are dirty (by default
60%). If so, then the process synchronously flushes
NRSYNC buffers (hard coded to 32) before returning
control to the process. The nfract sync is designed

8

to throttle heavy writers and ensure that enough clean
buffers are available. We changed the nfract sync pa-
rameter to 90% and reran this test. Figure 8 shows the re-
sults when using nfract sync = 90% and the anomaly
is gone. Because the Null processes are writing to the
disk so quickly, they end up causing the number of dirty
buffers to go over the nfract sync threshold. The four
process test is very close to this threshold, which ac-
counts for the high standard deviation. When more CPU
is used, either through more processes or slower ciphers,
the rate of writes is slowed, and this this effect is not en-
countered. We have confirmed our analysis by increas-
ing the RAM on the machine from 512MB to 1024MB,
and again the elapsed time anomaly disappeared.

 0

 20

 40

 60

 80

 100

 120

 140

 0 5 10 15 20 25 30 35

E
la

ps
ed

 T
im

e
(s

ec
)

Processes

Ext2
Null

Blowfish
AES

Figure 8: PostMark: LOOPDEV elapsed time for the worksta-
tion, with nfract sync = 90%. Note: 3DES is not included
because it does nto display this anomaly.

The other major difference between LOOPDD and
LOOPDEV is that LOOPDD uses more system time. This
is for two reasons. First, LOOPDD traverses the file sys-
tem code twice, once for the test file system and once
for the file system containing the backing store. Second,
LOOPDD effectively cuts the buffer and page caches in
half by double buffering. Cutting the buffer cache in half
means that fewer cached cleartext pages are available so
more encryption operations must take place. The system
time used for LOOPDD is also relatively constant, regard-
less of how many processes are used. We instrumented
a CryptoAPI cipher to count the number of bytes en-
crypted, and determined that unlike LOOPDEV, the num-
ber of encryptions and decryptions does not significantly
change. The LOOPDEV system marks the buffers dirty
and issues an I/O request to write that buffer. If an-
other write comes through before the I/O is completed,
then the writes are coalesced into a single I/O operation.
When LOOPDD writes a buffer it adds the buffer to the
end of a queue for the loop thread to write. If the same
buffer is written twice, the buffer is added to the queue
twice, and hence encrypted twice. This prevents search-
ing through the queue, and since the lower-level file sys-
tem may in fact coalesce the writes, this does not have a
large impact on elapsed time.

The results show that LOOPDD systems have several
complex interactions with many components of the sys-

tem that are difficult to explain or predict. When max-
imal performance and predictability is a consideration,
LOOPDEV should be used instead of LOOPDD.

CFS Figure 9 shows CFS elapsed times, which are rel-
atively constant no matter how many processes are run-
ning. Since CFS is a single threaded NFS server, this
result was expected. System time also remained con-
stant for each test: 146.7–165.3 seconds for Null, 298.9–
309.4 seconds for Blowfish, and 505.7–527.8 seconds
for 3DES. There is a decrease in elapsed time when there
are eight concurrent processes (27.0% for Null, 14.1%
for Blowfish, and 7.8% for 3DES), but the results return
to their normal progression for 16 processes. The dip at
eight processes occurs because I/O time decreases. At
this point the request stream to our particular disk opti-
mally interleaves with CPU usage. System time remains
the same. When this test is run inside of a ram disk or
on different hardware, this anomaly disappears.

 0

 100

 200

 300

 400

 500

 600

 700

 0 5 10 15 20 25 30 35

E
la

ps
ed

 T
im

e
(s

ec
)

Processes

Ext2
Null

Blowfish
3DES

Figure 9: PostMark: CFS elapsed time for the workstation

We conclude that both the user-space and single-
threaded architecture are bottlenecks for CFS. The sin-
gle threaded architecture prevents CFS from making use
of parallelism, while the user-space architecture causes
CFS to consume more system time for data copies to and
from user space and through the network stack.

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 0 5 10 15 20 25 30 35

E
la

ps
ed

 T
im

e
(s

ec
)

Processes

NTFS
EFS
Ext3

Figure 10: PostMark: NTFS elapsed time for the workstation

NTFS Figure 10 shows that NTFS performs signifi-
cantly worse than Ext2/3 for the PostMark benchmark.
The elapsed time for NTFS was relatively constant re-
gardless of the number of processes, ranging from 28.9–
30.2 minutes. Katcher reported that NTFS performs
poorly for this workload when there are many concur-

9

rent files [14]. Unlike Ext2, NTFS is a journaling file
system. To compare NTFS with a similar file system
we ran this benchmark for Ext3 with journaling enabled
for both meta-data and data. Ext2 took 2.1 minutes for
one process, and Ext3 took 20.0 minutes. We hypothe-
size that the journaling behavior of NTFS negatively im-
pacts its performance for PostMark operations. NTFS
has many more synchronous writes than Ext3, and all
writes have three phases that must be synchronous. First,
changes to the meta-data are written to allow a read to
check for corruption or crashes. Second, the actual data
is written. Third, the metadata is fixed, again with a
synchronous write. Between the first and last step, the
metadata may not be read or written to, because it is in
effect invalid. Furthermore, the on-disk layout of NTFS
is more prone to seeking than that of Ext2 (Ext3 has an
identical layout). NTFS stores most metadata informa-
tion in the master file table (MFT), which is placed in
the first 12% of the partition. Ext2 has group descrip-
tors, block bitmaps, inode bitmaps, and inode tables for
each cylinder group. This means that a file’s meta-data
is physically closer to its data in Ext2 than in NTFS.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 5 10 15 20 25 30 35

S
ys

te
m

 T
im

e
(s

ec
)

Processes

NTFS
EFS
Ext3

Figure 11: PostMark: NTFS system time for the workstation

When an encrypted folder is used for a single process,
elapsed time increases to 57.2 minutes, a 98% overhead
over NTFS. Figure 11 shows that for a single process,
system time increases to 335.2 seconds, a 82.9% over-
head over NTFS. We have observed that unlike NTFS,
EFS is able to benefit from parallelism when multiple
processes are used under this load. When there are eight
concurrent processes, the elapsed time decreases to 43.5
minutes, and the system time increases to 386.5 sec-
onds. No additional throughput is achieved after eight
processes. We conclude that NTFS, and hence EFS, is
not suitable for busy workloads with a large number of
concurrent files.

NCryptfs Figure 12 shows that for a single process
running under NCryptfs, the elapsed times were 136.2,
150.0, 156.5, and 368.9 seconds for Null, Blowfish,
AES, and 3DES, respectively. System times were 22.2,
44.0, 54.3, and 287.5 seconds for Null, Blowfish, AES,
and 3DES, respectively. This is higher than for LOOPDD

and LOOPDEV because NCryptfs uses write-through, so

all writes cause an encryption operation to take place.
The system time is lower than in CFS because CFS must
copy data to and from user-space, and through the net-
work stack. Average CPU utilization was 36.4% for
Null, 47.5% for Blowfish, 52.2% for AES, and 84.9%
for 3DES. For eight processes, elapsed time was 27.0,
48.2, 56.2, and 281.5 seconds for Null, Blowfish, AES,
and 3DES, respectively. CPU utilization was 90.2%,
96.3%, 98.0%, and 99.3% for Null, Blowfish, AES, and
3DES, respectively. This high average CPU utilization
indicates that CPU is the bottleneck, preventing greater
throughput from being achieved.

 0

 50

 100

 150

 200

 250

 300

 350

 400

 0 5 10 15 20 25 30 35
E

la
ps

ed
 T

im
e

(s
ec

)

Processes

Null
Blowfish

AES
3DES

Figure 12: PostMark: NCryptfs Workstation elapsed time

Ciphers As expected throughout these tests, 3DES in-
troduces significantly more overhead than AES or Blow-
fish. Blowfish was designed with speed in mind, and a
requirement for AES was that it would be faster than
3DES. In this test AES and Blowfish perform similarly.

We chose to use Blowfish for further benchmarks be-
cause it is often used for file system cryptography and
has properties that are useful for cryptographic file sys-
tems. First, Blowfish supports long key lengths, up to
448-bits. This is useful for long-term storage because
it is necessary to protect against future attacks. Second,
Blowfish generates tables to speed the actual encryption
operation. Key setup is an expensive operation, which
takes 4168 bytes of memory and requires 521 iterations
of the Blowfish algorithm [28]. Since key setup is done
infrequently, this does not place undue burden on the
user, but makes it somewhat more difficult to mount a
brute-force attack.

4.2.2 File Server Results
Single CPU Itanium Figure 13 shows the results
when we ran the PostMark benchmark on our Itanium
file server configuration with one CPU enabled (we used
the same SMP kernel as we did with two CPUS). The
trend is similar to that seen for the workstation. For
Ext2, the elapsed time for a single process was 79.9
seconds, and the system time was 11.7 seconds. For
LOOPDEV, the elapsed time is within 1% of Ext2 for
all tests while for LOOPDD the elapsed times decreased
by 31% for all tests compared to Ext2. For NCryptfs

10

the elapsed time was 102.4 seconds for Null and 181.5
seconds for Blowfish. This entails a 24% overhead for
Null and 127% overhead for Blowfish over Ext2. Of
note is that NCryptfs uses significantly more CPU time
than on the i386. The increase in CPU time is caused
by the combination of two factors. First, the Blowfish
implementation we used (from OpenSSL 0.9.7b) only
encrypts at 31.5MB/s on this machine as opposed to
52.6MB/s on the i386. Second, the i386 architecture
uses a 4KB page size by default, whereas the Itanium
architecture supports page sizes from 4KB–4GB. The
Linux kernel uses a 16KB page size by default. Since
NCryptfs encodes data in units of one page, any time a
page is updated, NCryptfs must re-encrypt more data.
When using a Linux kernel recompiled with a 4KB page
size on the Itanium, the system time used by NCryptfs
with Blowfish drops by 37.5% to 55.6 seconds. With a
4KB page size, the system time that Blowfish uses over
Null on the Itanium is roughly the additional time that
the i386 uses, scaled by the encryption speed. Since this
test is mostly contained in main memory, NCryptfs also
performs significantly more work than does the loop-
back device in this test. NCryptfs uses write-through
to the lower-level file system, so each write operation
results in an encryption. The loopback device does not
encrypt or decrypt data for operations that are served out
of the cache.

 0

 50

 100

 150

 200

 0 5 10 15 20 25 30 35

E
la

ps
ed

 T
im

e
(s

ec
)

Processes

Ext2
NC-Null

NC-Blowfish
LoopDD-Null

LoopDD-Blowfish
LoopDEV-Null

LoopDEV-Blowfish

Figure 13: PostMark: File server elapsed time with one CPU

We conclude that the general trends for the Itanium ar-
chitecture are the same as for the i386 architecture. The
i386 has had years of investment in optimizing compil-
ers and optimized code, whereas the Itanium being a new
architecture has not yet developed an optimized code-
base.

Dual CPU Itanium Figure 14 shows the results when
a second CPU is added to the file server. As expected,
the elapsed times for a single process remained un-
changed. Again, the bottleneck was the CPU in this ex-
periment, and the additional CPU resources proved to be
of benefit. As the number of processes increases past one
process, the system time increased slightly for all sys-
tems because of the added overhead of locking and syn-
chronization of shared directories and other file-system

 0

 50

 100

 150

 200

 0 5 10 15 20 25 30 35

E
la

ps
ed

 T
im

e
(s

ec
)

Processes

Ext2
NC-Null

NC-Blowfish
LoopDD-Null

LoopDD-Blowfish
LoopDEV-Null

LoopDEV-Blowfish

Figure 14: PostMark: File server elapsed time with two
CPUs

data structures. However, because the increased CPU
time was spread across the two CPUs, elapsed time de-
creased significantly. The decrease in the elapsed times
for Ext2 ranged from 27–30% for eight or more concur-
rently running processes. LOOPDD had similar behav-
ior for both Blowfish and Null ciphers. For LOOPDEV

the decrease ranged from 28–37% for both Blowfish and
Null ciphers. The elapsed times for NCryptfs changed to
53% of their value (compared to a single CPU) for Blow-
fish while the decrease for the Null cipher was 23%.

We conclude that these file systems scale as well as
Ext2, and when encryption is added, the benefit is even
more significant.

4.3 PGMeter
PenguinoMeter is a file-I/O benchmark with a workload
specification patterned after that of the IOMeter bench-
mark available from Intel [2, 5]. PGMeter measures the
data transfer rate to and from a single file. We ran
PGMeter with the fileserver.icf workload dis-
tributed with PGMeter and IOMeter, which is a mixture
of 512B–64KB transfers of which 80% are read requests
and 20% are write requests. Each operation begins at a
randomly selected point in the file. We ran this work-
load for 1–256 outstanding I/O requests, increasing the
number by a factor of 4 on each subsequent run.

Each test starts with a 30 second ramp-up period in or-
der to avoid transient startup effects, and then performs
operations for 10 minutes. Every 30 seconds during the
test, PGMeter reports the number of I/O operations per-
formed and the number of megabytes of data transferred
per second. We ran each test three times, and observed
stable results both across and within tests. Since the
amount of data transferred is a multiple of the I/O op-
erations, we do not include this result.

For the workstation configuration the data file size
was 1GB, and for the file server it was 16GB. This is
twice the amount of memory on the machine, in order
to measure I/O performance and not performance when
reading or writing to the cache.

On Windows we used version 1.3.22-1 of the Cyg-
win environment to build and run PGMeter. When given

11

the same specification, PGMeter produces similar work-
loads as IOMeter [5]. A major limitation with PGMeter
and Windows is that Cygwin does not support more than
63 concurrent threads, so a large number of outstanding
operations can not be generated. We used IOMeter on
Windows with the same workload as PGMeter on Linux.
This allowed to compare NTFS and EFS for an increas-
ing number of concurrent operations. Though IOMeter
and PGMeter are quite similar, conclusions should not
be drawn between NTFS and EFS vs. their Linux coun-
terparts.

 0

 20

 40

 60

 80

 100

 120

 140

 160

 1 2 4 8 16 32 64 128 256

IO
/s

Outstanding Operations (log)

Ext2
NC-Plain
NC-Blowfish
LoopDD-Plain
LoopDD-BF
LoopDEV-Plain
LoopDEV-Blowfish
CFS-Plain
CFS-Blowfish
NTFS
EFS

Figure 15: PGMeter: Workstation I/O operations per second

Figure 15 shows the operations per second (ops/sec)
for PGMeter and IOMeter. As in previous tests we
adopted Ext2 as the baseline for the Linux systems. The
average I/O ops/sec for Ext2 started at 143 ops/sec for
one outstanding operation (each outstanding operation
uses a thread on Linux) and dropped to 136.3 ops/sec
for 256 threads. The ops/sec for LOOPDEV with Null
ranged from 144 ops/sec for one thread to 135.7 ops/sec
for 256 threads. When using Blowfish, ops/sec ranged
from 140–135 ops/sec. LOOPDD dropped to 107 ops/sec
for one thread and 104 ops/sec for 256 threads. This
is because LOOPDD must pass through the file system
hierarchy twice. The results for Blowfish were identi-
cal, indicating that the encryption overhead is not signifi-
cant. IOMeter with the file server workload under NTFS
showed a performance improvement when the number
of outstanding operations was increased. For one out-
standing operation, 83.7 ops/sec were performed, in-
creasing to 100 ops/sec for 256 outstanding operations.
EFS followed suite increasing from 78.7 to 91.7 ops/sec.
From this we conclude that even though NTFS performs
poorly with many concurrent files, it is able to effectively
interleave CPU and disk resources when there is only
one open file.

As on the other Linux-based systems, CFS showed
the same pattern of a decrease in the ops/sec as the num-
ber of threads increased. The range for Null was 107.6
ops/sec for one thread to 92.4 ops/sec for 256 threads.

For CFS with Blowfish, the number of ops/sec ranged
from 89.3 for one thread to 80 for 256 threads. NCryptfs
performed better than LOOPDD and CFS for a single
thread, achieving 117 ops/per second for Null and 114
for Blowfish. However, for multiple threads, NCryptfs
with Null quickly dropped to 81 ops/sec for 4 threads
and 52.2 ops/sec for 16 threads where it began to stabi-
lize. NCryptfs with Blowfish followed the same pattern,
stabilizing at 52.1 ops/sec for 16 threads. The reason
that NCryptfs performed poorly for multiple threads is
that it must down the inode semaphore for each write
operation, so they become serialized and there is signifi-
cant contention. This behavior was not exhibited during
PostMark since each process worked on a disjoint set of
files.

 0

 2000

 4000

 6000

 8000

 10000

 12000

 14000

 16000

 18000

 1 2 4 8 16 32 64 128 256

IO
/s

Outstanding Operations (log)

Ext2
NC-Plain

NC-BF
LDD-Plain

LDD-BF
LDEV-Plain

LDEV-BF

Figure 16: PGMeter: File server I/O operations per second

Figure 16 shows the ops/sec achieved on our Itanium
fileserver machine. On this machine, we observed an
improvement in the ops/sec with an increase in the num-
ber of threads due to the interleaving of CPU bound and
I/O bound tasks. The number of ops/sec for Ext2 ranged
from 244 for one thread to 17,404 for 256 threads.
LOOPDEV with Null closely followed Ext2 with 242–
17,314 ops/sec. LOOPDEV with Blowfish started off at
220 ops/sec for one thread and reached 17,247 ops/sec
for 256 threads. LOOPDD performed fewer ops/sec for
both Null and Blowfish, because it had to travel through
the file system stack twice. Additionally, LOOPDD cuts
the buffer cache in half so fewer requests are served
from memory. LOOPDD with Null performed 166–
14,021 ops/sec. With Blowfish, the number of ops/sec
ranged from 160–13,408. NCryptfs with Null started
at 193.3 ops/sec for one thread and increased to 16,482
ops/sec for 256 threads. When using Blowfish, NCryptfs
only achieved 176–5,638 ops/sec, due to the compu-
tation overhead of Blowfish combined with the write-
through implementation, and the larger 16KB default
(PAGE SIZE) unit of encryption.

From this benchmark we conclude that I/O intensive
workloads suffer a greater penalty than meta-data in-
tensive workloads on cryptographic file systems. There
are several reasons for this: double buffering cuts page
caches in half, data must be copied through multiple file

12

systems, and there is increased lock contention. Addi-
tionally, the increased unit of encryption begins to have
a negative effect on the systems. Though Blaze’s hy-
brid OFB/ECB approach does not suffer from increasing
page or block sizes, its security not well studied.

4.4 AIM Suite VII

The AIM Multiuser Benchmark Suite VII (AIM7) is a
multifaceted system-level benchmark that gives an es-
timate of the overall system throughput under an ever-
increasing workload. AIM7 comes with preconfigured
standard workload mixes for multiuser environments.
An AIM7 run comprises of a series of sub-runs with
the number of tasks increasing in each sub-run. AIM7
creates one process for each simulated operation load
(task). Each sub-run waits for all children to complete
their share of operations. We can specify the number
of tasks to start with and the increment for each subse-
quent subrun. The AIM7 run stops after it has reached
the crossover point that indicates the multitasking oper-
ation load where the system’s performance becomes un-
acceptable, i.e., less than 1 job/minute/task. Each run
takes over 12 hours and is self-stabilizing, so we re-
port the values from only a single run. In our other tri-
als have observed the results to be stable over multiple
runs. AIM7 runs a total of 100 tests for each task, se-
lecting the tests based on weights defined by the work-
load configuration. We chose the fileserver configura-
tion that represents an environment with a heavy con-
centration of file system operations and integer compu-
tations. The file server configuration consists of 40%
asynchronous file operations (directory lookup, random
read, copy, random writes, and sequential writes), 58%
miscelleneous tests that do not depend on the underlying
file system and 2.5% synchronous file operations (ran-
dom write, sequential write and copy). AIM7 reports the
total jobs/minute and jobs/minute/task for each subrun.
For a typical system, as the number of concurrently run-
ning tasks increases, the jobs/minute increases to a peak
value as idle CPU time is used; thereafter it reduces due
to software and hardware limitations. We ran AIM7 with
one initial task and an increment of two tasks for each
subrun. AIM7 uses an adaptive timer to determine the
increment after the first eight subruns. After the invoca-
tion of the adaptive timer the number of tasks depends on
the recent rate of change of throughput, but the adaptive
timer often significantly overshoots the crossover point
[3]. AIM7 can also use Newton’s method to approach
the crossover point more gradually. We opted to use
Newton’s method.

The results of AIM7 can be seen in Figure 17. Ext2
served as a base line for all the tests. The peak
jobs/minute on Ext2 was 230 with 5 tasks and the
crossover point was 112 tasks. LOOPDEV with a Null

������

���������� ������ �����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����

	�	�	
�
�
 �����
�����
�����
�����

���
���
���
���

�
���

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

���
���
���

���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���
���
���

������

���
���
���
���
���
���
���
���
���
���

���
���
���
���
���
���
���
���
���
���

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����
�����

���
���
���
���

 �
 �
 �
 �

!�!
!�!
!�!
!�!
!�!
!�!
!�!
!�!
!�!
!�!

"�"
"�"
"�"
"�"
"�"
"�"
"�"
"�"
"�"
"�"

 0

 1000

 2000

 3000

 4000

 5000

 6000

 7000

Ext2 LoopDEVLoopDD CFS NCryptfs
 0

 50

 100

 150

 200

Pe
ak

 J
ob

s
/ M

in
ut

e

Jo
bs

 a
t C

ro
ss

ov
er

File System

Peak Jobs (Plain)
Peak Jobs (Blowfish)

Crossover Point (Plain)
Crossover Point (Blowfish)

Figure 17: AIM7 results for the workstation. Note: Peak
jobs/minute is using the left bars and scale. Crossover is using
the right bars and scale.

cipher peaked at 229 jobs/minute with 5 tasks and
reached crossover at 108 tasks. With Blowfish, the peak
jobs/minute was 217 with 5 tasks and the crossover was
at 114 tasks. LOOPDD, NCryptfs, and CFS all achieved a
higher peak jobs/minute and crossover point than Ext2.
This is because they do not respect synchronous write
requests. When run with only asynchronous writes,
Ext2 peaks at 2253 jobs/minute. LOOPDD peaked at
1897 jobs/minute with 46 tasks using Null; and 1255
jobs/minute with 40 tasks using Blowfish. The crossover
point was 156 tasks for Null, and 157 tasks for Blowfish.
This difference is not significant. NCryptfs with Null
peaked at 1405 jobs/minute with 34 tasks, and reached
the crossover at 139 tasks. With Blowfish, NCryptfs
peaked at 263 jobs/minute with 23 tasks, and reached
the crossover at 120 tasks. When using Blowfish with
NCryptfs, the write-through behavior causes CPU uti-
lization to increases and the integer computation portion
of the AIM7 test is not able to achieve as high a through-
put. CFS with Null peaked at only 317 jobs/minute
with 11 tasks, despite the fact that it does not respect
the synchronous flag. This is because there is a sig-
nificant amount of overhead incurred by traversing the
network stack and copying data to and from user space.
The crossover point was 29 tasks. When CFS is used
with Blowfish, the peak throughput is reduced to 77
jobs/minute with 9 tasks. The crossover is reached at
28 tasks.

From these results we conclude that synchronous I/O
may be a small part of most workloads, but it has an
overwhelming effect on the total throughput. We also
conclude that as workloads shift to an intensive mix of
I/O and CPU usage, encryption begins to affect through-
put more throughput. Our previous experience shows
that less intense workloads, such as compiles, have little
user visible overhead [34].

On the Itanium file servers, Ext2 reached a peak
jobs/sec count of 188 for 93 tasks and reached crossover
at 171 tasks. LOOPDEV again closely mimicked the be-
havior of Ext2 with both Null and Blowfish reaching

13

a peak of 171 jobs/minute with 103 tasks for Null and
117 tasks for Blowfish. The crossover points were 166
and 165 for Null and Blowfish, respectively. If only
the asynchronous I/O portions are executed, Ext2 has
a peak throughput of 4524. As compilers for the Ita-
nium improve, the computational portions of this suite
of tests should also improve to exceed the throughput of
the i386.

LOOPDD with Null and Blowfish showed the same
trend as the workstation machines. With Null, the peak
jobs/min was 3315 with 48 tasks, and the crossover point
934 tasks. Blowfish peaked at 1613 jobs/min with 200
tasks, and the crossover point was 1049. Because the
Blowfish implementation is slower on the Itanium, the
peak jobs/min dropped by 51% when compared with
Null. On the i386 the peak jobs/min only dropped
by 34%. NCryptfs with Null peaked at 2365 jobs/min
with 167 tasks and the crossover point was 1114 tasks.
With Blowfish, NCryptfs becomes significantly slower,
peaking at 132 jobs/min with 132 tasks and reaching
crossover at 133 tasks. This can again be attributed to
the interference with CPU-bound processes, and is only
exacerbated by compilers not yet optimizing the Blow-
fish implementation as well as on the i386.

From this we conclude that even though the raw I/O
performance is significantly better on the Itanium, a mix
of heavily compute and I/O intensive workloads still suf-
fer from the slower CPU. When using a cryptographic
file system with write-through this is only worsened. We
expect that as Itanium compilers improve, this problem
will be less pronounced.

4.5 Other Benchmarks
In this section we explain interesting results involving
configurations not previously discussed.

Key Size A common assumption is that stronger secu-
rity decreases performance. A classic example of this
is that if you use longer key lengths, then encryption is
more costly. We set out to quantify exactly how much it
would cost to increase your key length to the maximum
allowed by our ciphers. We used two variable key length
ciphers: Blowfish and AES.

Cipher Key Size (bits) Speed MB/s
AES 128 27.5
AES 192 24.4
AES 256 22.0
Blowfish Any 52.6
3DES 168 10.4
Null None 694.7

Table 2: Workstation raw encryption speeds

To encrypt data, most block ciphers repeat a simple
function several times; each time the primitive function

is iterated is called a round. Blowfish has 16 rounds
no matter what key size you choose; only the key ex-
pansion changes, which occurs only on initialization.
This means that encryption time remains constant with-
out consideration to whether a 32 or 448 bit key is cho-
sen. Our experimental results confirmed this. No signif-
icant difference was recorded for raw encryption speeds
for NCryptfs running the PostMark benchmark. On the
other hand, AES has 10, 12, or 14 rounds depending on
the key size (128, 192, and 256 bits, respectively). Ta-
ble 2 shows raw encryption speeds on our workstation
configuration. There is a 24.7% difference between the
fastest and slowest AES key length, but when bench-
marked in the context of file systems, this translates into
a mere 1.3% difference for NCryptfs running PostMark.
This difference is within the margin of error for these
tests (here, standard deviations were 1–2% of the mean).

The overhead of encryption is largely masked by I/O
and other components of the system time, such as the
VFS code. Since the key size plays a small role in the
file system throughput, it is wise to use as large a key
size as possible. This is made only more important by
the persistent nature of file systems, where there is often
lots of data available to a cryptanalyst — some of which
may be predictable, e.g., partition tables [27]. Since file
systems are designed for long-term storage, it is impor-
tant that data is protected not only against adversaries of
today, but also of the future.

Sparse Loopback Devices Throughout our previous
tests, LOOPDD used a preallocated file that filled the
test partition to reduce I/O effects. It is often the case
that an encrypted volume is only a small fraction of the
disk. This leads to interesting results with respect to I/O.
Ext2 attempts to put blocks from the same file into a sin-
gle cylinder group; and spread directories evenly across
cylinder groups with the goal of clustering related files
[22].

Using a preallocated file as large as the partition does
not drastically affect the Ext2 allocation policy. How-
ever, if the preallocated file is smaller than the partition,
it is clustered into as few cylinder groups as possible,
thereby reducing the amount of seeking required. Using
a sparse file as the backing store results in an even more
optimal allocation policy than the small file, since holes
in the upper-level file system are not allocated.

We ran this test on our workstation with a 10GB Sea-
gate 5400 RPM IDE hard drive. We used a slower disk
than in previous tests to accentuate the differences be-
tween these configurations. Using the entire drive for-
matted with Ext2, PostMark took 551 seconds and used
12.2 seconds of system time. When using a 500MB
LOOPDD file, Null mode took 79.6 seconds, and used
27.1 seconds of system time. Using Cryptoloop with a

14

sparse backing store took 51.2 seconds and used 27.2
seconds of system time.

From this test we conclude that although using a loop
device increases system overhead, the effects that it has
on layout policy can be beneficial. On the other hand,
the fact that LOOPDD can so markedly affect the lay-
out policies of the file system may have negative im-
pacts for some workloads. One advantage of systems
like LOOPDEV is that they will not affect the layout de-
cisions made by the upper level file system.

5 Conclusions and Future Work
The contributions of this work are that we have pre-
sented a survey of available file encryption systems and
we have performed a comprehensive performance com-
parison of five representative systems: Cryptoloop using
a device as a backing store, Cryptoloop using a file as a
backing store, EFS, CFS, and NCryptfs.

From this study we draw five conclusions about cryp-
tographic file systems performance. First, it is often sug-
gested that entire file systems should not be encrypted
because of performance penalties. We believe that en-
crypting an entire hard disk is practical. Systems such as
Cryptoloop that can encrypt an entire partition are able
to make effective use of the buffer cache in order to pre-
vent many encryption and decryption operations.

Second, for single process workloads, I/O is the limit-
ing factor, but the encryption operations lie along a crit-
ical path in the I/O subsystem. Since I/O operations can
not complete until the encryption/decryption is done, en-
cryption negatively impacts performance in some cases.

Third, the loop device was able to scale along with
the underlying file system for both metadata and I/O-
intensive operations. NCryptfs was able to scale along
with the file system for metadata operations, but not for
I/O-intensive operations. The single threaded nature of
CFS limits its scalability. EFS and NTFS did not per-
form well for the workload with many concurrent files,
but EFS was able to exploit concurrent processes in both
the PostMark and IOMeter test.

Fourth, the effect of caching can not be underes-
timated when comparing cryptographic file systems.
Caches not only decrease the number of I/O operations,
but they also avoid costly encryption operations. Even
though Blowfish is almost twice as fast as AES on our
machines, their results were quite similar, in large part
because many I/O requests are served out of the cache.

Fifth, when heavily interleaving disk and CPU opera-
tions unexpected effects often occur. Furthermore, these
effects are not necessarily gradual degradation of per-
formance, but rather large spikes in the graph. Adjust-
ing any number of things (memory, disk speed, or other
kernel parameters) can expose or hide such effects. For
performance-critical applications, the specific hardware,

operating system, and file system must be benchmarked
with both the expected workload as well as lighter and
heavier workloads.

Based on our study, we believe block devices are a
promising way to encrypt data for installations that do
not need the advanced features that can only be provided
by a file system (e.g., ad-hoc groups or per-file permis-
sions). However, there are still two major problems with
the state of block-based encryption systems. First, loop
devices using a file as a backing store are not currently
opened with O SYNC. This means that even though the
file system contained in the encrypted volume flushes
data to the block device, the underlying file system does
not flush the data. This interaction increases perfor-
mance (even when compared to the native file system)
at the expense of reliability and integrity constraints.
This should be changed in future releases of Cryptoloop.
NCryptfs and CFS also do not respect the O SYNC flag,
but for different reasons. NCryptfs does not because of
the VFS call path, and CFS simply uses all asynchronous
I/O.

Second, there are a large number of block-based en-
cryption systems, for the same and different operating
systems, but they are not compatible due to different
block sizes, IV calculation methods, key derivation tech-
niques, and disk layouts. For these systems to gain more
wide-spread use they should support a common on-disk
format. A common format would be particularly useful
for removable media (e.g., USB drives).

Stackable or disk-based file systems are useful when
more advanced features are required. The following
three issues should be addressed. (1) The virtual file sys-
tem should include a centralized, stacking-aware cache
manager to allow stackable file systems to inform the
lower level system that caching this data is not use-
ful. Eliminating double-buffering would decrease en-
cryption and I/O operations. (2) The write-through im-
plementation used by FiST results in more encryption
operations than are required. A write-back implementa-
tion would allow writes to be coalesced in the upper-
level file system. (3) The encoding size of NCryptfs
should be smaller than PAGE SIZE in order to reduce
computational overhead.

Future Work Confidentiality can currently be pro-
tected through cryptographic file systems, but most sys-
tems do not yet properly ensure the integrity of data.
Both a file system or loopback device that stores cryp-
tographic checksums of data would greatly increase the
overall usefulness of cryptographic file systems. We will
investigate the performance impact of checksumming,
and the most efficient place to store these checksums (in-
terspersed with data or in a separate location).

Throughout this work we measured throughput, al-

15

though it is often a secondary concern when compared
with latency, which more greatly affects interactivity. As
it stands, unencrypted I/O operations can have a large ef-
fect on interactivity. Quantifying how cryptographic file
systems affect interactivity is an important next step to-
ward evaluating these systems for desktop use.

Hardware encryption cards are becoming more
widespread for accelerating SSL connections. Hard-
ware cryptographic accelerators may also increase per-
formance for file systems [15]. For applications such as
SSL, where all of the data that is being encrypted is new,
there is little opportunity for caching as there is with
file systems. We plan to examine how hardware crypto-
graphic accelerators interact with cryptographic file sys-
tems and caches under a variety of workloads.

6 Acknowledgments
We would like to thank Anton Altaparmakov and Sza-
kacsits Szabolcs for their help in understanding the be-
havior of NTFS. This work was partially made possible
by an NSF CAREER award EIA-0133589, and HP/Intel
gifts numbers 87128 and 88415.1.

References
[1] The GNU/Linux CryptoAPI site. www.kerneli.org, Au-

gust 2003.

[2] IOMeter. http://iometer.sourceforge.net, August 2003.

[3] AIM Technology. AIM Multiuser Benchmark - Suite VII
Version 1.1. http://sourceforge.net/projects/aimbench,
2001.

[4] M. Blaze. A cryptographic file system for Unix. In Pro-
ceedings of the first ACM Conference on Computer and
Communications Security, 1993.

[5] R. Bryant, D. Raddatz, and R. Sunshine. PenguinoMe-
ter: A New File-I/O Benchmark for Linux. In Proceed-
ings of the 5th Annual Linux Showcase & Conference,
pages 5–10, Oakland, CA, November 2001.

[6] G. Cattaneo, L. Catuogno, A. Del Sorbo, and P. Per-
siano. The Design and Implementation of a Transpar-
ent Cryptographic Filesystem for UNIX. In Proceedings
of the Annual USENIX Technical Conference, FREENIX
Track, pages 245–252, June 2001.

[7] M. Corner and B. D. Noble. Zero-interaction authenti-
cation. In The Eigth ACM Conference on Mobile Com-
puting and Networking, September 2002.

[8] Department of Commerce: National Institute of Stan-
dards and Technology. Announcing Development of a
Federal Information Processing Standard for Advanced
Encryption Standard. Technical Report Docket No.
960924272-6272-01, January 1997.

[9] R. Dowdeswell and J. Ioannidis. The CryptoGraphic
Disk Driver. In Proceedings of the Annual USENIX
Technical Conference, FREENIX Track, June 2003.

[10] D. Ellard and M. Seltzer. NFS Tricks and Benchmarking
Traps. In Proceedings of the Annual USENIX Techni-

cal Conference, FREENIX Track, pages 101–114, June
2003.

[11] P. C. Gutmann. Secure filesystem (SFS) for
DOS/Windows. www.cs.auckland.ac.nz/˜pgut001/sfs/
index.html, 1994.

[12] Jetico, Inc. BestCrypt software home page. www.jetico.
com, 2002.

[13] P. H. Kamp. gdbe(4), October 2002. FreeBSD Kernel
Interfaces Manual, Section 4.

[14] J. Katcher. PostMark: a New Filesystem Benchmark.
Technical Report TR3022, Network Appliance. www.
netapp.com/tech˙library/3022.html.

[15] A. Keromytis, J. Wright, and T. de Raadt. The Design of
the OpenBSD Cryptographic Framework. In Proceed-
ings of the Annual USENIX Technical Conference, pages
181–196, June 2003.

[16] W. Koch. The GNU privacy guard. www.gnupg.org,
August 2003.

[17] A. D. McDonald and M. G. Kuhn. StegFS: A Stegano-
graphic File System for Linux. In Information Hiding,
pages 462–477, 1999.

[18] Microsoft Corporation. Encrypting File Sys-
tem for Windows 2000. Technical report, July
1999. www.microsoft.com/windows2000/techinfo/
howitworks/security/encrypt.asp.

[19] R. Nagar. Windows NT File System Internals: A devel-
oper’s Guide, pages 615–67. O’Reilly, September 1997.
Section: Filter Drivers.

[20] National Institute of Standards and Technology. FIPS
PUB 46-3: Data Encryption Standard (DES). National
Institute for Standards and Technology, Gaithersburg,
MD, USA, October 1999.

[21] J. Nechvatal, E. Barker, L. Bassham, W. Burr,
M. Dworkin, J. Foti, and E. Roback. Report on the De-
velopment of the Advanced Encryption Standard (AES).
Technical report, Department of Commerce: National
Institute of Standards and Technology, October 2000.

[22] J. Nugent, A. Arpaci-Dusseau, and R. Arpaci-Dusseau.
Controlling Your PLACE in the File System with Gray-
box Techniques. In Proceedings of the Annual USENIX
Technical Conference, pages 311–323, June 2003.

[23] R. Power. Computer Crime and Security Survey. Com-
puter Security Institute, VIII(1):1–24, 2002. www.gocsi.
com/press/20020407.html.

[24] The OpenSSL Project. Openssl: The open source toolkit
for SSL/TLS. www.openssl.org, April 2003.

[25] E. Riedel, M. Kallahalla, and R. Swaminathan. A Frame-
work for Evaluating Storage System Security. In Pro-
ceedings of the First USENIX Conference on File and
Storage Technologies (FAST 2002), pages 15–30, Mon-
terey, CA, January 2002.

[26] RSA Laboratories. Password-Based Cryptography Stan-
dard. Technical Report PKCS #5, RSA Data Security,
March 1999.

[27] J. H. Saltzer. Hazards of file encryption. Technical re-
port, 1981. http://web.mit.edu/afs/athena.mit.edu/user/
other/a/Saltzer/www/publications/csrrfc208.html.

16

[28] B. Schneier. Applied Cryptography. John Wiley & Sons,
2 edition, October 1995.

[29] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow,
C. Beame, M. Eisler, and D. Noveck. NFS Version 4
Protocol. Technical Report RFC 3010, Network Work-
ing Group, December 2000.

[30] D. A. Solomon and M. E. Russinovich. Inside Microsoft
Windows 2000, chapter 12: File Systems, pages 683–
778. Microsoft Press, 2000.

[31] D. Tang and M. Seltzer. Lies, Damned Lies, and File
System Benchmarks. Technical Report TR-34-94, Har-
vard University, December 1994. In VINO: The 1994
Fall Harvest.

[32] VERITAS Software. Veritas file server edition perfor-
mance brief: A postmark 1.11 benchmark comparison.
Technical report. http://eval.veritas.com/webfiles/docs/
fsedition-postmark.pdf.

[33] A. Whitten and J. D. Tygar. Why Johnny can’t encrypt:
A usability evaluation of PGP 5.0. In Proceedings of the
Eigth Usenix Security Symposium, August 1999.

[34] C. P. Wright, M. Martino, and E. Zadok. NCryptfs: A
Secure and Convenient Cryptographic File System. In
Proceedings of the Annual USENIX Technical Confer-
ence, pages 197–210, June 2003.

[35] E. Zadok. Linux NFS and Automounter Administration.
Sybex, Inc., May 2001.

[36] E. Zadok, J. M. Anderson, I. Bădulescu, and J. Nieh. Fast
Indexing: Support for size-changing algorithms in stack-
able file systems. In Proceedings of the Annual USENIX
Technical Conference, pages 289–304, June 2001.

[37] E. Zadok, I. Bădulescu, and A. Shender. Cryptfs: A
stackable vnode level encryption file system. Technical
Report CUCS-021-98, Computer Science Department,
Columbia University, June 1998.

[38] E. Zadok and J. Nieh. FiST: A Language for Stackable
File Systems. In Proceedings of the Annual USENIX
Technical Conference, pages 55–70, June 2000.

17

