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Modern computer systems produce and process an overwhelming amount of data at a high and
growing rates. The performance of storage hardware components, however, cannot keep up with
the required speed at a practical cost. To mitigate this discrepancy, storage vendors incorporate
many workload-driven optimizations in their products.

New emerging applications cause workload patterns to change rapidly and significantly. One
of the prominent examples is a rapid shift towards virtualized environments that mixes I/O streams
from different applications and perturbs their access patterns. In addition, modern users demand
more and more convenience features: deduplication, snapshotting, encryption, and other features
have become almost must-have features in modern storage solutions.

Stringent performance requirements, changing I/O patterns, and the ever growing feature list
increase the complexity of modern storage systems. The complexity of design, in turn, makes the
evaluation of the storage systems a difficult task. To resolve this task timely and efficiently, prac-
tical and intelligent evaluation tools and techniques are needed. This thesis explores the complex-
ity of evaluating storage systems and proposes a Multi-Dimensional Histogram (MDH) workload
analysis as a basis for designing a variety of evaluation tools.

I/O traces are good sources of information about real-world workloads but are inflexible in
representing more than the exact system conditions at the point the traces were captured. We
demonstrate how MDH technique can be used to accurately convert I/O traces to workload models.
Historically, most I/O optimizations focused on the meta-data: I/O access patterns such as random
or sequential, arrival times, read/write sizes, etc. Increasingly, storage systems must also consider
the data and not just the meta-data. For example, deduplication systems eliminate duplicates in
the data to increase logical storage capacity. We use MDH technique to generate realistic datasets
for deduplication systems. The shift from physical to virtual clients drastically changes the 1/0
workloads seen by Network Attached Storage (NAS). Using MDH technique we study workload
changes caused by virtualization and synthesize a set of versatile NAS benchmarks.

It is our thesis that MDH technique is powerful for both workload analysis and synthesis. MDH
analysis bridges the gap between the complexity of storage systems and the availability of practical
evaluations tools.
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Chapter 1

Introduction

Modern computer systems produce and process an overwhelming amount of data at an extremely
high rates. According to IDC, the amount of stored digital information in 2011 was over 1.8
zettabytes and the number of files was over 500 quadrillions. During 2011-2016 these numbers are
projected to double every year [40]. The performance of storage hardware components, however,
does not keep up with the required capacity and speed at a practical cost. Hard Disk Drives (HDDs)
have a low purchase price but their random access performance is often unacceptable. In addition,
HDDs consume a lot of energy which increases their cost of ownership.

Flash-based Solid State Drives (SSDs), though getting less expensive, still cost significantly
more than HDDs. Moreover, while for read-intensive workloads SSDs provide higher through-
put than HDDs, write-intensive workloads are not SSD-friendly. Due to wear-out effects, Flash
memory has a shorter lifetime expectancy. This necessitates a high degree of redundancy and in-
telligent firmware in SSD setups which increases their cost. Further, automatic garbage collection,
defragmentation, and I/O parallelization makes SSD performance unpredictable. Finally, current
and theoretical peaks of memory density (in gigabytes per square inch) for SSDs is significantly
lower than for HDDs.

As aresult, scaling performance by purchasing more HDDs or replacing HDDs by SSDs is not
a cost effective approach. Workload-based optimizations is the only way to mitigate the widen-
ing gap between the storage performance and user requirements. Already now vendors improve
throughput and response time by applying various workload-driven optimizations such as intelli-
gent caching, read-ahead, automatic tiering, etc. There is little doubt that in the future the demand
for workload-aware systems will only grow.

In addition to the amount of data and its access rate, there are also changes in the way this
data is accessed. The number of user applications and their diversity increase. New emerging
applications cause workload patterns to change rapidly and significantly. One prominent example
is a shift towards virtualized environments that cause storage consolidation. As a result, I/O streams
from multiple applications mix and perturb I/O workload on the servers. Big data processing is
another example of emerging applications that exhibits unique workload characteristics.

Therefore, the problem of efficient characterization of storage workloads is of a higher urgency
than ever before. Only the reliable knowledge of the present-day workloads and an accurate pre-
diction of the future workloads, could engineers and researchers design storage solutions suitable
for the Big Data era. Furthermore, the problem of evaluating and comparing storage systems that
incorporate workload-driven optimizations grows too; only tools and techniques that accurately



preserve and synthesize realistic workload properties are capable of evaluating the performance of
such systems fairly.

Another complexity of modern storage systems comes from the high number of features that
present-day users demand. Deduplication, compression, snapshotting, encryption, and other fea-
tures have become almost must-have features for any modern storage array. However, these fea-
tures come at a price: the performance of a feature-rich array can vary significantly depending on
the features enabled and the workloads in use. E.g., a storage stack that supports deduplication
can both improve and degrade system performance depending on the number of duplicates in the
dataset. To mitigate such negative impacts, many deduplication systems implement various opti-
mizations (e.g., a bounded hash index search against a subset of all data). In this case, performance
depends on both the duplicates count and their spacial and temporal locality. A proper evaluation
of the trade-offs caused by different storage features requires tools that can generate workloads
with realistic characteristics and dependencies between them.

Evaluating even simple storage systems is hard. Future storage technologies, such Shingled
Magnetic Recording (SMR) and a Phase Change Memory (PCM) will complicate the understand-
ing of storage systems even further. In this thesis, Chapters 2 and 3 describe the difficulties in the
two accepted ways of evaluating storage systems: using synthetic benchmarks and trace replay.
As the complexity of storage systems grows due to inclusion of workload-driven optimizations,
the appearance of new features, and the diversification of user applications, new tools and tech-
niques are needed for efficient workload analysis and synthesis. In Chapters 4-6 we present our
Multi-Dimensional Histogram (MDH) technique for workload analysis and synthesis.

In Section 1.1 we introduce the complexities of evaluating storage systems. Section 1.2 ex-
plains the foundation of MDH for trace to model conversion. In Section 1.3 and Section 1.4 we
demonstrate the applicability of MDH technique for evaluating deduplication and virtualized stor-
age systems.

1.1 Complexities in Storage Evaluation

In Chapter 2 we discuss the general problems with file system benchmarking. The quality of file
system benchmarking has not improved in over a decade of intense research spanning hundreds
of publications. Researchers repeatedly use a wide range of poorly designed benchmarks, and in
most cases, develop their own ad-hoc benchmarks. In addition to lax statistical rigor, the storage
community lacks a definition of what we want to benchmark in a file system. We propose sev-
eral dimensions of file system benchmarking and review a wide range of tools and techniques in
widespread use. We experimentally show that even the simplest of benchmarks can be fragile,
producing performance results spanning orders of magnitude. It is our hope that this chapter will
spur a more serious debate in the community, leading to more actions that can improve how we
evaluate our file and storage systems.

A traditional approach to understanding representative real-world workloads is to trace produc-
tion systems. The collected traces are then analyzed, relevant workload properties are extracted,
and corresponding optimizations are developed. Most modern systems employ various kinds of
workload-based optimizations in their designs. Trace analysis is a valid approach because in prac-
tice it is a good option for studying representative workloads. Unfortunately, another common
use of traces—replay—often produces invalid results. Researchers frequently use trace replay to



demonstrate that a proposed system is viable; belief in the realism of trace replay is so high that
it has become almost a de facto expectation for a storage paper to replay a trace in the evaluation
section. Reviewers rarely question whether a replay was conducted properly. We have found that
trace replay carries many pitfalls that have largely escaped the community’s attention. In Chapter 3
we argue and demonstrate that evaluating and optimizing a system’s performance by blind trace
replay does not necessarily prove that the system would perform well when deployed in produc-
tion. We claim that a lot of precautions are needed before the community can trust trace replay as
a reliable performance-evaluation method.

1.2 Trace to Model Conversion

I/O traces are good sources of information about real-world workloads. But traces tend to be large,
hard to use and share, and inflexible in representing more than the exact system conditions at the
point the traces were captured. Often, however, researchers are not interested in the precise details
stored in a bulky trace, but rather in some statistical properties found in the traces—properties that
affect their system’s behavior under load.

Chapter 4 presents the MDH technique for converting I/O traces to workload models. We de-
signed and built a system that (1) extracts many desired properties from a large block I/O trace, (2)
builds a statistical model of the trace’s salient characteristics, (3) converts the model into a concise
description in the language of one or more synthetic load generators, and (4) can accurately replay
the models in these load generators. Our system is modular and extensible. We experimented
with several traces of varying types and sizes. Our concise models are 4-6% of the original trace
size, and our modeling and replay accuracy are over 90%. To further reduce MDH size without
compromising model accuracy we intend to apply curve fitting methods to empirical distributions.

1.3 Deduplication

Historically, most I/O optimizations focused on the meta-data: I/O access patterns such as random
or sequential, arrival times, read/write sizes, etc. Increasingly, storage systems must also consider
the data and not just the meta-data. Deduplication is a popular component of modern storage
systems, with a wide range of approaches. Unlike traditional storage systems, deduplication per-
formance depends on the data’s content as well as access patterns and meta-data characteristics.
Most datasets that were used to evaluate deduplication systems are either unrepresentative, or un-
available due to privacy issues, preventing an easy and fair comparison of competing algorithms.
Understanding how both content and meta-data evolve is critical to the realistic evaluation of dedu-
plication systems.

In Chapter 5 we present an MDH-based model of file system changes based on properties mea-
sured on terabytes of real, diverse storage systems. Our model plugs into a generic framework for
emulating file system changes. Building on observations from specific environments, our model
can generate an initial file system followed by ongoing modifications that emulate the distribu-
tion of duplicates and file sizes, realistic changes to existing files, and file system growth. The
framework is modular and makes it easy for other researchers to add modules specific to their
environments. The models used to generate data are based on observations of many real-world



datasets collected by a major storage manufacturer. In our experiments we were able to generate a
4TB dataset within 13 hours on a machine with a single disk drive. The relative error of emulated
parameters depends on the model size but remains within 15% of real-world observations.

1.4 Virtualized Workloads

Network Attached Storage (NAS) and Virtual Machines (VMs) are widely used in data centers
thanks to their manageability, scalability, and ability to consolidate resources. But the shift from
physical to virtual clients drastically changes the 1/O workloads seen on NAS servers, due to guest
file system encapsulation in virtual disk images and the multiplexing of request streams from dif-
ferent VMs. Unfortunately, current NAS workload generators and benchmarks produce workloads
typical to physical machines. Consequently, their usage for virtual workloads benchmarking re-
quires a complex setup of hypervisors, VMs, and applications to produce realistic workloads for
virtual machines.

Chapter 6 makes two contributions. First, we studied the extent to which virtualization is
changing existing NAS workloads. We observed significant changes, including the disappearance
of file system meta-data operations at the NAS layer, changed I/O sizes, and increased randomness.
Second, using MDH-based techniques, we created a set of versatile NAS benchmarks to synthe-
size virtualized workloads. This allows us to generate accurate virtualized workloads without the
effort and limitations associated with setting up a full virtualized environment. Our experiments
demonstrate that the relative error of our virtualized benchmarks, evaluated across 11 parameters,
averages less than 10%.

It is our thesis that MDH-based techniques are powerful for both workload analysis and synthe-
sis. MDH bridges the widening gap between the complexity of storage systems and the availability
of practical evaluations tools.



Chapter 2

File System Benchmarking

2.1 Introduction

Each year, the research community publishes dozens of papers proposing new or improved file
and storage system solutions. Practically every such paper includes an evaluation demonstrating
how good the proposed approach is on some set of benchmarks. In many cases, the benchmarks
are fairly well-known and widely accepted; researchers present means, standard deviations, and
other metrics to suggest some element of statistical rigor. It would seem then that the world of file
system benchmarking is in good order, and we should all pat ourselves on the back and continue
along with our current methodology.

We think not.

We claim that file system benchmarking is actually a disaster area—full of incomplete and
misleading results that make it virtually impossible to understand what system or approach to use
in any particular scenario. In Section 2.3, we demonstrate the fragility that results when using a
common file system benchmark (Filebench [35]) to answer a simple question, “How good is the
random read performance of Linux file systems?”. This seemingly trivial example highlights how
hard it is to answer even simple questions and also how, as a community, we have come to rely on
a set of common benchmarks, without really asking ourselves what we need to evaluate.

The fundamental problems are twofold. First, accuracy of published results is questionable in
other scientific areas [82], but may be even worse in ours [100, 104]. Second, we are asking an
ill-defined question when we ask, “Which file system is better.” We limit our discussion here to
the second point.

What does it mean for one file system to be better than another? Many might immediately
focus on performance, “I want the file system that is faster!” But faster under what conditions?
One system might be faster for accessing many small files, while another is faster for accessing a
single large file. One system might perform better than another when the data starts on disk (e.g.,
its on-disk layout is superior). One system might perform better on meta-data operations, while
another handles data better. Given the multi-dimensional aspect of the question, we argue that the
answer can never be a single number or the result of a single benchmark. Of course, we all know
that—and that’s why every paper worth the time to read presents multiple benchmark results—but
how many of those give the reader any help in interpreting the results to apply them to any question
other than the narrow question being asked in that paper?



The benchmarks we choose should measure the aspect of the system on which the research
in a paper focuses. That means that we need to understand precisely what information any given
benchmark reveals. For example, many file system papers use a Linux kernel build as an evaluation
metric [104]. However, on practically all modern systems, a kernel build is a CPU bound process,
so what does it mean to use it as a file system benchmark? The kernel build does create a large
number of files, so perhaps it is a reasonable meta-data benchmark? Perhaps it provides a good
indication of small-file performance? But it means nothing about the affect of file system disk
layout if the workload is CPU bound. The reality is that it frequently reveals little about the
performance of a file system, yet many of us use it nonetheless.

We claim that file systems are multi-dimensional systems, and we should evaluate them as
such. File systems are a form of “middleware” because they have multiple storage layers above
and below, and it is the interaction of all of those layers with the file system that really affects its
behavior. To evaluate a file system properly we first need to agree on the different dimensions, then
agree on how best to measure those different dimensions and finally agree on how to combine the
results from the multiple dimensions.

In Section 2.2 we review and propose several file system evaluation criteria (i.e., a specifica-
tion of the various dimensions) and then examine commonly used benchmarks relative to those
dimensions. In Section 2.3 we examine 1-2 small pieces of these dimensions to demonstrate the
challenges that must be addressed. We conclude and discuss future directions in Section 2.4.

Related Work In 1994 Tang et al. criticized several file system benchmarks in wide-spread use
at that time [100]. Surprisingly, some of these benchmark are still in use today. In addition, plenty
of new benchmarks have been developed, but quantity does not always mean quality. Traeger
and Zadok examined 415 file system benchmarks from over 100 papers spanning nine years and
found that in many cases benchmarks do not provide adequate evaluation of file system perfor-
mance [104]. Table 2.1 (presented later in Section 2.2) includes results from that past study. We
omit discussing those papers here again, but note that the quality of file system benchmarking
does not appear to have improved since that study was published in 2008. In fact, this topic was
discussed at a BoF [125] at the FAST 2005, yet despite these efforts, the state of file system bench-
marking remains quite poor.

2.2 File System Dimensions

A file system abstracts some hardware device to provide a richer interface than that of reading and
writing blocks. It is sometimes useful to begin with a characterization of the I/O devices on which
a file system is implemented. Such benchmarks should report bandwidth and latency when reading
from and writing to the disk in various-sized increments. IOmeter [85] is an example of such a
benchmark; we will call these I/O benchmarks.

Next, we might want to evaluate the efficacy of a file system’s on-disk layout. These should
again evaluate read and write performance as a function of (file) size, but should also evaluate the
efficacy of the on-disk meta-data organization. These benchmarks can be challenging to write:
applications can rarely control how a file system caches and prefetches data or meta-data, yet such
behavior will affect results dramatically. So, when we ask about a system’s on-disk meta-data
layout, do we want to incorporate its strategies for prefetching? They may be tightly coupled. For



example, consider a system that groups the meta-data of “related files” together so that whenever
you access one object, the meta-data for the other objects’ meta-data is brought into memory.
Does this reflect a good on-disk layout policy or good prefetching? Can you even distinguish
them? Does it matter? There exist several benchmarks (e.g., Filebench [35], IOzone [22]) that
incorporate tests like this; we will refer to these benchmarks as on-disk benchmarks. Depending
on how it is configured, the Bonnie and Bonnie++ benchmarking suites [20,27] can measure either
I/0O or on-disk performance.

Perhaps we are concerned about the performance of meta-data operations. The Postmark
benchmark [60] is designed to incorporate meta-data operations, but does not actually provide
meta-data performance in isolation; similarly, many Filebench workloads can exercise meta-data
operations but not in isolation.

As mentioned above, on-disk meta-data benchmarks can become caching or in-memory bench-
marks when file systems group meta-data together; they can also become in-memory benchmarks
when they sweep small file sizes or report “warm-cache” results. We claim that we are rarely in-
terested in pure in-memory execution, which is predominantly a function of the memory system,
but rather in the efficacy of a given caching approach; does the file system pre-fetch entire files,
blocks, or large extents? How are elements evicted from the cache? To the best of our knowledge,
none of the existing benchmarks consider these questions.

Finally, we may be interested in studying a file system’s ability to scale with increasing load.
This was the original intent behind the Andrew File System benchmark [50], and while sometimes
used to that end, this benchmark, and its successor, the Linux kernel compile are more frequently
cited as a good benchmark for general file system performance.

We surveyed the past two years’ publications in file systems from the USENIX FAST, OSDI,
ATC, HotStorage, ACM SOSP, and IEEE MSST conferences. We recorded what benchmarks were
used and what each benchmark measures. We reviewed 100 papers, 68 from 2010 and 32 from
2009, eliminating 13 papers, because they had no evaluation component relative to this discus-
sion. For the rest, we counted how many papers used each benchmark. Table 2.1 shows all the
benchmarks that we encountered and reports how many times each was used in each of the past
two years. The table also contains similar statistics from our previous study for 1999-2007 years.
We were disappointed to see how little consistency there was between papers. Ad-hoc testing—
making one’s own benchmark—was, by far, the most common choice. While several papers used
microbenchmarks for random read/write, sequential read/write and create/delete operations, they
were all custom generated. We found this surprising in light of the numerous existing tests that can
generate micro-benchmark workloads.

Some of the ad-hoc benchmarks are the result of new functionality: three papers provided ad-
hoc deduplication benchmarks, because no standard benchmarks exist. There were two papers
on systems designed for streaming, and both of those used custom workloads. However, in other
cases, it is completely unclear why researchers are developing custom benchmarks for OLTP or
parallel benchmarking. Some communities are particularly enamored with trace-based evaluations
(e.g., MSST). However, almost none of those traces are widely available: of the 14 “standard”
traces, only 2 (the Harvard traces and the NetApp CIFS traces) are widely available. When re-
searchers go to the effort to make traces, it would benefit the community to make them widely
available by depositing them with SNIA.

In summary, there is little standardization in benchmark usage. This makes it difficult for future
researchers to know what tests to run or to make comparisons between different papers.
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Benchmark Benchmark Type Used in papers
I/O | On-disk | Caching | Meta-data | Scaling | 1999-2007 | 2009-2010

IOmeter ° 2 3

Filebench o o o 3 5

I10zone o o ° 0 4

Bonnie o o 2 0

Postmark o o o ° 30 17

Linux compile o o o 6 3

Compile o ) o 38 14

(Apache,

openssh, etc.)

DBench o o o 1 1

SPECsfs o o o ° 7 1

Sort o o 0 5

IOR: /0 o o ° 0 1

Performance

Benchmark

Production * * * * 2 2

workloads

Ad-hoc * * * * * 237 67

Trace-based * * * * 7 18

custom

Trace-based * * * * 14 17

standard

BLAST 0 2

Flexible FS o ° 0 1

Benchmark

(FFSB)

Flexible I/O| o o o ) 0 1

tester (fio)

Andrew o o o 15 1

Table 2.1: Benchmarks Summary.
corresponding file system dimension; “o
sponding dimension; “x

[l

e 9

€C_ 9

¢” indicates the benchmark can be used for evaluating the
is the same but the benchmark does not isolate a corre-
is used for traces and production workloads



2.3 A Case Study

We performed a simple evaluation of Ext2 using Filebench 1.4.8 [35]. We picked Filebench be-
cause it seems to be gaining popularity: it was used in 3 papers in FAST 2010 and 4 in OSDI
2010. (Nevertheless, the problems outlined by this study are common to all other benchmarks we
surveyed.) The range of the workloads that Filebench can generate is broad, but we deliberately
chose a simple, well-defined workload: one thread randomly reading from a single file. It is re-
markable that even such a simple workload can demonstrate the multi-dimensional nature of file
system performance. More complex workloads and file systems will exploit even more dimen-
sions and consequently will require more attention during evaluation. Ext2 is a relatively simple
file system, compared to, say, Btrfs; more complex file systems should demonstrate more intricate
performance curves along performance dimensions.

In our experiments we measured the throughput and latency of the random read operation. We
used an Intel Xeon 2.8 GHz machine with a single SATA Maxtor 7L.250S0 disk drive as a testbed.
We artificially decreased the RAM to 512MB to facilitate our experiments. Section 2.3.1 describes
our observations related to the throughput, and Section 2.3.2 highlights the latency results.

2.3.1 Throughput

In our first experiment we increased
the file size from 64MB to 1024MB
in steps of 64MB. For each file size N Evmv——— 40
we ran the benchmark 10 times. The N
duration of the run was 20 minutes,
but to ensure steady-state results we
report only the last minute. Fig-
ure 2.1 shows the throughput and its
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448MB is readily apparent. The OS
consumes some of the 512 MB of Figure 2.1: Ext2 throughput and its relative standard devi-
RAM and the drop in performance ation under random read workload for various file sizes
corresponds to the point when the file

size exceeds the amount of memory available for the page cache.

So, what should a careful researcher report for the random read performance of Ext2? For
file sizes less than 384MB, we mostly exercise the memory subsystem; for file sizes greater than
448MB, we exercise the disk system. This suggests that researchers should either publish results
that span a wide range or make explicit both the memory- and I/O-bound performance.

It was surprising, at first, that such a sudden performance drop happens within a narrow range
of only 64MB. We zoomed into the region between 384MB and 448MB and observed that perfor-
mance drops within an even narrower region—Iless than 6MB in size. This happens because even a
single rare read operation that induces I/O lasts longer than thousands of in-memory operations—a
worsening problem in recent years as the gap between I/0O and memory/CPU speeds widens. More
modern file systems rely on multiple cache levels (using Flash memory or network). In this case



the performance curve will have multiple distinctive steps.

Figure 2.1 also shows the relative standard deviation for the throughput. The standard deviation
is not constant across the file sizes. In the I/O-bound range, the standard deviation is up to 5 times
greater than it is in the memory-bound range. This is unsurprising given the variability of disk
access times compared to the relative stability of memory performance. We observed that in the
transition region, where we move from being memory-bound to being disk-bound, the relative
standard deviation skyrockets by up to 35% (not visible on the figure because it only depicts data
points with a 64MB step). Just a few megabytes more (or less) available in the cache affect the
throughput dramatically in this boundary region. It is difficult to control the availability of just a
few megabytes from one benchmark run to another. As a result, benchmarks are very fragile: just a
tiny variation in the amount of available cache space can produce a large variation in performance.

We reported only the steady-state
performance in the above discussion;
is it correct to do so? We think not. In 10000
the next experiment we recorded the
throughput of Ext2, Ext3, and XFS
every 10 seconds. We used a 410MB
file, because it is the largest file that
fits in the page cache. Figure 2.2 de-
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file blocks are cached in memory. As 0 200 300 400 500 600 700 800 900 1000 1100 1200
a result all read operations go to the Time (sec)

disk, directly limiting the throughput Figure 2.2: Ext2, Ext3, and XFS throughput by time

of all the systems to that of the disk.

At the end of the experiment, the file is completely in the page cache and all the systems run at
memory speed. However, the performance of these file systems differs significantly between 4 and
13 minutes.

What should the careful researcher do? It is clear that the interesting region is in the transition
from disk-bound to memory-bound. Reporting results at either extreme will lead to the conclu-
sion that the systems behave identically. Depending on where in the transition range a researcher
records performance, the results can show differences ranging anywhere from a few percentage
points to nearly an order of magnitude! Only the entire graph provides a fair and accurate char-
acterization of the file system performance across this (time) dimension. Such graphs span both
memory-bound to I/O bound dimensions, as well as a cache warm-up period. Self-scaling bench-
marks [25] can collect data for such graphs.

2.3.2 Latency

File system benchmarks, including Filebench, often report an average latency for I/O operations.
However, average latency is not a good metric to evaluate user satisfaction when a latency-sensitive
application is in question. We modified Filebench to collect latency histograms [58] for the op-
erations it performs. We ran the same workload as described in the previous section for four
different file sizes spanning a wide range: 64MB, 1024MB, and 25GB. Figure 2.3 presents the
corresponding histograms. Notice that the X axes are logarithmic and that the units are in nanosec-
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onds (above) and log, bucket number (below). The Y axis units are the percentage of the total

number of operations performed.

For a 64MB file (Figure 2.3(a))
we see a distinctive peak around 4
microseconds. The file fits com-
pletely in memory, so only in-
memory operations contribute to the
latency.  When the file size is
1024MB we observe two peaks on
the histogram (Figure 2.3(b)). The
second peak on the histogram corre-
sponds to the read calls that miss in
the cache and go to disk. The peaks
are almost equal in height because
1024MB is twice the size of RAM
and, consequently, half of the ran-
dom reads hit in the cache (left peak),
while the other half go to disk (right
peak). Finally, for a file that is signifi-
cantly larger than RAM—25G in our
experiments—the left peak becomes
invisibly small because the vast ma-
jority of the reads end up as I/O re-
quests to the disk ((Figure 2.3(c)).
Clearly, the working set size impacts
reported latency significantly, span-
ning over 3 orders of magnitude.

In another experiment, we col-
lected latency histograms periodi-
cally over the course of the bench-
mark. In this case we used a 256MB
file that was located on Ext2. Fig-
ure 2.4 contains a 3-D representation
of the results. As the benchmark pro-
gresses, the peak corresponding to
disk reads (located near the 223 ns)
fades away and is replaced by the
peak corresponding to reads from the
page cache (around 2''ns). Again,
depending on exactly when measure-
ments are taken, even a careful re-
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Figure 2.4: Latency histograms by time (Ext2, 256MB file)

searcher might draw any of a number of conclusions about Ext2’s performance—anywhere from
concluding that Ext2 is very good, to Ext2 being very bad, and everywhere in between. Worse,
during most of the benchmark’s run, it is bi-modal: trying to achieve stable results with small
standard deviations is nearly impossible.
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Single number benchmarks rarely tell the whole story. We need to get away from the marketing-
driven single-number mindset to a multi-dimensional continuum mindset.

2.4 Conclusions

A file system is a complex piece of software with layers below and above it, all affecting its
performance. Benchmarking such systems is far more complex than any single tool, technique, or
number can represent. Yes, it makes our lives more difficult, but will greatly enhance the utility
of our work. Let’s begin by defining precisely what dimension(s) of file system behavior we are
evaluating. We believe that a file system benchmark should be a suite of nano-benchmarks where
each individual test measures a particular aspect of file system performance and measures it well.
Next, let’s get away from single-number reporting. File system performance is extremely sensitive
to minute changes in the environment. In the interest of full disclosure, let’s report a range of
values that span multiple dimensions (e.g., timeline, working-set size, etc.). We propose that at
a minimum, an encompassing benchmark should include in-memory, disk layout, cache warm-
up/eviction, and meta-data operations performance evaluation components.

Our community needs to buy in to doing a better job. We need to reach agreement on what
dimensions to measure, how to measure them, and how to report the results of those measurements.
Until we do so, our studies are destined to provide incomparable point answers to subtle and
complex questions.
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Chapter 3

Trace Replay

3.1 Introduction

I/O tracing is a popular tool in systems research; it is often used for workload characterization and
modeling, downtime prediction, capacity planning, performance analysis, and device modeling. In
this study we focus on trace replay: the re-execution of a trace to evaluate a system’s performance.
Trace replay is similar to an I/O benchmark, but there is a fundamental difference between running
a benchmark and replaying a trace. First, when one runs a benchmark, it is implicitly understood
that it is an artificial workload, even if it was designed to emulate reality [60]. In contrast, traces are
usually thought to be inherently realistic, since they often record a complex workload generated by
multiple real applications and users. Therefore, the expectation is that the results of a trace replay
will more closely represent the performance of a production system.

Second, benchmarks generally measure the peak performance of a system, whereas traces often
capture its typical performance. This is because most production systems are designed to handle
peak loads, and are thus underutilized most of the time [12]. A typical trace consists of many
workload valleys, when utilization is low, and plateaus, when the system is heavily loaded. So if
a trace is replayed by issuing the requests exactly at the times specified in the trace records (plain
replay), peak performance will not be measured over its entire duration. Furthermore, traces are
typically replayed on a newly designed and more powerful system than the one on which they were
originally collected. In this case, plain trace replay will always keep the system underutilized. So
traces need to be scaled up, yet there is no clear understanding of what that means. This study
discusses in detail the current approaches for replaying the traces and the issue of scaling replays
up. To the best of our knowledge, there has been no study of how the scaling of traces impacts
their representativeness.

Third, a problem unique to traces is that they are often captured at a single layer in a system
(e.g., system call, NFS, block-level), but the connection to the original workload is tenuous (with
the possible exception of system-call traces). Thus, there is a tension between the need to trace
at appropriate levels, which is usually driven by issues of system design and practicality, and the
need to accurately record the original workload.

The fourth and final problem is that even when multiple layers are studied, most traces do not
clearly identify inter-layer relationships. For example, it is not easy to distinguish whether an 1/0
request was caused by an incoming HTTP packet or generated due to the specifics of an implemen-
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Figure 3.1: The problems of commonly used replay approaches. Capital “T” denotes a trace’s
original timeline, and a small “t” is a timeline during the replay on a different (presumably more
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horizontal line ““s” represents the maximum queue supported by a device.

tation, e.g., periodic log file updates [26]. In fact, even if one attempts to record such relationships,
it can be very difficult to extract the necessary information from the operating system’s internal
data structures. For example, a dirty page may have been touched by two different processes, and
its eventual flush to disk may be a result of memory pressure from a third. It is unclear, when trying
to characterize a workload, which of these events is the “true” cause of the disk write.

Despite these limitations, trace replay is widely treated as a valid way to generate accurate and
realistic I/O workloads. In fact, the research community believes so much in trace replays that it
sometimes seems that there is a de facto expectation that a good paper must use trace replay in its
evaluation.

3.2 Related Work

Many studies have focused on flexible trace collection with minimal interference [10, 78]. Other
researchers have proposed trace-replaying frameworks for different layers in the I/O stack [9,128].
Since a trace contains information about the workload applied to the system, a number of papers
focused on trace-driven workload characterization [68, 86]. Many studies developed workload
models to generate synthetic workloads with nearly identical characteristics [18, 102]. The body
of research related to traces is large, yet we are not aware of any papers that have questioned
the realism of trace replay. There were, however, several studies that show similar problems in
synthetic benchmarks [80, 101].
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3.3 Approaches to Trace Replay

The first challenge in generating an accurate I/O workload is to select an appropriate trace replay
method that enables traces collected on one system to be representative on a completely different
system. This section discusses the most common replay approaches and shows limits of existing
approaches in their ability to scale the trace. We begin by discussing the three most common replay
methods: plain, accelerated, and infinitely accelerated. We then present less popular but possibly
more accurate methods.

Plain replay The most straightforward way to do replay is to issue requests at the exact times
specified in the trace. In Figure 3.1, we denote this method by ¢; = T}, where 7T; is a relative trace
time and ¢; is a relative replay time of request ?. Modern systems can service multiple requests
in parallel by queueing them and then dispatching requests as soon as the corresponding device
is free; the graph on the right side of Figure 3.1 schematically represents the length of the queue
during trace collection. The horizontal line shows the maximum queue length, s. When the queue
becomes full, no more requests can be accepted, and the submitter, e.g., the trace replayer or
benchmark, is blocked. As we will see later, this blocking behavior is of special importance in
trace replay.

Plain replay preserves idle periods and consequently is useful in evaluating certain types of
power-efficient systems which often switch to low power usage modes during light loads, e.g., by
spinning disks down. Sometimes plain replay also allows to test systems for bugs that are triggered
by some non-trivial sequence of events observed in a real system.

When plain trace replay is used on a system more powerful than the one where the trace was
collected—a common occurrence—then the queue is typically shorter; it never reaches maximum
size and will empty more easily, meaning that the system is idling more (Figure 3.1). Clearly, such
a replay does not stress the system and cannot be used to measure peak performance.

Constant acceleration One approach to scaling a trace is to issue all requests [V times earlier
than the times recorded in the trace. N is the acceleration factor, 2 in Figure 3.1. Under accel-
erated replay, the internal queue length for an evaluated system may be longer than for the traced
system; from time to time it can reach the maximum so that the submitter is blocked, as depicted in
Figure 3.1. There is no general recipe for selecting the acceleration factor. Different researchers se-
lect this parameter differently, usually without justifying the selection [128]. However, the choice
of this factor can result in quite different performance numbers.

Infinite acceleration To stress a system to its limit, the acceleration factor /N can be set to in-
finity, as shown in the last timeline in Figure 3.1. In this case, all workload valleys are converted
to plateaus, the internal queue is always full, and the replayer is always blocked. As soon as an
opening appears in the queue, a request is added to it and the submitter is blocked again on sub-
mission of the next request. Keeping the queue full at all times gives the system more opportunity
to perform on-line optimizations, such as request reordering and merging.
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Dependency-based Often, the up-

per layers in real systems submit new

requests only after getting the re- 4—
sponse from some previously sub- /

mitted requests. Previously consid- /

ered replay approaches completely 4—
neglect such dependencies. These

changes in the workload can signif-
icantly skew the results of a trace-
based evaluation. For example, Fig-
ure 3.2 shows the situation when the upper layers submit request 2; only after 17y is completed.
When R; is finished, both R, and R3 can be issued, but not R5. If dependency information is avail-
able, accelerated replay can take it into account to improve realism of the upper layers’ behavior.
The remaining question is when to issue independent requests, i.e., those that do not depend on
other requests, such as Ry and Rg in Figure 3.2. Possible but not ideal solutions are to submit inde-
pendent requests at the times specified in the trace, or as fast as possible, or with some acceleration
factor.

Figure 3.2: Request dependencies

Completion-time-based Although de-

pendency information is missing

from almost all captured traces, the ¢ ¢ ¢
i L,  TRTL T T

request completion time is some- | | >
times present. This gives us an op- R 0 =] >
portunity to approximate dependen- R1 [ | >
cies based on that information. The R EsTsossason sy >
general idea is to submit every re- 2

quest as soon as possible, but only if Figure 3.3: Completion-time-based replay

all requests that had previously com-

pleted in the original trace have also completed during the replay. Figure 3.3 depicts an example
for three requests. 7; is the recorded submission for the ¢-th request and 77 is the time it completed.
When replaying, R is submitted first, then R, immediately after that, because in the original trace
R, was submitted before R, had completed. However, R, is not submitted until R, completes,
just as in the original trace. Note that such an approximation can add extra dependencies that were
not present in the original workload, and that the replay can be done with either constant or infinite
acceleration.

3.4 Trace Replay Problems

Several fundamental issues prevent trace replay from accurately representing the original work-
load. They require close attention from the community before we can expect realism from a trace
replay. Solving these issues would require more complete trace capture tools, better replay tools,
and a much larger set of modern traces in standard formats disseminated to the community (e.g.,
via SNIA’s growing Trace Repository).
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Lack of dependencies Only a few currently available traces contain explicit information about
the dependencies between requests, which drastically complicates many operations on the traces.
Some attempts have been made to extract dependencies from existing traces, but extraction is a
difficult problem that can be addressed only with limited accuracy [128]. Detecting dependencies
while collecting a trace may be more feasible. For example, one can put trace points at several
layers in the I/O stack and detect when a single request at an upper layer induces a sequence of
dependent requests at a lower one.

Think time The time between the response from a lower layer and the submission of the next
(dependent) request is called think time; this often corresponds to an application’s computation
between I/O operations, and clearly affects performance. If the completion time for each request
is available in the trace, then it is possible to estimate think time. But it is unclear whether it
is possible to scale the think time to other systems with different CPU and memory resources,
especially when think time depends on other resources such as the network. Collecting information
on the sources of think time would improve our understanding of the original workload, enabling
more accurate replay.

I/0 stack Any change in the configuration of the layers in the I/O stack influences the workload.
For example, if a block-level trace is collected under Reiserfs, replaying it on an XFS-based system
would not correctly represent the latter’s performance. In fact, Reiserfs puts small files in the end
of the allocated blocks (tail packing), which decreases the total number of I/O operations for many
common workloads. Most traces omit information about the configuration of the I/O layers; we
think that it should be a duty of tracing software to collect the layer configuration [10]. When
realistic performance needs to be measured with high accuracy, then top-level traces (e.g., system
calls) should be replayed.

In addition, it is often difficult (and at times impossible) to generate intermediate-layer events
with exactly the same properties without bypassing the upper layers. Experiment 1 in Section 3.5
demonstrates this problem in detail. A clear interface between layers, accessible to the replayer,
can help mitigate this issue.

Replay duration Many available traces are sufficiently long to be representative and cover mul-
tiple days, weeks, or even months. Most researchers do not have a luxury of replaying the trace
for such a long time. On the other hand, replaying only a small sub-period of the trace might not
evaluate the system properly, since it may be unrepresentative of a longer-term workload. Two
possible approaches are to intelligently select only relevant sub-periods of the trace (e.g, workload
plateaus) or to randomly sample a large trace.

Workload variability As was mentioned in Section 3.3, the workload can vary significantly
within a trace: sometimes a system is highly utilized, but often it is not. Non-temporal work-
load properties, such as the I/O size distribution, can be quite different in plateaus and valleys.
For example, lightweight scrubbing software might run during the night and use larger 1/O sizes
compared to daily OLTP applications. Accelerated replay methods convert all workload valleys
to plateaus, but it may not be appropriate to evaluate a system based on the valley workload. One
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might consider looking only at peaks if we are interested in the peak performance, but that ap-
proach might mis-evaluate systems that favor peak workloads and exhibit bad performance for the
valleys. Perhaps, if a trace is to be replayed in an accelerated fashion, its peaks and valleys should
be separated and replayed separately.

Scaling across other parameters Traces often need to be scaled across dimensions other than
time. If a block trace contains an offset field, its value is clearly limited by the size of the traced
block device. How should the offset be scaled up for use on larger disks? Should the 1/O size also
be scaled, or not? These questions have no easy answers, and few studies have explored spatial
scaling [128].

Mmap-based accesses Modern applications use mmap heavily to improve performance [45].
This can significantly distort the results of system call traces because mmap events show up as
simple memory reads/writes. Unless the OS is modified to sample memory accesses for the pur-
pose of tracing (e.g., using the accessed and dirty bits in the page table), only page faults can be
recorded [59].

3.5 Evaluation

To demonstrate the significance of the aforementioned problems, we designed several simple ex-
periments that highlight them. The experiments are not meant to be complete, but rather are de-
signed to illustrate that the community’s expectations of trace replay realism are not always valid.

For our experiments we needed a reproducible workload generator; we used the Postmark
benchmark [60] since it is widely employed by many researchers. Real workloads are more com-
plex than what Postmark generates, so we expect our conclusions to hold even more strongly for
production traces. The configuration for Postmark was selected so that we stress both the file
system cache and disk I/O; it runs for at least 50 minutes on the slowest machine we tested. We
used four consecutive generations of Dell servers: SC1425 (vintage 2004), SC1850 (2005), 1800
(2006), and R710 (2009). We installed the same CentOS 6.0 distribution on all machines and
updated the Linux kernel to version 3.2.1. We ran Postmark and recorded a block trace on the old-
est machine (SC1425). We then replayed the collected trace on all four machines using different
replay approaches.

Experiment 1 The tool most commonly used for block trace replay on Linux is btreplay, which
is part of the blktrace package [21]. When we used it for plain replay on the SC1425, the de-
vice I/O queue length was never as high as during the original Postmark run (Figure 3.4). As
it turned out, when asynchronous I/O is used on a block device directly (the mode that is used
by btreplay) all requests have the SYNC flag set. On the other hand, most requests that passed
through the file system layer during the original Postmark run did not have this flag. Depend-
ing on the SYNC flag, the Linux I/O scheduler and drivers apply different policies to requests,
which results in different queue lengths. We implemented a patch for the Linux kernel and btre-
play to set the value of the flag as seen in the original trace and the accuracy improved signifi-
cantly (see Figure 3.4). This experiment demonstrates that in many cases it is difficult to generate
events with the required properties at an intermediate layer unless the upper layers are bypassed.
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Figure 3.4 also shows the queue
length for infinitely accelerated re-
play. As can be seen, the average
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throughput in operations per second

for both Postmark (PM) and the replay. The next two columns present the same information, nor-
malized to the performance of the SC1425. E.g., for SC1850, relative Postmark performance was
63/42 = 1.5, while relative replay performance was 3,741/1,812 = 2. The expectation is that
the normalized throughput of the Postmark run should roughly match that of the replay, meaning
that replay gives an accurate estimate of an application’s performance. The last column in Ta-
ble 3.1 shows the relative error between the normalized performances. We can see that the error is
significant and is not even in a predictable direction. Interestingly, the Dell 1800 exhibited lower
performance than the SC1425, which is related to the fact that write caching was disabled on the
Dell 1800’s controller. Because Postmark spends most of its time on I/O in this case, block-level
replay accurately reflects the throughput of the application.

3.6 Conclusions

For many years, trace replay has been thought to be a “gold standard” in performance evalua-
tion. However, our experiments have shown that it is difficult to replay a trace accurately even
on the system where it was collected. Replaying on systems with different characteristics is sure
to introduce anomalies that make performance measurements questionable at best. As a result,
investigators need to be aware of these pitfalls and should select their replay techniques carefully.

Host PM Replay | PM |Replay | error
(ops/sec) | (ops/sec) | (factor) | (factor) | (%)
SC1425 42 1,812 1 1 -
SC1850 63 3,741 1.5 2 +33%
1800 16 690 0.4 04 |<1%
R710 280 6,801 6.6 3.7 |—44%

Table 3.1: Postmark (PM) vs. Replay Results
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At the same time, further research is needed to develop methods and tools for scaling traces and
ensuring the validity of replay-based conclusions.
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Chapter 4

Trace to Workload Model Conversion

4.1 Introduction

Traces are a time-honored way to collect information about real-world workloads. The information
contained in traces allows a workload to be characterized using factors such as the exact size and
offset of each I/0 request, read/write ratio, ordering of requests, etc. By replaying a trace, users
can evaluate real-world system behavior, optimize a system based on that behavior, and compare
the performance of different systems [61,63, 68, 86].

Despite the benefits of traces, they are hard to use in practice. A trace collected on one system
cannot easily be scaled to match the characteristics of another. It is difficult to modify traces
systematically, e.g., by changing one workload parameter but leaving all others constant. Traces
are hard to describe and compare in terms that are easily understood by system implementors.
Large trace files are time-consuming to distribute and can affect the system’s behavior during
replay by polluting the page cache or causing an I/0 bottleneck [59].

In reviewing related work, we observed that in many cases replaying the exact trace is not
required. Instead, it is often sufficient to use a synthetic workload generator that accurately repro-
duces certain specific properties. For example, a particular system might be more sensitive to the
read-write ratio than to operation size. In this situation one does not really need to replay the trace
precisely; a synthetic workload that emulates that read-write ratio would suffice. Of course, this
example is simplistic, and in many cases one would be interested in more complex combinations
of the workload parameters. However, the general idea that only some properties of the trace affect
system behavior remains valid.

Because many systems respond only to a few parameters, researchers have developed many
benchmarks and synthetic workload generators, such as I0zone [22], Filebench [35], and Iome-
ter [85], which avoid many of the deficiencies of traces. But it can be difficult to configure a
benchmark so that it produces a realistic workload; simple ones are not sufficiently flexible, while
powerful ones like Filebench offer so many options that it can be daunting to select the correct
settings.

In this work we propose to fill the gap between traces and benchmarks by converting traces into
the languages of the benchmarks. We focus here on block traces due to their relative simplicity,
but we plan to extend this work to other trace types, e.g., file system and NFS.

Our system creates a universal representation of the trace, expressed as a multi-dimensional
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matrix in which each dimension represents the statistical distribution of a trace parameter or a
function. Each parameter is chosen to represent a specific workload property. We implemented the
most commonly used properties, such as I/O size, inter-arrival time, seek distance, read-write ratio,
etc. End users can easily add new ones as desired. For each benchmark, a small plugin converts
the universal trace matrix into the specific benchmark’s language.

Many workloads vary significantly during the tracing period. To address this issue, our system
supports trace chunking across time. Within each chunk, the workload is considered to be stable
and uniform and is expressed as a separate matrix. We use chunk deduplication to save space in
periods where the workload is the same.

We evaluated the accuracy of our system by generating models from several publicly available
traces. We first replayed each trace on a test system, observing throughput, latency, I/O queue
length and utilization, power consumption, request sizes, CPU and memory usage, and the num-
bers of interrupts and context switches. Then we emulated the trace by running benchmarks with
generated parameters on the same system, collected the same observations, and compared the re-
sults.

Our error was less than 10% on average, and 15% at most; it can be controlled by varying sev-
eral parameters. For a basic set of metrics, we converted a 1.4GB trace to the Filebench language
in only 30s. The resulting trace description was 60MB, or 23.3 x smaller.

4.2 Background and Motivation

Statistics Matter Trace replay is a common evaluation technique because, unlike any other test-
ing method, by definition traces represent reality. However, this realism comes at a price: the
trace represents one instance of one system at one point in time. The next day’s workload will
inevitably be different, as will the same workload on a system with different hardware, compet-
ing workloads, etc. In the worst case, these variations might cause a system to be unintentionally
optimized for an atypical operating point. Even if a trace accurately represents a target workload,
rapid changes in hardware performance make it difficult to evaluate a design on a modern machine
using measurements and traces captured on a different system only a few years earlier.

Our key observation is that for many purposes, statistics are what matter. The exact ordering
of operations, their precise timing, the blocks or files accessed, and many other details recorded in
a trace are variable and would change if it were re-recorded. Thus, when we replay a trace, we do
not necessarily want to reproduce every detail as precisely as possible; instead, we would like to
accurately represent its statistical properties.

An advantage of thinking of traces statistically is that they become much more flexible. For
example, a trace collected a decade ago would record accesses to only a fraction of the blocks on
a modern disk, and at a very different rate. Compared to a bulky trace, a statistical description is
much simpler to scale to a modern machine and therefore provides a convenient abstraction for
performing systematic evaluation of many systems.

Generating a good description requires representative trace properties to be selected. In general,
the most appropriate properties depend on the system being tested, so it is impossible to create a
complete list. For most purposes, however, the parameters of interest are well defined and widely
adopted, e.g., I/0 rate and distribution, read/write ratio. Thus, a statistical model of a trace should
be able to capture those parameters, and should be able to describe them in sufficient detail so
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that no important information is lost. In particular, we should not reduce complex, empirically
observed distributions to overly simple mathematical models, such as Poisson arrival processes,
without justification.

Some workloads may also exhibit nonstandard, or even undiscovered, properties that might
alter system behavior. It is therefore advisable to preserve the original traces to ensure these prop-
erties are retained. A workload generator can be adapted to include such characteristics once they
are identified.

System Response To evaluate a system empirically, workloads are applied and appropriate met-
rics measure its response. Performance is often characterized by throughput, latency, CPU utiliza-
tion, I/O queue length, and memory usage [104, 120]. Power consumption characterizes energy
efficiency [75,92].

In many papers, these metrics are summarized by statistics such as averages or distributions.
But as we argue above, it is often possible to accurately evaluate these metrics without resorting to
a full and detailed trace replay. If the system response to a trace emulation is similar to that of a
full replay, then emulation can replace full replay without biasing the results.

To evaluate the accuracy of our trace extraction and modeling system, we surveyed papers in
Usenix FAST conferences from 2008-2011 and noted that the frequently used metrics fell into
four categories: (1) throughput and latency; (2) I/O utilization and average I/O queue length;
(3) CPU utilization and memory usage; and (4) power consumption. Most of the surveyed papers
included 1-2 of these metrics, but in our study we evaluate all four types to ensure a comprehensive
comparison. We claim that if all response metrics are similar, then the trace is modeled properly.
We feel that our set of metrics is sufficiently representative and comprehensive to produce reliable
results. There is still a chance that an unmeasured response parameter may differ; but our system
is modular and easily extensible to emulate any additional metrics one desires.

Replay Methods We use system response to evaluate our trace emulation accuracy. However,
a system’s response depends on the replay method, and varies based on the goal of the study. To
study peak performance, traces are often accelerated [78, 105, 116, 128]. For power efficiency,
traces are usually replayed verbatim to preserve realistic idle periods [15,30]. To stress specific
subsystems, a subset of the trace is sometimes replayed [96]. Our workload models can emulate
existing trace-replay methods as well as more sophisticated ones.

4.3 Design

Our five design goals, in decreasing priority, are:
1. Accuracy: Ensure that trace replay and trace emulation yield matching evaluation results.

2. Flexibility: First, leverage existing powerful workload generators, rather than creating new
ones. Therefore, traces should be translated into models that can be accurately described
using the capabilities of existing benchmarks. Second, allow users to choose anything from
accurate yet bulky models to smaller but less precise ones.

3. Extensibility: Allow the model to include additional properties chosen by the user.
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4. Conciseness: The resulting model should be much smaller than the original trace.

5. Speed: The time to translate large traces should be reasonable even on a modest machine.

Feature Extraction The first step in our model-building process is to extract important features
from the trace. We first discuss how we extract parameters from workloads whose statistical char-
acteristics do not change over time, i.e., stationary workloads. Then we describe how to emulate a
non-stationary workload.

Each block trace record has a set of fields to describe the parameters of a given request. Fields
may include the operation type, offset or block number, I/O size, timestamp, etc. Our translator
is field-oblivious: it considers every parameter as a number. We designate these parameters as an
n-dimensional vector = (py, pa, ..., Pn). We define a feature function vector on p:

—

F= (B 51)s f2(F,82), oo fin (B 5m)) = F(5, 57)

Each feature function represents an analysis of some property of the trace; s; represents private
state data for the ¢-th feature function, which lets us define features across multiple trace entries
and parameters.

For example, assume that p; and p, represent the 1/O size and offset fields, respectively. We
can then define the simple feature functions f;—just the I/O size itself—and f,—the logarithmic
inter-arrival distance (offset difference between two consecutive requests):

= fl(ﬁ, 81) =DM

fo = fo(p, s2) = log(ps — so.prev_offset)
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Figure 4.2: Overall system design

requests of size less than 4KB and inter-arrival distance less than 1KB; of those, 38 were reads and
14 were writes.

By choosing a set of feature functions, users can adjust the workload representation to capture
any important trace features. By selecting an appropriate bucket granularity, users can control the
accuracy of the representation, trading off precision for computational complexity in the translator
and matrix size. Stage 1 in Figure 4.2 shows the translator’s role in the overall design.

Once the feature matrix has been created, the translator can perform a number of additional op-
erations on it: projection, summation along dimensions, computation of conditional probabilities,
and normalization. These operations can be used by the benchmark plugins (described below) to
calculate parameters. For example, using the matrix in Figure 4.1, a plugin might first sum across
the distance-vs.-size plane to calculate the total numbers of reads and writes, normalize these to
find P(read), and then generate benchmark code to conditionalize I/O size on the operation type.

Clearly, the choice of feature functions affects the quality of the emulation; currently the in-
vestigator must do this based on the insight into the particular system of interest, e.g., whether it
has been optimized for certain workloads that can be reflected in an appropriate feature function.
We have implemented a library of over a dozen standard feature functions based on those com-
monly found in the literature [32,34,69,76], including operation type, I/O size, offset distribution,
inter-arrival distance, inter-arrival time, process identifier, etc. New feature functions can easily be
added as needed to capture specialized system characteristics.

Benchmark Plugins Once a feature matrix has been constructed from a trace, it is possible
to use it directly as input to a workload generator. However, our goal in this research is not to
create yet another generator. Instead, we believe that it is best to build on the work of others by
using existing workload generators and benchmarks. This approach allows us to easily reuse all
the extensive facilities that these benchmarks provide. Many existing benchmarks offer a way
to configure the workload that they generate; some offer command-line configuration parameters
(e.g., IOzone [22] and Iometer [85]) while others offer a more extensive language for that purpose
(e.g., Filebench [35] and fio [36]).

Most existing benchmarks use statistical models to generate a workload. Some of them use
average parameter values; others use more complex distributions. In all cases, our feature matrices
contain all the information needed to control the models used by these benchmarks. A simple
plugin translates the feature matrix into a specific benchmark’s parameters or language. For some
benchmarks, the expressiveness of the parameters might limit the achievable accuracy, but even
then the plugin will help choose the best settings to emulate the original trace’s workload. Stage 3
in Figure 4.2 demonstrates the role of the benchmark plugins in the overall design.

For our initial investigations, we have implemented plugins for Filebench and 10zone. We
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chose Filebench for its flexibility, and IOzone because it is more suitable for micro-benchmarking.
We found that it was easy to add a plugin for a new benchmark, since only a single function has
to be registered with the translator. The size of the function depends on the number of feature
functions and the complexity of the target benchmark.

Chunking Many real-world traces are non-stationary: their statistical characteristics vary over
time. This is especially true for traces that cover several hours, days, or weeks. However, most
workload generators apply a stationary load, and cannot vary it over time. We address this issue
with trace chunking: splitting a trace into chunks by time, such that the statistics of any given chunk
are relatively stable. Finding chunk boundaries is difficult, so we first use a constant user-defined
chunk size, measured in seconds. For each chunk, we compute a feature matrix independently;
this results in a sequence of matrices. We then convert these fixed chunks into variable-sized
ones by feeding the matrices to a deduplicator that merges adjacent similar matrices (Stage 2
in Figure 4.2). This optimization works well because many traces remain stable for extended
periods before shifting to a different workload mode. We normalize the matrices before comparing
them, so that the absolute number of requests in a chunk does not affect the comparison. We
use the maximum distance between matrix cells as a metric of similarity. When two matrices are
found to be similar, we average their values and use the result to represent the workloads in the
corresponding time chunks.

Besides detecting varying workload phases, the deduplication process also reduces the model
size. To achieve even further compression, we support all-ways deduplication: every chunk in a
trace is deduplicated against every other chunk (not just adjacent ones).

Along with the matrices, we generate a time-to-matrices map that serves as an additional input
to the benchmark plugins. If the target benchmark is unable to support a multi-phase workload,
the plugin generates multiple invocations with appropriate parameters.

In the example in Figure 4.2, we set the trace duration to 60s and the initial chunk size to 10s,
so the translator generated six matrices. After all-ways deduplication, only two remained.

4.4 Implementation

Traces from different sources often have different formats. We wanted our translator to be efficient
and portable. We chose the efficient and flexible DataSeries format [8]—recommended by the
Storage Networking Industry Association (SNIA)—and we selected SNIA’s draft block-trace se-
mantics [95]. We wrote converters to allow experimentation with existing traces in other formats.
We also created a block-trace replayer for DataSeries, which supports several commonly used re-
play modes. In total we wrote about 3,700 LoC: 1,500 in the translator, 800 in the converters,
1,000 in the DataSeries replayer, and 400 in the Filebench and 10zone plugins. We plan to release
these publicly.

4.5 Evaluation

To evaluate the accuracy, conversion speed, and compression of our system, we used multiple
micro-benchmarks and a variety of real traces. In this study we present evaluation results based
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Characteristic Financel | MS-WBS
Duration 12 hours | 1.5 hours
Reads/Writes (10°) 1.2/4.1 0.7/0.6
Avg 1/0 size 3.5KB 20KB
Seq. Requests 11 % 47%

Table 4.1: High-level characteristics of the used traces

on two traces: Financel [72] and MS-WBS [62]. The Financel trace captures the activity of
several OLTP applications running at two large financial institutions. The MS-WBS traces were
collected from daily builds of the Microsoft Windows Server operating system. The high-level
characteristics of the traces are presented in Table 4.1.

It is fair to assume that the accuracy of our translator might depend on the system under eval-
uation. In our experiments we used a spectrum of block devices: various disk drives, flash drives,
RAIDs, and even virtual block devices. In this study we present results from two extremes of the
spectrum. In the first experimental setup—Setup P—we used a Physical machine with an external
SCSI Seagate Cheetah 300GB disk drive connected through an Adaptec 39320 controller. The
fact that the drive was powered externally allowed us to measure its power consumption using a
WattsUp meter [115].

The second experimental setup (Setup V) is an enterprise-class system that has a Virtual ma-
chine running under the VMware ESX 4.1 Hypervisor. The VM accesses its virtual disks on an
NFS server backed by a GPFS parallel file system [51,91]. The VM runs CentOS 6.0; the ESX and
GPEFS servers are IBM System x3650’s, with GPFS using a DS4700 storage controller. Accuracy
metrics were recorded at the NFS/GPES server.

On both setups, we first replayed

traces and then emulated them using
Filebench. In all experiments we set read-replay
the chunk size to 20s and enabled 250 [
all feature functions. We chose the
matrix granularity for each dimen-
sion experimentally, by gradually de-
creasing it until the accuracy began
to drop. During all runs we collected
the accuracy parameters specified in
Section 4.2 using the iostat, vmstat,
and wattsup tools; we plotted graphs
showing the value of each accuracy
parameter versus time for both re-
play and emulation. Due to limited 05 = - = - prs prs ve o
space, we only present the graphs for Time (100 sec)
a few representative accuracy param-
eters. However, we give the average
and maximum emulation error for all
experiments.
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Figure 4.3: Reads and writes per second, Setup P, Finl
trace.
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Figure 4.3 depicts how the throughput—for both reads and writes—changes with time for the
Financel trace. The replay was performed with infinite acceleration; it took about 5 hours to com-
plete on Setup P. The trace emulation line closely follows the replay line; the Root Mean Square
(RMS) distance is lower than 6% and the maximum distance is below 15%. In the beginning of the
run, read throughput was 4 times higher then later in the trace. By inspecting the model we found
that the workload exhibits high sequentiality in the beginning of the trace. After startup, the read
throughput falls to 50-100 ops/s, which is reasonable for an OLTP-like workload and our hard-
ware. The write performance is 2—-2.5 times higher than for read, due to the controller’s write-back
cache that makes writes more sequential.

Figure 4.4 depicts disk-drive
power consumption in Setup P dur-
ing a 10-minute non-accelerated re-  * ' ' ' S ——
play and emulation of the MS-WBS :Z s -
trace. In the first 5 minutes trace ac- § _| . Replay
tivity was low, resulting in low power . . . . .
usage. Later, a burst of random disk ° 10 20 Ti;i‘isamds, 490 %0 o0
requests increased power consump-
tion by almost 40%. The emulation
line deviates from the replay line by
an average of 6%.

In Setup V, the GPFS server was
caching requests coming from a vir-
tual machine. As a result, the run oo | menn:eémﬁgagigg‘
time of the Finl trace was only 75 R
minutes. The memory and CPU con- 800
sumption of the GPFS server during
this time are shown in Figure 4.5.
Memory usage rises steadily, increas-
ing by about 5S00MB by the end of 200 - {2
the run, which is the working-set
size of the Finl trace. Discrepan— 0 50 100 150 200 250 300 350 w00 450
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are within 10%, but there are visible Figure 4.5: Memory and CPU usage, Setup P, Finl1 trace.
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deviations at times when the memory

usage steps up. We attribute this to the complexity of the GPFS’s cache policy, which is affected
by a workload parameter that we did not emulate. CPU utilization remained steadily about 10%
for both replay and emulation.

Figure 4.6 summarizes the errors for all parameters, for both setups and traces. The maximum
emulation error was below 15% and RMS distance was 10% on average. Although the maximum
discrepancy might seem high, Figure 4.3 shows sufficient behavioral accuracy.

The selection of feature matrix dimensions is vital for achieving high accuracy. If a system is
sensitive to a workload property that is missing in the feature matrix, accuracy can suffer. For ex-
ample, disk- and SSD-based storage systems may have radically different queuing and prefetching
policies. To ensure high-fidelity replays across both types of systems, the feature matrix should
capture the impact of appropriate parameters.
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The chunk size and matrix gran-
ularity also affect the model’s accu-
racy. Our general strategy is to se-
lect these parameters liberally at first
(e.g., 100s chunk size and 1MB gran-
ularity for I/O size) and then grad-
ually and repeatedly restrict them
(e.g., 10s chunk size, 1KB I/O size)
as needed until the desired accuracy
is achieved. One can always be guar-
anteed to get high enough accuracy if
sufficiently small numbers are used.

Conversion Speed and Model Size
The speed of conversion and the size
of the resulting model depend on the
trace length and the translator param-
eters. On our 2.5GHz server, traces
were converted at about 50MB/s,
which is close to the throughput of
the 7200RPM disk drive. The re-
sulting model without deduplication
was of approximately 10-15% size
of the original trace. Deduplication
removed over 60% of the chunks in
both the Finl and MS-WBS traces,
resulting in a final model size reduc-
tion of 94-96%. All sizes were mea-
sured after compressing both traces
and models using gzip.

4.6 Related Work

The body of research related to traces
is large; we cite only a represen-
tative sample. Many studies have
focused on accurate trace collection
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Figure 4.6: Root Mean Square (RMS) and maximum rel-
ative distances of accuracy parameters for two traces and
two systems.

with minimum interference [7, 10, 64,78, 81]. Other researchers have proposed trace-replaying
frameworks at different layers in the storage stack [9, 59, 128, 128, 129]. Since a trace contains
information about the workload applied to the system, a number of works focused on trace-driven
workload characterization [62,63,68,86]. N. Yadwadkar proposed to identify an application based

on its trace [122].

After a workload is characterized, a few researchers have suggested a workload model that
allows them to generate synthetic workloads with identical characteristics [18, 37, 38,41, 48, 49,
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113,114, 126]. These works address only one or two workload properties, whereas we present
a general framework for any number of properties. Also, we chunk data and generate workload
expressions for the languages of already existing benchmarks.

The two projects most closely related to ours are Distiller [70] and Chen’s Workload Ana-
lyzer [26]. Distiller’s main goal is to identify important workload properties. We can use this
information to intelligently define dimensions for our feature matrix. Chen uses machine learning
techniques to identify the dependencies between workload features. However, the authors do not
emulate traces based on the extracted information.

4.7 Conclusions

We have created a system that extracts flexible workload models from large I/O traces. Through
the novel use of chunking, we support traces with time-varying statistical properties. In addition,
trace extraction is tunable, allowing model accuracy and size to be traded off against creation time.
Existing I/O benchmarks can readily use the generated model by implementing a plugin. Our
evaluation with Filebench and several block traces demonstrated that the accuracy of generated
models approaches 95%, while the model size is less than 6% of the original trace size. Such
concise models allow easy comparison, scaling and other modifications.
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Chapter 5

Realistic Dataset Generation

5.1 Introduction

The amount of data that enterprises need to store increases faster than prices drop, causing busi-
nesses to spend ever more on storage. One way to reduce costs is deduplication, in which repeated
data is replaced by references to a unique copy; this approach is effective in cases where data
is highly redundant [57,79, 87]. For example, typical backups contain copies of the same files
captured at different times, resulting in deduplication ratios as high as 95% [42]. Likewise, virtu-
alized environments often store similar virtual machines [57]. Deduplication can be useful even
in primary storage [79], because users often share similar data such as common project files or
recordings of popular songs.

The significant space savings offered by deduplication have made it an almost mandatory part
of the modern enterprise storage stack [28,83]. But there are many variations in how deduplication
is implemented and which optimizations are applied. Because of this variety and the large num-
ber of recently published papers in the area, it is important to be able to accurately compare the
performance of deduplication systems.

The standard approach to deduplication is to divide the data into chunks, hash them, and look
up the result in an index. Hashing is straightforward; chunking is well understood but sensitive to
parameter settings. The indexing step is the most challenging because of the immense number of
chunks found in real systems.

The chunking parameters and indexing method lead to three primary evaluation criteria for
deduplication systems: (1) space savings, (2) performance (throughput and latency), and (3) re-
source usage (disk, CPU, and memory). All three metrics are affected by the data used for the
evaluation and the specific hardware configuration. Although previous storage systems could be
evaluated based only on the I/O operations issued, deduplication systems need the actual content
(or a realistic re-creation) to exercise caching and index structures.

Datasets used in deduplication research can be roughly classified into two categories. (1) Real
data from customers or users, which has the advantage of representing actual workloads [29, 79].
However, most such data is restricted and has not been released for comparative studies. (2) Data
derived from publicly available releases of software sources or binaries [54, 121]. But such data
cannot be considered as representative of the general user population. As a result, neither academia
nor industry have wide access to representative datasets for unbiased comparison of deduplication
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systems.

We created a framework for controllable data generation, suitable for evaluating deduplication
systems. Our dataset generator operates at the file-system level, a common denominator in most
deduplication systems: even block- and network-level deduplicators often process file-system data.
Our generator produces an initial file system image or uses an existing file system as a starting
point. It then mutates the file system according to a mutation profile. To create profiles, we
analyzed data and meta-data changes in several public and private datasets: home directories,
system logs, email and Web servers, and a version control repository. The total size of our datasets
approaches 10TB; the sum of observation periods exceeds one year, with the longest single dataset
exceeding 6 months’ worth of recordings.

Our framework is versatile, modular, and efficient. We use an in-memory file system tree
that can be populated and mutated using a series of composable modules. Researchers can easily
customize modules to emulate file system changes they observe. After all appropriate mutations
are done, the in-memory tree can be quickly written to disk. For example, we generated a 4TB file
system on a machine with a single drive in only 13 hours, 12 of which were spent writing data to
the drive.

5.2 Previous Datasets

To quantify the lack of readily available and representative datasets, we surveyed 33 deduplication
papers published in major conferences in 2000-2011: ten papers were Usenix ATC, ten in Usenix
FAST, four in SYSTOR, two in IEEE MSST, and the remaining seven elsewhere. We classified 120
datasets used in these papers as: (1) Private datasets accessible only to particular authors; (2) Public
datasets which are hard or impossible to reproduce (e.g., CNN web-site snapshots on certain dates);
(3) Artificially synthesized datasets; and (4) Public datasets that are easily reproducible by anyone.

We found that 29 papers (89%) used at least one private dataset for evaluation. The remaining
four papers (11%) used artificially synthesized datasets, but details of the synthesis were omitted.
This makes it nearly impossible to fairly compare many papers among the 33 surveyed. Across
all datasets, 64 (53%) were private, 17 (14%) were public but hard to reproduce, and 11 (9%)
were synthetic datasets without generation details. In total, 76% of the datasets were unusable for
cross-system evaluation. Of the 28 datasets (24%) we characterized as public, twenty were smaller
than 1GB in logical size, much too small to evaluate any real deduplication system. The remaining
eight datasets contained various operating system distributions in different formats: installed, ISO,
or VM images.

Clearly, the few publicly available datasets do not adequately represent the entirety of real-
world information. But releasing large real datasets is challenging for privacy reasons, and the
sheer size of such datasets makes them unwieldy to distribute. Some researchers have suggested
releasing hashes of files or file data rather than the data itself, to reduce the overall size of the
released information and to avoid leaking private information. Unfortunately, hashes alone are in-
sufficient: much effort goes into chunking algorithms, and there is no clear winning deduplication
strategy because it often depends on the input data and workload being deduplicated.

32



5.3 Emulation Framework

In this section we first explain the generic approach we took for dataset generation and justify why
it reflects many real-world situations. We then present the main components of our framework and
their interactions. For the rest of the chapter, we use the term meta-data to refer to the file system
name-space (file names, types, sizes, directory depths, etc.), while content refers to the actual data
within the files.

5.3.1 Generation Methods

Real-life file systems evolve over time as users and applications create, delete, copy, modify, and
back up files. This activity produces several kinds of correlated information. Examples include
1) Identical downloaded files; 2) Users making copies by hand; 3) Source-control systems mak-
ing copies; 4) Copies edited and modified by users and applications; 5) Full and partial backups
repeatedly preserving the same files; and 6) Applications creating standard headers, footers, and
templates.

To emulate real-world activity, one must account for all these sources of duplication. One
option would be to carefully construct a statistical model that generates duplicate content. But it
is difficult to build a statistics-driven system that can produce correlated output of the type needed
for this project. We considered directly generating a file system containing duplicate content, but
rejected the approach as impractical and non-scalable.

Instead, we emulate the evolution of real file systems. We begin with a simulated initial snap-
shot of the file system at a given time. (We use the term “snapshot” to refer to the complete state
of a file system; our usage is distinct from the copy-on-write snapshotting technology available
in some systems.) The initial snapshot can be based on a live file system or can be artificially
generated by a system such as Impressions [2]. In either case, we evolve the snapshot over time
by applying mutations that simulate the activities that generate both unique and duplicate content.
Because our evolution is based on the way real users and applications change file systems, our
approach is able to generate file systems and backup streams that accurately simulate real-world
conditions, while offering the researcher the flexibility to tune various parameters to match a given
situation.

Our mutation process can operate on file systems in two dimensions: space and time. The
“space” dimension is equivalent to a single snapshot, and is useful to emulate deduplication in pri-
mary storage (e.g., if two users each have an identical copy of the same file). “Time” is equivalent
to backup workloads, which are very common in deduplication systems, because snapshots are
taken within some pre-defined interval (e.g., one day). Virtualized environments exhibit both di-
mensions, since users often create multiple virtual machines (VMs) with identical file systems that
diverge over time because they are used for different purposes. Our system lets researchers create
mutators for representative VM user classes and generate appropriately evolved file systems. Our
system’s ability to support logical changes in both space and time lets it evaluate deduplication for
all major use cases: primary storage, backup, and virtualized environments.
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Figure 5.1: Action modules and their relationships. Double-boxed rectangles represent action
modules and rectangles with rounded corners designate fstrees and other inputs and outputs.

5.3.2 Fstree Objects

Deduplication is usually applied to large datasets with hundreds of GB per snapshot and dozens of
snapshots. Generating and repeatedly mutating a large file system would be unacceptably slow, so
our framework performs most of its work without I/O. Output happens only at the end of the cycle
when the actual file system is created.

To avoid excess I/O, we use a small in-memory representation—an fstree—that stores only
the information needed for file system generation. This idea is borrowed from the design of
Filebench [35]. The fstree contains pointers to directory and file objects. Each directory tracks
its parent and a list of its files and sub-directories. The file object does not store the file’s com-
plete content; instead, we keep a list of its logical chunks, each of which has an identifier that
corresponds to (but is not identical to) its deduplication hash. We later use the identifier to gener-
ate unique content for the chunk. We use only 4 bytes for a chunk identifier, allowing up to 232
unique chunks. Assuming a 50% deduplication ratio and a 4KB average chunk size, this can rep-
resent 32TB of storage. Note that a single fstree normally represents a single snapshot, so 32TB is
enough for most modern datasets. For larger datasets, the identifier field can easily be expanded.

To save memory, we do not track per-object user or group IDs, permissions, or other properties.
If this information is needed in a certain model (e.g., if some users modify their files more often
than others), all objects have a variable-sized private section that can store any information required
by a particular emulation model.

The total size of the fstree depends on the number of files, directories, and logical chunks. File,
directory, and chunk objects are 29, 36, and 20 bytes, respectively. Representing a 2TB file system
in which the average file was 16KB and the average directory held ten files would require 9GB
of RAM. A server with 64GB could thus generate realistic 14TB file systems. Note that this is
the size of a single snapshot, and in many deduplication studies one wants to look at 2—3 months
worth of daily backups. In this case, one would write a snapshot after each fstree mutation and then
continue with the same in-memory fstree. In such a scenario, our system is capable of producing
datasets of much larger sizes; e.g., for 90 full backups we could generate 1.2PB of test data.

Our experience has shown that it is often useful to save fstree objects (the object, not the full file
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system) to persistent storage. This allows us to reuse an fstree in different ways, e.g., representing
the behavior of different users in a multi-tenant cloud environment. We designed the fstree so that
it can be efficiently serialized to or from disk using only a single sequential I/O. Thus it takes less
than two minutes to save or load a 9GB fstree on a modern 100MB/sec disk drive. Using a disk
array can make this even faster.

5.3.3 Fstree Action Modules

An fstree represents a static image of a file system tree—a snapshot. Our framework defines
several operations on fstrees, which are implemented by pluggable action modules; Figure 5.1
demonstrates their relationships. Double-boxed rectangles represent action modules; rounded ones
designate inputs and outputs.

FS-SCAN One way to obtain an initial fstree object (to be synthetically modified later) is to scan
an existing file system. The FS-SCAN module does this: it scans content and meta-data, creates file,
directory, and chunk objects, and populates per-file chunk lists. Different implementations of this
module can collect different levels of detail about a file system, such as recognizing or ignoring
symlinks, hardlinks, or sparse files, storing or skipping file permissions, using different chunking
algorithms, etc.

Total Total files | Snapshots | Avg. snapshot Avg. number of files
Name size (GB) | (thousands) | & period size (GB) in a snapshot (thousands)
Kernels 13 903 40 0.3 23
CentOS 36 1,559 8 4.5 195
Home 3,482 15,352 15 weekly 227 1,023
MacOS 4,080 83,220 71 daily 59 1,173
System Logs 626 2,672 8 weekly 78 334
Sources 1,331 1,112 8 weekly 162 139

Table 5.1: Summary of analyzed datasets.

FS-PROFILE, FS-IMPRESSIONS, and FS-POPULATE Often, an initial file system is not avail-
able, or cannot be released even in the form of an fstree due to sensitive data. FS-PROFILE, FS-
IMPRESSIONS, and FS-POPULATE address this problem. FS-PROFILE is similar to FS-SCAN, but
does not collect such detailed information, instead gathering only a statistical profile. The specific
information collected depends on the implementation, but we assume it does not reveal sensitive
data. We distinguish sub-parts: the meta profile, which contains statistics about the meta-data, and
the content profile.

Several existing tools can generate a static file system image based on a meta-data profile [2,
35], and any of these can be reused by our system. A popular option is Impressions [2], which
we modified to produce an fstree object instead of a file system image (FS-IMPRESSIONS). This
fstree object is empty, meaning it contains no information about file contents. FS-POPULATE fills
an empty fstree by creating chunks based on the content profile. Our current implementation takes
the distribution of duplicates as a parameter; more sophisticated versions are future work.
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The left part of Figure 5.1 depicts the two current options for creating initial fstrees. This study
focuses on the mutation module (below).

FS-MUTATE FS-MUTATE is a key component of our approach. It mutates the fstree according
to the changes observed in a real environment. Usually it iterates over all files and directories in
the fstree and deletes, creates, or modifies them. A single mutation can represent weekly, daily, or
hourly changes; updates produced by one or more users; etc. FS-MUTATE modules can be chained
as shown in Figure 5.1 to represent multiple changes corresponding to different users, different
times, etc. Usually, a mutation module is controlled by a parameterized profile based on real-
world observations. The profile can also be chosen to allow micro-benchmarking, such as varying
the percentage of unique chunks to observe changes in deduplication behavior. In addition, if a
profile characterizes the changes between an empty file system and a populated one, FS-MUTATE
can be used to generate an initial file system snapshot.

FS-CREATE After all mutations are performed, FS-CREATE generates a final dataset in the form
needed by a particular deduplication system. In the most common case, FS-CREATE produces a
file system by walking through all objects, creating the corresponding directories and files, and
generating file contents based on the chunk identifiers. Content generation is implementation-
specific; for example, contents might depend on the file type or on an entropy level. The important
property to preserve is that the same chunk identifiers result in the same content, and different
chunk identifiers produce different content. FS-CREATE could also generate tar-like files for input
to a backup system, which can be significantly faster than creating a complete file system because
it can use sequential writes. FS-CREATE could also generate only the files that have changed since
the previous snapshot, emulating data coming from an incremental backup.

5.4 Datasets Analyzed

To create a specific implementation of the framework modules, we analyzed file system changes
in six different datasets; in each case, we used FS-SCAN to collect hashes and file system tree
characteristics. We chose two commonly used public datasets, two collected locally, and two
originally presented by Dong et al. [29].

Table 5.1 describes important characteristics of our six datasets: total size, number of files,
and per-snapshot averages. Our largest dataset, MacOS, is 4TB in size and has 83 million files
spanning 71 days of snapshots.

Kernels: Unpacked Linux kernel sources from version 2.6.0 to version 2.6.39.

CentOS: Complete installations of eight different releases of the CentOS Linux distribution from
version 5.0 to 5.7.

Home: Weekly snapshots of students’ home directories from a shared file system. The files con-
sisted of source code, binaries, office documents, virtual machine images, and miscellaneous
files.
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MacOS: A Mac OS X Enterprise Server that hosts various services for our research group: email,
mailing lists, Web-servers, wiki, Bugzilla, CUPS server, and an RT trouble-ticketing server.

System Logs: Weekly unpacked backups of a server’s /var directory, mostly consisting of emails
stored by a list server.

Sources: Weekly unpacked backups of source code and change logs from a Perforce version con-
trol repository.

Of course, different environments can produce significantly different datasets. For that reason,
our design is flexible, and our prototype modules are parameterized by profiles that describe the
characteristics of a particular dataset’s changes. If necessary, other researchers can use our profile
collector to gather appropriate distributions, or implement a different FS-MUTATE model to express
the changes observed in a specific environment.

For the datasets that we analyzed, we will release all profiles and module implementations
publicly. We expect that future studies following this project will also publish their profiles and
mutation module implementations, especially when privacy concerns prevent the release of the
whole dataset. This will allow the community to reproduce results and better compare one dedu-
plication system to another.

5.5 Module Implementations

There are many ways to implement our framework’s modules. Each corresponds to a model that
describes a dataset’s behavior in a certain environment. An ideal model should capture the char-
acteristics that most affect the behavior of a deduplication system. In this section we first ex-
plore the space of parameters that can affect the performance of a deduplication system, and then
present a model for emulating our datasets’ behavior. Our implementation can be downloaded
from https://avatar.fsl.cs.sunysb.edu/groups/deduplicationpublic/.

5.5.1 Space Characteristics

Both content and meta-data charac-
teristics are important for accurate

evaluation of deduplication systems. Content Characterization
Figure 5.2 shows a rough classifica- /%\\‘
tion of relevant dataset characteris- Total number Unique chunks Duplicates Entropy Run

. . R . of chunks count distribution ~ distribution length
tics. The list of properties in this sec-

tion is not intended to be complete, Meta—data Characterization

but rather to demonstrate a variety of File File size  Directory depth ~ Symlinks, Owner, Change

parameters that it might make sense Types distribution distribution hardlinks, ~permissions type
sparse files

to model.

Previous research has primarily Figure 5.2: Content and meta-data characteristics of file
focused on characterizing static file systems that are relevant to deduplication system perfor-
system snapshots [2]. Instead, we are mance.
interested in characterizing the file
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system’s dynamic properties (both content and meta-data). Extending the analysis to multiple
snapshots can give us information about file deletions, creations, and modifications. This in turn
will reflect on the properties of static snapshots.

Any deduplication solution divides a dataset into chunks of fixed or variable size, indexes their
hashes, and compares new incoming chunks against the index. If a new hash is already present,
the duplicate chunk is discarded and a mapping that allows the required data to be located later is
updated.

Therefore, the total number of chunks and the number of unique chunks in a dataset affects
the system’s performance. The performance of some data structures used in deduplication systems
also depends on the distribution of duplicates, including the percentage of chunks with a certain
number of duplicates and even the ordering of duplicates. E.g., it is faster to keep the index of
hashes in RAM, but for large datasets a RAM index may be economically infeasible. Thus, many
deduplication systems use sophisticated index caches and Bloom filters [127] to reduce RAM costs,
complicating performance analysis.

For many systems, it is also important to capture the entropy distribution inside the chunks,
because most deduplication systems support local chunk compression to further reduce space.
Compression can be enabled or disabled intelligently depending on the data type [65].

A deduplication system’s performance depends not only on content, but also on the file sys-
tem’s meta-data. When one measures the performance of a conventional file system (without
deduplication), the file size distribution and directory depth strongly impact the results [3]. Dedu-
plication is sometimes an addition to existing conventional storage, in which case file sizes and
directory depth will also affect the overall system performance.

The run lengths of unique or duplicated chunks can also be relevant. If unique chunks follow
each other closely (in space and time), the storage system’s I/O queues can fill up and throughput
can drop. Run lengths depend on the ways files are modified: pure extension, as in log files; simple
insertion, as for some text files; or complete rewrites, as in many binary files. Run lengths can also
be indirectly affected by file size distributions, because it often happens that only a few files in
the dataset change from one backup to another, and the distance between changed chunks within a
backup stream depends on the sizes of the unchanged files.

Content-aware deduplication systems sometimes use the file header to detect file types and
improve chunking; others use file owners or permissions to adjust their deduplication algorithms.
Finally, symlinks, hardlinks, and sparse files are a rudimentary form of deduplication, and their
presence in a dataset can affect deduplication ratios.

Dependencies An additional issue is that many of the parameters mentioned above depend on
each other, so considering their statistical distributions independently is not possible. For example,
imagine that emulating the changes to a specific snapshot requires removing N files. We also
want the total number of chunks to be realistic, so we need to remove files of an appropriate size.
Moreover, the distribution of duplicates needs to be preserved, so the files that are removed should
contain the appropriate number of unique and duplicated chunks. Preserving such dependencies is
important, and our FS-MUTATE implementation (presented next) allows that.
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5.5.2 Markov & Distribution (M&D) Model

We call our model M&D because it is based on two abstractions: a Markov model for classifying
file changes, and a multi-dimensional distribution for representing statistical dependencies between
file characteristics.

Markov model Suppose we have
two snapshots of a file system taken
at two points in time: F and F;. We
classify files in Fj and F} into four
sets: 1) Fy,;: files that exist in Fj,
but are missing in F. 2) F,,: files
that exist in F}, but are missing in
Fy. 3) F,,.q: files that exist in both fj
and F7i, but were modified. 4) F},..04:
files in Iy and Fj that were not mod-
ified. The relationship between these
sets is depicted in Figure 5.3. In our
study, we identify files by their full Ejgure 5.3: Classification of files. Fy and F} are files from
pathname, i.e., a file in the second (o subsequent snapshots.

snapshot with the same pathname as

one in the first is assumed to be a later version of the same file.

Analysis of our datasets showed
that the file sets defined above re-
main relatively stable. Files that
were unmodified between snapshots
Fy, — F} tended to remain unmod-
ified between snapshots F; — Fs.
However, files still migrate between
sets, with different rates for different
datasets. To capture such behavior
we use the Markov model depicted
in Figure 5.4. Each file in the fstree
has a state assigned to it in accor-
dance with the classification defined
earlier. In the fstree representing the
first snapshot, all files have the New
state. Then, during mutation, the
file states change with precalculated
probabilities that have been extracted
by looking at a window of three real
snapshots, covering two file transitions: between the first and second snapshots and between the
second and third ones. This is the minimum required to allow us to calculate conditional proba-
bilities for the Markov model. For example, if some file is modified between snapshots Fy — F}
and is also modified in F; — F3, then this is a Modified—Modified (MM) transition. Counting

Fyiot > F,

FO — initial snapshot

| - later snapshot
Fiereea = Fo\Fy
Frew=F1\F

Fiod Y Funmoa = FoF

P(N) P(D)

Deleted

Figure 5.4: Markov model for handling file states. State
transitions are denoted by the first letters of the source
and destination states. For example, NM denotes a
New—Modified transition and P(NM) is the transition’s
probability.
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Dataset N NM|NU/ND MU MD MM | UM | UD UU |[DN| D

Kernels 5| 32 | 65 3 49 3 48 17 3 80 | 1 3
CentOS 13 4 |1 22| 74 43 2 55 4 1 95| 1 10
Home 4 2 | 78 | 20 54 10 36 | 0.14 | 035 ] 9951 | 6 | 050
MacOS 01| 11 | 78 | 11 | 3746 | 0.03 | 62.51 | 0.05 | 0.03 | 9992 | 1 0.03
System Logs 2 9 | 9 1 | 4440 | 0.18 | 5542 | 0.03 | 0.01 | 99.06 | 4 | 0.02
Sources 0.2 7 | 88 5| 5876 | 0.04 | 41.20 | 0.07 0] 9993 | 0 | 0.01

Table 5.2: Probabilities (in percents) of file state transitions for different datasets. N: new file ap-
pearance. D: file deletion.

NM: New—Modified transition. NU: New—Unmodified transition. ND: New—Deleted transi-
tion, etc.

the number of MM transitions among the total number of state transitions allows us to compute the
corresponding probability; we did this for each possible transition.

Some transitions, such as Deleted—New (DN), may seem counterintuitive. However, some
files are recreated after being deleted, producing nonzero probabilities for this transition. Similarly,
if a file is renamed or moved, it will be counted as two transitions: a removal and a creation. In
this case, we allocate duplicated chunks to the new file in a later stage.

The Markov model allows us to accurately capture the rates of file appearance, deletion, and
modification in the trace. Table 5.2 presents the average transition probabilities observed for our
datasets. As mentioned earlier, in all datasets files often remain Unchanged, and thus the probabil-
ities of UU transitions are high. The chances for a changed file to be re-modified are around 50%
for many of our datasets. The probabilities for many other transitions vary significantly across
different datasets.

Multi-dimensional distribution When we analyzed real snapshots, we collected three multi-
dimensional file distributions: Mg, (p1, ..., pn del), Moo (D1, s Prper ) @0 Mioa(p1, - 2 d) for
deleted, new, and modified files, respectively. The parameters of these distributions (py, ..., Pn)
represent the characteristics of the files that were deleted, created, or modified. As described in
Section 5.5.1, many factors affect deduplication. In this work, we selected several that we deemed
most relevant for a generic deduplication system. However, the organization of our FS-MUTATE
module allows the list of emulated characteristics to be easily extended.
All three distributions include these parameters:

depth: directory depth of a file;
ext: file extension;
size: file size (in chunks):

uniq: the number of chunks in a file that are not present in the previous snapshot (i.e., unique
chunks);

dupl: the number of chunks in a file that have only one duplicate in the entire previous snapshot;
and
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dup?2: the number of chunks in a file that occur exactly twice in the entire previous snapshot.

We consider only the chunks that occur up to 3 times in a snapshot because in all our snapshots
these chunks constituted more than 96% of all chunks.

During mutation, we use the distribution of new files:

Mo (depth, ext, size, uniq, dup1, dup?)

to create the required number of files with the appropriate properties. E.g., if M, (2, “.c”,7,3,1,1)
equals four, then FS-MUTATE creates four files with a “. ¢” extension at directory depth two. The
size of the created files is seven chunks, of which three are unique, one has a single duplicate,
and one has two duplicates across the entire snapshot. The hashes for the remaining two chunks
are selected using a per-snapshot (not per-file) distribution of duplicates, which is collected during
analysis along with M,,,,. Recall that FS-MUTATE does not generate the content of the chunks, but
only their hashes. Later, during on-disk snapshot creation, FS-CREATE will generate the content
based on the hashes.

When selecting files for deletion, FS-MUTATE uses the deleted-files distribution:

Mei(depth, ext, size, uniq, dupl, dup?2, state)

This contains an additional parameter—state—that allows us to elegantly incorporate a Markov
model in the distribution. The value of this parameter can be one of the Markov states New, Mod-
ified, Unmodified, or Deleted; we maintain the state of each file within the fstree. A file is created
in the New state; later, if FS-MUTATE modifies it, its state is changed to Modified; otherwise it
becomes Unmodified. When FS-MUTATE selects files for deletion, it limits its search to files in the
state given by the corresponding My, entry. For example, if My, (2, “.c”,7,3,1,1, “Modified”)
equals one, then FS-MUTATE tries to delete a single file in the Modified state (all other parameters
should match as well).

To select files for modification, FS-MUTATE uses the M,,,,; distribution, which has the same
parameters as M,,;. But unlike deleted files, FS-MUTATE needs to decide #ow to change the files.
For every entry in M,,,,, we keep a list of change descriptors, each of which contains the file’s
characteristics after modification:

1. File size (in chunks);

2. The number of unique chunks (here and in the two items below, duplicates are counted
against the entire snapshot);

3. The number of chunks with one duplicate;
4. The number of chunks with two duplicates; and

5. Change pattern.

All parameters except the last are self-explanatory. The change pattern encodes the way a file
was modified. We currently support the following three options: B—the file was modified in the
beginning (this usually corresponds to prepend); F/—the file was modified at the end (corresponds
to file extension or truncation); and M —the file was modified somewhere in the middle, which
corresponds to the case when neither the first nor the last chunk were modified, but others have
changed. We also support combinations of these patterns: BE, BM, EM, and BEM. To recognize
the change pattern during analysis, we sample the corresponding chunks in the old and new files.
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Dataset B | E | M|BE | BM | ME | BEM
Kernels 52| 8| 71 14 5 3 11
CentOS 69| 3| 2| 8 2 1 15
Home 380 3| 8| 10| 11 1 29
MacOS 53121 1] 12 1 1 11
Sys.Logs |42 | 34| 5| 6 0 1 10
Sources 20| 6141 7 7 1 18

Table 5.3: Probabilities of the change patterns for different datasets (in percents).

Table 5.3 presents the average change patterns for different datasets. For all datasets the number of
files modified in the beginning is high. This is a consequence of chunk-based analysis: files that are
smaller than the chunk size contain a single chunk. Therefore, wherever small files are modified,
the first (and only) chunk differs in two subsequent versions, which our analysis identifies as a
change in the file’s beginning. For the System Logs dataset, the number of files modified at the
end is high because logs are usually appended. In the Sources dataset many files are modified in
the middle, which corresponds to small patches in the code.

We collect change descriptors and the M,,,; distribution during the analysis phase. During
mutation, when a file is selected for modification using M,,,,, one of the aforementioned change
descriptors is selected randomly and the appropriate changes are applied.

It is possible that the number of files that satisfy the distribution parameters is larger than the
number that need to be deleted or modified. In this case, FS-MUTATE randomly selects files to
operate on. If not enough files with the required properties are in the fstree, then FS-MUTATE tries
to find the best match based on a simple heuristic: the file that matches most of the properties.
Other definitions of best match are possible, and we plan to experiment with this parameter in the
future.

Multi-dimensional distributions capture not only the statistical frequency of various parame-
ters, but also their interdependencies. By adding more distribution dimensions, one can easily
emulate other parameters.

Analysis To create profiles for our datasets, we first scanned them using the FS-SCAN module
mentioned previously. We use variable chunking with an 8KB average size; variable chunking
is needed to properly detect the type of file change, since prepended data causes fixed-chunking
systems to see a change in every chunk. We chose 8KB as a compromise between accuracy (smaller
sizes are more accurate) and the speed of the analysis, mutation, and file system creation steps.

The information collected by FS-SCAN was loaded into a database; we then used SQL queries to
extract distributions. The analysis of our smallest dataset (Kernels) took less than 2 hours, whereas
the largest dataset (MacOS) took about 45 hours of wall-clock time on a single workstation. This
analysis can be sped up by parallelizing it. However, since it needs to be done only once to extract
a profile, a moderately lengthy computation is acceptable. Mutation and generation of a file system
run much faster and are evaluated in Section 5.6. The size of the resulting profiles varied from 8KB
to 300KB depending on the number of changes in the dataset.

Chunk generation Our FS-CREATE implementation generates chunk content by maintaining a
randomly generated buffer. Before writing a chunk to the disk, this buffer is XORed with the chunk
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Figure 5.5: Emulated parameters for Kernels real and synthesized datasets as the number of snap-
shots in them increases.

ID to ensure that each ID produces a unique chunk and that duplicates have the same content. We
currently do not preserve the chunk’s entropy because our scan tool does not yet collect this data.
FS-SCAN collects the size of every chunk, which is kept in the in-memory fstree object for use
by FS-CREATE. New chunks in mutated snapshots have their size set by FS-MUTATE according
to a per-snapshot chunk-size distribution. However, deduplication systems can use any chunk size
that is larger than or equal to the one that FS-SCAN uses. In fact, sequences of identical chunks
may appear in several subsequent snapshots. As these sequences of chunks are relatively long, any
chunking algorithm can detect an appropriate number of identical chunks across several snapshots.

Security guarantees The FS-SCAN tool uses 48-bit fingerprints, which are prefixes of 16 byte
MD?5 hashes; this provides a good level of security, although we may be open to dictionary attacks.
Stronger anonymization forms can be easily added in the future work.

5.6 Evaluation

We collected profiles for the datasets
described in Section 5.4 and gener-

ated the same number of synthetic (¢ - ymutate mutate
snapshots as the real datasets had, create

chaining different invocations of FS- create

create Dataset
MUTATE so that the output of one
mutation served as input to the next. Figure 5.8: The process of dataset formation.
All synthesized snapshots together
form a synthetic dataset that corresponds to the whole real dataset (Figure 5.8). We generated
the initial fstree object by running FS-SCAN on the real file system. Each time a new snapshot was
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Figure 5.6: Emulated parameters for CentOS real and synthesized datasets as the number of snap-
shots in them increases.
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Figure 5.7: Emulated parameters for Homes real and synthesized datasets as the number of snap-
shots in them increases.

added, we measured the total files, total chunks, numbers of unique chunks and those that had one
and two duplicates, directory depth, file size and file type distributions.

First, we evaluated the parameters that FS-MUTATE emulates. Figures 5.5-5.11 contain the
graphs for the real and synthesized Kernels, CentOS, Homes, MacOS, System Logs, and Sources
datasets, in order. The Y axis scale is linear for the Kernels and Sources datasets (Figures 5.5-5.6)
and logarithmic for the others (Figures 5.7-5.11). We present file and chunk count graphs only for
the Kernels and CentOS datasets. The relative error of these two parameters is less than 1% for
all datasets, and the graphs look very similar: monotonic close-to-linear growth. The file count is
insensitive to modification operations because files are not created or removed, which explains its
high accuracy. The total chunk count is maintained because we carefully preserve file size during
creation, modification, and deletion.

For all datasets the trends observed in the real data are closely followed by the synthesized data.
However, certain discrepancies exist. Some of the steps in our FS-MUTATE module are random;
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Figure 5.9: Emulated parameters for MacOS real and synthesized datasets as the number of snap-
shots in them increases.
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Figure 5.10: Emulated parameters for System Logs real and synthesized datasets as the number of
snapshots in them increases.

10000 T __10000 T

Real ——
Synthesized ==-=---
1000 ¢ i

Real
Synthesized ===-=--

)
°
1000

100 N

=)
T
L

Chunks (in thousands)
5
3
T
"
Chunks (in thousan

L L L L L L 1 L L L L L L

2 3 4 5 6 7 8 1 2 3 4 5 6 7
(a) Number of unique chunks (b) Number of chunks with 1 duplicate

__10000 T

Re
Synthesized -------

Chunks (in thousands;
- 2
-~ 2 3
s 8 8

2 3 4 5 6 7
(c) Number of chunks with 2 duplicates

Figure 5.11: Emulated parameters for Sources real and synthesized datasets as the number of
snapshots in them increases.

e.g., the files deleted or modified are not precisely the same ones as in the real snapshot, but instead
ones with similar properties. This means that our synthetic snapshots might not have the same files
that would exist in the real snapshot. As a result, FS-MUTATE cannot find some files during the
following mutations and so the best-match strategy is used, contributing to the instantaneous error
of our method. However, because our random actions are controlled by the real statistics, the
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Dataset | Files | Chunks | Unique | 1 Dup. | 2 Dup.
chunks | chunks | chunks
Kernels <1 <1 4 9 5
CentOS 6 2 9 7 11
Home <1 <1 12 13 14
MacOS <1 <1 4 9 4
Sys.Logs| <1 <1 6 15 15
Sources <1 <1 10 8 13

Table 5.4: Relative error of emulated parameters after the final run for different datasets (in per-

cents).

deviation is limited in the long run.

The graphs for unique chunks have an initial peak because there is only one snapshot at first,

and there are not many duplicates in a

single snapshot. As expected, this peak moves to the right

in the graphs for chunks with one and two duplicates.
The Homes dataset has a second peak in all graphs around 10-12 snapshots (Figure 5.7). This
point corresponds to two missing weekly snapshots. The first was missed due to a power outage;

the second was missed because our sc

an did not recover properly from the power outage. As a

result, the 10th snapshot contributes many more unique chunks in the dataset than the others.

The MacOS dataset contains
daily, not weekly snapshots. Daily
changes in the system are more spo-
radic than weekly ones: one day
users and applications add a lot of
new data, the next many files are
copied, etc. Figure 5.9 therefore con-
tains many small variations.

Table 5.4 shows the relative er-
ror for emulated parameters at the
end of each run. Maximum deviation
did not exceed 15% and averaged 6%
for all parameters and datasets. We
also analyzed the file size, type, and
directory depth distributions in the
final dataset. Figure 5.12 demon-
strates these for several representa-
tive datasets. In all cases the accuracy
was fairly high, within 2%.

The snapshots in our datasets
change a lot. For example, the
deduplication ratio is less than 5 in
our Kernels dataset, even though the
number of snapshots is 40. We ex-
pect the accuracy of our system to be
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Dataset | Total Snap- | Mutat. | Creat. | Total
size (GB) | shots | time time time

Kernels 13 40 |30 sec 6 sec 5 min
CentOS 36 8 3min |95 sec | 13 min
Home 3,482 15 |44 min | 38 min | 10 hr

MacOS 4,080 71 |49 min | 10 min | 13 hr
Sys. Logs 626 8 |14min| 4hr |32hr
Sources 1,331 8 [2lmin| 4hr |32hr

Table 5.5: Times to mutate and generate data sets.

higher for the datasets that change slower; for instance, datasets with identical snapshots are emu-
lated without any error.

Performance We measured the time of every mutation and creation operation in the experiments
above. The Kernels, CentOS, Home, and MacOS experiments were conducted on a machine with
an Intel Xeon X5680 3.3GHz CPU and 64GB of RAM. The snapshots were written to a single
Seagate Savvio 15K RPM disk drive. For some datasets the disk drive could not hold all the
snapshots, so we removed them after running FS-SCAN for accuracy analysis. Due to privacy
constraints the System Logs and Sources experiments were run on a different machine with an
AMD Opteron 2216 2.4GHz CPU, 32GB of RAM, and a Seagate Barracuda 7,200 RPM disk
drive. Unfortunately, we had to share the second machine with a long-running job that periodically
performed random disk reads.

Table 5.5 shows the fotal mutation time for all snapshots, the time to write a single snapshot to
the disk, and the total time to perform all mutations plus write the whole dataset to the disk. The
creation time includes the time to write to disk. For convenience the table also contains dataset
sizes and snapshot counts.

Even for the largest dataset, we completed all mutations within one hour; dataset size is the
major factor in mutation time. Creation time is mostly limited by the underlying system’s perfor-
mance: the creation throughput of the Home and MacOS datasets is almost twice that of Kernels
and CentOS, because the average file size is 2—10x larger for the former datasets, exploiting the
high sequential drive throughput. The creation time was significantly increased on the second sys-
tem because of a slower disk drive (7,200RPM vs. I5KRPM) and the interfering job, contributing
to the 32-hour run time.

For the datasets that can fit in RAM—CentOS and Kernels—we performed an additional FS-
CREATE run so that it creates data on tmpfs. The throughput in both cases approached 1GB/sec,
indicating that our chunk generation algorithm does not incur much overhead.

5.7 Related Work

A number of studies have characterized file system workloads using I/O traces [74,89, for example]
that contain information about all I/O requests observed during a certain period. The duration of a
full trace is usually limited to several days, which makes it hard to analyze long-term file system
changes. Trace-based studies typically focus on the dynamic properties of the workload, such as
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I/O size, read-to-write ratio, etc., rather than file content as is needed for deduplication studies.

Many papers have used snapshots to characterize various file system properties [3,14,90,111].
With the exception of Agrawal et al.’s study [3], discussed below, the papers examine only a single
snapshot, so only static properties can be extracted and analyzed. Because conventional file sys-
tems are sensitive to meta-data characteristics, snapshot-based studies focus on size distributions,
directory depths or widths, and file types (derived from extensions). File and block lifetimes are
analyzed based on timestamps [3,14,111]. Authors often discuss the correlation between file prop-
erties, e.g., size and type [14,90]. Several studies have proposed high-level explanations for file
size distributions and designed models for synthesizing specific distributions [31,90].

Less attention has been given to the analysis of long-term file system changes. Agrawal et al.
examined the trends in file system characteristics from 2000-2004 [3]. The authors presented only
meta-data evolution: file count, size, type, age, and directory width and depth.

Some researchers have worked on artificial file system aging [2,94] to emulate the fragmenta-
tion encountered in real long-lived file systems. Our mutation module modifies the file system in
RAM and thus does not emulate file system fragmentation. Modeling fragmentation can be added
in the future if it proves to impact deduplication systems’ performance significantly.

A number of newer studies characterized deduplication ratios for various datasets. Meyer and
Bolosky studied content and meta-data in primary storage [79]. The authors collected file system
content from over 800 computers and analyzed the deduplication ratios of different algorithms:
whole-file, fixed chunking, and variable chunking. Several researchers characterized deduplication
in backup storage [87,112] and for virtual machine disk images [57,77]. Chamness presented a
model for storage-capacity planning that accounts for the number of duplicates in backups [24].
None of these projects attempted to synthesize datasets with realistic properties.

File system benchmarks usually create a test file system from scratch. For example, in Filebench [35]
one can specify file size and directory depth distributions for the creation phase, but the data writ-
ten is either all zeros or random. Agrawal et al. presented a more detailed attempt to approximate
the distributions encountered in real-world file systems [2]. Again, no attention was given in their
study to generating duplicated content.

5.8 Conclusions

Researchers and companies evaluate deduplication with a variety of datasets that in most cases are
private, unrepresentative, or small in size. As a result, the community lacks the resources needed
for fair and versatile comparison. Our work has two key contributions.

First, we designed and implemented a generic framework that can emulate the formation of
datasets in different scenarios. By implementing new mutation modules, organizations can expose
the behavior of their internal datasets without releasing the actual data. Other groups can then
regenerate comparable data and evaluate different deduplication solutions. Our framework is also
suitable for controllable micro-benchmarking of deduplication solutions. It can generate arbitrarily
large datasets while still preserving the original’s relevant properties.

Second, we presented a specific implementation of the mutation module that emulates the
behavior of several real-world datasets. To capture the meta-data and content characteristics of the
datasets, we used a hybrid Markov and Distribution model that has a low error rate—less than 15%
during 8 to 71 mutations for all datasets. We plan to release the tools and profiles described in
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this study so that organizations can perform comparable studies of deduplication systems. These
powerful tools will help both industry and research to make intelligent decisions when selecting
the right deduplication solutions for their specific environments.
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Chapter 6
NAS Workloads in Virtualized Setups

6.1 Introduction

By the end of 2012 almost half of all applications running on x86 servers will be virtualized; in
2014 this number is projected to be close to 70% [16, 17]. Virtualization, if applied properly, can
significantly improve system utilization, reduce management costs, and increase system reliability
and scalability. With all the benefits of virtualization, managing the growth and scalability of
storage is emerging as a major challenge.

In recent years, growth in network-based storage has outpaced that of direct-attached disks;
by 2014 more than 90% of enterprise storage capacity is expected to be served by Network At-
tached Storage (NAS) and Storage Area Networks (SAN) [123]. Network-based storage can im-
prove availability and scalability by providing shared access to large amounts of data. Within the
network-based storage market, NAS capacity is predicted to increase at an annual growth rate of
60%, as compared to only 22% for SAN [107]. This faster NAS growth is explained in part by
its lower cost and its convenient file system interface, which is richer, easier to manage, and more
flexible than the block-level SAN interface.

The rapid expansion of virtualization and NAS has lead to explosive growth in the number
of virtual disk images being stored on NAS servers. Encapsulating file systems in virtual disk
image files simplifies the implementation of features such as migration, cloning, and snapshotting,
since they naturally map to existing NAS functions. In addition, non-virtualized hosts can co-
exist peacefully with virtualized ones that use the same NAS interface, which permits a gradual
migration of services from physical to virtual machines.

Storage performance plays a crucial role when administrators select the best NAS for their
environment. One traditional way to evaluate NAS performance is to run a file system benchmark,
such as SPECsfs2008 [97]. Vendors periodically submit the results of SPECsfs2008 to SPEC;
the most recent submission was in November 2012. Because widely publicized benchmarks such
as SPECsfs2008 figure so prominently in configuration and purchase decisions, it is essential to
ensure that the workloads they generate represent what is observed in real-world data centers.

This study makes two contributions: an analysis of changing virtualized NAS workloads, and
the design and implementation of a system to generate realistic virtualized NAS workloads. We
first demonstrate that the workloads generated by many current file system benchmarks do not
represent the actual workloads produced by VMs. This in turn leads to a situation where the per-
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NFS Physical clients Virtualized
procedures | (SPECsfs2008/Filebench) | clients
Data 28% | 36% 99%
Meta-data 72% | 64% <1%

Table 6.1: The striking differences between virtualized and physical workloads for two bench-
marks: SPECsfs2008 and Filebench (Web-server profile). Data operations include READ and
WRITE. All other operations (e.g., CREATE, GETATTR, READDIR) are characterized as meta-
data.

formance results of a benchmark deviate significantly from the performance observed in real-world
deployments. Although benchmarks are never perfect models of real workloads, the introduction
of VMs has exacerbated the problem significantly. Consider just one example, the percentage of
data and meta-data operations generated by physical and virtualized clients. Table 6.1 presents the
results for the SPECsfs2008 and Filebench web-server benchmarks that attempt to provide a “re-
alistic” mix of meta-data and data operations. We see that meta-data procedures, which dominated
in physical workloads, are almost non-existent when VMs are utilized. The reason is that VMs
store their guest file system inside large disk image files. Consequently, all meta-data operations
(and indeed all data operations) from the applications are converted into simple reads and writes to
the image file.

Meta-data-to-data conversion is just one example of the way workloads shift when virtual ma-
chines are introduced. In this study we examine, by collecting and analyzing a set of I/O traces
generated by current benchmarks, how NAS workloads change when used in virtualized environ-
ments. We then leverage multi-dimensional trace analysis techniques to convert these traces to
benchmarks [26, 102]. Our new virtual benchmarks are flexible and configurable, and support
single- and multi-VM workloads. With multi-VM workloads, the emulated VMs can all run the
same or different application workloads (a common consequence of resource consolidation). Fur-
ther, users do not need to go through a complex deployment process, such as hypervisor setup and
per-VM OS and application installation, but can instead just run our benchmarks. This is useful
because administrators typically do not have access to the production environment when evaluating
new or existing NAS servers for prospective virtualized clients. Finally, some benchmarks such as
SPECsfs cannot be usefully run inside a VM because they do not support file-level interfaces and
will continue to generate a physical workload to the NAS server; this means that new benchmarks
can be the only viable evaluation option. Our benchmarks are capable of simulating a high load
(i.e., many VMs) using only modest resources. Our experiments demonstrate that the accuracy of
our benchmarks remains within 10% across 11 important parameters.

6.2 Background

In this section, we present several common data access methods for virtualized applications, de-
scribe in depth the changes in the virtualized NAS I/O stack (VM-NAS), and then explain the
challenges in benchmarking NAS systems in virtualized environments.
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6.2.1 Data Access Options for VMs

Many applications are designed to
access data using a conventional
POSIX file system interface. The

VM

methods that are currently used to @ Files on NAS
provide this type of access in a VM Guest OS __ , aann
can be classified into two categories: Disk image file on DAS
1) emulated block devices (typicall

Ene)maged in the guest by a(l(})]fal ﬁlz e Sysem "Fie Sysem. @ pisk image file on AN
system); and (2) guest network file S @%j
system clients. ot @Disk image file on NAS

Figure 6.1 illustrates both ap- JE Case analyzed
proaches. With an emulated block Emulated ‘ i paper
device, the hypervisor emulates an I/O Controller Pass—through to DAS or SAN
I/O controller with a connected disk " = i
drive. Emulation is completely trans- @ |
parent to the guest OS, and the virtual )

Hypervisor

I/O controller and disk drives appear

as physical devices to the OS. The
guest OS typically formats the disk Figure 6.1: VM data-access methods. Cases 1a—1d corre-

spond to the emulated-block-device architecture. Case 2

drive with a local file system or uses .
corresponds to the use of guest network file system clients.

it as a raw block device. When an
emulated block device is backed by
file-based storage, we call the back-
ing files disk image files.

Emulated Block Devices

Figure 6.1 shows several options for implementing the back end of an emulated block device:

la A file located on a local file system that is deployed on Direct Attached Storage (DAS). This
approach is used, for example, by home and office installations of VMware Workstation [98] or
Oracle VirtualBox [108]. Such systems often keep their disk images on local file systems (e.g.,
Ext3, NTFS). Although this architecture works for small deployments, it is rarely used in large
enterprises where scalability, manageability, and high availability are critical.

1b A disk image file is stored on a (possibly clustered) file system deployed over a Storage Area
Network (SAN) (e.g., VMware’s VMES file system [110]). A SAN offers low-latency shared ac-
cess to the available block devices, which allows high-performance clustered file systems to be
deployed on top of the SAN. This architecture simplifies VM migration and offers higher scalabil-
ity than DAS, but SAN hardware is more expensive and complex to administer.

1c A disk image file stored on Network Attached Storage (NAS). In this architecture, which we
call VM-NAS, the host’s hypervisor passes I/O requests from the virtual machine to an NFS or SMB
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client, which in turn then accesses a disk image file stored on an external file server. The hypervisor
is completely unaware of the storage architecture behind the NAS interface. NAS provides the
scalability, reliability, and data mobility needed for efficient VM management. Typically, NAS
solutions are cheaper than SANs due to their use of IP networks, and are simpler to configure and
manage. These properties have increased the use of NAS in virtual environments and encouraged
several companies to create solutions for disk image files management at the NAS [11,93,103].

1d Pass-through to DAS or SAN. In this case, virtual disks are backed up by a real block device
(not a file), which can be on a SAN or DAS. This approach is less flexible than disk image files,
but can offer lower overhead because one level of indirection—the host file system—is eliminated.

Network Clients in the Guest

The other approach for providing storage to a virtual machine is to let a network-based file system
(e.g., NFS) provide access to the data directly from the guest (case 2 in Figure 6.1). This model
avoids the need for disk image files, so no block-device emulation is needed. This eliminates em-
ulation overheads, but lacks many of the benefits associated with virtualization, such as consistent
snapshots, thin provisioning, cloning, disaster recovery. Also, not every guest OS supports every
NAS protocol, which fetters the ability of a hypervisor and its storage system to support all guest
OS types. Further, cloud management architectures such as VMware’s vCloud and OpenStack do
not support this design [84, 106].

6.2.2 VM-NAS 1/O Stack

In this study we focus on the VM-NAS architecture, where VM disks are emulated by disk image
files stored on NAS (case 1lc in Section 6.2.1 and in Figure 6.1). To the best of our knowledge,
even though this architecture is becoming popular in virtual data centers [107, 123], there has been
no study of the significant transformations in typical NAS I/O workloads caused by server virtual-
ization. This study is a first step towards a better understanding of NAS workloads in virtualized
environments and the development of suitable benchmarks for NAS to be used in industry and
academia.

When VMs and NAS are used together, the corresponding I/O stack becomes deeper and more
complex, as seen in Figure 6.2. As they pass through the layers, I/O requests significantly change
their properties. At the top of the stack, applications access data using system calls such as create,
read, write, and unlink. These system calls invoke the underlying guest file system, which in
turn converts application calls into I/O requests to the block layer. The file system maintains
data and meta-data layouts, manages concurrent accesses, and often caches and prefetches data to
improve application performance. All of these features change the pattern of application requests.

The guest OS’s block layer receives requests from the file system and reorders and merges them
to increase performance, provide process fairness, and prioritize requests. The 1/O controller driver,
located beneath the generic block layer, imposes extra limitations on the requests in accordance
with the virtual device’s capabilities (e.g., trims requests to the maximum supported size and limits
the NCQ queue length [124]).
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After that, requests cross the
software-hardware boundary for the
first time (here, the hardware is
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protocols. However, our methodol- Figure 6.2: VM-NAS 1/0 Stack: VMs access and store vir-
ogy is easily extensible to SMB or tual disk images on NAS.

NFSv4, and we plan to perform ex-

panded studies in the future. In the case of NFSv3, both the client and the server can limit read-
and write-transfer sizes and modify write-synchronization properties. Because the hypervisor and
its NFS client significantly change I/O requests, it is not sufficient to collect data at the block layer
of the guest OS; we collect our traces at the entrance to the NFS server.

After the request is sent over a network to the NAS server, the same layers that appear in the
guest OS are repeated in the server. By this time, however, the original requests have already un-
dergone significant changes performed by the upper layers, so the optimizations applied by similar
layers at the server can be considerably different. Moreover, many NAS servers (e.g., NetApp [47])
run a proprietary OS that uses specialized request-handling algorithms, additionally complicating
the overall system behavior. This complex behavior has a direct effect on measurement techniques,
as we discuss next in Section 6.2.3.

6.2.3 VM-NAS Benchmarking Setup

Regular file system benchmarks usually operate at the application layer and generate workloads
typical to one or a set of applications (Figure 6.2). In non-virtualized deployments these bench-
marks can be used without any changes to evaluate the performance of a NAS server, simply by
running the benchmark on a NAS client. In virtualized deployments, however, I/O requests can
change significantly before reaching the NAS server due to the deep and diverse I/O stack described
above. Therefore, benchmarking these environments is not straightforward.

One approach to benchmarking in a VM-NAS setup is to deploy the entire virtualization in-
frastructure and then run regular file system benchmarks inside the VMs. In this case, requests
submitted by application-level benchmarks will naturally undergo the appropriate changes while
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passing through the virtualized I/O stack. However, this method requires a cumbersome setup of
hypervisors, VMs, and applications. Every change to the test configuration, such as an increase
in the number of VMs or a change of a guest OS, requires a significant amount of work. More-
over, the approach limits evaluation to the available test hardware, which may not be sufficient to
run hypervisors with the hundreds of VMs that may be required to exercise the limits of the NAS
server.

To avoid these limitations and regain the flexibility of standard benchmarks, we have created
virtualized benchmarks by extracting the workload characteristics after the requests from the orig-
inal physical benchmarks have passed though the virtualization and NFS layers. The generated
benchmarks can then run directly against the NAS server without having to deploy a complex in-
frastructure. Therefore, the benchmarking procedure remains the same as before—easy, flexible,
and accessible.

One approach to generating virtualized benchmarks would be to emulate the changes applied to
each request as it goes down the layers. However, doing so would require a thorough study of the
request-handling logic in the guest OSes and hypervisors, with further verification through multi-
layer trace collection. Although this approach might be feasible, it is time-consuming, especially
because it must be repeated for many different OSes and hypervisors. Therefore, in this work
we chose to study the workload characteristics at a single layer, namely where requests enter the
NAS server. We collected traces at this layer and then characterized selected workload properties.
The information from a single layer is enough to create the corresponding NAS benchmarks by
reproducing the extracted workload features. Workload characterization and the benchmarks that
we create are tightly coupled with the configuration of the upper layers: application, guest OS, local
file system, and hypervisor. In the future, we plan to perform a sensitivity analysis of I/O stack
configurations to deduce the parameters that account for the greatest changes to the I/0O workload.

Virtualized Clients

Physical Clients I

I
I
A eee |A A eee  |A
App | **+ |App PP pp PP pp
Operating System Operating System Operating System
i Virtual Machine Virtual Machine
NFS/CIFS
Hypervisor
NAS Appliance
i NFES/CIFS
Front—end: NFS/CIFS
NAS Appliance
Back-end: GPFS/WAFL/ZFS
Front—end: NES/CIFS

Back—end: GPFS/WAFL/ZFS

(a) Physical (b) Virtualized

Figure 6.3: Physical and Virtualized NAS architectures. With physical clients, applications use a
NAS client to access the NAS appliance directly. With virtualized clients, applications access the
NAS appliance via a virtualized block device.
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6.3 NAS Workload Changes

In this section we detail seven categories of NAS workload changes caused by virtualization.
Specifically, we compare the two cases where a NAS server is accessed by a (1) physical; or
(2) a virtualized client, and describe the differences in the I/O workload. These changes are the
result of migrating an application from a physical server, which is configured to use an NFS client
for direct data access, to a VM that stores data in a disk image file that the hypervisor accesses from
an NFS server. Figure 6.3 demonstrates the difference in the two setups, and Table 6.2 summarizes
the changes we observed in the I/O workload. The changes are listed from the most noticeable and
significant to the least. Here, we discuss the changes qualitatively; quantitative observations are
presented in Section 6.4.

First, and unsurprisingly, the number and size of files stored in NAS change from many rel-
atively small files to a few (usually just one) large file(s) per VM—the disk image file(s). For
example, the default Filebench file server workload defines 10,000 files with an average size of
128KB, which are spread over 500 directories. However, when Filebench is executed in a VM,
there is only one large disk image file. (Disk image files are usually sized to the space require-
ments of a particular application; in our setup the disk image file size was set to the default 16GB
for the Linux VM, and to 50GB for the Windows VM, because the benchmark we used in Win-
dows required at least S0GB.) For the same reason, directory depth decreases and becomes fairly
consistent: VMware ESX typically has a flat namespace; each VM has one directory with the disk
image files stored inside it. Back-end file systems used in NAS are often optimized for common
file sizes and directory depths [4,74,79, 89], so this workload change can significantly affect their
performance. For example, to improve write performance for small files, one popular technique is
to store data in the inode [39], a feature that would be wasted on virtualized clients. Further, disk
image files in NAS environments are typically sparse, with large portions of the files unallocated,
1.e., the physical file size can be much smaller than its logical size. In fact, VMware’s vSphere—the
main tool for managing the VMs in VMware-based infrastructures—supports only the creation of
sparse disk images over NFS. A major implication of this change is that back-end file systems for
NAS can lower their focus on optimizing, for example, file append operations, and instead focus
on improving the performance of block allocation within a file.

The second change caused by the move to virtualization is that all file system meta-data oper-
ations become data operations. For example, with a physical client there is a one-to-one mapping
between file creation and a CREATE over the wire. However, when the application creates a file in
a VM, the NAS server receives a series of writes to a corresponding disk image: one to a directory
block, one to an inode block, and possibly one or more to data blocks. Similarly, when an applica-
tion accesses files and traverses the directory tree, physical clients send many LOOKUP procedures
to a NAS server. The same application behavior in a VM produces a sequence of READs to the disk
image. Current NAS benchmarks generate a high number of meta-data operations (e.g., 72% for
SPECsfs2008), and will bias the evaluation of a NAS that serves virtualized clients. While it may
appear that removing all meta-data operations implies that application benchmarks can generally
be replaced with random I/O benchmarks, such as I0zone [22], this is insufficient. As shown in
Section 6.5, the VM-NAS I/O stack generates a range of 1/O sizes, jump distances, and request
offsets that cannot be modeled with a simple distribution (uniform or otherwise).

Third, all write requests that come to the NAS server are synchronous. For NFS, this means that
the stable attribute is set on each and every write, which is typically not true for physical clients.
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Workload Property

Physical NAS Clients

Virtual NAS Clients

File and directory count

Many files and directories

Single file per VM

Directory tree depth

Often deeply nested directories

Shallow and uniform

File size

Lean towards many small files

Multi-gigabyte sparse disk image files

Meta-data operations

Many (72% in SPECsfs2008)

Almost none

W

1/0 synchronization

Asynchronous and synchronous

All writes are synchronous

In-file randomness

Workload-dependent

Increased randomness due to guest file sys-
tem encapsulation

Cross-file randomness

Workload-dependent

Cross-file access replaced by in-file access
due to disk image files

5|I/O Sizes Workload-dependent Increased or decreased due to guest file sys-
tem fragmentation and I/O stack limitations

6 | Read-modify-write Infrequent More frequent due to block layer in guest file
system

7 | Think time Workload-dependent Increased because of virtualization over-
heads

Table 6.2: Summary of key I/O workload changes between Physical and Virtualized NAS architec-
tures.

The block layers of many OSes expect that when the hardware reports a write completion, the data
has been saved to persistent storage. Similarly, the NFS protocol’s stable attribute specifies that
the NFS server cannot reply to a WRITE until the data is persistent. So the hypervisor satisfies the
guest OS’s expectation by always setting this attribute on WRITE requests. Since many modern
NAS servers try to improve performance by gathering write requests into larger chunks in RAM,
setting the stable attribute invalidates this important optimization for virtualized clients.

Fourth, in-file randomness increases significantly with virtualized clients. On a physical client,
access patterns (whether sequential or random) are distinct on a per-file basis. However, in vir-
tualized clients, both sequential and random operations are blended into a single disk image file.
This causes the NAS server to receive what appears to be many more random reads and writes to
that file. Furthermore, guest file system fragmentation increases image file randomness. On the
other hand, cross-file randomness decreases, as each disk image file is typically accessed by only
a single VM; i.e., it can be easier to predict which files will be accessed next based on their status,
and to differentiate them by how actively they are used (running VMs, stopped ones, etc.).

Fifth, the I/O sizes of original requests can both decrease and increase while passing through
the virtualization layers. Guest file systems perform reads and writes in units of their block size,
often 4KB. So, when reading a file of, say, 6KB size, the NAS server observes two 4KB reads for
a total of 8KB, while a physical client would request only 6KB (25% less). Since many modern
systems operate with a lot of small files [79], this difference can have a significant impact on
bandwidth. Similarly, when reading 2KB of data from two consecutive data blocks in a file (1KB
in each block), the NAS server may observe two 4KB reads for a total of 8KB (one for each
block), while a physical NAS client may send only a single 2KB request. A NAS server designed
for a virtualized environment could optimize its block-allocation and fragmentation-prevention
strategies to take advantage of this observation.

Interestingly, I/O sizes can also decrease because guest file systems sometimes split large files
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into blocks that might not be adjacent. This is especially true for aged file systems with higher
fragmentation [94]. Consequently, whereas a physical client might pass an application’s 1MB
read directly to the NAS, a virtualized client can sometimes submit several smaller reads scattered
across the (aged) disk image. An emulated disk controller driver can also reduce the size of an I/0O
request. For example, we observed that the Linux IDE driver has a maximum I/O size of 128KB,
which means that any application requests larger than this value will be split into smaller chunks.
Note that such workload changes happen even in a physical machine as requests flow from a file
system to a physical disk. However, in a VM-NAS setup, the transformed requests hit not a real
disk, but a file on NAS, and as a result the NAS experiences a different workload.

The sixth change is that when an application writes to part of a block, the guest file system
must perform a read-modify-write (RMW) to first read in valid data prior to updating and writing
it back to the NAS server. Consequently, virtualized clients often cause RMWs to appear on the
wire [46], requiring two block-sized round trips for every update. With physical clients, the RMW
is generally performed at the NAS server, avoiding the need to first send valid data back to the
NAS client.

Seventh, the think time between 1/0O requests can increase due to varying virtualization over-
head. It has been shown that for a single VM and modern hardware, the overhead of virtualization
is small [6]. However, as the number of VMs increases, the contention for computational resources
grows, which can cause a significant increase in the request inter-arrival times. Longer think times
can prevent a NAS device from filling the underlying hardware I/O queues and achieving peak
throughput.

In summary, both static and dynamic properties of NAS workloads change when virtualized
clients are introduced into the infrastructure. The changes are sufficiently significant that direct
comparison of certain workload properties between virtual and physical clients becomes problem-
atic. For example, cross-file randomness has a rather different meaning in the virtual client, where
the number of files is usually one per VM. Therefore, in the rest of the chapter we focus solely on
characterizing workloads from virtualized clients, without trying to compare them directly against
the physical client workload. However, where possible, we refer to the original workload proper-
ties.

6.4 VM-NAS Workload Characterization

In this section we describe our experimental setup and then present and characterize a set of four
different application-level benchmarks.

6.4.1 Experimental Configuration

Every layer in the VM-NAS 1/O stack can be configured in several ways: different guest OSes
can be installed, various virtualization solutions can be used, etc. The way in which the I/O stack
is assembled and configured can significantly change the resulting workload. In the current work
we did not try to evaluate every possible configuration, but rather selected several representative
setups to demonstrate the utility of our techniques. The methodology we have developed is simple
and accessible enough to evaluate many other configurations. Table 6.3 presents the key configu-
ration options and parameters we used in our experiments. Since our final goal is to create NAS
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Parameter RHEL 6.2 | Win 2008 R2 SP1
No. of CPUs 1

Memory 1GB 2GB

Host Controller Paravirtual | LSI Logic Parallel
Disk Drive Size 16GB 50GB

Disk Image Format Thick flat VMDK
Guest File System | Ext3 NTFS

Guest I/0 Scheduler | CFQ n/a

Table 6.3: Virtual Machine configuration parameters.

benchmarks, we only care about the settings of the layers above the NAS server; we treat the NAS
itself as a black box.

We used two physical machines in our experimental setup. The first acted as a NAS server,
while the second represented a typical virtualized client (see Figure 6.3). The hypervisor was
installed on a Dell PowerEdge R710 node with an Intel Xeon E5530 2.4GHz 4-core CPU and 24GB
of RAM. We used local disk drives in this machine for the hypervisor installation—VMware ESXi
5.0.0 build 62386. We used two guest OSes in the virtual setup: Red Hat Enterprise Linux 6.2
(RHEL 6.2) and Windows 2008 R2 SP1. We stored the OS’s VM disk images on the local, directly
attached disk drives. We conducted our experiments with a separate virtual disk in every VM, with
the corresponding disk images being stored on the NAS. We pre-allocated all of the disk images
(thick provisioning) to avoid performance anomalies across runs related to thin provisioning (e.g.,
delayed block allocations). The RHEL 6.2 distribution comes with a paravirtualized driver for
VMware’s emulated controller, so we used this controller for the Linux VM. We left the default
format and mount options for guest file systems unchanged.

The machine designated as the NAS server was a Dell PowerEdge 1800 with six 250GB Maxtor
7125080 disk drives connected through a Dell CERC SATA 1.5/6¢ch controller, intended to be
used as a storage server in enterprise environments. It is equipped with an Intel Xeon 2.80GHz
Irwindale single-core CPU and 512MB of memory. The NAS server consisted of both the Linux
NFS server and IBM’s General Parallel File System (GPFS) version 3.5 [91]. GPES is a scalable
clustered file system that enables a scale-out, highly-available NAS solution and is used in both
virtual and non-virtual environments. Our workload characterization and benchmark synthesis
techniques treat NAS servers as a black box and are valid regardless of its underlying hardware
and software. Since our ultimate goal is to create benchmarks capable of stressing any NAS, we did
not characterize NAS-specific characteristics such as request latencies. Our benchmarks, however,
let us manually configure the think time. By decreasing think time (along with increasing the
number of VMs), a user can scale the load to the processing power of a NAS to accurately measure
its peak performance.

6.4.2 Application-Level Benchmarks

In the Linux VM we used Filebench [35] to generate file system workloads. Filebench can emulate
the 1/0 patterns of several enterprise applications; we used the File-, Web-, and Database-server
workloads. We scaled up the datasets of these workloads so that they were larger than the amount
of RAM in the VM (see Table 6.4).
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Workload |Dataset size| Files |R/W/M ratio|I/O Size
File-server 2.0GB 20,000 1/2/3 WF
Web-server 1.6GB 100,000 10/1/0 WEF
DB-server 2.0GB 10 10/1/0 2KB
Mail-server| 24.0GB 120 1/2/0 32KB

Table 6.4: High-level workload characterization for our benchmarks. R/W/M is the Read/Write/-
Modify ratio. WF (Whole-File) means the workload only reads or writes complete files. The
mail-server workload is based on JetStress, for which R/W/M ratios and /O sizes were estimated

based on [56].

Because Filebench does not support Windows, in our Windows VM we used JetStress 2010 [55],
a disk-subsystem benchmark that generates a Microsoft Exchange Mail-server workload. It em-
ulates accesses to the Exchange database by a specific number of users, with a corresponding
number of log file updates. Complete workload configurations (physical and virtualized), along
with all the software we developed as part of this project are available from https://avatar.
fsl.cs.sunysb.edu/groups/t2mpublic/.

Although SPECsfs is a widely used NAS benchmark [97], we could not use it in our evaluation
because it incorporates its own NFS client, which makes it impossible to run against a regular
POSIX interface. We hope that the workload analysis and proposed benchmarks presented in this
study can be used by SPEC for designing future SPECsfs synthetic workloads.

VMware’s VMmark is a benchmark often associated with testing VMs [109]. However, this
benchmark is designed to evaluate the performance of a hypervisor machine, not the underlying
storage system. For example, VMmark is sensitive to how fast a hypervisor’s CPU is and how well
it supports virtualization features (such as AMD-V and Intel VT [1,53]). However, these details
of hypervisor configuration should not have a large effect on NAS benchmark results. Although
VMmark also indirectly benchmarks the I/O subsystem, it is hard to distinguish how much the
I/O component contributes to the overall system performance. Moreover, VMmark requires the
installation of several hypervisors and additional software (e.g., Microsoft Exchange) to generate
the load. Our goal is complementary: to design a realistic benchmark for the NAS that serves as
the backend storage for a hypervisor like VMware.

Our goal in this project was to transform some of the already existing benchmarks to their vir-
tualized counterparts. As such, we did not replay any real-world traces in the VMs. Both Filebench
and JetStress generate workloads whose statistical characteristics remain the same over time (i.e.,
stationary workloads). Consequently, new virtualized benchmarks also exhibit this property.

6.4.3 Characterization

We executed all benchmarks for 10 minutes (excluding the preparation phase) and collected NFS
traces at the NAS server. We repeated every run 3 times and verified the consistency of the re-
sults. The traces were collected using the GPFS mmtrace facility [52] and then converted to the
DataSeries format [8] for efficient analysis.

We developed a set of tools for extracting various workload characteristics. There is always a
nearly infinite number of characteristics that can be extracted from a trace, but a NAS benchmark
needs to reproduce only those that significantly impact the performance of NAS servers. Since
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there is no complete list of workload characteristics that impact NAS, in the future we plan to
conduct a systematic study of NASes to create such a list. For this study, we selected characteristics
that clearly affect most NASes: (1) read/write ratio; (2) I/O size; (3) jump (seek) distance; and
(4) offset popularity.

As we mentioned earlier, the workloads produced by VMs contain no meta-data operations.
Thus, we only characterize the ratio of data operations—READSs to WRITEs. The jump distance of
a request is defined as the difference in offsets (block addresses) between it and the immediately
preceding request (accounting for I/O size as well). We do not take the operation type into account
when calculating the jump distance. The offset popularity is a histogram of the number of accesses
to each block within the disk image file; we report this as the number of blocks that were accessed
once, twice, etc. We present the offset popularity and I/O size distributions on a per-operation
basis. Figure 6.4 depicts the read/write ratios and Figures 6.5-6.8 present 1/O size, jump distance,
and offset popularity distributions for all workloads. For jump distance we show a CDF because it
is the clearest way to present this parameter.

Read/Write ratio Read/write ra-

tios vary significantly across the an-
100

alyzed workloads. The File-server read ——
. 2 80 write m—
workload generates approximately 3 5
S ol
the same number of reads and writes, & w0l
although the original workload had 3 5|
twice as many writes (Table 6.4). 0
File-server Web-server Database-server Mail-server (Win)

We attribute this difference to the

high number of meta-data operations ) ) ] )
(e.z., LOOKUPs and STATs) that Figure 6.4: Read/Write ratios for different workloads

Workload

were translated to reads by the I/O

stack. The Web-server and the Database-server are read-intensive workloads, which is true for
both original and virtualized workloads. The corresponding original workloads do not contain
many meta-data operations, and therefore the read/write ratio remained unchanged (unlike the
File-server workload). The Mail-server workload, on the other hand, is write-intensive: about 70%
of all operations are writes, which is close to the original benchmark where two thirds of all op-
erations are writes. As with the Web-server and Database-server workloads, the lack of meta-data
operations kept the read/write ratio unchanged,

I/0O size distribution The I/O sizes for all workloads vary from 512B to 64KB; the latter limit
is imposed by the RHEL 6.2 NFS server, which sets 64KB as the default maximum NFS read
and write size. All requests smaller than 4KB correspond to O on the bar graphs. There are few
writes smaller than 4KB for the File-server and Web-server workloads, but for the Database- and
Mail-server (JetStress) workloads the corresponding percentages are 80% and 40%, respectively.
Such small writes are typical for databases (Microsoft Exchange emulated by JetStress also uses a
database) for two reasons. First, the Database-server workload writes 2KB at a time using direct
I/0O. In this case, the OS page cache is bypassed during write handling, and consequently the 1/0
size is not increased to 4KB (the page size) when it reaches the block layer. The block layer
cannot then merge requests, due to their randomness. Second, databases often perform operations
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synchronously by using the £sync and sync calls. This causes the guest file system to atomically
update its meta-data, which can only be achieved by writing a single sector (512B) to the virtual
disk drive (and hence over NFS).

For the File-server and Web-server workloads, most of the writes happen in 4KB and 64KB
I/O sizes. The 4KB read size is dominant in all workloads because this is the guest file system
block size. However, many of the File-server’s reads were merged into larger requests by the
I/O scheduler and then later split into 64KB sizes by the NFS client. This happens because the
average file size for the File-server is 128KB, so whole-file reads can be merged. For the Web-
server workload, the average file size is only 16KB, so there are no 64KB reads at all. For the same
reason, the Web-server workload exhibits many reads around 16KB (some files are slightly smaller,
others are slightly larger, in accordance with Filebench’s gamma distribution [117]). Interestingly,
for the Mail-server workload, many requests have non-common I/O sizes. (We define an I/0O size as
non-common if fewer than 1% of such requests have such I/O size.) We grouped all non-common
/O sizes in the bucket called “Rest” in the histogram. This illustrates that approximately 15% of
all requests have non-common I/O sizes for the Mail-server workload.

Jump distance The CDF jump distance distribution graphs show that many workloads demon-
strate a significant level of sequentiality, which is especially true for the File-server workload: more
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than 60% of requests are sequential. Another 30% of the requests in the File-server workload rep-
resent comparatively short jumps: less than 2GB, the size of the dataset for this workload; these
are jumps between different files in the active dataset. The remaining 10% of the jumps come from
meta-data updates and queries, and are spread across the entire disk. The Web-server workload
exhibits similar behavior except that the active dataset is larger—about 5—10GB. The cause of this
is a larger number of files in the workload (compared to File-server) and the allocation policy of
Ext3 that tries to spread many files across different block groups.

For the Database-server workload there are almost no sequential accesses. Over 60% of the
jumps are within 2GB because that is the dataset size. Interestingly, about 40% of the requests have
fairly long jumps that are caused by frequent file system synchronization, which leads to meta-data
updates at the beginning of the disk.

In the Mail-server workload approximately 40% of the requests are sequential, and the rest are
spread across the S0GB disk image file. A slight bend around 24GB corresponds to the active
dataset size. Also, note that the Mail-server workload uses the NTFS file system, which uses a
different allocation policy than Ext3; this explains the difference in the shape of the Mail-server
curve from other workloads.

Offset popularity In all workloads, most of the offsets were accessed only once. The absolute
numbers on these graphs depend on the run time, e.g., when one runs a benchmark longer, then
the chance of accessing the same offset increases. However, the shape of the curve remains the
same as time progresses (although it shifts to the right). For the Database workload, 40% of
all blocks were updated several thousand times. We attribute this to the repeated updates of the
same file system meta-data structures due to frequent file system synchronization. The Mail-server
workload demonstrates a high number of overwrites (about 50%). These overwrites are caused by
Microsoft Exchange overwriting the log file multiple times. With Mail-server, “R” on the X axes
designates the “Rest” of the values, because there were too many to list. We therefore grouped all
of the values that contributed less than 1% into the R bucket.

6.5 New NAS Benchmarks

This section describes our methodology for the creation of new NAS benchmarks for virtualized
environments and then evaluates their accuracy.

6.5.1 Trace-to-Model Conversion

Our NAS benchmarks generate workloads with characteristics that closely follow the statistical
distributions presented in Section 6.4.3. We decided not to write a new benchmarking tool, but
rather exploit Filebench’s ability to express I/0O workloads with its Workload Modeling Language
(WML) [118], which allows one to flexibly define processes and the I/O operations they perform.
Filebench interprets WML and translates its instructions to corresponding POSIX system calls.
Our use of Filebench will facilitate the adoption of our new virtualized benchmarks: existing
Filebench users can easily run new WML configurations.

We extended the WML language to support two virtualization terms: hypervisor and vm (vir-
tual machine). We call the extended version WML-V (by analogy with AMD-V). WML-V is
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backwards compatible with the original WML, so users can merge virtualized and non-virtualized
configurations to simultaneously emulate the workloads generated by both physical and virtual
clients.

For each analyzed workload—TFile-server, Web-server, Database-server and Mail-server—we
created a corresponding WML-V configuration file. By modifying these files, a user can adjust the
workloads to reflect a desired benchmarking scenario, e.g., defining the number of VMs and the
workloads they run.

Listing 6.1 presents an abridged example of a WML-V configuration file that defines a single
hypervisor, which runs 5 Database VMs and 2 Web-server VMs. Flowops are Filebench’s defined
I/O operations, which are mapped to POSIX calls, such as open, create, read, write, and
delete. In the VM case, we only use read and write flowops, since meta-data operations do not
appear in the virtualized workloads. For every defined VM, Filebench will pre-allocate a disk
image file of a user-defined size—16GB in the example listing.

1 HYPERVISOR name="physical-hostl" {

2 VM name="dbserver-vm",dsize=16gb, instances=5 {
3 flowopl, ...

4}

5 VM name="websever-vm",dsize=16gb, instances=2 ({
6 flowopl, ...
7}
8}

Listing 6.1: An abridged WML-V workload description that defines 7 VMs: 5 run database work-
loads and 2 generate Web-server workloads.

Filebench allows one to define random variables with desired empirical distributions; various
flowop attributes can then be assigned to these random variables. We used this ability to define
read and write I/O-size distributions and jump distances. We achieved the required read/write
ratios by putting an appropriate number of read and write flowops within the VM definition. The
generation of a workload with user-defined jump distances and offset popularity distributions is a
complex problem [71] that Filebench does not solve; in this work, we do not attempt to emulate
this parameter. However, as we show in the following section, this does not significantly affect the
accuracy of our benchmarks.

Ideally, we would like Filebench to translate flowops directly to NFS procedures. However,
this would require us to implement an NFS client within Filebench (which is an ongoing effort
within the Filebench community). To work around this limitation, we mount NFS with the sync
flag and open the disk image files with the O_DIRECT flag, ensuring that I/O requests bypass the
Linux page cache. These settings also ensure that (1) no additional read requests are performed
to the NFS server (readahead); (2) that all write requests are immediately sent to the NFS server
without modification; and (3) that replies are returned only after the data is on disk. This behavior
was validated with extensive testing. This approach works well in this scenario because we do not
need to generate meta-data procedures on the wire; that would be difficult to achieve using this
method because a 1:1 mapping of meta-data operations does not exist between system calls and
NFS procedures.

Our enhanced Filebench reports aggregate operations per second for all VMs and individually
for each VM. Operations in the case of virtualized benchmarks are different from the original
non-virtualized equivalent: our benchmarks report the number of reads and writes per second;
application-level benchmarks, however, report application-level operations (e.g., the number of
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Figure 6.9: Root Mean Square (RMS) and maximum relative distances of response parameters for
all workloads.

HTTP requests serviced by a Web-server). Nevertheless, the numbers reported by our benchmarks
can be directly used to compare the performance of different NAS servers under a configured
workload.

None of our original benchmarks, except the database workload, emulated think time, because
our test was designed as an 1/0O benchmark. For the database benchmark we defined think time
as originally defined in Filebench—200,000 loop iterations. Think time in all workloads can be
adjusted by trivial changes to the workload description.

6.5.2 Evaluation

To evaluate the accuracy of our benchmarks we observed how the NAS server responds to the virtu-
alized benchmarks as compared to the original benchmarks when executed in a VM. We monitored
11 parameters that represent the response of a NAS and are easy to extract through the Linux /proc
interface: (1) Reads/second from the underlying block device; (2) Writes/second; (3) Request la-
tency; (4) I/0 utilization; (5) I/O queue length; (6) Request size; (7) CPU utilization; (8) Memory
usage; (9) Interrupt count; (10) Context-switch count; and (11) Number of processes in the wait
state. We call these NAS response parameters.

We sampled the response parameters every 30 seconds during a 10-minute run and calculated
the relative difference between each pair of parameters. Figure 6.9 presents maximum and Root
Mean Square (RMS) difference we observed for four workloads. In these experiments a single
VM with an appropriate workload was used. The maximum relative error of our benchmarks is
always less than 10%, and the RMS distance is within 7% across all parameters. Certain response
parameters show especially high accuracy; for example, the RMS distance for request size is within
4%. Here, the accuracy is high because our benchmarks directly emulate I/O size distribution.
Errors in CPU and memory utilization were less than 5%, because the NAS in our experiments did
not perform many CPU-intensive tasks.

Scalability with Multiple Virtual Machines The benefit of our benchmarks is that a user can
define many VMs with different workloads and measure NAS performance against this specific
workload configuration. To verify that the accuracy of our benchmarks does not decrease as we
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Figure 6.10: Response parameter errors depending on the number of VMs deployed. The first four
VMs (1-4) execute four different workloads we analyzed. The next four VMs (5-8) are repeated
in the same order.

emulate more VMs, we conducted a multi-VM experiment. We first ran one VM with a File-
server in it, then added a second VM with a Web-server workload, then a third VM executing
the Database-server workload, and finally a fourth VM running JetStress. After that we added
another four VMs with the same four workloads in the same order. In total we had 8 different
configurations ranging from 1 to 8 VMs; this setup was designed to heavily stress the NAS under
several, different, concurrently running workloads. We then emulated the same 8 configurations
using our benchmarks and again monitored the response parameters. Figures 6.10(a) and 6.10(b)
depict RMS and maximum relative errors, respectively, depending on the number of VMs.

When a single VM is emulated, our benchmarks show the best accuracy. Beyond one VM, the
RMS error increased by about 3—5%, but still remained within 10%. For four parameters—Ilatency,
writes/sec, interrupts and context switches count—the maximum error observed during the whole
run was the highest among other parameters—in the 10—13% range.

In summary, our benchmarks show a high accuracy for both single- and multi-VM experiments,
even under heavy stress.

6.6 Related Work

Storage performance in virtualized environments is an active research area. Le et al. studied the
storage performance implications of combining different guest and host file systems [73]. Boutcher
et al. examined how the selection of guest OS and host I/O schedulers impacts the performance of
a virtual machine [19]. Both of these works focused on the performance aspects of the problem,
not workload characterization or generation; also, the authors used direct-attached storage, which
is simpler but less common in modern enterprise data centers.

Hildebrand et al. discussed the implications of using the VM-NAS architecture with enterprise
storage servers [46]. That work focused on the performance implications of the VM-NAS 1/0O stack
without thoroughly investigating the changes to the I/O workload. Gulati et al. characterized the
SAN workloads produced by VMs for several enterprise applications [43]. Our techniques can also
be used to generate new benchmarks for SAN-based deployments, but we selected to investigate
VM-NAS setups first, for two reasons. First, NAS servers are becoming a more popular solution
for hosting VM disk images. Second, the degree of workload change in such deployments is
higher: NAS servers use more complex network file-system protocols whereas SANs and DAS use
a simpler block-based protocol.

Ahmad et al. studied performance overheads caused by I/O stack virtualization in ESX with
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a SAN [6]. That study did not focus on workload characterization but rather tried to validate
that modern VMs introduce low overhead compared to physical nodes. Later, the same authors
proposed a low-overhead method for on-line workload characterization in ESX [5]. However, their
tool characterizes traces collected at the virtual SCSI layer and consequently does not account for
any transformations that may occur in ESX and its NFS client. In contrast, we collect the trace at
the NAS layer after all request transformations, allowing us to create more accurate benchmarks.

Casale et al. proposed a model for predicting storage performance when multiple VMs use
shared storage [23, 66]. Practical benchmarks like ours are complementary to that work and allow
one to verify such predictions in real life. Ben-Yehuda et al. analyzed performance bottlenecks
when several VMs are used to provide different functionalities on a storage controller [13]. The
authors focused on lowering network overhead via intelligent polling and other techniques.

Trace-driven performance evaluation and workload characterization have been the basis of
many studies [33, 62,68, 86]. Our trace-characterizing techniques and benchmark-synthesis tech-
niques are based on multi-dimensional workload analysis. Chen et al. used multi-dimensional trace
analysis to infer behavior of enterprise storage systems [26]. Tarasov et al. proposed a technique
for automated translation of block-1/O traces to workload models [102]. Yadawakar et al. proposed
to discover applications based on multi-dimensional characteristics of NFS traces [122].

In summary, to the best of our knowledge, there have been no earlier studies that systematically
analyzed virtualized NAS workloads. Moreover, we are the first to present new NAS benchmarks
that accurately generate virtualized I/O workloads.

6.7 Conclusions

We have studied the transformation of existing NAS I/0O workloads due to server virtualization.
Whereas such transformations were known to occur due to virtualization, they have not been stud-
ied in depth to date. Our analysis revealed several significant I/O workload changes due to the use
of disk images and the placement of the guest block layer above the NAS file client. We observed
and quantified significant changes such as the disappearance of file system meta-data operations
at the NAS layer, changes in 1/O sizes, changes in file counts and directory depths, asynchrony
changes, increased randomness within files, and more.

Based on these observations from real-world workloads, we developed new benchmarks that
accurately represent NAS workloads in virtualized data centers—and yet these benchmarks can be
run directly against the NAS without requiring a complex virtualization environment configured
with VMs and applications. Our new virtualized benchmarks represent four workloads, two guest
operating systems, and up to eight virtual machines. Our evaluation reveals that the relative error
of these new benchmarks across more than 11 parameters is less than 10% on average. In addition
to providing a directly usable measurement tool, we hope that our work will provide guidance to
future NAS standards, such as SPEC, in devising benchmarks that are better suited to virtualized
environments.
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Chapter 7
Proposed Work

Our work can be extended in many different directions and we summarized all of them in Chapter 8.
In this chapter we only describe the work which we intend to accomplish in this thesis. We picked
two interesting directions that will make MDH-based techniques more valuable and attractive to
system researchers: (1) mathematical distributions support in MDH and (2) evaluation of the T2M
converter parameters’ impact on model size and accuracy.

Mathematical Distributions. Currently MDH is based on empirical distributions. In other
words it collects the absolute or relative numbers of trace events into the matching buckets. As
a result, MDH needs to maintain the information about every non-empty bucket, which consumes
a lot of space and increases the size of the model. It is not clear if such high precision is actually
required for reliable evaluation of storage systems.

We believe that there is a strong
potential in approximating empiri-
cal distributions with mathematical Empirical ———
functions. Figure 7.1 demonstrates 7 Approximation e RN
an example of such approximation
for a single-dimension histogram. In-
stead of storing the value of every
point, the formula can be defined us-
ing a limited set of parameters that
characterize the complete distribu-
tion.

The usage of mathematical func-
tions decreases the size of the model
and allows us to describe workloads
in a concise way. Also, formulas, be-
ing continuous mathematical objects can be processed using traditional calculus methods: e.g.,
differentiation and integration. We think that in the future these methods can extract new informa-
tion about the workloads that previously was hard to identify.

Still, inaccuracies related to the approximation of empirical distribution can lead to workload
misrepresentation. We intend to conduct a study that can identify the limits of our approximation’s
applicability. To accomplish this goal, we intend to accomplish the following steps:

Figure 7.1: Approximation of an empirical distribution.
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1. Design and implement Filebench support for arbitrary mathematical distributions. Almost
any parameter in Filebench’s workload description (e.g., I/O size) can be assigned to a ran-
dom variable. Doing that instructs Filebench to generate a new parameter value every time
the parameter is used. Currently Filebench supports only empirical, uniform, and gamma
distributions for its random variables. We intend to add a support of arbitrary user-defined
distributions. In our experience, real-world distributions are highly diverse, so we want to
provide the ability for researchers to add new distributions easily. We intend to achieve this
by adding the notion of mathematical distribution plugins to Filebench. Each plugin will
implement the API required by Filebench and support a specific distribution. To the best of
our knowledge, there is no other benchmark with such functionality.

2. Add support for specific distributions to Filebench. For the aforementioned API designed,
we want to implement several common statistical distributions. We will first port some of
the distributions from the Mersenne Twist Pseudorandom Number Generator Package [67].
Second, we noticed that many of the parameters in real-world workloads are multi-modal
(e.g., Figure 7.1). The Mersenne Twist library does not support multi-modal distributions at
the moment. We plan to add multi-modal distribution support to Filebench’s plugin list.

3. MDH initially collects statistics as an empirical distribution. So the conversion of empirical
distributions to the mathematical formula need to be performed. We plan to explore curve-
fitting techniques to accomplish this task. Most of the widely used curve-fitting techniques
require the type of the target curve, e.g., polynomial, trigonometric, or exponential function.
We plan to explore the libraries available for various curve-fitting techniques. We expect
two difficulties related to the specifics of our application. First, our distributions are multi-
dimensional, while most of the curve-fitting techniques and their implementations are uni-
dimensional. Second, as we already noted, many of the real-world distributions are multi-
modal. However, most of the current matching techniques assume a single mode in the
distribution. We will need to adjust curve matching techniques to support multiple modes
and dimensions.

4. Finally, the impact of using mathematical distributions instead of empirical ones on the
model accuracy and size should be evaluated. It is intuitively clear that using the approxi-
mation reduces the size and the accuracy of the model. However, how severe is this impact
when evaluating storage systems unclear. We plan to use the same evaluation approach as we
have used before: observe response parameters of the system while replaying MDH models
with curve fitting and without it.

Converter Parameters. Our trace-to-model converter takes several parameters to perform its
task: initial chunk size, similarity metric and threshold, matrix granularity. The qualitative impact
of these parameters on the system is intuitively clear. The smaller the size of the initial chunk
size, the higher the accuracy of the model and the larger the model size. The lower the similarity
threshold, the fewer chunks will be deduplicated and the larger the size of the model. The smaller
the granularity of the matrix the higher the accuracy of the model.

However, quantitative analysis of how these parameters impact the model accuracy and size
need to be performed. We intend to conduct experiments with various values of corresponding
parameters, observe, and analyze how the system response changes.
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Chapter 8

Conclusion

Workloads play a crucial role in designing and optimizing modern storage systems. In fact, when
designing a system the majority of decisions—starting from the selection of a file system block size
and ending with the deduplication algorithm—are based on the properties of the target workload.

As the gap between the performance of storage components and the amount of stored data
widens the need for workload-based optimizations will only increase. Practical and efficient tools
for characterizing real workloads and their synthesis are needed to address this issue.

In this thesis we demonstrated the problems of evaluating complex storage systems and pro-
posed Multi-Dimensional Histogram (MDH) technique for analyzing workloads and system be-
haviors. Using three examples we showed the effectiveness of MDH technique in evaluating a
variety of workload-driven optimizations.

First, we applied MDH technique for converting I/O traces to workload models. Our workload
model consists of a sequence of MDHs that preserve important workload features. To address the
variability of workload properties in the trace, we perform trace chunking. Further, we eliminate
chunks that exhibit similar workload properties to reduce the trace model’s size. Our evaluation
demonstrates that the accuracy of generated models approaches 95%, while the model size is less
than 6% of the original trace size. Such concise models enable easy comparison, scaling, and other
modifications.

Second, we used MDH to generate realistic datasets suitable for evaluating deduplication sys-
tems. Our generic framework emulates file system data and meta-data changes which we call
mutations. Our implementation of the mutation module for the framework captures the statistics
of changes observed across several real datasets using MDH and a Markov Model. The model
demonstrates low error rate—Iless than 15% for 71 mutations across all datasets.

Third, we characterized how the workloads experienced by NAS servers change when they
are accessed by virtualized clients. We observed and quantified significant changes such as the
disappearance of file system meta-data operations at the NAS layer, changes in I/O sizes, changes
in file counts and directory depths, asynchrony changes, increased randomness within files, and
more. Using MDH technique we created a set of versatile benchmarks that generate virtualized
workloads without deploying complex infrastructure. Our evaluation reveals that the relative error
of these new benchmarks across more than 11 parameters is less than 10% on average.

MDH-based technique are versatile and powerful for workload analysis and synthesis. It is our
hope that the contributions presented here will benefit both the research and engineering commu-
nities.
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8.1 Future Work

We see at least three promising research directions related to MDH. First, workload models created
using MDH, unlike workload traces and snapshots, are mathematical objects. Investigating the
operations on these objects is an interesting research thrust. Especially appealing looks the study
of tools and techniques that can scale the MDH along one or several dimensions. This will allow
performance engineers to sensibly adjust workload features to match new expected workloads.
Other tools can intelligently combine two or more workload models so that the resulting model
represents several consolidated applications. In addition, tools for comparing various MDHs are of
significant interest. They form the basis for identifying the classes of similar real world workloads.

Second, our experience asserts that visualizing MDH for further analysis is a complex but
extremely useful task. Observing workload changes in the traces and performing human-assisted
chunking are some of the important use cases for MDH visualization. It is for the future researchers
to apply existing techniques on visualizing multi-dimensional space to MDH in the context of
storage evaluation [119].

Third, when many MDHs are collected from different environments, clustering techniques can
be applied to detect similar workloads. This will allow to identify workload classes common in the
real world and guide the development of the future systems.

In addition to the three generic MDH research directions mentioned above, there are studies
specific to three application areas presented in this thesis. They are are described below.

Trace to Workload Model Conversion. We used block traces when building our trace to model
converter. As file system interface remains popular in the modern deployments, supporting the file
system traces is a valuable feature. File system traces contain an operation field (READ, WRITE,
STAT, CREATE, etc.) and the arguments of the operation depend on the specific operation. Studying
such type of traces can introduce certain changes to the MDH technique and should be thoroughly
evaluated.

Analysis of the traces collected from multiple layers in the I/O stack allows to find important
correlations between I/O layers and create more accurate workload models. Because MDH is a
universal technique we believe it is the right choice to be applied across many layers.

Our current chunking method is simple and investigating alternative chunking techniques is
an interesting research direction. In fact, Talwadker and Voruganti have recently presented an
alternative chunking technique that avoids fixed chunking during the initial stage in the trace to
model conversion [99].

In this work we used existing benchmarks to generate workloads. However, creating a new
benchmark that takes MDH as an input allows more accurate workload generation. Such a bench-
mark will not have the limitations caused by the low expressiveness of the existing benchmarks.

Realistic Dataset Generation. Our specific implementation of the framework modules might
not model all parameters that potentially impact the behavior of existing deduplication systems.
We believe that a study similar to Park et al. [88] should be conducted to create a complete list of
the dataset properties that impact deduplication systems.

Although we can generate an initial file system snapshot using a specially collected profile for
FS-MUTATE, such approach can be limiting. In future, an extensive study on how to create initial
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fstree objects can be performed.

Many deduplication systems perform local chunk compression to achieve even higher aggre-
gate compression. Developing a method for generating chunks with a realistic compression ratio
is consequently a useful extension.

It is also interesting to investigate whether one can use extended traces of user and application
I/O activity to emulate file system evolution more accurately. Our system is mostly suitable for
evaluating backup deduplications systems but inline deduplication systems require emulating dy-
namic properties of the traces. We believe that MDH suits well for solving this problem because it
preserves dependencies between the dimensions.

NAS Workloads in Virtualized Setups. The number of NAS benchmarks should be extended
by analyzing actual applications and application traces, including typical VM operations such as
booting, updating, and snapshotting—and examine root and I/O swap partition access patterns. We
also believe that exploring more VM configuration options such as additional guest file systems
(and their age), hypervisors, and NAS protocols is an important research direction.

Once a larger body of virtual NAS benchmarks exists, the research community will be able
to study the I/O workload’s sensitivity to each configuration parameter as well as investigate the
impact of extracting and reproducing additional trace characteristics in the generated benchmarks.

At the moment, benchmark creation requires manual analysis for every application the need
to be emulated. In the future, one can investigate the feasibility of automatic transformation of
physical workloads to virtual workloads via a multi-level trace analysis of the VM-NAS 1/O stack.
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