
Towards Efficient, Scalable, and Versatile File System Model Checking

A Dissertation Proposal presented

by

Yifei Liu

to

The Graduate School

in Partial Fulfillment of the

Requirements

for the Degree of

Doctor of Philosophy

in

Computer Science

Stony Brook University

Technical Report FSL-24-04

November 2024

Stony Brook University
The Graduate School

Yifei Liu

We, the thesis committee for the above candidate for the
degree of Doctor of Philosophy, hereby recommend

acceptance of this thesis proposal

Erez Zadok - Dissertation Advisor
Professor, Computer Science Department

Omar Chowdhury - Chairperson of Dissertation Proposal
Associate Professor, Computer Science Department

Scott A. Smolka
Professor, Computer Science Department

Geoff Kuenning
Emeritus Professor, Department of Computer Science, Harvey Mudd College

ii

Abstract of the Dissertation Proposal

Towards Efficient, Scalable, and Versatile File System Model Checking

by

Yifei Liu

Doctor of Philosophy

in

Computer Science

Stony Brook University

November 2024

Developing and maintaining robust file systems is challenging. Despite the
invention of many file-system testing techniques, new bugs continue to emerge.
Worse, new file systems are often less tested and present challenges for existing
testing methodologies. This requires not only an effective test-metric technique
to enhance existing tools but also a new approach for thoroughly checking file
systems.

This thesis proposal has three thrusts. In the first thrust, we analyze recently
reported bugs in Linux file systems. We discovered a weak correlation between
code coverage and test effectiveness. We also observed that many file-system bugs
occur along specific inputs and error paths. We thus propose input and output
coverage as criteria for file system testing. We developed a prototype coverage
analyzer called IOCov to compute the input and output coverage of file system
testing tools. By evaluating input and output coverage for several existing testing
tools, IOCov identified many untested cases. Additionally, we present a method
and associated metrics to identify over- and under-testing using IOCov.

In the second thrust, we present Metis, a model-checking framework designed
for versatile and thorough file system testing in the form of input and state ex-
ploration. Metis uses a nondeterministic loop and a weighting scheme to decide
which system calls and their arguments to execute. Metis features a new abstract

iii

state representation for file-system states in support of efficient state exploration.
While exploring states, Metis compares the behavior of the file system under test
against a reference file system and reports any discrepancies. To speed up the
model-checking process, we also developed RefFS, a small, fast file system that
serves as a reference, with special features designed to accelerate model check-
ing. Experimental results show that the rate at which Metis explores file-system
states scales nearly linearly across multiple compute nodes. RefFS explores states
3–28× faster than other, more mature file systems. Metis aided the development
of RefFS, reporting 11 bugs that were subsequently fixed. Metis further identified
15 bugs from seven other file systems, six of which were confirmed, and one was
fixed and integrated into mainline Linux.

We propose enhancing IOCov by supporting more syscalls and arguments and
applying it to existing file system testing tools. We plan to extend Metis to more
extensively evaluate its performance and scalability and test a broader range of
file systems. We also aim to enhance the scalability of Swarm verification when
applied to Metis by utilizing containers and orchestrators as our third thrust.

It is our thesis that file system model checking can be improved to achieve
comprehensive input and state coverage, and to efficiently check file systems with
fewer constraints, ultimately detecting bugs more quickly and improving file sys-
tem reliability. Also, file system testing should include input and output cover-
age to improve test completeness and effectiveness. Moreover, file system model
checking should scale across multiple nodes to enhance performance and scala-
bility.

iv

Contents

1 Introduction 1

2 Motivation 4
2.1 Thesis Statement . 4
2.2 Coverage Metrics for File System Testing 4
2.3 File System Model Checking . 5

3 Related Work 7
3.1 File System Test Metrics . 7
3.2 File System Testing and Verification 8

4 IOCov: Input and Output Coverage for File System Testing 11
4.1 Introduction . 11
4.2 Real-World Bug Study . 13
4.3 IOCov Framework . 16
4.4 Evaluation . 17
4.5 Conclusion and Future Work . 23

5 Metis: File System Model Checking via Versatile Input and State Ex-
ploration 24
5.1 Introduction . 25
5.2 Background and Motivation . 27
5.3 Design . 30

5.3.1 Input Driver . 31
5.3.2 State Exploration and Tracking 32
5.3.3 Differential State Checker 35
5.3.4 Logging and Bug Replay 36
5.3.5 Distributed State Exploration 37

v

CONTENTS

5.3.6 Implementation Details 38
5.3.7 Limitations of Metis . 38

5.4 RefFS: The Reference File System 40
5.4.1 RefFS Snapshot APIs . 41

5.5 The Case of Checking Distributed File Systems 42
5.5.1 The Architecture of Checking NFS 42
5.5.2 NFS Checking Implementation and Discussion 44

5.6 Evaluation . 46
5.6.1 Test Input Coverage . 46
5.6.2 Metis Performance and Scalability 50
5.6.3 RefFS Performance and Reliability 51
5.6.4 Bug Finding . 53

5.7 Conclusion . 55

6 Proposed and Future Work 57
6.1 Proposed Work . 57
6.2 Future Work . 60

7 Conclusions 62

vi

List of Figures

4.1 An example of a both input-related and output-related bug 15
4.2 Input coverage of open flags for CrashMonkey and xfstests 18
4.3 Input coverage of write size for CrashMonkey and xfstests . . . 20
4.4 Output coverage of open for CrashMonkey and xfstests 21
4.5 Test Coverage Deviation (TCD) for open flags 22

5.1 Metis architecture and components 27
5.2 RefFS architecture . 40
5.3 Metis NFS model checking structure 43
5.4 Input coverage counts of open flags for Metis and other tools . . . 46
5.5 Input coverage of write size for Metis and other tools 48
5.6 Input coverage of write sizes for three different input distribu-

tions in Metis . 49
5.7 Metis performance with Swarm (distributed) verification 50
5.8 Performance comparison between RefFS and other file systems . . 51

vii

List of Tables

4.1 Percentage of time that 1–6 open flags were used together 19

5.1 Examples of false positives . 32
5.2 Kernel file system bugs discovered by Metis 52
5.3 Comparison of representative file system testing tools 54

viii

Chapter 1

Introduction

File systems are a crucial component of operating systems, serving as the back-
bone of the modern storage hierarchy and supporting a wide range of applications
including databases [17], cloud storage [84], big data processing [85], and virtual-
ization technologies [90]. Their dependability and robustness directly impact the
overall system’s reliability, making thorough testing of file systems essential to en-
sure data integrity, fault tolerance, and system stability [114, 123, 82]. Although
many file system testing techniques have been developed, new bugs continue to
surface [70]. Compounding the issue is the emergence of new file systems that of-
ten receive limited testing, posing challenges to traditional techniques [137, 30].

There are two orthogonal approaches to better address these challenges, both
of which work to improve file system reliability and reduce bugs. First, given the
abundance of existing testing techniques, coverage metrics (e.g., code coverage
and other coverage metrics) can be used to assess and enhance these methods
in order to uncover more hidden bugs [72]. This requires the development of
new, effective coverage metrics [59] designed specifically for file system testing.
Second, a new technique for testing file systems needs to be developed to achieve
more comprehensive test cases and coverage for uncovering bugs, while imposing
fewer restrictions (e.g., requirement of kernel instrumentation or modification) on
testing newly emerging file systems [137, 70].

Nevertheless, both approaches require further improvement. Regarding cover-
age metrics, most testing tools employ code coverage to assess test completeness.
Despite its prevalence, the effectiveness of code coverage in file system testing
remains under-investigated [83]. Additionally, even though the developer knows
which lines were not covered, it is challenging to modify tests to cover them [7, 2].

Different tools have been developed for testing file systems using various ap-

1

CHAPTER 1. INTRODUCTION

proaches, but new bugs (both in-kernel and non-kernel) continue to emerge on a
regular basis [70, 140, 69]. The limitations of these tools stem from three main
factors: coverage [7], applicability [140], and the effectiveness of bug-finding
checkers [141]. In terms of coverage, an effective testing tool should handle cor-
ner cases, including a wide range of file system operations and uncommon file
system states [142]. Given the variety of file systems being created, it is essen-
tial that testing tools are applicable across these different file systems. There are
various types of bugs in file systems, and finding them requires using different
checkers (such as POSIX violation checkers [114] and crash consistency check-
ers [98]). Therefore, if the checkers used in testing are inappropriate or ineffective,
it may result in the inability to detect hidden bugs.

In this thesis, we propose addressing these challenges in file system testing
coverage metrics and conducting more thorough and unrestricted checks on file
systems through three main thrusts: (1) designing new coverage metrics that en-
hance file system testing, based on insights from a real-world bug study; (2) de-
veloping a file system model checking framework for comprehensive input and
state exploration to effectively check emerging file systems; and (3) improving
the scalability of Swarm model checking using containers and orchestrators.

We address the first challenge by starting with a study of existing file system
bugs to evaluate the effectiveness of the most widely used coverage metric for
file system testing: code coverage [2]. Our findings indicate a weak correlation
between code coverage and test effectiveness. Based on an analysis of bugs in
Ext4 and BtrFS, we propose two new coverage metrics, input coverage and out-
put coverage, to evaluate file system testing tools by examining the coverage of
syscall inputs and outputs. We also developed a prototype tool, IOCov, to compute
the input and output coverage of file system testing tools effectively. We demon-
strate how IOCov can be utilized to identify many untested cases, such as specific
inputs, outputs, and their ranges, in existing file system testing tools, along with
revealing over- and under-testing problems, providing valuable insights for further
improvement.

To address the second challenge, we created Metis, a novel model-checking
framework that enables thorough and versatile input and state space exploration
of file systems. Metis utilizes the extensive state space exploration capabilities of
model checking, combined with cross-implementation validation underlying dif-
ferential testing, to check file systems without the need to construct an abstract
model. This approach enables users to check file systems without requiring ex-
tensive knowledge in file systems and model checking, and simplifies the process
of checking new file systems, as there is no need to create a model for each newly

2

CHAPTER 1. INTRODUCTION

developed file system. We also developed RefFS, a lightweight and fast refer-
ence file system to accelerate model checking and improve bug reproducibility
with innovative ioctl APIs. To handle the vast file system input and state space,
Metis supports parallel and distributed exploration using Swarm verification tech-
niques [55] across multiple cores and machines. Metis has successfully identified
over 15 bugs across various file systems, and its replayer played a crucial role in
reproducing and confirming these detected bugs.

We plan to further explore the advantages of input and output coverage in file
system testing. Specifically, we aim to use IOCov to enhance input coverage in
existing testing tools like CrashMonkey [98], and leverage the improved tools to
identify new file system bugs. We believe that the input and output coverage met-
rics can be easily and practically used to refine testing tools, and the benefits of
input coverage and Metis can be adopted by other tools as well. We also plan to
enhance Swarm verification using containers and orchestration techniques [93],
referred to as Containerized Swarm Verification (CoSV), as the third thrust of
this thesis proposal. CoSV will enhance the scalability of Swarm verification,
enabling it to scale across more nodes, hybrid clouds, and heterogeneous hard-
ware and software environments. This approach benefits not only Metis but also
other SPIN-based model checking tasks. CoSV also provides other benefits, in-
cluding environment isolation and consistency, fine-grained resource allocation,
simplified deployment and orchestration, as well as improved portability.

It is our thesis that input and output coverage metrics are required for file
system testing, and new model checking techniques should be used to check file
systems more thoroughly with fewer restrictions. We first introduce new coverage
metrics to evaluate and improve file system testing, along with a system to effi-
ciently compute these metrics. We then develop a model-checking framework and
a reference file system to enable more thorough and effective testing of file sys-
tems. Moreover, using containers for Swarm verification is a promising method
to improve scalability and explore larger state spaces.

The rest of this thesis proposal is organized as follows. Chapter 2 outlines our
thesis statement and describe our motivation. Chapter 3 discusses related works.
Chapter 4 describes our input and output coverage metrics and the IOCov frame-
work. Chapter 5 describes the Metis model checking framework and the RefFS
reference file system. Chapter 6 describes our proposed future work including
CoSV and IOCov enhancement, and Chapter 7 concludes this thesis proposal.

3

Chapter 2

Motivation

In this chapter, we describe our vision and our motivations behind developing new
coverage metrics for file system testing and a new file system model checking
framework.

2.1 Thesis Statement
The problems we aim to address in this thesis proposal are twofold: (1) discover-
ing and computing effective coverage metrics for file system testing that make bug
detection easier, and (2) developing a new file system model-checking approach
that overcomes the limitations of existing tools, such as inadequate coverage and
difficulty in adapting to emerging file systems. This thesis proposal introduces
input and output coverage metrics for file system testing, along with the IOCov
framework to address the first problem, and the Metis model-checking framework
to tackle the second problem. The goal of this thesis proposal is to streamline
the entire process of file system testing and model checking, assist developers in
identifying hard-to-detect file system bugs and defects, and improve file system
reliability across multiple dimensions.

2.2 Coverage Metrics for File System Testing
Software testing requires coverage metrics to measure effectiveness, ensure com-
prehensive testing, identify untested components, and improve and prioritize test-
ing efforts [67]. File system testing is no exception. Various types of coverage
metrics are applied in file system testing. For example, regression test suites

4

CHAPTER 2. MOTIVATION

(e.g., xfstests [118]) typically focus on functionality coverage, seeking to test
as many functions and features of the file system as possible. Some black-box
testing tools [98, 20], while not guided by an explicit coverage metric, still man-
age to achieve comprehensive coverage of syscall combinations. Among various
metrics, code coverage and its variants are the most widely used in file system
testing [43, 138, 70]. However, despite the prevalence of code coverage, its effec-
tiveness in file system testing has not been well studied. Effectiveness of coverage
metrics can be described in multiple ways. In this context, we define it as the abil-
ity to assist in identifying bugs. For example, the effectiveness of code coverage
should be measured by its capacity to detect hidden bugs within the covered code.

In addition to effectiveness, another important dimension for evaluating a cov-
erage metric is how easily developers can use it to improve their testing tools,
which we refer to as the usability of coverage metrics [2]. However, due to the
complexity of file systems, the utility of coverage metrics presents an additional
challenge in evaluating and improving file system testing tools. In this thesis pro-
posal, we explore the effectiveness and usability of code coverage and introduce
new coverage metrics that offer both high effectiveness and usability in file system
testing.

2.3 File System Model Checking
Model checking is an automated technique used to verify finite-state concurrent
systems by exhaustively exploring a bounded state space to determine if the sys-
tem’s model adheres to its specification [24]. Model checking is well-suited for
file systems due to their complex operations (e.g., links, renaming), their use of
diverse storage devices, and their execution under extreme conditions (e.g., disk
failures, crashes). These factors generate a wide range of file system states, in-
cluding many corner cases [142, 141]. Model checking excels at exploring all
possible states and transitions, ensuring that even rare or hard-to-reach states are
checked, minimizing the chance of missing subtle bugs [25]. Given this, model
checking has been successfully applied to identify numerous file system bugs and
improve overall reliability. However, several challenges still need to be addressed
in file system model checking, including: (1) the difficulty in building an abstract
file system model, (2) limitations in detecting non-crash bugs, and (3) challenges
in exploring large state spaces.

In this thesis proposal, we aim to address the limitations of existing file sys-
tem model checking and fully explore the potential of model checking techniques.

5

CHAPTER 2. MOTIVATION

Specifically, unlike conventional model checking, we do not manually create mod-
els for file systems, as they are too complex to construct accurate, practical, and
universally applicable models. We adopt the approach of implementation-level
model checking [47] to overcome the limitations of existing methods: eliminating
the need for users to manually create checkers, enabling the detection of a wide
range of bug types, and simplifying the process of checking emerging file systems.

6

Chapter 3

Related Work

In this chapter, we survey related works about test coverage metrics, file system
testing and debugging, and verified file systems.

3.1 File System Test Metrics
Test coverage metrics The correlation between code coverage and test effec-
tiveness has been well studied, but the strength of the correlation varies depend-
ing on test targets [72, 39, 40] or subclass metrics [33, 34, 44, 51]. Gopinath
et al. [44] stated that statement coverage is best at finding faults, but Hemmati
et al. [51] found it weaker than other metrics (e.g., branch coverage) for the same
task. However, other work [102, 15, 16, 59] showed that code coverage has a
low-to-moderate correlation with test effectiveness, and thus new, complementary
coverage criteria are needed [122]. Still, no existing research considers the corre-
lation for complex low-level software like in-kernel file systems. Some research
proposed input-coverage concepts [50, 128, 74] but did not offer syscall metrics
and is not applicable to file-system testing. The input and output coverage we
propose for file system testing can also apply to other testing tasks like database
testing [96], where the syscall inputs and outputs are transformed into inputs and
outputs of database queries.

File-system testing Regression-testing suites such as xfstests [118] and LTP [97]
use hand-written tests for various aspects of file system functionality. It is diffi-
cult for hand-written tests to guarantee thorough coverage of inputs and outputs.
Model checking [100, 142, 141, 123, 37, 114] compares the file system implemen-

7

CHAPTER 3. RELATED WORK

tation with a specification and searches for mismatches. Although it can check
many corner states, model checking is slow (especially for I/O-bound storage sys-
tems) and has a state-explosion problem.

Black-box testing [98, 20] generates rule-based syscall workloads, but does
not ensure full exploration of input and output spaces. Finally, fuzzing [43, 140,
70, 138, 117] stresses file systems by input mutation to maximize path cover-
age, but path coverage (i.e., subtype of code coverage) has drawbacks—missing
bugs—similar to code-coverage methods [59, 44].

3.2 File System Testing and Verification
File system testing and debugging We divide existing file system testing and
bug-finding approaches into five classes: Traditional Model Checking, Implementation-
level Model Checking, Fuzzing, Regression Testing, and Automatic Test Genera-
tion. Table 5.3 summarizes these approaches across various dimensions.

Traditional model checking [37, 143] builds an abstract model based on the file
system implementation and verifies it for property violations. Doing so demands
significant effort to create and adapt the model for each file system, given the
internal design variations among file systems [87].

Implementation-level model checking [142, 141] directly examines the file
system implementation, eliminating the need for model creation. Due to file sys-
tems’ complexity, however, this approach requires either intrusive changes to the
OS kernel [142, 141] or manually crafting system-specific checkers [141]. Addi-
tionally, existing work [142, 141] based on this approach generally only identifies
crash-consistency bugs and is incapable of detecting silent semantic bugs.

Unlike these methods, Metis checks file systems for behavioral discrepancies
on an unmodified kernel. Thus, there is no need to manually create checkers when
testing a new file system [141]. Moreover, other model-checking approaches rely
on fixed test inputs [37, 141] and lack the versatility to accommodate different
input patterns. All model-checking approaches, including Metis, track file system
states to guarantee thorough state exploration [24], a feature often lacking in other
approaches.

Model checking and fuzzing are orthogonal approaches, each with its own ad-
vantages and disadvantages. File system fuzzing [43, 138, 70, 140] continually
mutates syscall inputs from a corpus, prioritizing those that trigger new code cov-
erage for further mutation and execution, but they cannot make state-coverage
guarantees, risk repeatedly exploring the same system states, and require ker-

8

CHAPTER 3. RELATED WORK

nel instrumentation. Some fuzzing techniques [70, 140] also corrupt metadata
to trigger crashes more easily and use library OS [109] to achieve faster and
more reproducible execution than VM-based fuzzers. However, such designs have
their own drawbacks: they require file-system–specific utilities to locate metadata
blocks and cannot test out-of-tree file systems unsupported by library OS. Hy-
bridra [144] enhances existing file system fuzzing with concolic execution, but it
remains fuzzing-based and has the same limitations of file system fuzzers, includ-
ing the lack of state-coverage guarantees.

Fuzzing mainly supplies inputs to stress file systems and commonly finds bugs
using external checkers, such as KASan [42] (memory errors) and SibylFS [114]
(POSIX violations). Current fuzzers configure the tested syscalls but not their
arguments [43, 117], as testing is driven by code coverage. Compared to fuzzing,
Metis employs a test strategy that explores both the input and state spaces, rather
than solely maximizing code coverage.

Manually written regression-testing suites like xfstests [118] and LTP [97]
check expected outputs and ensure that code updates do not [re]introduce bugs.
Because they are hand-created, they are not easily extensible and do not attempt to
automate or systematize their input or state exploration. Compared to their XFS-
specific tests, xfstests’ “generic” tests can be used with any file system. Never-
theless, from our past experience (including building RefFS), even when adopting
the generic tests, some setup functions must be manually modified.

Automatic test generation [98, 20, 76] creates rule-based syscall workloads
(e.g., opening a file before writing) and employs external checkers (e.g., KASan [42])
or an oracle [98] to identify file system defects. This technique is easily adapted
to new file systems and extensible with new operations, owing to the universality
of syscalls. Nevertheless these implementations have lacked the versatility needed
to explore diverse inputs and do not explore the state space like Metis. Further-
more, these testing methods typically identify only a limited range of bugs; for
instance, CrashMonkey [98] exclusively detects crash-consistency bugs. We do
not include a comparative analysis of testing for other storage systems, such as
NVM libraries [35] and data structures [36], given their different testing targets
and goals.

Ultimately, Metis is not designed to replace any existing technique; rather, we
believe that it is an additional tool that offers a complementary combination of
capabilities not found elsewhere.

9

CHAPTER 3. RELATED WORK

Verified file systems For Metis, a reliable and ideally bug-free reference file sys-
tem is critical. Verified file systems are built according to formally verified logic
or specifications. For example, FSCQ [22] uses an extended Hoare logic to define
a crash-safe specification and avoid crash-consistency bugs. Yggdrasil [121] con-
structs file systems that incorporate automated verification for crash correctness.
DFSCQ [21] introduces a metadata-prefix specification to specify the properties of
fsync and fdatasync for avoiding application-level bugs. SFSCQ [57] offers a
machine-checked security proof for confidentiality and uses data non-interference
to capture discretionary access control to preclude confidentiality bugs. However,
the specifications of verified file systems have only been used to verify particular
properties (e.g., crash consistency [22, 121, 21] or concurrency [149]), so other
unverified components can still contain bugs. Worse, even after rigorous verifica-
tion, bugs can still hide due to erroneous specifications (e.g., a crash-consistency
bug reported on FSCQ [70]). None of these verified file systems include the ex-
tra APIs that RefFS provides, which are crucial for optimizing model-checking
performance. While RefFS has not been formally verified, it relies on long-term
Metis testing to attain high robustness. Thus, we chose it, rather than a verified
file system, as the reference.

10

Chapter 4

IOCov: Input and Output Coverage
for File System Testing

File systems need testing to discover bugs and to help ensure reliability. Many
file system testing tools are evaluated based on their code coverage. We analyzed
recently reported bugs in Ext4 and BtrFS and found a weak correlation between
code coverage and test effectiveness: many bugs are missed because they depend
on specific inputs, even though the code was covered by a test suite. Our position
is that coverage of system call inputs and outputs is critically important for testing
file systems. We thus suggest input and output coverage as criteria for file system
testing, and show how they can improve the effectiveness of testing. We built a
prototype called IOCov to evaluate the input and output coverage of file system
testing tools. IOCov identified many untested cases (specific inputs and outputs
or ranges thereof) for both CrashMonkey and xfstests. Additionally, we discuss a
method and associated metrics to identify over- and under-testing using IOCov.

4.1 Introduction
Motivation File systems, a fundamental component of modern operating sys-
tems, must reliably store and organize user data. Due to their critical role, file
system bugs are a serious matter [87, 147]. Various testing approaches have dis-
covered such bugs and improved file system reliability [95, 14]. Testing file sys-
tems remains a challenge, however, due to their complexity, the presence of corner
cases [142], their ongoing development [87], and the demand for strong resiliency
(e.g., crash consistency [108, 121]).

11

CHAPTER 4. IOCOV: INPUT AND OUTPUT COVERAGE FOR FILE SYSTEM
TESTING

Although a number of approaches to testing file systems have been proposed
and have succeeded in identifying many defects, bugs are still discovered on an
almost daily basis, even in mature file systems [87, 70, 69]. This raises an impor-
tant question: how can one evaluate and improve existing file system testing tools
and thus find more bugs, thereby enhancing reliability?

Limitations of code coverage Code coverage [2], the most commonly used
metric for evaluating test quality [44], measures how much source code has been
executed by a test suite. Coverage can be calculated at different levels, including
individual lines of code, functions, and branches [58]. Although coverage is help-
ful in evaluating file system testing, it has two significant limitations: (1) Even
though the developer knows which lines were not covered, it is challenging to
modify tests to cover them [7, 2]; and (2) The code covered by tests may still hide
bugs, depending on parameter values [59, 16].

To investigate the correlation between code coverage and testing effectiveness
(i.e., the ability to find bugs), we conducted a study (Section 4.2) of recent file
system bugs. We found that existing testing tools are hindered by the limitations
of code coverage. Moreover, the connection between test inputs (i.e., system calls)
and file system code is obscure [37, 7]; so improving tests to cover more code is
challenging. Additionally, in our study of xfstests—one of the oldest and most
popular file system test suites [118]—53% of reported bugs involved code that
xfstests covered yet failed to expose the bug. We found a similar phenomenon
with other metrics such as function and branch coverage. Thus, it is imperative to
find other completeness metrics that developers can use to improve test suites.

Contributions We conducted a bug study and found that most bugs can be trig-
gered by specific inputs (system calls and their arguments), especially near bound-
aries and corner cases that might be missed by some testing techniques. Therefore,
we propose input coverage [50, 128, 74] as a file system testing metric.

Exploring input coverage alone is insufficient, however, as the same syscall
input can behave differently depending on the file system state. For instance,
writing to an existing file is different from writing a brand-new one. To ensure
that the inputs are executed on meaningfully different states, we propose another
metric, output coverage [5], to measure the coverage of syscall return values and
error codes. This helps assess whether the testing reaches a wide variety of out-
puts, given that many bugs happen on exit and failure paths [87] (Section 4.2).
Our position is that testing techniques should include input and output coverage

12

CHAPTER 4. IOCOV: INPUT AND OUTPUT COVERAGE FOR FILE SYSTEM
TESTING

alongside code-coverage metrics to improve test completeness.
To evaluate input and output coverage, we first selected 27 syscalls relevant

to file systems, out of approximately 400 Linux system calls [127, 11]. Next, we
inspected each selected syscall’s arguments and divided them into four categories:
identifiers (e.g., file descriptors), bitmaps (e.g., open flags), numeric arguments
(e.g., write size), and categorical arguments (e.g., lseek whence). We then
partitioned the input space for each type of argument and the output space for
each return value (e.g., the write buffer size was partitioned by powers of 2).
We created separate partitions for boundary values and corner cases. Finally, we
calculated input and output coverage by whether and how thoroughly a test suite
covered those arguments and outputs.

We developed a prototype analyzer, called IOCov, to compute the input and
output coverage of file system test suites. We make the following contributions:

1. We studied patches and bugs from two popular Linux file systems and inves-
tigated the correlation between code coverage and bug-finding effectiveness
of xfstests. We also identified common triggers of file system bugs; this was
not addressed in previous studies [87, 147].

2. We studied syscalls to define their input and output coverage, and used that
analysis to evaluate file system testing methods and to discover and over-
come their code-coverage limitations.

3. We designed IOCov to accurately measure the input and output coverage of
existing file system test suites.

4. We empirically evaluated the input and output coverage for two representa-
tive file system test suites, xfstests [118] and CrashMonkey [98], and found
many untested regions for both.

4.2 Real-World Bug Study
Code coverage effectiveness Although many researchers have studied the cor-
relation between code coverage and test effectiveness, they usually focused on
small programs [51, 16, 102] or relatively simple user applications [59, 39]. To
the best of our knowledge, there is no existing work that considers this correlation
for in-kernel file systems based on real-world bugs and test suites. Here, we dis-
cuss the findings from a study we conducted on two popular Linux file systems:

13

CHAPTER 4. IOCOV: INPUT AND OUTPUT COVERAGE FOR FILE SYSTEM
TESTING

Ext4 [91] and BtrFS [115]. First, because of the strong link between Git commits
and accepted patches [61, 125], we manually analyzed the latest 100 Git commits
from the Linux kernel repository [126] applied in 2022 for each file system—200
commits in total. Second, using Lu et al.’s technique [87], we identified which of
the 200 commits were bug fixes. This identified 51 Ext4 bugs and 19 BtrFS bugs.
We found fewer bugs for BtrFS because many commits were due to a major code
refactoring in December 2022. Third, we ran xfstests on Ext4 and BtrFS with
all the generic and file-system–specific tests and recorded code coverage, includ-
ing line, function, and branch coverage. For each bug fix, we examined whether
xfstests covered the pertinent code, and whether the suite detected the bug. This
approach allowed us to study the correlation between bug-detection ability and
code coverage in xfstests. Finally, we analyzed the syscalls required to trigger
these bugs and code paths of each bug.

We used Gcov [58] to compute the code coverage of xfstests on Linux kernel
v6.0.6. For each bug-fix commit, we manually inspected Gcov’s report to deter-
mine whether the buggy code was covered. Since our bug study was manual, two
people independently cross-validated all findings. We found that for 37 out of
70 bugs (53%), xfstests covered the relevant code lines but still missed the bugs.
Moreover, xfstests missed bugs in 61% (43 out of 70) of covered functions and
29% (20 out of 70) for covered branches. We conclude that code-coverage metrics
are not strongly correlated with test effectiveness (i.e., the ability to find bugs).

Bug Classification Next, we manually inspected each bug-fix commit from the
perspective of software testing and analyzed the factors that triggered the bug in
question. We observed that most bugs could be detected only with specific syscall
inputs, which we characterized as input bugs. Another finding is that many bugs
occur on the exit path; such bugs may alter the behavior of syscall returns. We
defined these as output bugs. We analyzed each bug to determine its classification
as an input bug, output bug, both, or neither.

We found that a major proportion (71%, 50 out of 70) of the bugs were input
bugs; also, 59% of bugs (41 out of 70) appeared in exit paths that affect syscall
returns [89, 52]. Altogether, 57 out of 70 bugs (81%) were related to syscall inputs
or outputs. Among the bugs in covered code that were missed by xfstests, 24 out
of 37 (65%) could be triggered by specific syscall arguments, indicating that in-
put coverage can compensate for the shortcomings of code coverage. Specifically,
these arguments frequently involved corner cases [12], less-tested inputs [79], and
boundary values [129]; these are usually ignored by code-coverage metrics be-

14

CHAPTER 4. IOCOV: INPUT AND OUTPUT COVERAGE FOR FILE SYSTEM
TESTING

fs/ext4/xattr.c, v6.0-rc1
sys_lsetxattr(size, ...)
…
 vfs_setxattr(size, ...)
…
 ext4_xattr_set(value_len, ...)
…
 int ext4_xattr_ibody_set(inode, ...) {
- if (EXT4_I(inode)->i_extra_isize == 0)
+ if (!EXT4_INODE_HAS_XATTR_SPACE(inode))
 return -ENOSPC;

Figure 4.1: An example of a both input-related and output-related Ext4 bug. The
bug was fixed by checking whether the inode has room to store additional xattrs
in ext4_xattr_ibody_set.

cause they often execute the same code as heavily-tested inputs [127].
Figure 4.1 shows such an example from a recent bug [129] in Ext4 that in-

volves both input and output. This bug’s lines, function, and branches are all
covered by xfstests, which nevertheless failed to find it because it happened only
when lsetxattr used the maximum allowed size argument, causing the min-
imum offset (min_offs) between two block groups to overflow. As this bug is
also an output bug, a file system tester could detect it by checking the correctness
of the condition for the error case (i.e., ENOSPC). In sum, covering code alone
is not enough for finding bugs because many bugs depend on specific inputs and
outputs.

We will make the bug study dataset publicly available, including the code-
coverage analysis and triggers for each bug, as well as the classification of input
and output bugs.

15

CHAPTER 4. IOCOV: INPUT AND OUTPUT COVERAGE FOR FILE SYSTEM
TESTING

4.3 IOCov Framework
We define input and output coverage by partitioning those spaces, and describe
how the IOCov framework computes input and output coverage for file system
test suites.

Input- and output-space partitioning Our bug study confirmed the importance
of thoroughly covering test inputs and outputs, so we wanted to define metrics to
measure that coverage. Linux has around 400 syscalls [127, 11]. It is impractical
to measure test adequacy for all of them, so we focused on the core file-system-
related syscalls. Still, the input space is large because most syscalls take multiple
arguments with arbitrarily large values. Thus, we partitioned each argument’s
input space to identify the partitions that are under- or over-tested [113]. We
divided arguments into four classes: identifier, bitmap, numeric, and categorical.
Identifiers include file descriptors and path names. Bitmaps can be logically ORed
(e.g., open flags or chmod permissions). Numeric arguments often represent a
number of bytes (e.g., write size). Categorical arguments have fixed available
values (e.g., lseek’s whence).

We used different methods to partition each argument type. For bitmaps we
considered each flag and certain combinations thereof. For numeric arguments,
we considered boundary-value analysis [113, 105, 28, 148], but ultimately used
powers of 2 as boundaries because they are common in file systems [64]. Most
syscall outputs return either success or an error code, so we partitioned the output
space on success vs. failure, and further by each error code. For syscalls that
return a byte count on success (e.g., write), we partitioned successful returns by
powers of 2.

Input and output coverage Next, we defined input coverage and output cov-
erage as how much a tester exercises an argument’s input or output partitions;
the latter also indirectly measures how well error codes are exercised, since many
bugs happen on error paths. We note that some errors are harder to trigger than
others. For example, triggering ENOMEM requires a system with limited memory.
Therefore, achieving 100% coverage of all errors may be challenging. Neverthe-
less, using input- and output-coverage metrics, developers can compare and im-
prove file system test suites more easily than by considering code coverage alone,
because: (1) our metrics more directly identify any missed or under-tested inputs
or outputs, and (2) code-coverage metrics require going through complex kernel

16

CHAPTER 4. IOCOV: INPUT AND OUTPUT COVERAGE FOR FILE SYSTEM
TESTING

call stacks [7].

IOCov implementation Our prototype IOCov measures the input and output
coverage of existing file system testers by tracing syscalls with LTTng, a low-
overhead tracing framework [86, 4]. Traced syscalls and their arguments are sent
to the IOCov analyzer, which analyzes them and calculates coverage metrics. IO-
Cov has three components: the trace filter, the syscall variant handler, and the
input/output partitioner.

Most file system testers use dedicated devices and mount points for testing
(e.g., /mnt/test for xfstests). Since LTTng records all syscalls from the file
system tester, it observes other syscalls that are not directly used to test a file
system. We therefore developed a set of regular expressions to filter out those
irrelevant system call records (e.g., based on the mount point pathname) before
IOCov analyzes them further.

Many syscalls have variants with different prototypes (e.g., open, openat,
creat, and openat2). Variants share almost the same kernel implementation [127,
110], so IOCov’s variant handler merges their input and output spaces when com-
puting coverage. Lastly, the input/output partitioner divides the input and output
spaces, counts the occurrences of each partition, and calculates coverage metrics.
IOCov is easy to use. The only setting that needs to be adjusted when applying
it to a new file system tester is the regular expression used to identify the tester’s
mount points.

4.4 Evaluation
We experimented with the IOCov prototype on two file system testers: Crash-
Monkey [98] and xfstests [118]. The test machine had 4 cores and 128GB RAM.
CrashMonkey is an automatic black-box tester for file system crash consistency;
xfstests is a hand-written regression test suite. We tested Ext4 with all CrashMon-
key’s tests (including all of seq-1’s 300 workloads and all generic tests) as well as
all of the 706 generic tests and 308 Ext4-specific tests from xfstests.

Currently, IOCov measures input coverage for 14 distinct arguments from a
total of 27 syscalls, including 11 base syscalls (open, read, write, lseek,
truncate, mkdir, chmod, close, chdir, setxattr, and getxattr) and their
variants; it also records output coverage for all 27 syscalls.

17

CHAPTER 4. IOCOV: INPUT AND OUTPUT COVERAGE FOR FILE SYSTEM
TESTING

__
O_
TM
PF
IL
E

__
O_
SY
NC

O_
W
RO
NL
Y

O_
TR
UN
C

O_
RD
W
R

O_
RD
ON
LY

O_
PA
TH

O_
NO
NB
LO
CK

O_
NO
FO
LL
OW

O_
NO
CT
TY

O_
NO
AT
IM
E

O_
LA
RG
EF
IL
E

O_
EX
CL

O_
DS
YN
C

O_
DI
RE
CT
OR
Y

O_
DI
RE
CT

O_
CR
EA
T

O_
CL
OE
XE
C

O_
AP
PE
ND

O_
AC
CM
OD
E

FA
SY
NC

Open Flags

0

1

10

100

1K

10K

100K

1M

10M

Fr
eq

ue
nc

y
(lo

g
sc

al
e

ba
se

 1
0)

CrashMonkey xfstests

Figure 4.2: Input coverage of open flags for CrashMonkey and xfstests. The
x-axis lists all possible flags supported by open. The y-axis (log10) shows the
frequency of each open flag exercised by each testing tool.

Input coverage results Figure 4.2 shows the input coverage of open, parti-
tioned by individual flags, for CrashMonkey and xfstests. The x-axis labels all
possible flags supported by open. The y-axis (log10) shows how often each open
flag was exercised by the testing tool. A higher y-value corresponds to more fre-
quent usage of a particular open flag by a test suite. For instance, O_RDONLY,
which is universally applied to open a file as read only, is the most-used flag for
both CrashMonkey and xfstests. Figure 4.2 shows that CrashMonkey and xfstests
used the O_RDONLY flag 7, 924 and 4, 099, 770 times, respectively.

The open flag frequency of xfstests is larger than CrashMonkey’s for every
flag, showing that xfstests tests them more thoroughly. We can see that some
flags are not tested at all; this information can help developers identify new tests
(e.g., bugs exist for O_LARGEFILE [133]). We also analyzed the number of

18

CHAPTER 4. IOCOV: INPUT AND OUTPUT COVERAGE FOR FILE SYSTEM
TESTING

Test Suite / % for #flags 1 2 3 4 5 6
CrashMonkey: all flags 9.3 2.8 22.1 65.4 0.5 0
CrashMonkey: O_RDONLY 9.3 2.8 21.9 65.6 0.5 0
xfstests: all flags 6.1 28.2 18.2 46.8 0.5 0.4
xfstests: O_RDONLY 6.0 30.8 10.5 51.9 0.5 0.3

Table 4.1: Percentage of time that 1–6 open flags were used together, for Crash-
Monkey and xfstests. The table header numbers indicate how many flags were
combined in open for testing (where “1” means a single flag used alone). Because
O_RDONLY is the most popular flag, we also analyze all flag combinations that
included that flag.

tested combinations of flags. Table 4.1 shows that both suites used at most six
open flags together. In this table, “All” denotes all instances of open flags, and
“O_RDONLY” limits the results to instances with that (most popular) flag. Using
four flags was the most common. For CrashMonkey, the second most frequent
combination was three flags; for xfstests it was two. This highlights the different
strategies used by the two test suites and suggests that more diversified test cases
can be designed to test more open flag combinations.

Figure 4.3 shows the input coverage of the write size parameter (i.e., re-
quested byte count). The x-axis shows the log2 of the size. Because we use pow-
ers of 2 as boundary values, each interval (i.e., input-space partition [6]) along the
x-axis includes the actual write sizes rounded down to the nearest lower bound-
ary value. For example, x = 10 represents all write sizes from 210 to 211 − 1 (or
1024–2047). The x-axis also includes a special “Equal to 0” value (unusual but
allowed under POSIX [81]). The size 0 is also a boundary value because it is the
minimum possible size accepted by write but is easily neglected by testing [113].
The y-axis (log10) of Figure 4.3 shows the frequency of each x value.

The write size frequency of xfstests is larger than CrashMonkey’s for every
interval. CrashMonkey did not exercise many write sizes, and neither tool tested
any sizes over 258 MiB (annotated in Figure 4.3) despite the fact that 64-bit sys-
tems with many GB of RAM are common (and the maximum Ext4 file size is
16TB). Due to space limitations, we do not show input coverage for other IOCov-
supported syscalls. Overall, we found untested input partitions for many syscalls;
xfstests generally has better coverage than CrashMonkey.

19

CHAPTER 4. IOCOV: INPUT AND OUTPUT COVERAGE FOR FILE SYSTEM
TESTING

0B 1B 16B 256B 4KiB 64KiB 1MiB 16MiB 256MiB 4GiB

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32

Write Size in Bytes (exponent of log base 2)

0

1

10

100

1K

10K

100K

1M

10M

Fr
eq

ue
nc

y
(lo

g
sc

al
e

ba
se

 1
0)

Max 258 MiB

Equ
al

to
0

CrashMonkey xfstests

Figure 4.3: Input coverage of write size (in bytes) for CrashMonkey and xfstests.
The x-axis shows the log2 of write size, rounded down to the nearest boundary
value. The x2-axis shows the actual size corresponding to the x-axis. For exam-
ple, x = 28 represents 228 or 256MiB. The y-axis (log10) shows the frequency.

Output coverage results Figure 4.4 shows the output coverage for open syscalls.
The x-axis shows all possible error codes returned by open and its variants. The
y-axis (log10) shows the frequency of each output partitioned by success and error
codes. Notably, we obtained the error codes appearing along the x-axis from the
open manual page, which may not be consistent with the actual implementation.
“OK” means any return value that is ≥ 0 (i.e., open succeeded). The xfstests
suite covered more error cases than CrashMonkey except for ENOTDIR. Still,
many possible error codes remain untested.

Application: syscall test adequacy The above figures show how much cov-
erage each test suite had for each partition; but we also wanted to offer a single

20

CHAPTER 4. IOCOV: INPUT AND OUTPUT COVERAGE FOR FILE SYSTEM
TESTING

OK (>
= 0)

EXDEV

ETXTBSY

EROFS

EPERM

EOVERFLOW
ENXIO

ENOTDIR

ENOSPC

ENOMEM

ENOENT

ENODEV

ENFIL
E

ENAMETOOLONG

EMFIL
E

ELOOP

EISDIR

EIN
VAL

EIN
TR
EFBIG

EFA
ULT

EEXIST

EDQUOT

EBUSY

EBADF

EAGAIN

EACCES
E2B

IG

Open Return Code or Error

0

1

10

100

1K

10K

100K

1M

10M

Fr
eq

ue
nc

y
(lo

g
sc

al
e

ba
se

 1
0)

CrashMonkey xfstests

Figure 4.4: Output coverage of open for CrashMonkey and xfstests. The x-axis
shows outputs (i.e., success and error codes) returned by open and its variants.
The y-axis (log10) shows the frequency.

metric that can numerically represent the test adequacy for each input and output.
We observed that some partitions are tested millions of times while others are not
tested at all. Thus, we introduced the notions of under-testing and over-testing for
each partition. Under-testing means that the partition gets too little testing if at
all; this can miss bugs. Over-testing means the partitions are excessively tested;
this could waste resources better diverted elsewhere (e.g., under-tested partitions).
We note that assessing the appropriate amount of testing may depend on the par-
tition itself: for example, smaller write sizes are more common and may benefit
from more testing than large ones. Moreover, we wanted our metric to “penalize”
under-testing as well as possible over-testing.

Thus, we define a Test Coverage Deviation (TCD) metric as our first attempt
to evaluate how comprehensive are the input and output coverage values. Given

21

CHAPTER 4. IOCOV: INPUT AND OUTPUT COVERAGE FOR FILE SYSTEM
TESTING

0 10 100 1K 10K 100K 1M 10M

Target Value (log scale base 10)

0

5

10

15

T
C

D
 V

al
ue

CrashMonkey
xfstests

Figure 4.5: Test Coverage Deviation (TCD) for open flags, for CrashMonkey and
xfstests. The x-axis (log10) shows the target number of tests for each open flag.
The y-axis shows the TCD value of each testing tool for different target values.

an input or output coverage for a syscall with N partitions, where the frequency
for partition i is Fi, we first define a target array T of length N , where Ti is the
number of times (frequency) we want to test partition i. The TCD for the array T
is the Root Mean Square Deviation (RMSD [66]):

TCDT =

√√√√ 1

N

N∑
i=1

(logFi − log Ti)2

We use logarithms for the frequencies and target because under-testing is more
problematic than over-testing [80], so we want to downplay the latter. A lower
TCD is better because it is closer to the pre-defined test target T . The selection of
T depends on file system developers’ preferences. For example, crash-consistency
testing heavily exploits persistence operations [98], such as sync or the O_SYNC
flag of open. Thus, developers might want to set a larger target Ti for persistency-
related input or output partitions. IOCov can be used to evaluate TCD iteratively;
this can help developers design test cases that avoid under- or over-testing of the
desired inputs and outputs.

For simplicity, in our study we set all elements of the array T to the same
value. Figure 4.5 shows the TCD for CrashMonkey and xfstests with different

22

CHAPTER 4. IOCOV: INPUT AND OUTPUT COVERAGE FOR FILE SYSTEM
TESTING

target arrays. The x-axis (log10) shows the uniform value of the target array for
open flags. We see that below x ≈5,237, CrashMonkey has a better (lower) TCD;
above that value, xfstests is better. This matches Figure 4.2, where CrashMonkey
generally had lower test frequencies for open flags.

Our TCD metric accounts for both under-testing and over-testing, and provides
developers with a more comprehensive view of the test suite’s adequacy for a
given target, allowing developers to optimize test strategies and effectiveness.

4.5 Conclusion and Future Work
In this paper, we studied real file system bugs and identified the limitations of
code coverage and the importance of covering diverse syscall inputs and outputs.
This motivated us to propose input and output coverage for file system testing
and implement IOCov to measure this coverage for existing file system testing
tools. Our preliminary results show that CrashMonkey and xfstests fail to test
many input and output cases; this information can be readily used to improve
these testing tools. We also proposed and analyzed a new metric, Test Coverage
Deviation (TCD), to evaluate and compare the amount of under- and over-testing
of file system test tools.

Future work We plan to support more syscalls, enhance our metrics to support
bit combinations, explore non-uniform target arrays (T), and support file descrip-
tors and pointer arguments. We also plan to evaluate fuzzing systems [43, 140, 70,
138]. For different fuzzers, IOCov needs to apply other techniques to trace fuzzed
syscalls. For example, Syzkaller [43] logs syscalls with declarative descriptions,
which need to be parsed by IOCov. Hydra [140, 70], however, exercises syscalls
with Library OS [109], so IOCov requires a different method than LTTng to trace
syscalls.

We are currently developing a differential-testing-based file system tester uti-
lizing IOCov. Our approach has found several new bugs that we fixed and re-
ported; one has already been merged into the Linux mainline.

23

Chapter 5

Metis: File System Model Checking
via Versatile Input and State
Exploration

We present Metis, a model-checking framework designed for versatile, thorough,
yet configurable file system testing in the form of input and state exploration. It
uses a nondeterministic loop and a weighting scheme to decide which system calls
and their arguments to execute. Metis features a new abstract state representation
for file-system states in support of efficient and effective state exploration. While
exploring states, it compares the behavior of a file system under test against a
reference file system and reports any discrepancies; it also provides support to
investigate and reproduce any that are found. We also developed RefFS, a small,
fast file system that serves as a reference, with special features designed to accel-
erate model checking and enhance bug reproducibility. Experimental results show
that Metis can flexibly generate test inputs; also the rate at which it explores file-
system states scales nearly linearly across multiple nodes. RefFS explores states
3–28× faster than other, more mature file systems. Metis aided the development
of RefFS, reporting 11 bugs that we subsequently fixed. Metis further identified
15 bugs from seven other file systems, six of which were confirmed and with one
fixed and integrated into Linux.

24

CHAPTER 5. METIS: FILE SYSTEM MODEL CHECKING VIA VERSATILE
INPUT AND STATE EXPLORATION

5.1 Introduction
File system testing is an essential technique for finding bugs [70] and enhanc-
ing overall system reliability [46], as file-system bugs can have severe conse-
quences [87, 147]. Effective testing of file systems is challenging, however, due
to their inherent complexity [7], including many corner cases [142], myriad func-
tionalities [13], and consistency requirements (e.g., crash consistency [108, 121]).
Developers have created various testing technologies [141, 118, 98] for file sys-
tems, but new bugs (both in-kernel and non-kernel) continue to emerge on a regu-
lar basis [70, 140, 69].

To expose a file-system bug, a testing tool must execute a particular system
call using specific inputs on a given file-system state [87, 142, 83]. For example,
identifying a well-known Ext4 bug [77] requires a write operation on a file initial-
ized with a 530-byte data segment. In this case, the write operation is an input,
and the file with a specific size constitutes (part of) the file-system state. Recent
work [83, 14] also underscored the importance of adequately covering both file-
system inputs and states during testing. While existing testing technologies seek
to cover a broad range of file systems’ functionality, they often do not, however,
integrate coverage of both file-system inputs and states [70, 140, 98, 20]. For ex-
ample, handwritten regression tools like xfstests [118] can achieve good test cov-
erage of specific file-system features [97, 7], but do not comprehensively cover
syscall inputs; similarly, fuzzing techniques (e.g., Syzkaller [43]) are designed to
maximize code—not input—coverage [67].

Both the input and state spaces of file systems are too vast to be completely
explored and tested [37, 18], so it is better to leverage finite resources by focusing
on the most pertinent inputs and states [83, 143, 141]. For example, metadata-
altering operations, such as link and rename, and states with a complex direc-
tory structure are more frequently utilized in POSIX-compliance testing [114].
Existing testing technologies also lack the versatility to test specific inputs and
states [118, 98, 43]. Thus, new testing tools and techniques are needed [83, 87]
to avoid under-testing (which could miss potential bugs) or over-testing (which
wastes resources that may be better deployed elsewhere).

This paper presents Metis, a novel model-checking framework that enables
thorough and versatile input and state space exploration of file systems. Metis runs
two file systems concurrently: a file system under test and a reference file system
to compare against [45]. Metis issues file-system operations (i.e., system calls
with arguments) as inputs to both file systems while simultaneously monitoring
and exploring the state space via graph search (e.g., depth-first search [53]).

25

CHAPTER 5. METIS: FILE SYSTEM MODEL CHECKING VIA VERSATILE
INPUT AND STATE EXPLORATION

To compare the relevant aspects of file-system states, we first abstract them
and then compare the abstractions. The abstract states include file data, direc-
tory structure, and essential metadata; abstract states constitute the state space to
be explored. Metis first nondeterministically selects an operation and then fills
in syscall arguments through a user-specified weighting scheme. Next, it exe-
cutes the same operation in both file systems and then compares both systems’
abstract states. Any discrepancy is flagged as a potential bug. Metis evaluates
the post-operation states to decide if a state has been previously explored; if so, it
backtracks to a parent state and selects a new state to explore [53]. Metis contin-
uously tests new file-system states until no additional unexplored states remain,
logging all operations and visited states for subsequent analysis. Metis’s replayer
can reproduce potential bugs with minimum time and effort.

Metis effectively addresses the common challenges of model checking [25, 53]
file systems. It checks file-system implementations directly, eliminating the need
to build a formal model [101]. To manage large file-system input and state spaces,
Metis enables parallel and distributed exploration [55] across multiple cores and
machines. Metis works with any kernel or user file system, and does not require
any specific utilities nor any modification or instrumentation of the kernel or the
file system. It detects bugs by identifying behavioral discrepancies between two
file systems without the need for oracles or external checkers, thus simplifying
the process of applying Metis to new file systems. With few constraints, Metis
is well suited for testing file systems that are challenging for other testing ap-
proaches, e.g., file system fuzzing [70], that require kernel instrumentation and
utilities. Nevertheless, the quality of the reference file system is pivotal for as-
sessing the behavior of other file systems [45]. We therefore developed RefFS
as Metis’s reference file system. RefFS is an in-memory user-space POSIX file
system with new APIs for efficient state checkpointing and restoration [123, 141].
Prior to using RefFS as our reference file system, we used Ext4 as the reference
to check RefFS itself; Metis identified 11 RefFS bugs that we fixed during that
process. Subsequently, we deployed 18 distributed Metis instances to compare
RefFS and Ext4 for one month, totaling 557 compute days across all instances
and executing over 3 billion file-system operations without detecting any discrep-
ancy. This ensured that RefFS is robust enough to serve as Metis’s (fast) reference
file system.

Our experiments show that Metis can configure inputs more flexibly and cover
more diverse inputs compared to other file-system testing tools [118, 98, 43].
Metis’s exploration rate scales nearly linearly with the number of Metis instances,
also known as verification tasks (VTs). Despite being a user-level file system,

26

CHAPTER 5. METIS: FILE SYSTEM MODEL CHECKING VIA VERSATILE
INPUT AND STATE EXPLORATION

Abstract StateFS Image

Concrete State

5. Optimized
Replayer

4. Event
Logger

Weight-
Based

Arguments

flags
mode
size

offset
 … FS Image

MD5
HashMemory

Copy

Abstraction
Functions

Memory
Map

1. Input Driver

2. State Explorer
3. Differential State

Checker

Actual Bug

Operation
and Its

Arguments

Non-
Deterministic

Operation
Selection

create_file
write_file

unlink
chmod

…

Concrete State

Abstract State False Positive

Reference File
System

File System under
Test

Figure 5.1: Metis architecture and components. From left to right, Metis generates
syscalls and their arguments that are executed by both file systems, determines
resulting states, and checks for discrepancies between states. The Logger records
all the operations for convenient bug replay by the Replayer. The SPIN model
checker stores previous state information for state exploration.

RefFS’s states can be explored by Metis 3–28× faster than other popular in-kernel
file systems (e.g., Ext4, XFS, Btrfs). Using Metis and RefFS, we discovered 15
potential bugs across seven file systems. Of these, 13 were confirmed as previ-
ously unknown bugs, six of which were confirmed by developers as real bugs.
Moreover, one of those bugs—which the developers confirmed existed for 16
years—and the fix we provided, was recently integrated into mainline Linux.

In sum, this paper makes the following contributions:

1. We designed and implemented Metis, a model-checking framework for ver-
satile and thorough file-system input and state-space exploration.

2. We designed and implemented an effective abstract state representation for
file systems and a corresponding differential state checker.

3. We designed and implemented the RefFS reference file system with novel
APIs that accelerate and simplify the model-checking process.

4. Using RefFS, we evaluated Metis’s input and state coverage, scalability,
and performance. Our results show that Metis, together with RefFS, not
only facilitates file-system development but also effectively identifies bugs
in existing file systems.

5.2 Background and Motivation
In this section, we first introduce the procedures and challenges for testing and
model-checking file systems. We then discuss two vital dimensions for file system

27

CHAPTER 5. METIS: FILE SYSTEM MODEL CHECKING VIA VERSATILE
INPUT AND STATE EXPLORATION

testing: input and state. We demonstrate the challenges of achieving versatile and
comprehensive coverage of both inputs and states.

File system testing and model checking File systems can be tested statically or
dynamically. Static analysis [95, 14] evaluates the file system’s code without run-
ning it; while useful, it struggles with complex execution paths that may depend
on runtime state. Our work therefore emphasizes dynamic testing—executing and
checking file systems in real-time scenarios [114, 20, 98]. Generally, dynamic
testing involves (1) crafting test cases using system calls, (2) initializing the file
system, (3) running the test cases, and (4) post-execution validation of file system
properties. Hence, the quality of test cases directly affects the testing efficacy.

Model checking is a formal verification technique that seeks to determine
whether a system satisfies certain properties [25, 130]. The model is typically a
state machine, and the properties, usually expressed in temporal logic, are checked
using state-space exploration [24]; here, each state represents a snapshot of the
system under investigation. To automate this process, model checkers (such as
SPIN [53]) are used to generate the state space, verify property adherence, and
provide a counterexample when a property is violated.

Extracting a model from a system implementation can be challenging, es-
pecially for large systems like file systems [142, 141]. Thus, recent work on
implementation-level model checking [142, 141] seeks to check the implementa-
tion directly (without a model). Such approaches [141] require one to create new,
specialized checkers to test new file systems, and these checkers are typically fo-
cused on a limited range of bugs, such as crash-consistency bugs [142, 141]. The
ongoing challenge is to simplify implementation-level file-system model checking
so that using it does not require extensive effort or significant expertise in model
checking and file systems, while at the same time being able to identify a wide
range of bugs.

Covering system calls and their inputs We refer to the system calls (syscalls)
and their arguments as inputs or test inputs because syscalls are commonly used by
user-space applications—and thus testing tools—to interact with file systems [38,
135]. Thoroughly testing file system inputs is challenging. While file-system–
related syscalls represent only a subset of all Linux syscalls [127, 11], each syscall
has multiple arguments, and the potential value range for these arguments is
vast [127, 83]. For example, open returns a file descriptor, accepting user-defined
arguments for flags and mode in addition to pathname. Both flags and mode

28

CHAPTER 5. METIS: FILE SYSTEM MODEL CHECKING VIA VERSATILE
INPUT AND STATE EXPLORATION

are bitmaps with 23 and 17 bits, respectively, representing many possible com-
binations. The bits represented in flags alone have 223 possible values, leading
to an aggregate input space of 240. Similarly, write and lseek take 64-bit-long
byte-count arguments that have a large input domain of 264 possible values. Nev-
ertheless, it is vital to test as many representative syscall inputs as possible.

Fully testing all syscalls with every potential argument is impractical [43, 63].
Instead, a sensible approach [74, 83] is to segment a large input space into multi-
ple, disjoint input partitions—called input space partitioning [132, 83, 65]. How
much a testing tool examines input partitions is called input coverage [50, 128,
74]. Utilizing input partitions and coverage, testing tools can target the coverage
of different partitions—each representing a subset of analogous test inputs. Intu-
itively, file system developers recognize the need to, say, separately test critical
I/O write sizes of 512 and 4096; conversely, once one tests an I/O size of, say,
5000 bytes, the gains from testing subsequent adjacent sizes (e.g., 5001, 5002,
. . .) quickly diminish.

To compute input coverage, we categorized each syscall’s arguments into four
classes [83, 11, 127]: (i) identifiers (e.g., file descriptors), (ii) bitmaps (e.g., open
flags), (iii) numeric arguments (e.g., write size), and (iv) categorical arguments
(e.g., lseek “whence”). We partitioned the input space using type-specific meth-
ods. For example, bitmaps are partitioned by each flag and certain combinations
thereof. Numeric arguments are partitioned by boundary values (e.g., powers of
2 [64]). Our goal is to achieve thorough input coverage while configuring it based
on test strategies to customize the overall search space. To the best of our knowl-
edge, no existing file system testing method is specifically designed for compre-
hensive input coverage, nor are there any techniques to flexibly define the input’s
coverage.

Challenges of testing file system states In file system testing, the state refers to
the content, status, and full context of the file system at a given point in time [123,
37]. Comprehensive state exploration is important as certain bugs manifest ex-
clusively under specific states [87, 77, 129]. Numerous file system states can
be explored when some existing testing approaches [118, 98] execute operations.
Yet the majority of these approaches lack state tracking—the ability to record and
identify previously or similarly visited states—thus wasting resources [141]. The
challenges are thus twofold: state definition and efficient state tracking.

Defining file system states involves a tradeoff, because components such as
on-disk content, in-memory data, configuration, kernel context, and device types

29

CHAPTER 5. METIS: FILE SYSTEM MODEL CHECKING VIA VERSATILE
INPUT AND STATE EXPLORATION

are all candidates for inclusion in the state [37]. An overly detailed state definition
can render state exploration infeasible due to resources spent on visiting multiple
states that should be treated as if they were identical [25]. Conversely, an overly
narrow definition can skip key states and potentially miss defects [19]. Therefore,
one should be able to define the state space flexibly, so it contains all desired file
system attributes while maintaining a manageable state space.

Due to massive state spaces, state tracking incurs considerable overhead, thus
slowing the entire exploration process. While model checkers provide a mecha-
nism for state exploration [53] with state tracking and certain optimizations, they
still have to contend with the state explosion problem—a significant challenge
where the number of system states grows exponentially with the number of system
variables, making state exploration computationally impractical [25]. In file sys-
tems, this issue is exacerbated by the inherently slow nature of I/O. An alternative
approach is to partition the state-exploration process across multiple instances,
with each instance exploring a certain portion of the state space; doing so requires
a sophisticated design for diversified, parallel exploration [55].

5.3 Design
In this section, we describe Metis’s design principles and operation. We explain
how Metis meets the challenges of exploring file system inputs and states, and
how it provides versatility.

Metis architecture As shown in Figure 5.1, Metis has five main components:
(1) Input Driver, (2) State Explorer, (3) Differential State Checker, (4) Event Log-
ger, and (5) Optimized Replayer. Each component is designed to be independent,
allowing for modularity and extensibility.

The Input Driver (§5.3.1) generates syscalls and arguments to serve as the test
inputs to both file systems. Metis is built on top of the SPIN model checker [53]
to combine input selection with state exploration. The State Explorer (§5.3.2)
extracts concrete and abstract states from both file systems and interfaces with
SPIN to explore new states. The Differential State Checker (§5.3.3) verifies that
both file systems have identical behavior after each operation, by comparing their
abstract states, syscall return values, and error codes. Any discrepancies are re-
ported by the checker and treated as potential bugs. The Event Logger and the
Optimized Replayer (§5.3.4) help analyze reported discrepancies and reproduce
potential bugs more efficiently.

30

CHAPTER 5. METIS: FILE SYSTEM MODEL CHECKING VIA VERSATILE
INPUT AND STATE EXPLORATION

5.3.1 Input Driver
Metis’s Input Driver maintains a list of operations from which the SPIN model
checker can repeatedly and nondeterministically choose what to execute, includ-
ing individual syscalls (e.g., unlink) as well as meta-operations comprising a
(small) sequence of syscalls (e.g., the write_file operation opens a file and
writes to it at a specific offset). From a given file system state, multiple potential
successor states may arise. Through its nondeterministic choices of operations,
Metis can effectively explore many of these options, ensuring thorough state ex-
ploration. To bound the input space, each operation randomly picks a file or di-
rectory name from a predetermined set of pathnames. The Input Driver is flexible
and can generate files or directories with arbitrarily deep directory structures, long
pathnames, and other unexpected scenarios such as many files inside a single di-
rectory.

We focus on state-changing operations [45] (i.e., not read-only ones) as the
Input Driver seeks to maximize the exploration of file system states. Currently,
the Input Driver supports five meta-operations (create_file, write_file,
chown_file, chgrp_file, and fallocate_file), and 10 individual syscalls
(truncate, unlink, mkdir, rmdir, chmod, setxattr, removexattr, rename,
link, and symlink). Adding a new operation has minimal effort of about 10
LoC. Metis exercises read-only operations such as read, getxattr, and stat

after each state-changing operation, when computing file system abstract states in
the State Explorer (§5.3.2).

After selecting the operation, Metis chooses its arguments based on a series of
user-specified weights that control how often various argument partitions (§5.2)
are tested. In the Input Driver, weights represent the probabilities assigned to dif-
ferent input partitions, which control testing frequencies. The method of assigning
weights varies based on the argument type [11, 83]. For bitmap arguments, each
bit receives a probability of being set. The number of input partitions in a bitmap
argument is equivalent to its individual bit count. Given the ubiquity of powers of
2 in file systems [64], numeric arguments like write size (requested byte count)
have input partitions segmented by these numbers as boundary values, rounding
down to the nearest boundary. For example, write sizes ranging from 1024 to
2047 bytes (210 to 211 − 1) are grouped in the same partition. Assigning a weight
(e.g., 15%) to this partition implies a 15% chance of selecting a write size between
1024 and 2047 bytes. The total weight of all write-size partitions equals 100%.
We placed 0 bytes as a distinct partition (unusual but allowed under POSIX) be-
cause the smallest power of 2 is 1, which is greater than 0. Additionally, Metis

31

CHAPTER 5. METIS: FILE SYSTEM MODEL CHECKING VIA VERSATILE
INPUT AND STATE EXPLORATION

can also be configured to test only boundary values (powers of 2) such as 4096
as well as near-boundary values (±1 from the boundary, e.g., 4095/4097) that are
useful for testing underflow and overflow conditions.

The choice of weights depends on the user’s objectives. For example, while
O_SYNC is common in crash-consistency testing [98], it is used infrequently for
POSIX compliance [114]. Due to disk I/O’s slow speed, many tests focus on
small write sizes [20]. However, testing larger sizes can uncover size-specific
bugs [129, 114]. Our objective is to ensure that Metis remains versatile and to
allow one to adjust the input weights in line with the test focus.

5.3.2 State Exploration and Tracking

Problem Cause of discrepancies Solution
Different directory size for
same contents

Size calculation methods Ignore directory sizes

Different orders of direc-
tory entries

Internal data structures
Sort the output of
getdents

FS-specific special files
and directories

Internal implementations
Create an exception list of
special entries

Different usable data ca-
pacities

Space reservation and uti-
lization

Equalize free space among
file systems

Table 5.1: Examples of false positives identified and addressed by Metis.

State explorer The objective of Metis’s State Explorer is to use graph traversal
to conduct thorough and effective “state graph exploration,” where the nodes cor-
respond to file-system states and the edges represent transitions caused by opera-
tions [24]. Metis supports depth-first search (DFS) as the main search algorithm.

The State Explorer relies on the SPIN model checker [53] to conduct the state-
space exploration. SPIN supports the Promela model-description language, and
allows embedding C code in Promela code. This capability allows us to seam-
lessly issue low-level file-system syscalls and invoke utilities. SPIN’s role is to
provide optimized state-exploration algorithms (e.g., DFS) and data structures to
track and store the status of the state graph; thus, we do not have to implement
these features in the State Explorer.

In model checking, there are two types of states: concrete and abstract. Con-
crete states contain all the information that describes the states of the file system

32

CHAPTER 5. METIS: FILE SYSTEM MODEL CHECKING VIA VERSATILE
INPUT AND STATE EXPLORATION

being checked. Abstract states serve as signatures to identify different system
states of interest during the exploration.

After each operation, the State Explorer calls the abstraction function to ex-
tract abstract states as hash values from both file systems. Every time an abstract
state is created, SPIN checks whether it has already been visited by looking up the
abstract state in SPIN’s hash table and decides on the next action, either backtrack-
ing to a previous concrete state or continuing from the current one. Meanwhile,
the State Explorer mmaps the full file-system image into memory to be tracked by
SPIN as a concrete state. Concrete states are stored in SPIN’s stack to allow the
State Explorer to restore the full file-system state as required. To improve the per-
formance of state exploration, we use RAM disks as backend devices for on-disk
file systems. In Metis, we create both file systems with the minimum device sizes
to reduce the memory consumption of maintaining concrete states and to make it
easier to trigger corner cases such as ENOSPC.

File system abstract states A concrete state is a reflection or snapshot of the
entire (and highly detailed) file-system image, which renders it inappropriate for
distinguishing a previously visited state [19]. This is because any small change
to the file-system image leads to a new concrete state, even though there may be
no “logical” change in the file system. For example, Ext4 updates timestamps
in the superblock during each mutating operation, even if no actual change to a
user-visible file was made. This substantially expands the state space, with many
states differing only by minor timestamp changes, and leads to wasted resources
on logically identical states. Additionally, because file systems are designed with
different physical on-disk layouts, we cannot use concrete states to compare their
behaviors. Therefore, we need a different state representation that includes only
the essential and comparable attributes common to both file systems.

To address this problem, we defined an abstraction function to calculate file-
system abstract states to distinguish unique states, and to compare file system
behaviors. The abstract state contains pathnames, data, directory structure, and
important metadata for all files and directories (e.g., mode, size, nlink, UID, and
GID); we exclude any noisy attributes such as atime timestamps. We then hash
this information to compact the abstract state for a more effective comparison.
Metis supports several hash functions to compute abstract states; we evaluated the
speed and collision resistance of each hash function (results elided for brevity)
and chose MD5 by default as it had the best tradeoff of those characteristics.

The abstraction function deterministically aggregates key file system data and

33

CHAPTER 5. METIS: FILE SYSTEM MODEL CHECKING VIA VERSATILE
INPUT AND STATE EXPLORATION

metadata, enabling comparison across different file systems. Specifically, the ab-
straction function begins by enumerating all files and directories in the file system
by traversing it from the mount point. Their pathnames are sorted into a consistent,
comparable order. We then read each file’s contents and call stat to extract its
important metadata mentioned above, following the pathname order. Finally, we
compute the (MD5) hash based on the files’ content, directory structure, important
metadata, and pathnames to acquire the abstract state. Using abstract states not
only prevents visiting duplicate states but also significantly reduces the amount of
memory needed to track previously-visited states, owing to our lightweight hash
representation, which in turn boosts Metis’s exploration speed.

Tracking full file system states In addition to abstract states, another complex-
ity in tracking file system states is saving and restoring the concrete states when
Metis needs to backtrack to a previous state (i.e., when reaching an already vis-
ited state); this involves State Save/Restore (SS/R) operations for concrete states.
Concrete states must contain all file system information including persistent (on-
disk) and dynamic (in-memory) states. Metis can feasibly save and restore on-disk
states by copying the on-disk device and subsequently copying it back. Kernel file
systems (e.g., Ext4 [91]) maintain states in kernel space, which is inaccessible to
Metis, a user process. Similarly, user-space file systems built on libFUSE (e.g.,
fuse-ext2 [3]) are separate processes with separate address spaces, so again Metis
cannot directly track their internal state. Tracking only persistent on-disk state
leads to cache incoherency, because cached in-kernel information is inconsistent
with the on-disk content.

We tried and evaluated several approaches to tracking full file system states
(performance results elided for brevity) including fsync syscall, sync mount op-
tion, process snapshotting [26, 139], VM snapshotting [71, 75], and LightVM [90].
None of these approaches were effective due to their functional deficiencies or
inefficient performance. For those reasons, we adopted the approach presented
in [123] to unmount and remount the file system between each operation in Metis.
An unmount is the only way to fully guarantee that no state remains in kernel
memory. Remounting guarantees loading the latest on-disk state, ensuring cache
coherency between each state exploration. This unmount-remount method was
a compromise that ensures data coherency yet provides reasonable performance
(§5.6.2), especially coupled with our specialized RefFS (§5.4).

34

CHAPTER 5. METIS: FILE SYSTEM MODEL CHECKING VIA VERSATILE
INPUT AND STATE EXPLORATION

5.3.3 Differential State Checker
Metis checker goals and approaches Using only the Input Driver and State
Explorer would constrain the detection of bugs to those manifesting as visible
symptoms [20], such as kernel crashes. We thus needed a dedicated checker to
identify cases where file systems fail silently [70] (e.g., data corruption). More-
over, existing checkers usually require considerable effort to be applied to newly
developed or constantly-evolving file systems. For example, since many checkers
are hand-written (e.g., xfstests), the testing of new file systems involves redesign-
ing and refactoring test cases. Some checkers depend on an exact (e.g., POSIX)
specification or an oracle for bug detection [98, 114]: they are difficult to adapt to
continuously-evolving file systems.

File systems vary considerably in terms of their developmental stages [145,
87]: mature file systems are typically more stable than new, emerging, or less pop-
ular ones [87]. Yet many still share common (POSIX) features and data-integrity
requirements. Therefore, we rely on a differential testing approach [92], to check
emerging file systems for silent bugs, eliminating the need for a detailed specifi-
cation or an oracle.

We developed Metis’s Differential State Checker to identify a broad range of
file system bugs and facilitate file system development. Our checker can easily
adapt to test new file systems; it requires no modification to the checker, only a
replacement of the file system under test. Metis uses a well-tested, reliable file
system as the reference file system and a less-tested, emerging one as the file
system under test. After each file system operation, the Differential State Checker
compares the resulting states of both file systems to detect any discrepancies. To
prevent false positives, it only compares the common attributes of file systems,
including their abstract states, return values, and error codes.

Eliminating false positives As any discrepancy is reported as a potential bug,
when developing Metis we found that it sometimes identified discrepancies that
were not bugs (i.e., false positives). We implemented measures to avoid these
false positives. Table 5.1 summarizes several such cases including their problems,
causes, and solutions.

All these discrepancies arose due to different file system designs and imple-
mentations. For instance, Ext4 has a special lost+found directory and computes
directory sizes by a multiple of the block size. In contrast, other file systems report
sizes by the number of active entries and do not have a lost+found directory.
Despite the same device sizes for different file systems, the available space varies

35

CHAPTER 5. METIS: FILE SYSTEM MODEL CHECKING VIA VERSATILE
INPUT AND STATE EXPLORATION

due to different utilized and reserved space (e.g., for metadata). To address this,
we equalize free space among file systems by creating dummy files based on the
differences in their available spaces.

While developing Metis, we analyzed every discrepancy we encountered and
addressed all false positives. Whenever a false positive was identified, we updated
the state abstraction function or file system initialization code to eliminate such
instances, an infrequent process that was conducted manually. None of these solu-
tions introduce false negatives, because they all deal with non-standardized behav-
ior. For example, an application should not expect sorted output from getdents.
Nevertheless, if a change introduces any misbehavior, Metis’s Differential State
Checker will report and handle it.

5.3.4 Logging and Bug Replay
When detecting a discrepancy, it is important to be able to analyze the operations
executed by the file systems to identify and reproduce the potential bug. Thus,
Metis’s Event Logger records details of all file-system operations and outcomes,
comprising every syscall and their arguments, return values, error codes, SS/R
operations, and resultant abstract state. Additionally, the Event Logger logs file-
system information such as the directory structure and important metadata to pin-
point the deviant behavior as soon as a discrepancy is detected. To reduce disk I/O,
we store the runtime logs in an in-memory queue and periodically commit them
to disk. Leveraging the Event Logger, we can reproduce the precise sequence of
operations leading to a discrepancy found by Metis.

Metis can replay identified bugs by re-executing the operations from the start
of Metis’s run. This process can be time-consuming, however, if the discrep-
ancy was detected after executing many operations and passing through numerous
states [4]. So we needed a way to reproduce a discrepancy quickly. Existing test-
case minimization techniques [146, 70] remove one operation from a sequence
until the remaining operations can reproduce the bug; but this trial-and-error pro-
cess is slow due to the abundance of I/O operations.

To replay bugs efficiently, the Optimized Replayer reproduces them using only
a few operations (recorded in logs) and one (concrete state) file system image.
Using SPIN, we retain concrete states in a stack, thereby capturing all file-system
images along the current exploration path and allowing for bug reproduction from
any desired location in the stack. Recent findings [98, 70] indicate that most
bugs can be reproduced on a newly created file system using a sequence of eight
or fewer operations. Accordingly, Metis uses an in-memory circular buffer to

36

CHAPTER 5. METIS: FILE SYSTEM MODEL CHECKING VIA VERSATILE
INPUT AND STATE EXPLORATION

retain pointers to a few of the most recent file-system images (defaults to 10,
but configurable) for quick post-bug processing. In practice, we first attempt to
reproduce the bug using the most recent image (immediately preceding the bug
state) along with the latest operation. If unsuccessful, we turn to the previous
image and the two last operations, and so on in a similar pattern. This eliminates
the need for Metis to replay the entire operation sequence from the beginning.

5.3.5 Distributed State Exploration
Along with performing state abstraction and setting limits on the number of files
and directories, we also restrict the search depth to control the exponential growth
of the state space. We set the maximum search depth to 10,000 by default [53].
If the search hits the 10,000th level, Metis reverts to the prior state rather than
exploring deeper. Thus, the state space becomes bounded, allowing Metis to per-
form an exhaustive search. Still, even with this depth restriction, the state space
remains large because of the variety in test inputs and file system properties [37].
Exploring this space using a single Metis process (called a verification task, or
VT) requires significant time.

To parallelize the state-space exploration [54] we use Swarm verification [55],
which generates parallel VTs based on the number of CPU cores. Each VT ex-
amines a specific portion of the state space. To prevent different VTs from re-
exploring the same states, and to avoid having to coordinate states across VTs,
SPIN employs several diversification techniques [55], where every VT receives
a unique combination of bit-state hash polynomials, number of hash functions,
random-number seeds, search orders (e.g., forward or in reverse) and search algo-
rithms (e.g., DFS), ensuring varied exploration paths.

We enabled these parallel and distributed exploration capabilities for Metis.
The setup uses a configuration file to determine the machine and CPU core count;
Metis then produces the exact VT count based on the configuration file. When
Metis runs on distributed machines, each runs a handful of VTs, one per CPU core.
Each VT is automatically configured with a distinct combination of diversification
parameters, guiding them to explore different state space areas. Utilizing multiple
Metis VTs across multiple cores and machines increases the overall speed of state
exploration while testing more inputs. Every Metis VT operates independently,
with its own device, mount point, and logs, without interference with other VTs.
Given that VTs explore states autonomously without inter-VT communication,
there is a risk of resource wastage if several VTs examine the same state [55].
We deployed multiple VTs on several multi-core machines and evaluated Metis

37

CHAPTER 5. METIS: FILE SYSTEM MODEL CHECKING VIA VERSATILE
INPUT AND STATE EXPLORATION

extensively under Swarm verification (§5.6.2).

5.3.6 Implementation Details
Metis uses SPIN to achieve basic model-checking functions. The Promela mod-
eling language [53] serves as the main interface with SPIN. We wrote 413 lines
of Promela, consisting of do...od loops that repeatedly select one of a number
of cases in a nondeterministic fashion. Each case issues file-system operations,
performs differential checks, and records logs. The main part of Metis comprises
7,911 lines of C/C++ code that implement Metis’s components and its commu-
nication with SPIN. We also created 1,230 lines of Python/Bash scripts to man-
age different Metis VTs and runtime setup, such as invoking mkfs, and creating
mount points and devices. We created RAM block devices as backend storage for
on-disk file systems. Linux’s RAM block device driver (brd) requires all RAM
disks to be the same size. We modified it (renamed brd2), to allow different-sized
disks for file systems with different minimum-size requirements. We used brd2

to create devices for on-disk file systems during the evaluation.
We changed 72 lines of SPIN’s code (Aug 2020 version) to add dedicated

hook functions for file system SS/R operations. Lastly, we added 31 lines of code
to the original Swarm verification tool (Mar 2019 version) to enable more flexible
compilation options and smoother compatibility with Metis.

In our experience, adding a new file system operation to Metis is straightfor-
ward. It requires only one additional case in the Promela code, amounting to about
10 lines. Most functionality in Metis is file-system-agnostic, e.g., deploying the
file system and computing abstract state. To test a new file system, we need to
specify only the device type (e.g., RAM disk for most file systems, MTD block
device for JFFS2) and the desired device size in Metis.

5.3.7 Limitations of Metis
False negatives Like many other tools, Metis might experience false negatives:
it could fail to detect an existing bug. First, since Metis’s abstract state excludes
time-related attributes, it cannot detect, e.g., atime-related bugs. Though that is
an unavoidable consequence of abstraction, we strive to make the abstract state
as comprehensive as possible. Second, Metis identifies bugs by detecting behav-
ioral discrepancies between the reference file system and the file system under
test. Given the nature of differential testing [45, 92], Metis could fail to detect
bugs shared between both file systems as no discrepancy would be found. To

38

CHAPTER 5. METIS: FILE SYSTEM MODEL CHECKING VIA VERSATILE
INPUT AND STATE EXPLORATION

address this problem, one can either use a flawless reference file system or lever-
age N-version programming [9], comparing more than two file systems, to reduce
the probability that the same bug is present across all of them. Unfortunately,
a completely bug-free file system does not exist. Despite recent efforts to for-
mally verify certain file system properties, these verified file systems may still
hide bugs [22]. Furthermore, while Metis was programmed to test any number
of file systems concurrently, employing a majority voting scheme on more than
two adds overhead and slows exploration. (That is one reason why we support
distributed verification: to increase the overall exploration rate.)

Test overhead As Metis tracks both abstract and concrete states, it inevitably
introduces extra overhead due to memory demands and the time taken for compar-
isons. Metis retains file system images in memory for state backtracking, although
we limited memory consumption to the extent possible by choosing a minimum
device size and restricting search depth. For file systems with a relatively small
device-size requirement, such as Ext4 (256KiB minimum), Metis’s peak memory
consumption remains relatively low (2.4GiB). However, a file system with a larger
minimum device size inherently consumes more memory. For example, XFS has
a minimum size of 16MiB, leading to a potential memory use of 156GiB when
we use a maximum depth of 10,000. To mitigate this issue, we reduced SPIN’s
maximum search depth below the default 10,000, decreasing resource and mem-
ory consumption while concomitantly reducing the size of the state space. Al-
though we experimented with memory compression (i.e., zram [48]) and added
swap space to increase effective memory capacity, these choices actually reduced
the overall state-exploration rate. The necessity of mounting and unmounting be-
tween each operation introduces additional time overhead to Metis. Since doing
so is necessary for tracking full file system states, we mitigated this cost by de-
ploying more VTs on multiple machines and using RAM disks.

Bug detection and root-cause analysis At present, Metis lacks the capabil-
ity to identify crash-consistency and concurrency bugs in file systems. Due to
the absence of crash state emulation [98, 76], Metis cannot find bugs that arise
solely during system crashes. We plan to provide the option of invoking utili-
ties such as fsck [107] between each Metis unmount/mount pair to help detect
crash-consistency bugs. Given that Metis operates on file systems from a sin-
gle thread, it tends to miss concurrency bugs (e.g., race conditions [138]). While
Metis’s replayer assists in reproducing bugs, another limitation is Metis’s inabil-

39

CHAPTER 5. METIS: FILE SYSTEM MODEL CHECKING VIA VERSATILE
INPUT AND STATE EXPLORATION

Metis Input Driver

RefFS

libFUSE

/dev/fuse

fuse (in kernel)

IOCTLs to save &
restore RefFS state File system operations

File Operations

Data &
Metadata

open

write

close

……

Snapshot Service
ioctl_SAVE

ioctl_RESTORE

Snapshot Pool

User

Kernel

ioctl_PICKLE

ioctl_LOAD

Metis State Explorer

Figure 5.2: RefFS architecture and its interaction with Metis and kernel space.
RefFS supports standard POSIX operations and provides snapshot services with a
snapshot pool and four new APIs.

ity to precisely identify the root cause of detected state discrepancies within the
code [116].

5.4 RefFS: The Reference File System
In Metis, the reference file system must reliably represent correct behaviors and
ensure efficiency in the file system and SS/R operations. We initially chose Ext4 as
the reference file system due to its long-standing use and known robustness [91].
Still, no file system, including Ext4, is absolutely bug-free. Additionally, Ext4
lacks optimizations for model-checking state operations, limiting its suitability.
We believe that a reference file system should be lightweight [121, 22], eas-
ily testable and extensible, robust, and optimized for SS/R operations in model
checking. Originally, we tried to modify small in-kernel file systems (e.g., ramfs),
to track their own state changes. However, capturing and restoring their entire

40

CHAPTER 5. METIS: FILE SYSTEM MODEL CHECKING VIA VERSATILE
INPUT AND STATE EXPLORATION

state proved extremely challenging because the state resides across many kernel-
resident data structures [8]. Consequently, we developed a new file system, called
RefFS, specifically designed to function as the reference system.

RefFS architecture RefFS is a RAM-based FUSE file system. Figure 5.2 shows
the architecture of RefFS and its interplay with Metis and relevant kernel compo-
nents. It incorporates all the standard POSIX operations supported by the In-
put Driver along with the essential data structures for files, directories, links, and
metadata. We developed RefFS in user space to avoid complex kernel interactions
and have full control over its internal states. Comprising 3,993 lines of C++ code,
RefFS uses the libFUSE user-space library together with /dev/fuse to bridge
user-space implementations and the lower-level fuse kernel module. Metis han-
dles file system operations on RefFS in the same manner as other in-kernel file
systems. Most importantly, RefFS also provides four novel snapshot APIs to man-
age the full RefFS file system state via ioctls: ioctl_SAVE, ioctl_RESTORE,
ioctl_PICKLE, and ioctl_LOAD. These are described next.

5.4.1 RefFS Snapshot APIs
RefFS shows how file systems themselves can support SS/R operations in model
checking through snapshot APIs. The essence of SS/R operations lies in their
ability to save, retrieve, and restore the concrete state of the file system. Although
RefFS is an in-memory file system lacking persistence, it possesses a concrete
state (i.e., snapshot) that includes all information associated with the file system.
Existing file systems like BtrFS [115] and ZFS [13], which support snapshots,
can only clone (some of) the persistent state but not their in-memory states. In
contrast, RefFS can capture and restore the in-memory states through its own
APIs. Since RefFS stores all its data in memory, it guarantees saving and restoring
the entire file system state.

Snapshot pool The snapshot pool is a hash table that organizes all of RefFS’s
snapshots; the key is the current position in the search tree. The value associated
with each key is a snapshot structure that saves the full file system state including
all data and metadata such as the superblock, inode table, file contents, directory
structures, etc. The memory overhead of the snapshot pool is low because the size
of the pool is smaller than Metis’s maximum search depth. Because RefFS is a
simple file system, the average memory footprint for each state is just 12.5KB.

41

CHAPTER 5. METIS: FILE SYSTEM MODEL CHECKING VIA VERSATILE
INPUT AND STATE EXPLORATION

Save/Restore APIs The ioctl_SAVE API causes RefFS to take a snapshot of
the full RefFS state and add an entry to the snapshot pool. The ioctl_RESTORE
does the reverse, restoring an existing snapshot from the pool. When Metis calls
ioctl_SAVE with a 64-bit key, RefFS locks itself, copies all the data and meta-
data into the snapshot pool under that key, and then releases the lock. Similarly,
ioctl_RESTORE causes RefFS to query the snapshot pool for the given key. If it
is found, RefFS locks the file system, restores its full state, notifies the kernel to
invalidate caches, unlocks the file system, and then discards the snapshot.

Pickle/Load APIs Unlike other file systems, RefFS maintains concrete states
by itself in the snapshot pool, so Metis does not need to keep RefFS’s concrete
states in its stack. To ensure good performance, RefFS’s snapshot pool resides
in memory. However, this means that all snapshots are lost when RefFS is un-
mounted, which would make it challenging to analyze and debug RefFS from a
desired state. Thus, committing these snapshots to disk before Metis terminates
is important to ensure they are available for post-testing analysis and debugging.
Given a hash key, the ioctl_PICKLE API writes the corresponding RefFS state
to a disk file. It can also archive the entire snapshot pool to disk. Likewise, the
ioctl_LOAD API retrieves a snapshot from disk, loading it back into RefFS to
reinstate the file system state. Using the ioctl_PICKLE and ioctl_LOAD APIs,
RefFS can flexibly serialize and revert to any file system state both during and af-
ter model checking, aiding bug detection and correction. Specifically, these APIs
allow RefFS to gain the same benefits as Metis’s post-bug replay and processing,
enabling bug reproduction from any point in a Metis run.

5.5 The Case of Checking Distributed File Systems
In this section, we outline the structure and procedure for checking the NFS kernel
server and NFS-Ganesha using Metis, as well as the benefits of using RefFS as
both the NFS local and reference file systems.

5.5.1 The Architecture of Checking NFS
Distributed file systems (DFSs) are another important category of file systems that
need thorough checking. However, adopting local file system testing techniques
for DFSs is difficult due to factors [124] like network communication, load redis-
tribution, data replication, distributed concurrency, and scalability, which are not

42

CHAPTER 5. METIS: FILE SYSTEM MODEL CHECKING VIA VERSATILE
INPUT AND STATE EXPLORATION

Local FS Interface

NFS Client

Client
RPC Stub

Local FS Interface

NFS Server

Server
RPC Stub

Device

Reference File
System

Device

Metis Input
Driver

FS operations

and their
arguments

Network

Differential
Checker

Discrepancies/
Bugs

Abstract
State Concrete

State

Figure 5.3: The structure of model checking NFS with Metis. We set up one client
and one server on the same machine to simplify SPIN’s management of concrete
and abstract states. The local file system type used by NFS should be identical to
the reference file system. Similar to Metis for other file systems, the differential
checker compares the abstract state between the NFS client and the reference file
system, and any discrepancy is considered a potential bug.

notable concerns in local file systems [56]. Although Metis is designed for local
file systems, it has the potential to be applied to DFSs due to its general-purpose
state definition and exploration method, as well as the flexibility of its differential
checker [82]. As a classic example of a distributed file system, NFS (Network File
System) [120] has been widely used for over 40 years and continues to be actively
maintained and utilized today. Here, we present our efforts to use Metis to check
two NFSv4 implementations: NFS kernel server [31] and NFS-Ganesha [103].

NFS has a client-server architecture where the server exports shared directo-
ries over the network, and the client mounts these remote directories, so that the
client can access and perform file operations on them as if they were part of the
local file system, with communication managed using RPCs (Remote Procedure
Calls). NFS relies on a local file system (e.g., Ext4) as backend storage on the
server to store and manage files. Therefore, checking NFS primarily involves
examining the interaction between the server and clients, as the local storage is
handled by underlying local file systems like Ext4.

We extended Metis to check NFS using a simple setup, with one client and one
server both running on the same machine and connected via the localhost network.
Figure 5.3 illustrates the structure of model checking process for NFS in Metis.

43

CHAPTER 5. METIS: FILE SYSTEM MODEL CHECKING VIA VERSATILE
INPUT AND STATE EXPLORATION

Similar to how Metis checks local file systems, Metis generates test inputs (file
system syscalls and their arguments) for both the NFS client (i.e., the file system
under test) and the reference file system. We selected the reference file system
to be the same as the local file system used by NFS because it ensures that any
differences detected in behavior are attributable solely to the NFS protocol rather
than to inconsistencies between different (local) file system implementations.

The operations generated by Metis are executed on both the NFS client and the
reference file system. Once the NFS client receives the syscall, it communicates
with the NFS server, which processes the request on its local file system and re-
turns the result to the client. This allows us to fetch the result value and error code
from the client side and compare them against those from the reference file sys-
tem. After each operation, we compute the abstract state on the NFS client side,
which involves another round of network communication with the server. If there
is a bug in the NFS protocol implementation, it can be detected through abstract
state comparison in the differential checker, similar to how Metis checks local file
systems. For state save/restore operations (SS/R) in NFS, the same challenge ex-
ists as with other local file systems—we cannot save the in-memory kernel state
from a user process, so we must flush all memory to disk and checkpoint only
the persistent disk state. Because all information is stored on the NFS server side,
we access the concrete state by memory-mapping the NFS server’s device and
saving it with SPIN. It is worth noting that we attempted to use CRIU [26] to
save and restore NFS-Ganesha’s concrete state, given that NFS-Ganesha is a user-
space server; however, this attempt was unsuccessful because it still depends on
kernel-level resources.

5.5.2 NFS Checking Implementation and Discussion
Two file systems, Ext4 and RefFS, have been integrated as the reference and local
NFS file systems for checking the NFS kernel server and NFS-Ganesha. We im-
plemented different procedures for the two reference file systems when checking
NFS due to differences in saving and restoring concrete states. While using Ext4,
before each file system operation, we must first export the NFS server path, then
mount it with Ext4, followed by mounting the client path. Conversely, after each
operation, we have to unmount the client path, unexport the server path, and then
unmount the server path to clear in-memory state and save the concrete state.

In contrast, RefFS can considerably simplify the process by virtue of its ioctl
snapshot APIs. Using RefFS as the local file system eliminates the need for con-
stant mounting and unmounting before and after each operation, as RefFS can

44

CHAPTER 5. METIS: FILE SYSTEM MODEL CHECKING VIA VERSATILE
INPUT AND STATE EXPLORATION

save and restore its entire state on its own. Without requiring mount/unmount
operations, there is no need to export/unexport the NFS server path either, result-
ing in significantly better performance compared to Ext4 as the local file system.
This highlights the advantages of RefFS in facilitating model checking not only
for local file systems, but also its potential to enhance checking of distributed file
systems.

We present here some preliminary evaluation findings related to the perfor-
mance and bug detection of the NFS checking process. For performance evalu-
ation, we used Metis to check kernel NFS with RefFS and Ext4 as the local file
systems for NFS, respectively. During a 10-hour experiment, using RefFS as the
local file system resulted in over 42 million file system operations and 11 mil-
lion unique abstract states, with a processing rate of 1184.6 ops/sec and 306.5
states/sec. However, using Ext4 as the NFS backend yielded only 0.07 operations
per second, significantly slower than using RefFS as the backend. This is because
the constant mounting and unmounting of both the NFS client and server, as well
as the repeated exporting and unexporting, take considerable time to complete
even a single operation. Therefore, using Ext4 as the local file system for check-
ing NFS in Metis is impractical, and we claim that RefFS is the suitable option
for the task.

We observed two discrepancies in both NFS implementations, which turned
out to be expected behaviors rather than real bugs. Consequently, we categorized
them as false positives and handled them in our abstract state method. The first
discrepancy we found is that for devices smaller than 1MB, NFS reports the size
as 1MB instead of the actual device size. This difference is due to configuration
settings. By adjusting the NFS rsize and wsize, we can obtain the correct size
that reflects the actual backend device size. We identified a second discrepancy
where temporary files were found on the NFS client but were absent from the
reference file system. These temporary files are created by NFS when a file is
deleted but still open by a process. We have modified our abstraction function to
exclude them when computing the abstract state for NFS. Despite this, we believe
that the Metis model checking approach with RefFS offers a promising method
for checking distributed file systems like NFS. Further discussion and future work
on model checking for distributed file systems can be found in Section 6.2.

45

CHAPTER 5. METIS: FILE SYSTEM MODEL CHECKING VIA VERSATILE
INPUT AND STATE EXPLORATION

FA
SY
NC

O_
AP
PE
ND

O_
CL
OE
XE
C

O_
CR
EA
T

O_
DI
RE
CT

O_
DI
RE
CT
OR
Y

O_
DS
YN
C

O_
EX
CL

O_
LA
RG
EF
IL
E

O_
NO
AT
IM
E

O_
NO
CT
TY

O_
NO
FO
LL
OW

O_
NO
NB
LO
CK

O_
PA
TH

O_
RD
W
R

O_
TR
UN
C

O_
W
RO
NL
Y

__
O_
SY
NC

__
O_
TM
PF
IL
E

0

1

10

100

1K

10K

100K

1M

10M

C
ou

nt
 (l

og
 sc

al
e

ba
se

 1
0)

CrashMonkey xfstests Syzkaller Metis-Uniform Metis-RSD Metis-IRSD

Figure 5.4: Input coverage counts (log10, y-axis) of open flags (x-axis) for Crash-
Monkey, xfstests, Syzkaller, and Metis with 3 different weight distributions.

5.6 Evaluation
We evaluated the efficacy and performance of Metis and RefFS, specifically:
(1) Does Metis have the versatility to test different input partitions compared to
other testing tools? (See §5.6.1.) (2) What is Metis’s performance? How does
it scale with the number of VTs when using Swarm verification? (See §5.6.2.)
(3) What is RefFS’s performance compared to other file systems? How reliable
and stable is RefFS, as Metis’s reference file system? (See §5.6.3.) (4) With
RefFS set as the reference file system, does Metis find bugs in existing Linux file
systems? (See §5.6.4.)

Experimental setup We evaluated Metis on three identical machines, trying
various configurations, particularly with multiple distributed VTs. Each machine
runs Ubuntu 22.04 with dual Intel Xeon X5650 CPUs and 128GB RAM. We also
allocated a 128GB NVMe SSD for swap space. We evaluated Metis’s perfor-
mance using RAM disks, HDDs, and SSDs by comparing Ext4 with Ext2. The
results showed that RAM disks were 20× faster than HDD and 18× than SSD.
Also, Metis performs best when the file system device is as small as possible.
Therefore, we used RAM disks as backend devices for on-disk file systems and
minimum mountable device sizes for all file systems in all evaluations that follow.

5.6.1 Test Input Coverage
We assessed input coverage (§5.2) for Metis and other file system tests on two di-
mensions: completeness and versatility. Completeness considers whether a testing

46

CHAPTER 5. METIS: FILE SYSTEM MODEL CHECKING VIA VERSATILE
INPUT AND STATE EXPLORATION

tool covers all input partitions (§5.2) in test cases. Versatility is the ability to tailor
test cases for any desired input coverage. Metis outperforms existing checkers and
a fuzzer [43] on both dimensions.

Comparison with existing testing tools We selected three testing tools, each
representing a unique technique: CrashMonkey [98] for automatic test generation,
xfstests [118] for (hand-written) regression testing, and Syzkaller [43] for fuzzing.
To ensure fairness, we ran all of them and Metis (with one VT) to check Ext4 for
40 minutes each, because this time length was sufficient to complete all xfstests
test cases and CrashMonkey’s default test cases [99].

Measuring input coverage requires tracking the file system syscalls executed
by the testing tool, including their associated arguments. Traditional syscall trac-
ers (e.g., ptrace-based ones) cannot distinguish the syscalls used on the file sys-
tems under test, because a testing tool makes many testing-unrelated syscalls, such
as opening and reading dynamically linked libraries or logging statistics. Crash-
Monkey and xfstests do not inherently log their test inputs. Hence, we used a
tool [83] specifically designed for measuring input coverage in file system testing
to assess coverage for CrashMonkey and xfstests. Syzkaller’s debug option and
Metis’s logger record all syscalls and arguments, enabling us to compute their
input coverage using their internal mechanisms.

Input coverage for open flags Figure 5.4 shows the input coverage of open,
partitioned by individual flags, for CrashMonkey, xfstests, Syzkaller, and Metis.
In Metis, we set weights according to three input partition distributions: Uni-
form, RSD (Rank-Size Distribution [112]), and IRSD (Inverse Rank-Size Distri-
bution [106]). Metis-Uniform denotes that Metis tests each input partition (i.e.,
open flag) with a fixed weight (i.e., probability). Both RSD and IRSD represent
non-uniform distributions. We adopted the core principle of RSD, such that flags
with higher ranks have higher test frequencies. Conversely, in IRSD, lower-ranked
flags have higher frequencies. We analyzed the frequency of individual open flags’
appearance in the 6.3 Linux kernel source. Metis employed those flags based on
their proportional (Metis-RSD) and inverse-proportional (Metis-IRSD) frequen-
cies. These distributions attempt to model two contrasting strategies: (1) Flags
that appear more frequently in the kernel sources warrant proportionally more
testing because they are used more frequently; conversely, (2) Flags with fewer
occurrences in the kernel should be tested more thoroughly because they are more
rarely used and hence could hide bugs for years.

47

CHAPTER 5. METIS: FILE SYSTEM MODEL CHECKING VIA VERSATILE
INPUT AND STATE EXPLORATION

In Figure 5.4, the x-axis labels every single-bit open flag and the y-axis
(log10) counts how often each was exercised by the testing tool. A higher y-
value means more testing was conducted. We see that only Syzkaller and Metis
covered all open flags. For instance, neither CrashMonkey nor xfstests tested
the O_LARGEFILE flag, which could lead to missing related bugs [133]. Metis-
Uniform test all flags equally; its coefficient of variation (CV) [1] (standard devia-
tion as percentage of the mean) is only 1.2% (40-minute run). For its non-uniform
test distributions, close examination of Figure 5.4 shows that O_CREAT (the most
common open flag in the kernel source) is indeed tested most often in Metis-RSD
and least in Metis-IRSD. __O_TMPFILE, the least-frequent flag, exhibits the op-
posite trend. Other tools lack the versatility to adapt their test input partitions to
the desired amount of testing.

Moreover, we observed that xfstests tested certain input values (e.g., O_DIRECTORY)
millions of times while others (e.g., FASYNC) are not tested at all. However, other
tools sometimes have a higher total operation count than Metis because Metis has
to unmount and remount the file system to achieve state tracking and verify state
equality after each operation, slowing its syscall execution speed. Given the es-
sential role of unmount/mount for state tracking (§5.3.2) and the need for state
comparison (§5.3.3), we use Swarm verification to improve the overall operation
efficiency (§5.3.5).

0B 1B 16B 256B 4KiB 64KiB 1MiB 16MiB 256MiB

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31
0

1

10

100

1K

10K

100K

1M

10M

C
ou

nt
 (l

og
 sc

al
e

ba
se

 1
0)

Equals 0

CrashMonkey
xfstests
Syzkaller

Metis-Uniform
Metis-XD
Metis-IXD

Figure 5.5: Input coverage (counts, log10, y-axis) of write size (in bytes) for
CrashMonkey, xfstests, Syzkaller, and Metis with three different weight distribu-
tions. The x-axis denotes the power of 2 of the write size (shown as x2-axis).
Note a special “Equals 0” x-axis value for writes of size zero.

Input coverage for write size Figure 5.5 shows the input coverage for the
write size (requested byte count). The x-axis represents the log2 of the size,

48

CHAPTER 5. METIS: FILE SYSTEM MODEL CHECKING VIA VERSATILE
INPUT AND STATE EXPLORATION

0B1B 16B 256B 4KiB 64KiB 1MiB 16MiB 256MiB

Equals 0 0 2 4 6 8 10 12 14 16 18 20 22 24 26 28 30

200

400

600

800

1000

C
ou
nt

Metis-Uniform Metis-XD Metis-IXD

Figure 5.6: Input coverage of write size (in bytes) for Metis-Uniform, Metis-
XD, and Metis-IXD, each running for 4 hours. The x-axis and x2-axis here are
the same as in Figure 5.5, but the y-axis shows counts on a linear scale. As seen,
with a longer run, the expected distributions are more accurate.

corresponding to the write size partitions (see §5.3.1). For example, x = 10
represents all sizes from 210 to 211 − 1 (or 1024–2047). The y-axis (log10) shows
the number of times each x bucket was tested by a given tool. Only Metis ensured
complete input coverage across all write size partitions. All other tools primarily
tested sizes under 16MiB (x ≤ 24). Certain partitions (e.g., x = 26) were omitted
by all these tools, even though systems with many GBs of RAM are now com-
mon. As with the open flags above, here Metis-Uniform also assigns uniform test
probabilities to each write size partition. To illustrate Metis’s versatility, we chose
exponentially decaying distributions for write sizes. Metis-XD prioritizes testing
smaller sizes more often, because they tend to be more popular in applications.
The probability of each input partition is set to 0.9× smaller than the previous one
(in frequency order); all probabilities are then normalized to sum to 1.0. Metis-
IXD emphasizes the inverse: testing input partitions with larger write sizes, on the
hypothesis that they are less used by applications and thus latent bugs may exist.
Here, the probability of each test partition is 0.9× that of the next larger partition.

In Figure 5.5, the trend does not precisely align with the probabilities due to
the relatively short 40-minute runtime and a correspondingly limited number of
write operations, so the CV was 17.0%. When we ran Metis six times longer
(4 hours), however, the CV dropped to 3.9% as seen in Figure 5.6; and when
we ran it six times longer still (24 hours), the CV fell to a mere 2.6%. Due to
space limitations, we omit showing the input coverage for other Metis-supported
syscalls.

49

CHAPTER 5. METIS: FILE SYSTEM MODEL CHECKING VIA VERSATILE
INPUT AND STATE EXPLORATION

5 10
Duration (Hours)

0

50

100

150

of

 O
ps

 (M
)

(a) File System Operations

5 10
Duration (Hours)

0

10

20

30

of

 S
ta

te
s (

M
)

(b) Unique Abstract States

Overall (18 VTs) Node 1 Node 2 Node 3

Figure 5.7: Metis performance with Swarm (distributed) verification, measured in
terms of the number of operations and unique abstract states (in millions). Each
node runs 6 VTs (one per CPU core), for a total of 18 unique VTs that collectively
explored the state space. As seen, performance scales generally linearly with the
number of VTs.

5.6.2 Metis Performance and Scalability
To evaluate performance with distributed Metis VTs, we deployed it on three
physical nodes, comparing Ext4 (reference) to Ext2 (system under test) for 13
hours. Each node (machine) operated six individual VTs, totaling 18 VTs. Fig-
ure 5.7 shows the aggregate performance of the six VTs on each node, as well as
the overall performance across all 18 VTs. We measured both file system opera-
tions (left) and unique abstract states (right). All VTs exhibited a linear increase
in the number of operations executed over time. Over 13 hours, these 18 VTs
executed more than 164 million operations, with each VT averaging 195 ops/s.

The count of explored states also increased steadily over time, although not
exactly linearly. This is because executing operations does not always produce
new, unseen states. For example, if a file exists, creating it again will not change
the state. Thus, the number of unique states is fewer than the number of operations
in a given time frame. Collectively, these VTs explored over 30 million unique
states. On average, each explored 2.7 million states. Using 18 VTs resulted in
exploring 11.2× more unique states than with a single VT. This experiment shows
Metis’s almost linear performance scalability with the number of VTs.

Different VTs might explore the same states, as each VT operates indepen-
dently and without communicating with others. We evaluated the proportion of

50

CHAPTER 5. METIS: FILE SYSTEM MODEL CHECKING VIA VERSATILE
INPUT AND STATE EXPLORATION

RefFS Ext4 Ext2 XFS BtrFS
File Systems (Using RAM Disks)

0

200

400

600

800

1000

of
 O

ps
 o

r
St

at
es 830.0

280.3 281.6

29.2 29.9

349.9

112.6 173.8
8.8 21.2

ops / sec
states / sec

Figure 5.8: Performance comparison between RefFS and other mature file sys-
tems while being checked by Metis. The y-axis applies to both ops/sec and
states/sec.

states explored by more than one VT, which represents “wasted” effort, a figure
we want minimized. Our results showed that only about 1% of all states were du-
plicated across all VTs. Therefore, the redundancy of states explored by multiple
VTs is relatively small and acceptable.

5.6.3 RefFS Performance and Reliability
To evaluate RefFS’s performance, we used Metis to check it against a single file
system. We also considered four other mature file systems (Ext4, Ext2, XFS, and
BtrFS) as potential references. For a fair comparison, we use RAM disks as the
backend devices and adopted the smallest allowed device size for each. Figure 5.8
shows that RefFS outperformed the others in terms of both operations and unique
states per second. Even though RefFS is a FUSE file system—generally slower
than in-kernel ones—it was 3.0×, 2.9×, 28.4×, and 27.7× faster than Ext4, Ext2,
XFS, and BtrFS, respectively. This is primarily because Metis was able to use the
save/restore APIs (§5.4.1) and thus did not have to unmount and remount RefFS.

Ext4 and Ext2 were faster than XFS and BtrFS due to the difference in mini-
mum device sizes: the former require just 256KiB, whereas the latter need 16MiB.
Mapping and copying larger devices in memory naturally increased time over-
heads.

Reliability To serve as a reference, RefFS must be highly reliable. While devel-
oping RefFS and Metis, we made necessary changes (110 lines of code) to xfstests

51

CHAPTER 5. METIS: FILE SYSTEM MODEL CHECKING VIA VERSATILE
INPUT AND STATE EXPLORATION

Bug# FS Causes & Consequences D C N

1 BetrFS Repeated mount and unmount caused a kernel
panic

✔ ✔ ✔

2 BetrFS statfs returned an incorrect f_bfree ✔ ✔ ✘

3 BetrFS truncate failed to extend a file ✔ ✔ ✔

4 F2FS A file showed the wrong size after another file was
deleted

✘ ✘ ✔

5* JFFS2 Data corruption occurred in a truncated file when
writing a hole

✔ ✔ ✔

6 JFFS2 A deleted directory remained after unmounting ✘ ✘ ✔

7 JFFS2 GC task timeouts and deadlocks during operations ✔ ✔ ✘

8 JFS NULL pointer dereference on
jfs_lazycommit

✔ ✘ ✔

9 JFS After writing to one file, another file’s size
changes

✘ ✘ ✔

10 NILFS2 NULL pointer dereference on
mdt_save_to_shadow_map

✔ ✘ ✔

11 NILFS2 Failed to free space on a small device with cleaner ✔ ✘ ✔

12 NILFS2 Unmount operation hung after using creat on an
existing file

✔ ✘ ✔

13 NOVA Kernel hang due to improper snapshot cleaner
kthread implementation

✔ ✔ ✔

14 NOVA Incorrect file size after writing to a different file ✘ ✘ ✔

15 PMFS Incorrect file size after creating a file ✘ ✘ ✔

Table 5.2: Kernel file system bugs discovered by Metis. In the table header, FS, D,
C, and N represent the file system name, whether it is deterministic (D), confirmed
(C), and new bug (N), respectively. This list excludes the 11 RefFS bugs that Metis
detected and fixed. JFFS2 bug fix #5 (marked by *) was integrated into the Linux
mainline recently.

52

CHAPTER 5. METIS: FILE SYSTEM MODEL CHECKING VIA VERSATILE
INPUT AND STATE EXPLORATION

so that we also could use it to debug RefFS. While we used xfstests to find certain
bugs in RefFS, xfstests often misreported the bug information. For example, al-
though we implemented RefFS’s link operation, it still did not pass generic test
#2, incorrectly indicating that the operation was unsupported. For that reason, we
also used Metis to check RefFS with Ext4 as the reference. We discovered and
fixed 11 RefFS bugs, aided by Metis’s logs and replayer. Those bugs included fail-
ure to invalidate caches, inaccurate file size updates, erroneous ENOENT handling,
and improper updates to nlink, among others. After fixing them, we evaluated
RefFS against Ext4 using 18 distributed Metis VTs for 30 days, executing over
3.1 billion operations and exploring 219 million unique states. No discrepancies
were reported, demonstrating that RefFS’s reliability and robustness are similar to
Ext4’s—but with better performance when used as Metis’s reference file system.

5.6.4 Bug Finding
With RefFS as our reference file system, we applied Metis to check seven exist-
ing file systems: BetrFS [62], BtrFS [115], F2FS [78], JFFS2 [134], JFS [60],
NILFS2 [27], XFS [136], and two persistent memory file systems: NOVA [137],
and PMFS [30], discovering potential bugs in seven. Table 5.2 summarizes these
bugs, including causes and consequences, whether they were confirmed by devel-
opers, and whether they were new or previously known. Metis found bugs using
both uniform and non-uniform input distributions, but some distributions found
bugs faster. Some bugs were detected within minutes, while others took up to 22
hours, which is reasonable for long-standing bugs. The bugs we identified were
not detected by xfstests [118] or Syzkaller [43]. Metis identified an F2FS bug that
was not detected by Hydra [70]. We also checked file systems (e.g., BetrFS) that
are not currently supported by Hydra [70].

We found bugs using Metis through different indicators. Discrepancies re-
ported by the differential checker accounted for nine out of fifteen detected bugs (#
2–6, 9, 11, 14, and 15). The remaining six caused a kernel panic (Linux “oops”) or
hung syscall (due to a deadlock). After analyzing each discrepancy using Metis’s
logger and replayer, we verified that all behavior mismatches originated from in-
correct behavior in the file system under test—the reference file system, RefFS,
was consistently correct.

We reported five bugs to BetrFS’s and JFFS2’s developers, all of which were
confirmed as real bugs; however, one bug each in BetrFS and JFFS2 had already
been fixed in the latest code base. Of the remaining unconfirmed bugs, four were
deterministic and five were nondeterministic. Deterministic bugs are those easily

53

CHAPTER 5. METIS: FILE SYSTEM MODEL CHECKING VIA VERSATILE
INPUT AND STATE EXPLORATION

FS Testing Ap-
proach

Input FS effort Ops effort ST CC BD

Metis: this
work

 ✔ ✘
Behavioral
discrepancies

Traditional
Model
Checking:
CVFS [37],
CREFS [143]

 ✔ ✘
User-specified
assertions

Implementation-
level Model
Checking:
FiSC [142],
eXplode [141]

 ✔ ✘
User-written
checkers

Fuzzing:
Syzkaller [43],
Hydra [70]

 ✘ ✔
External
checkers

Regression
Testing:
xfstests [118],
LTP [97]

 ✘ ✘

Preset
expected
outcome

Automatic Test
Generation:
CrashMon-
key [98],
Dogfood [20]

 ✘ ✘

External
checkers or an
oracle

Table 5.3: Comparison of representative file system testing tools. In the table
header, Input, FS effort, Ops effort, ST, CC, and BD represent versatility to set test
inputs, the effort required to test new file systems, the effort required to add new
FS operations to testing, the ability to track states (state tracking, ST), the ability
to track code coverage (CC), and the checker for bug detection (BD), respectively.
In column 2, the more symbols, the more relatively versatile the system is;
conversely, in columns 3–4, more symbols denote more effort.

reproducible after Metis reported a discrepancy or the kernel returned errors (e.g.,
hang or BUG). We are currently pinpointing the faulty code for the deterministic
bugs and preparing patches for submission to the Linux community. Metis also
detected nondeterministic bugs that its replayer could not reproduce. For instance,

54

CHAPTER 5. METIS: FILE SYSTEM MODEL CHECKING VIA VERSATILE
INPUT AND STATE EXPLORATION

after using unlink to delete file d-00/f-01, the size of another file f-02 in
F2FS incorrectly changed to 0 instead of the correct value. Replaying the same
syscall sequence did not reproduce this bug. To trigger it, we had to rerun Metis,
but the time and number of operations needed varied across experiments. Given
the bug’s nondeterminism, we suspect a race condition between F2FS and other
kernel contexts. We verified that these unconfirmed bugs persist in the Linux
kernel repository (v6.3, May 2023) without any fixes, thus classifying them as
unknown bugs.

To detect them, all these potential bugs require specific operations on a partic-
ular file system state, underscoring the value of both input and state exploration.
JFFS2 bug #5 is an example of the interplay between input and state. After 4.3
hours of comparing JFFS2 with RefFS, Metis reported a discrepancy due to differ-
ing file content. We observed the bug occurred when truncating a file to a smaller
size, writing bytes to it at an offset larger than its size, and then unmounting the
file system to clear all caches. Uncovering this multi-step, data-corruption bug re-
quired specific inputs (truncate, write) and then unmounting and remounting,
because there was a cache incoherency between the JFFS2 in-memory and on-disk
states. Ironically, the fact that Metis was “forced” to un/mount, is exactly why we
found this bug, which was present in the 2.6.24 Linux kernel and remained hid-
den for 16 years. We fixed this long-standing bug, and our patch has since been
integrated into the Linux mainline (all stable and development branches).

5.7 Conclusion
File system development is difficult due to code complexity, vast underlying state
spaces, and slow execution times due to high I/O latencies. Many tools and tech-
niques exist for testing file systems, but they cannot be easily updated to test spe-
cific conditions at a configurable level of thoroughness. Moreover, they tend to
require code or kernel changes or cannot easily adapt to testing new file systems.

In this paper, we presented Metis, a versatile model-checking framework that
can thoroughly explore file-system inputs and states. Metis abstracts file-system
states into a representation that can be used to compare the file system under test
against a reference one. We designed and built RefFS, a reference POSIX file
system with novel features that accelerate the model-checking process. When
used with Metis, RefFS is 3–28× faster than other, more established, file systems.
We extensively evaluated Metis’s input and state coverage, scalability, and perfor-
mance. Metis, helped by RefFS, can speed file-system development: we already

55

CHAPTER 5. METIS: FILE SYSTEM MODEL CHECKING VIA VERSATILE
INPUT AND STATE EXPLORATION

found a dozen bugs across several file systems. Overall, we believe that Metis,
with its unique features, serves as a valuable addition to file system developers’
tool suite. Finally, Metis’s framework is versatile enough to be adapted to other
systems (e.g., databases).

Future work Our near-term plans include expanded state exploration using Swarm
verification, investigating any bugs we discover, and then fixing and reporting
them. We are also beginning to test network and distributed/parallel file sys-
tems [49].

In the long run, we plan the following: (i) Metis can trigger nondeterministic
bugs, such as race conditions. Therefore, we need to integrate techniques to more
deterministically explore and reproduce such bugs [41]. Also, we plan to explore
kernel thread interleaving states to find more concurrency bugs [138]. (ii) We
intend to enhance Metis by emulating crash states to identify crash-consistency
bugs in kernel file systems [98, 76]. (iii) We aim to add support for testing con-
trolled file-system corruptions [140, 49]. For example, if both RefFS and the test
file system can be corrupted in a logically identical fashion, Metis can investigate
more error paths (e.g., those leading to EIO).

56

Chapter 6

Proposed and Future Work

In this chapter, we outline the proposed work (Section 6.1) that we intend to in-
clude in this thesis and then discuss potential future work (Section 6.2) that ex-
tends beyond the scope of this thesis.

6.1 Proposed Work
We introduce the proposed work in this section to describe the specific research
tasks and methodologies we plan to incorporate into the thesis. This section ex-
plains two main proposed works: applying IOCov to improve the effectiveness of
existing file system testing tools and implementing Containerized Swarm Verifi-
cation (CoSV) to improve scalability and other aspects of Swarm model checking.

IOCov extension and application In this thesis proposal, we plan to extend our
study of real-world file system bugs in several ways. First, in addition to using xfs-
tests, we intend to use Syzkaller, a coverage-based OS fuzzer, to investigate the
relationship between code coverage and test effectiveness. As Syzkaller is specif-
ically optimized for code coverage and has successfully identified many bugs in
Linux kernel file systems, this can gain a deeper understanding of effectiveness of
the code coverage metric in file system testing. Second, we aim to pinpoint the
specific inputs (syscalls and arguments) required to trigger and reproduce each
bug and develop a clearer perspective on which inputs are most important for file
system testing. This will help refine our definition and calculation of input/output
coverage and thus result in more effective improvements to existing testing tools.

57

CHAPTER 6. PROPOSED AND FUTURE WORK

We propose to further develop and expand the IOCov framework based on
the new insights gained from the bug study. We will enable IOCov to measure
other inputs/outputs that are important for finding bugs but are not currently sup-
ported. Furthermore, in IOCov, we plan to support more syscalls, enhance our
metrics to support bitwise combinations, explore non-uniform TCD target arrays,
and support identifiers and pointer arguments. By doing so, IOCov can evaluate
file-system testing tools under a broader range of scenarios, help balance test cases
across input/output different partitions, prevent under-testing and over-testing, and
more effectively capture key inputs and outputs that may be missed by existing
testing tools.

Ultimately, the goal of IOCov is to enhance file system testing tools by op-
timizing input and output coverage to address under-testing and over-testing is-
sues, thereby uncovering more hidden bugs in file systems. Therefore, we plan to
enhance input/output coverage for specific file system testing tools (e.g., Crash-
Monkey [98]) to enable more thorough testing of file systems and to detect more
unknown bugs.

Scalable, containerized Swarm verification We have already demonstrated
the benefits of using Swarm verification to parallelize Verification Tasks (VTs)
over multiple CPU cores and multiple machines. However, applying Swarm ver-
ification faces several challenges, and the primary challenge is scalability. While
we can deploy many VTs across multiple local machines, the original Swarm veri-
fication pre-generates VTs and scripts from a static configuration file and relies on
SSH for VT transmission and execution, without proper orchestration. These con-
straints limit scalability in hybrid and dynamic environments (e.g., hybrid cloud)
because they lack mechanisms to monitor each VT’s status, to allocate and deal-
locate VTs as conditions change, and to adapt to diverse hardware and software
configurations (e.g., different operating systems).

Two additional limitations exist concerning VT isolation and resource alloca-
tion. First, VTs running on the same machine lack isolation in their environments,
potentially causing runtime interference and making it challenging to reproduce
detected bugs deterministically. Second, the lack of fine-grained resource alloca-
tion and management may result in resource contention or underutilization among
VTs on the same machine, ultimately leading to inefficiencies and waste. There-
fore, we propose a Containerized Swarm Verification (CoSV) approach, wherein
each Swarm verification VT operates in an isolated containerized environment,
with orchestration used to facilitate the deployment and scaling of VTs.

58

CHAPTER 6. PROPOSED AND FUTURE WORK

CoSV offers multiple significant benefits over the vanilla Swarm verification:

1. Scalability and Portability: The primary benefit we aim to achieve is scal-
ability: enabling Swarm verification to scale up more VTs within given
computing and storage resources. With CoSV, each VT can be packaged
independently and eliminate the need for SSH-based communication and
file transferring. This way, with multiple machines and CPU cores, there is
no need to manually set up SSH file transfer directories for VTs. CoSV en-
sures portability across heterogeneous environments to enhance scalability
by encapsulating the entire software stack, making it easy to run verification
task on any infrastructure, including different clouds, operating systems, or
hardware. Additionally, it enables flexible configuration for various verifi-
cation tasks, which can leverage modern containerization and orchestration
techniques for ease of management.

2. Environment Isolation: Each VT operates in an isolated environment for
model checking, which ensures consistency and allows for more determinis-
tic reproduction of detected bugs. It also ensures security and fault isolation,
preventing faults or downtime in one VT from affecting others.

3. Fine-grained Resource Allocation: CoSV provides finer-grained resource
allocation for all VTs, allowing each VT to be allocated the precise com-
puting resources (e.g., CPU, RAM, Disk) it needs. This avoids resource
contention and minimizes resource waste between VTs.

4. Easy Deployment and Orchestration: Many model checking applications
(e.g., Metis) have many prerequisites, dependencies, libraries, and configu-
rations for each VT, which must be manually set up when using the original
Swarm verification. Using containerization (e.g., Docker [29]) and orches-
tration (e.g., Kubernetes [73]) techniques, CoSV can encapsulate all pre-
requisites in a single effort and deploy them across different environments
without compatibility issues, regardless of the underlying operating system
or hardware.

We plan to compare the performance (e.g., the number of unique states visited
per second) and scalability of CoSV with Swarm verification, and ultimately apply
CoSV to all Swarm verification tasks that could benefit from it. To demonstrate the
scalability and ease of deployment of CoSV, we propose deploying CoSV appli-
cations in large-scale hybrid cloud environments such as Amazon Cloud [10] and
Chameleon Cloud [68]. Furthermore, we will share the lessons we have learned
that could be applicable to projects beyond SPIN.

59

CHAPTER 6. PROPOSED AND FUTURE WORK

6.2 Future Work
This section outlines future work by providing an overview of open research prob-
lems that can be derived from this thesis. These future works aim to enhance the
capabilities of file system model checking from different perspectives, facilitate
bug detection, and thus further improve file system reliability.

Model checking for distributed file systems (DFSs) The techniques in Metis
can also be applied to distributed and network file systems. To demonstrate this,
we have extended Metis to check both kernel NFS and NFS-Ganesha for NFS
protocol versions 3 and 4 [119]. In our setup, the NFS client and server are con-
figured on the same machine. We issue system calls and compute abstract states
for the NFS client, ensuring that the client properly communicates with the server
and allowing us to detect any bugs related to network connections.

However, this approach is insufficient for effectively finding bugs in distributed
file systems (DFSs), as DFSs typically involve multiple nodes across different
servers [111, 131, 94]. Currently, Metis and SPIN are not designed to compute
abstract states (from clients) and concrete states (from servers) on separate ma-
chines. Therefore, network techniques need to be integrated to connect abstract
and concrete states across different servers.

Moreover, fault injection techniques, such as network partitioning, node crashes,
and device failures, are crucial for finding bugs in DFSs [49, 88], as some bugs
only manifest during failure scenarios. Therefore, incorporating fault injection
into the model checking of DFSs can be beneficial. Additionally, introducing
faults into the backend local file systems of DFSs is worth exploring, with RefFS
being a strong candidate for this role.

Model checking crash consistency and concurrency in file systems A promis-
ing direction for extending Metis is to enhance its ability to check file systems for
more crash-consistency and concurrency bugs. For detecting crash-consistency
bugs, in addition to the input and state exploration used in Metis, it is necessary
to simulate and analyze the effects of crashes (e.g., power failures, system shut-
downs) on the file system’s state and data integrity [23, 121]. On top of that,
injecting simulated crashes at the appropriate points is essential to ensure that
bugs can manifest (e.g., after the fsync operation), and the crash state must be
considered as part of the overall state description to explore as many unique crash
states as possible [98, 76]. For detecting concurrency bugs, file system operations

60

CHAPTER 6. PROPOSED AND FUTURE WORK

should be executed concurrently using multiple threads. Additionally, checking
file system concurrency requires incorporating thread interleaving states [41, 138]
into the state representation and thoroughly exploring the states that could trigger
concurrency bugs, such as race conditions, deadlocks, and other problems. The
combination of concurrent syscalls and thread interleaving states significantly ex-
pands the state space, which requires more intelligent approaches to efficiently
explore this vast space or prioritize the exploration of critical states.

Root cause analysis and reproduction for file system bugs Once a bug is
found, it is equally important to reproduce it, identify the root cause, and fix it
accordingly. However, based on our experience, there are certain types of bugs
that can be detected due to their incorrect behavior or consequences but are dif-
ficult to reproduce. We refer to these as nondeterministic bugs. These nondeter-
ministic bugs cannot be reliably reproduced using specific file system operations,
states, or configurations, and we typically need to re-run the same syscalls mul-
tiple times to trigger the bug occasionally. Future work could focus on studying
the characteristics of file system nondeterministic bugs and developing a method
to consistently reproduce them. Along with bug reproduction, root-cause analy-
sis plays a key role in resolving file system bugs [116]. Further exploration of
root-cause analysis in conjunction with model checking is a worthwhile avenue of
research.

61

Chapter 7

Conclusions

File systems play a crucial role in managing data storage and retrieval within op-
erating systems. Given the potentially devastating effects of file system bugs, it
is critical to develop techniques for bug detection. Unfortunately, existing testing
techniques are inadequate to address the challenges posed by emerging file sys-
tems and hidden bugs as file system bugs continue to be reported regularly. We
propose IOCov and Metis to tackle these challenges in two key ways: by devel-
oping new coverage metrics to evaluate and enhance existing testing tools, and
by creating a new file system model checking framework for comprehensive file
system validation.

We first identified that diverse syscall inputs and outputs are essential for trig-
gering bugs during file system testing, based on a bug study. With many test-
ing tools already available, we developed IOCov to compute input and output
coverage for file system testing, as these metrics enable developers to enhance
their tools more easily and effectively. We then implemented a file system model
checking framework, Metis, to thoroughly explore the input and state space, using
a differential checker that can detect a broader category of file system bugs with
fewer restrictions. We also developed RefFS, a reference file system for Metis
that is fast, lightweight, and reliable, optimized for state saving and restoration
during model checking. Using Swarm verification, we deployed many parallel
Metis verification tasks across multiple CPU cores and machines to collectively
explore the state space and address the large state space problem.

Our preliminary results demonstrate that IOCov can detect missed test cases in
existing file system testing tools and reveal both over- and under-testing problems.
Metis is capable of generating thorough test inputs with flexibility and exploring
file system states with near-linear scaling across multiple nodes. Additionally,

62

CHAPTER 7. CONCLUSIONS

RefFS outperforms other mature file systems while acting as a reference in Metis.
Metis aids in the development of RefFS by finding bugs and also detects many
previously unknown bugs in other Linux kernel file systems.

Our thesis is that novel model checking techniques and coverage metrics are
promising and can effectively help find file system bugs and improve file system
reliability. We plan to apply IOCov to enhance existing testing tools by improving
input coverage for detecting more file system bugs, and to use containers and or-
chestration systems to improve Swarm verification with better isolation, resource
allocation, and easier deployment.

63

Bibliography

[1] Hervé Abdi. Coefficient of variation. Encyclopedia of Research Design,
1(5), 2010.

[2] Yoram Adler, Noam Behar, Orna Raz, Onn Shehory, Nadav Steindler,
Shmuel Ur, and Aviad Zlotnick. Code coverage analysis in practice for
large systems. In Proceedings of the 33rd International Conference on Soft-
ware Engineering (ICSE), pages 736–745, Waikiki, Honolulu, HI, USA,
May 2011. ACM.

[3] Alper Akcan. Fuse-ext2 GitHub repository, 2021. https://github.com/
alperakcan/ fuse-ext2 .

[4] Ibrahim Umit Akgun, Geoff Kuenning, and Erez Zadok. Re-animator: Ver-
satile high-fidelity storage-system tracing and replaying. In Proceedings
of the 13th ACM International Systems and Storage Conference (SYSTOR
’20), pages 61–74, Haifa, Israel, June 2020. ACM.

[5] Shaukat Ali, Paolo Arcaini, Xinyi Wang, and Tao Yue. Assessing the effec-
tiveness of input and output coverage criteria for testing quantum programs.
In Proceedings of the 14th IEEE Conference on Software Testing, Verifica-
tion and Validation (ICST), pages 13–23, Porto de Galinhas, Brazil, April
2021. IEEE.

[6] Paul Ammann and Jeff Offutt. Introduction to Software Testing. Cambridge
University Press, Cambridge, United Kingdom, 2016.

[7] Naohiro Aota and Kenji Kono. File systems are hard to test — learn-
ing from xfstests. IEICE Transactions on Information and Systems,
102(2):269–279, 2019.

64

BIBLIOGRAPHY

[8] Remzi H. Arpaci-Dusseau and Andrea C. Arpaci-Dusseau. Operating Sys-
tems: Three Easy Pieces. Arpaci-Dusseau Books, 1.10 edition, November
2023.

[9] Algirdas Avizienis. The N-Version approach to fault-tolerant software.
IEEE Transactions on Software Engineering, SE-11(12):1491–1501, 1985.

[10] Amazon web services (aws). https:// aws.amazon.com/ .

[11] Mojtaba Bagherzadeh, Nafiseh Kahani, Cor-Paul Bezemer, Ahmed E. Has-
san, Juergen Dingel, and James R. Cordy. Analyzing a decade of Linux
system calls. Empirical Software Engineering, 23:1519–1551, 2018.

[12] Ye Bin and Theodore Ts’o. Ext4: Fix potential out of bound read
in ext4_fc_replay_scan(), 2022. https://github.com/ torvalds/ linux/commit/
1b45cc5c7b920fd8bf72e5a888ec7abeadf41e09 .

[13] Jeff Bonwick, Matt Ahrens, Val Henson, Mark Maybee, and Mark Shel-
lenbaum. The Zettabyte file system. In Proceedings of the 2nd USENIX
Conference on File and Storage Technologies, San Francisco, CA, March
2003. USENIX.

[14] James Bornholt, Antoine Kaufmann, Jialin Li, Arvind Krishnamurthy, Em-
ina Torlak, and Xi Wang. Specifying and checking file system crash-
consistency models. In Proceedings of the 21st International Conference
on Architectural Support for Programming Languages and Operating Sys-
tems (ASPLOS), pages 83–98, Atlanta, GA, April 2016. ACM.

[15] Lionel Briand and Dietmar Pfahl. Using simulation for assessing the real
impact of test coverage on defect coverage. In Proceedings of the 10th In-
ternational Symposium on Software Reliability Engineering (ISSRE), pages
148–157, Boca Raton, FL, USA, November 1999. IEEE Computer Society
Press.

[16] Xia Cai and Michael R. Lyu. The effect of code coverage on fault detec-
tion under different testing profiles. ACM SIGSOFT Software Engineering
Notes, 30(4):1–7, 2005.

[17] Wei Cao, Zhenjun Liu, Peng Wang, Sen Chen, Caifeng Zhu, Song Zheng,
Yuhui Wang, and Guoqing Ma. PolarFS: An ultra-low latency and failure

65

BIBLIOGRAPHY

resilient distributed file system for shared storage cloud database. Proceed-
ings of the VLDB Endowment, 11(12):1849–1862, 2018.

[18] Zhen Cao, Vasily Tarasov, Sachin Tiwari, and Erez Zadok. Towards
better understanding of black-box auto-tuning: A comparative analysis
for storage systems. In Proceedings of the Annual USENIX Technical
Conference, Boston, MA, July 2018. USENIX Association. Data set at
http://download.filesystems.org/auto-tune/ATC-2018-auto-tune-data.sql.gz.

[19] Marsha Chechik, Benet Devereux, and Arie Gurfinkel. Model-checking
infinite state-space systems with fine-grained abstractions using SPIN. In
International SPIN Workshop on Model Checking of Software, pages 16–
36, Toronto, ON, Canada, May 2001. Springer.

[20] Dongjie Chen, Yanyan Jiang, Chang Xu, Xiaoxing Ma, and Jian Lu. Test-
ing file system implementations on layered models. In Proceedings of
the ACM/IEEE 42nd International Conference on Software Engineering
(ICSE), pages 1483–1495, Seoul, South Korea, June 2020. ACM.

[21] Haogang Chen, Tej Chajed, Alex Konradi, Stephanie Wang, Atalay Mert
Ileri, Adam Chlipala, M. Frans Kaashoek, and Nickolai Zeldovich. Veri-
fying a high-performance crash-safe file system using a tree specification.
In Proceedings of the 26th Symposium on Operating Systems Principles
(SOSP), pages 270–286, Shanghai, China, October 2017. ACM.

[22] Haogang Chen, Daniel Ziegler, Tej Chajed, Adam Chlipala, M. Frans
Kaashoek, and Nickolai Zeldovich. Using Crash Hoare Logic for certifying
the FSCQ file system. In Proceedings of the 25th Symposium on Operating
Systems Principles (SOSP), pages 18–37, Monterey, CA, October 2015.

[23] Haogang Chen, Daniel Ziegler, Adam Chlipala, M. Frans Kaashoek, Ed-
die Kohler, and Nickolai Zeldovich. Specifying crash safety for storage
systems. In Proceedings of the 15th Workshop on Hot Topics in Operat-
ing Systems (HotOS), Kartause Ittingen, Switzerland, May 2015. USENIX
Association.

[24] Edmund M. Clarke, Orna Grumberg, Daniel Kroening, Doron A. Peled,
and Helmut Veith. Model Checking, 2nd Edition. MIT Press, 2018.

66

BIBLIOGRAPHY

[25] Edmund M. Clarke, William Klieber, Milos Novácek, and Paolo Zuliani.
Model checking and the state explosion problem. In LASER Summer School
on Software Engineering, pages 1–30, Elba Island, Italy, 2011. Springer.

[26] CRIU Community. Checkpoint/restore in userspace (CRIU), 2021. https:
// criu.org/ .

[27] Benixon Arul Dhas, Erez Zadok, James Borden, and Jim Malina. Eval-
uation of Nilfs2 for shingled magnetic recording (SMR) disks. Technical
Report FSL-14-03, Stony Brook University, September 2014.

[28] Felix Dobslaw, Robert Feldt, and Francisco de Oliveira Neto. Automated
black-box boundary value detection. arXiv preprint arXiv:2207.09065,
abs/2207.09065, 2022.

[29] Docker. https://docker.com/ .

[30] Subramanya R Dulloor, Sanjay Kumar, Anil Keshavamurthy, Philip Lantz,
Dheeraj Reddy, Rajesh Sankaran, and Jeff Jackson. System software for
persistent memory. In Proceedings of the Ninth European Conference on
Computer Systems (EuroSys), pages 1–15, Amsterdam, The Netherlands,
April 2014. ACM.

[31] Mike Eisler. NFS version 4. https://www.usenix.org/ legacy/event/ lisa05/htg/
eisler.pdf .

[32] Proceedings of the 13th USENIX Conference on File and Storage Technolo-
gies (FAST ’15), Santa Clara, CA, February 2015. USENIX Association.

[33] Phyllis G. Frankl and Stewart N. Weiss. An experimental comparison of the
effectiveness of the all-uses and all-edges adequacy criteria. In Proceedings
of the Symposium on Testing, Analysis, and Verification (TAV), pages 154–
164, Victoria, British Columbia, Canada, October 1991. ACM.

[34] Phyllis G. Frankl and Stewart N. Weiss. An experimental comparison of
the effectiveness of branch testing and data flow testing. IEEE Transactions
on Software Engineering, 19(8):774–787, 1993.

[35] Xinwei Fu, Wook-Hee Kim, Ajay Paddayuru Shreepathi, Mohannad Is-
mail, Sunny Wadkar, Dongyoon Lee, and Changwoo Min. Witcher: Sys-
tematic crash consistency testing for non-volatile memory key-value stores.

67

BIBLIOGRAPHY

In Proceedings of the ACM SIGOPS 28th Symposium on Operating Systems
Principles (SOSP), pages 100–115, Virtual Event / Koblenz, Germany, Oc-
tober 2021. ACM.

[36] Xinwei Fu, Dongyoon Lee, and Changwoo Min. DURINN: adversarial
memory and thread interleaving for detecting durable linearizability bugs.
In Proceedings of the 16th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI), pages 195–211, Carlsbad, CA, July 2022.
USENIX Association.

[37] Andy Galloway, Gerald Lüttgen, Jan Tobias Mühlberg, and Radu I. Si-
miniceanu. Model-checking the Linux virtual file system. In Proceedings
of the 10th International Conference on Verification, Model Checking, and
Abstract Interpretation (VMCAI), pages 74–88, Savannah, GA, USA, Jan-
uary 2009. Springer.

[38] Bernhard Garn and Dimitris E. Simos. Eris: A tool for combinatorial test-
ing of the Linux system call interface. In Proceedings of the IEEE Seventh
International Conference on Software Testing, Verification and Validation
Workshops, pages 58–67, Cleveland, Ohio, USA, March 2014. IEEE Com-
puter Society Press.

[39] Milos Gligoric, Alex Groce, Chaoqiang Zhang, Rohan Sharma, Moham-
mad Amin Alipour, and Darko Marinov. Comparing non-adequate test
suites using coverage criteria. In Proceedings of the 2013 International
Symposium on Software Testing and Analysis (ISSTA), pages 302–313,
Lugano, Switzerland, July 2013. ACM.

[40] Milos Gligoric, Alex Groce, Chaoqiang Zhang, Rohan Sharma, Moham-
mad Amin Alipour, and Darko Marinov. Guidelines for coverage-based
comparisons of non-adequate test suites. ACM Transactions on Software
Engineering and Methodology (TOSEM), 24(4):1–33, 2015.

[41] Sishuai Gong, Deniz Altinbüken, Pedro Fonseca, and Petros Maniatis.
Snowboard: Finding kernel concurrency bugs through systematic inter-
thread communication analysis. In Proceedings of the ACM SIGOPS
28th Symposium on Operating Systems Principles (SOSP), pages 66–83,
Koblenz, Germany, October 2021. ACM.

[42] Google. KASan: Linux Kernel Sanitizers, fast bug-detectors for the Linux
kernel, 2023. https://github.com/google/kernel-sanitizers.

68

BIBLIOGRAPHY

[43] Google. Syzkaller: Linux syscall fuzzer, 2023. https://github.com/google/
syzkaller.

[44] Rahul Gopinath, Carlos Jensen, and Alex Groce. Code coverage for suite
evaluation by developers. In Proceedings of the 36th International Con-
ference on Software Engineering (ICSE), pages 72–82, Hyderabad, India,
May 2014. ACM.

[45] Alex Groce, Gerard Holzmann, and Rajeev Joshi. Randomized differential
testing as a prelude to formal verification. In Proceedings of the 29th In-
ternational Conference on Software Engineering (ICSE), pages 621–631,
Minneapolis, MN, USA, May 2007. IEEE Computer Society Press.

[46] Haryadi S. Gunawi, Vijayan Prabhakaran, Swetha Krishnan, Andrea C.
Arpaci-Dusseau, and Remzi H. Arpaci-Dusseau. Improving file sys-
tem reliability with I/O shepherding. In Proceedings of the 21st ACM
SIGOPS Symposium on Operating Systems Principles (SOSP), pages 293–
306, Stevenson, WA, October 2007.

[47] Huayang Guo, Ming Wu, Lidong Zhou, Gang Hu, Junfeng Yang, and Lin-
tao Zhang. Practical software model checking via dynamic interface re-
duction. In Proceedings of the Twenty-Third ACM Symposium on Operat-
ing Systems Principles (SOSP), pages 265–278, Cascais, Portugal, October
2011. ACM.

[48] Nitin Gupta. zram: Compressed RAM-based block devices, 2023. https:
//www.kernel.org/doc/html/next/admin-guide/blockdev/zram.html .

[49] Runzhou Han, Om Rameshwar Gatla, Mai Zheng, Jinrui Cao, Di Zhang,
Dong Dai, Yong Chen, and Jonathan Cook. A study of failure recovery and
logging of high-performance parallel file systems. ACM Transactions on
Storage (TOS), 18(2):1–44, 2022.

[50] Nikolas Havrikov, Alexander Kampmann, and Andreas Zeller. From input
coverage to code coverage: Systematically covering input structure with k-
paths. Technical report, CISPA Helmholtz Center for Information Security,
2022.

[51] Hadi Hemmati. How effective are code coverage criteria? In Proceedings
of the 2015 IEEE International Conference on Software Quality, Reliability

69

BIBLIOGRAPHY

and Security (QRS), pages 151–156, Vancouver, BC, Canada, August 2015.
IEEE.

[52] Luis Henriques and Theodore Ts’o. Ext4: Fix error code return to user-
space in ext4_get_branch(), 2022. https://github.com/ torvalds/ linux/commit/
26d75a16af285a70863ba6a81f85d81e7e65da50 .

[53] Gerard J. Holzmann. The model checker SPIN. IEEE Transactions on
software engineering, 23(5):279–295, 1997.

[54] Gerard J. Holzmann and Dragan Bosnacki. The design of a multicore ex-
tension of the SPIN model checker. IEEE Transactions on Software Engi-
neering, 33(10):659–674, 2007.

[55] Gerard J. Holzmann, Rajeev Joshi, and Alex Groce. Swarm verification
techniques. IEEE Transactions on Software Engineering, 37(6):845–857,
2010.

[56] J. H. Howard, M. L. Kazar, S. G. Menees, D. A. Nichols, M. Satya-
narayanan, R. N. Sidebotham, and M J. West. Scale and performance in a
distributed file system. ACM Transactions on Computer Systems, 6(1):51–
81, February 1988.

[57] Atalay Mert Ileri, Tej Chajed, Adam Chlipala, M. Frans Kaashoek, and
Nickolai Zeldovich. Proving confidentiality in a file system using DiskSec.
In Proceedings of the 13th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI), pages 323–338, Carlsbad, CA, October
2018. USENIX Association.

[58] Free Software Foundation Inc. Gcov, a test coverage program, 2023. https:
//gcc.gnu.org/onlinedocs/gcc/Gcov.html .

[59] Laura Inozemtseva and Reid Holmes. Coverage is not strongly correlated
with test suite effectiveness. In Proceedings of the 36th International Con-
ference on Software Engineering (ICSE), pages 435–445, Hyderabad, In-
dia, May 2014. ACM.

[60] JFS developers. Journaled file system technology for Linux, 2011. https:
// jfs.sourceforge.net/ .

70

BIBLIOGRAPHY

[61] Yujuan Jiang, Bram Adams, and Daniel M. Germán. Will my patch make
it? and how fast? case study on the linux kernel. In Proceedings of the
10th Working Conference on Mining Software Repositories (MSR), pages
101–110, San Francisco, CA, 2013. IEEE, IEEE Computer Society.

[62] Yizheng Jiao, Simon Bertron, Sagar Patel, Luke Zeller, Rory Bennett,
Nirjhar Mukherjee, Michael A. Bender, Michael Condict, Alex Conway,
Martín Farach-Colton, et al. BetrFS: A compleat file system for com-
modity SSDs. In Proceedings of the Seventeenth European Conference on
Computer Systems (EuroSys), pages 610–627, Rennes, France, April 2022.
ACM.

[63] Dave Jones. Trinity: Linux system call fuzzer, 2023. https://github.com/
kernelslacker/ trinity.

[64] Nikolai Joukov, Ashivay Traeger, Rakesh Iyer, Charles P. Wright, and Erez
Zadok. Operating system profiling via latency analysis. In OSDI 2006
[104], pages 89–102.

[65] Natalia Juristo, Sira Vegas, Martín Solari, Silvia Abrahao, and Isabel
Ramos. Comparing the effectiveness of equivalence partitioning, branch
testing and code reading by stepwise abstraction applied by subjects. In
Proceedings of the IEEE Fifth International Conference on Software Test-
ing, Verification and Validation, pages 330–339, Montreal, QC, Canada,
April 2012. IEEE Computer Society Press.

[66] Wolfgang Kabsch. A solution for the best rotation to relate two sets of
vectors. Acta Crystallographica Section A: Crystal Physics, Diffraction,
Theoretical and General Crystallography, 32(5):922–923, 1976.

[67] Simon Kagstrom. KCOV: code coverage for fuzzing, 2023. https://docs.
kernel.org/dev-tools/kcov.html .

[68] Kate Keahey, Jason Anderson, Zhuo Zhen, Pierre Riteau, Paul Ruth, Dan
Stanzione, Mert Cevik, Jacob Colleran, Haryadi S. Gunawi, Cody Ham-
mock, Joe Mambretti, Alexander Barnes, François Halbach, Alex Rocha,
and Joe Stubbs. Lessons learned from the Chameleon testbed. In Pro-
ceedings of the 2020 USENIX Annual Technical Conference (USENIX ATC
’20), pages 219–233. USENIX Association, Virtual Event, July 2020.

71

BIBLIOGRAPHY

[69] Kernel.org Bugzilla. Ext4 bug entries, 2023. https://bugzilla.kernel.org/
buglist.cgi?component=ext4 .

[70] Seulbae Kim, Meng Xu, Sanidhya Kashyap, Jungyeon Yoon, Wen Xu, and
Taesoo Kim. Finding semantic bugs in file systems with an extensible
fuzzing framework. In Proceedings of the 27th ACM Symposium on Oper-
ating Systems Principles (SOSP), pages 147–161, Huntsville, ON, Canada,
October 2019. ACM.

[71] Avi Kivity, Yaniv Kamay, Dor Laor, Uri Lublin, and Anthony Liguori.
kvm: the Linux virtual machine monitor. In Proceedings of the 2007 Ot-
tawa Linux Symposium (OLS 2007), volume 1, pages 225–230, Ottawa,
Canada, June 2007.

[72] Pavneet Singh Kochhar, Ferdian Thung, and David Lo. Code coverage and
test suite effectiveness: Empirical study with real bugs in large systems. In
Proceedings of the 22nd IEEE International Conference on Software Anal-
ysis, Evolution, and Reengineering (SANER), pages 560–564, Montreal,
QC, Canada, March 2015. IEEE Computer Society Press.

[73] Kubernetes. https://kubernetes.io/ .

[74] Rick Kuhn, Raghu N. Kacker, Yu Lei, and Dimitris E. Simos. Input space
coverage matters. Computer, 53(1):37–44, 2020.

[75] Philip Lantz, Subramanya Dulloor, Sanjay Kumar, Rajesh Sankaran, and
Jeff Jackson. Yat: A validation framework for persistent memory soft-
ware. In Proceedings of the 2014 USENIX Annual Technical Conference
(USENIX ATC ’14), pages 433–438, Philadelphia, PA, June 2014. USENIX
Association.

[76] Hayley LeBlanc, Shankara Pailoor, Om Saran K. R. E, Isil Dillig, James
Bornholt, and Vijay Chidambaram. Chipmunk: Investigating crash-
consistency in persistent-memory file systems. In Proceedings of the Eigh-
teenth European Conference on Computer Systems (EuroSys), pages 718–
733, Rome, Italy, May 2023.

[77] Doug Ledford and Eric Sandeen. Bug 513221: Ext4 filesystem corruption
and data loss, 2009. https://bugzilla.redhat.com/show_bug.cgi? id=513221 .

72

BIBLIOGRAPHY

[78] Changman Lee, Dongho Sim, Jooyoung Hwang, and Sangyeun Cho. F2FS:
A new file system for flash storage. In fast2015 [32], pages 273–286.

[79] Jerry Lee and Theodore Ts’o. Ext4: Continue to expand file system when
the target size doesn’t reach, 2022. https://github.com/ torvalds/ linux/commit/
df3cb754d13d2cd5490db9b8d536311f8413a92e.

[80] David Leon and Andy Podgurski. A comparison of coverage-based and
distribution-based techniques for filtering and prioritizing test cases. In
Proceedings of the 14th International Symposium on Software Reliability
Engineering (ISSRE), pages 442–453, Denver, CO, USA, November 2003.
IEEE.

[81] The Linux Man-pages Project. write(2) – Linux manual page, 2023. https:
//man7.org/ linux/man-pages/man2/write.2.html .

[82] Yifei Liu, Manish Adkar, Gerard Holzmann, Geoff Kuenning, Pei Liu,
Scott Smolka, Wei Su, and Erez Zadok. Metis: File system model check-
ing via versatile input and state exploration. In Proceedings of the 22nd
USENIX Conference on File and Storage Technologies (FAST ’24), pages
123–140, Santa Clara, CA, February 2024. USENIX Association. Received
all 3 Artifact-Evaluation badges.

[83] Yifei Liu, Gautam Ahuja, Geoff Kuenning, Scott Smolka, and Erez Zadok.
Input and output coverage needed in file system testing. In Proceedings of
the 15th ACM Workshop on Hot Topics in Storage and File Systems (Hot-
Storage ’23), Boston, MA, July 2023. ACM.

[84] Yu Liu, Hong Jiang, Yangtao Wang, Ke Zhou, Yifei Liu, and Li Liu. Con-
tent sifting storage: Achieving fast read for large-scale image dataset analy-
sis. In Proceedings of the 57th ACM/IEEE Design Automation Conference
(DAC), pages 1–6, San Francisco, CA, July 2020. IEEE.

[85] Yu Liu, Yangtao Wang, Ke Zhou, Yujuan Yang, and Yifei Liu. Semantic-
aware data quality assessment for image big data. Future Generation Com-
puter Systems, 102:53–65, 2020.

[86] LTTng. LTTng: an open source tracing framework for Linux. https:// lttng.
org, April 2019.

73

BIBLIOGRAPHY

[87] Lanyue Lu, Andrea C. Arpaci-Dusseau, Remzi H. Arpaci-Dusseau, and
Shan Lu. A study of Linux file system evolution. In Proceedings of the
USENIX Conference on File and Storage Technologies (FAST ’13), pages
31–44, San Jose, CA, February 2013. USENIX Association.

[88] Tao Lyu, Liyi Zhang, Zhiyao Feng, Yueyang Pan, Yujie Ren, Meng Xu,
Mathias Payer, and Sanidhya Kashyap. Monarch: A fuzzing framework for
distributed file systems. In Proceedings of the 2024 USENIX Annual Tech-
nical Conference (USENIX ATC ’24), pages 529–543, Santa Clara, CA,
July 2024.

[89] Filipe Manana. BTRFS: Fix NOWAIT buffered write return-
ing –ENOSPC, 2022. https://github.com/ torvalds/ linux/commit/
a348c8d4f6cf23ef04b0edaccdfe9d94c2d335db .

[90] Filipe Manco, Costin Lupu, Florian Schmidt, Jose Mendes, Simon Kuen-
zer, Sumit Sati, Kenichi Yasukata, Costin Raiciu, and Felipe Huici. My VM
is lighter (and safer) than your container. In Proceedings of the 26th Sympo-
sium on Operating Systems Principles (SOSP), pages 218–233, Shanghai,
China, October 2017. ACM.

[91] Avantika Mathur, Mingming Cao, Suparna Bhattacharya, Andreas Dilger,
Alex Tomas, and Laurent Vivier. The new ext4 filesystem: current status
and future plans. In Proceedings of the Ottawa Linux Symposium (OLS),
volume 2, pages 21–33, Ottawa, Canada, June 2007. Ottawa Linux Sym-
posium.

[92] William M. McKeeman. Differential testing for software. Digital Technical
Journal, 10(1):100–107, 1998.

[93] Alex Merenstein, Vasily Tarasov, Ali Anwar, Deepavali Bhagwat, Julie
Lee, Lukas Rupprecht, Dimitris Skourtis, Yang Yang, and Erez Zadok.
CNSBench: A cloud native storage benchmark native storage. In Pro-
ceedings of the 19th USENIX Conference on File and Storage Technologies
(FAST ’21), Virtual, February 2021. USENIX Association.

[94] Sun Microsystems. Lustre file system: High-performance storage architec-
ture and scalable cluster file system white paper. www.sun.com/servers/hpc/
docs/ lustrefilesystem_wp.pdun.com/servers/hpc/docs/ lustrefilesystem_wp.pdf ,
December 2007.

74

BIBLIOGRAPHY

[95] Changwoo Min, Sanidhya Kashyap, Byoungyoung Lee, Chengyu Song,
and Taesoo Kim. Cross-checking semantic correctness: The case of find-
ing file system bugs. In Proceedings of the 25th Symposium on Operating
Systems Principles (SOSP), pages 361–377, Monterey, CA, October 2015.
ACM.

[96] Chaitanya Mishra, Nick Koudas, and Calisto Zuzarte. Generating targeted
queries for database testing. In Proceedings of the ACM SIGMOD Inter-
national Conference on Management of Data (SIGMOD), pages 499–510,
Vancouver, BC, Canada, June 2008. ACM.

[97] Subrata Modak. Linux test project (LTP), 2009. http:// ltp.sourceforge.net/ .

[98] Jayashree Mohan, Ashlie Martinez, Soujanya Ponnapalli, Pandian Raju,
and Vijay Chidambaram. Finding crash-consistency bugs with bounded
black-box crash testing. In Proceedings of the 13th USENIX Symposium
on Operating Systems Design and Implementation (OSDI), pages 33–50,
Carlsbad, CA, October 2018. USENIX Association.

[99] Jayashree Mohan, Ashlie Martinez, Soujanya Ponnapalli, Pandian Raju,
and Vijay Chidambaram. CrashMonkey: tools for testing file-system relia-
bility, 2023. https://github.com/utsaslab/crashmonkey.

[100] Madanlal Musuvathi, Andy Chou, David L. Dill, and Dawson R. Engler.
Model checking system software with CMC. In Proceedings of the 10th
ACM SIGOPS European Workshop, pages 219–222, Saint-Emilion, France,
July 2002. ACM.

[101] Madanlal Musuvathi, David Y. W. Park, Andy Chou, Dawson R. Engler,
and David L. Dill. CMC: A pragmatic approach to model checking real
code. In Proceedings of the 5th Symposium on Operating System Design
and Implementation (OSDI), Boston, MA, December 2002. USENIX As-
sociation.

[102] Akbar Siami Namin and James H. Andrews. The influence of size and
coverage on test suite effectiveness. In Proceedings of the Eighteenth In-
ternational Symposium on Software Testing and Analysis (ISSTA), pages
57–68, Chicago, IL, USA, July 2009. ACM.

[103] NFS-Ganesha, 2016. http://nfs-ganesha.github.io/ .

75

BIBLIOGRAPHY

[104] Proceedings of the 7th USENIX Symposium on Operating Systems Design
and Implementation (OSDI 2006), Seattle, WA, November 2006. ACM
SIGOPS.

[105] Thomas J. Ostrand and Marc J. Balcer. The category-partition method for
specifying and generating functional tests. Communications of the ACM,
31(6):676–686, 1988.

[106] Can Özbey, Talha Çolakoğlu, M Şafak Bilici, and Ekin Can Erkuş. A uni-
fied formulation for the frequency distribution of word frequencies using
the inverse Zipf’s law. In Proceedings of the 46th International ACM SI-
GIR Conference on Research and Development in Information Retrieval
(SIGIR), pages 1776–1780, Taipei, Taiwan, July 2023. ACM.

[107] Brandon Philips. The fsck problem. In The 2007 Linux Storage and File
Systems Workshop, 2007. https:// lwn.net/Articles/226351/ .

[108] Thanumalayan Sankaranarayana Pillai, Vijay Chidambaram, Ramnatthan
Alagappan, Samer Al-Kiswany, Andrea C. Arpaci-Dusseau, and Remzi H.
Arpaci-Dusseau. All file systems are not created equal: On the complex-
ity of crafting crash-consistent applications. In Proceedings of the 11th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI), pages 433–448, Broomfield, CO, October 2014. USENIX Asso-
ciation.

[109] Octavian Purdila, Lucian Adrian Grijincu, and Nicolae Tapus. LKL: The
Linux kernel library. In 9th RoEduNet IEEE International Conference,
pages 328–333, Sibiu, Romania, 2010. IEEE.

[110] Mohan Rajagopalan, Saumya K. Debray, Matti A. Hiltunen, and Richard D.
Schlichting. System call clustering: A profile-directed optimization tech-
nique. Technical report, The University of Arizona, 2002.

[111] Glusterfs. http://www.gluster.org/ .

[112] William J. Reed. On the rank-size distribution for human settlements. Jour-
nal of Regional Science, 42(1):1–17, 2002.

[113] Stuart C. Reid. An empirical analysis of equivalence partitioning, bound-
ary value analysis and random testing. In Proceedings of the Fourth In-
ternational Software Metrics Symposium (METRICS), pages 64–73, Albu-
querque, NM, USA, November 1997. IEEE Computer Society Press.

76

BIBLIOGRAPHY

[114] Tom Ridge, David Sheets, Thomas Tuerk, Andrea Giugliano, Anil Mad-
havapeddy, and Peter Sewell. SibylFS: formal specification and oracle-
based testing for POSIX and real-world file systems. In Proceedings of the
25th Symposium on Operating Systems Principles (SOSP), pages 38–53,
Monterey, CA, October 2015. ACM.

[115] Ohad Rodeh, Josef Bacik, and Chris Mason. BTRFS: The Linux B-tree
filesystem. ACM Transactions on Storage (TOS), 9(3):1–32, 2013.

[116] Cindy Rubio-González, Haryadi S. Gunawi, Ben Liblit, Remzi H. Arpaci-
Dusseau, and Andrea C. Arpaci-Dusseau. Error propagation analysis for
file systems. In Proceedings of the 30th ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), pages 270–
280, Dublin, Ireland, June 2009. ACM.

[117] Sergej Schumilo, Cornelius Aschermann, Robert Gawlik, Sebastian
Schinzel, and Thorsten Holz. kAFL: Hardware-assisted feedback fuzzing
for OS kernels. In Proceedings of the 26th USENIX Security Symposium
(USENIX Security), pages 167–182, Vancouver, BC, Canada, August 2017.
USENIX Association.

[118] SGI XFS. xfstests, 2016. http://xfs.org/ index.php/Getting_the_latest_source_
code.

[119] S. Shepler, B. Callaghan, D. Robinson, R. Thurlow, C. Beame, M. Eisler,
and D. Noveck. Network file system (NFS) version 4 protocol. RFC 3530,
Network Working Group, April 2003.

[120] S. Shepler, M. Eisler, and D. Noveck. NFS version 4 minor version 2
protocol. RFC 7862, Network Working Group, November 2016.

[121] Helgi Sigurbjarnarson, James Bornholt, Emina Torlak, and Xi Wang. Push-
button verification of file systems via crash refinement. In Proceedings
of the 12th USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI), pages 1–16, Savannah, GA, November 2016. USENIX
Association.

[122] Matt Staats, Gregory Gay, Michael Whalen, and Mats Heimdahl. On the
danger of coverage directed test case generation. In Fundamental Ap-
proaches to Software Engineering: 15th International Conference, FASE

77

BIBLIOGRAPHY

2012, held as part of the European Joint Conferences on Theory and Prac-
tice of Software, ETAPS 2012, pages 409–424, Tallinn, Estonia, March
2012. Springer.

[123] Wei Su, Yifei Liu, Gomathi Ganesan, Gerard Holzmann, Scott Smolka,
Erez Zadok, and Geoff Kuenning. Model-checking support for file system
development. In Proceedings of the 13th ACM Workshop on Hot Topics in
Storage and File Systems (HotStorage ’21), pages 103–110, Virtual, July
2021. ACM.

[124] Alexander Thomson and Daniel J Abadi. CalvinFS: Consistent WAN repli-
cation and scalable metadata management for distributed file systems. In
fast2015 [32].

[125] Yuan Tian, Julia Lawall, and David Lo. Identifying Linux bug fixing
patches. In Proceedings of the 34th International Conference on Software
Engineering (ICSE), pages 386–396, Zurich, Switzerland, June 2012. IEEE
Computer Society Press.

[126] Linus Torvalds. Linux kernel source tree, 2023. https://git.kernel.org/pub/
scm/ linux/kernel/git/ torvalds/ linux.git .

[127] Chia-Che Tsai, Bhushan Jain, Nafees Ahmed Abdul, and Donald E. Porter.
A study of modern Linux API usage and compatibility: What to support
when you’re supporting. In Proceedings of the Eleventh European Confer-
ence on Computer Systems (EuroSys), pages 1–16, London, United King-
dom, April 2016. ACM.

[128] Petar Tsankov, Mohammad Torabi Dashti, and David Basin. Semi-valid
input coverage for fuzz testing. In Proceedings of the 2013 Interna-
tional Symposium on Software Testing and Analysis (ISSTA), pages 56–66,
Lugano, Switzerland, July 2013. ACM.

[129] Theodore Ts’o. Ext4: Fix use-after-free in ext4_xattr_set_entry, 2022.
https:// lore.kernel.org/ lkml/165849767593.303416.8631216390537886242.
b4-ty@mit.edu/ .

[130] Dong Wang, Wensheng Dou, Yu Gao, Chenao Wu, Jun Wei, and Tao
Huang. Model checking guided testing for distributed systems. In Pro-
ceedings of the Eighteenth European Conference on Computer Systems
(EuroSys), pages 127–143, Rome, Italy, May 2023. ACM.

78

BIBLIOGRAPHY

[131] S. Weil, S. Brandt, E. Miller, D. Long, and C. Maltzahn. Ceph: A scalable,
high-performance distributed file system. In OSDI 2006 [104], pages 307–
320.

[132] Elaine J. Weyuker and Bingchiang Jeng. Analyzing partition testing strate-
gies. IEEE Transactions on Software Engineering, 17(7):703, 1991.

[133] Matthew Wilcox and Dave Chinner. XFS: Use
generic_file_open(), 2022. https://github.com/ torvalds/ linux/commit/
f3bf67c6c6fe863b7946ac0c2214a147dc50523d .

[134] David Woodhouse, Joern Engel, Jarkko Lavinen, and Artem Bityutskiy.
JFFS2, 2009.

[135] Yilun Wu, Tong Zhang, Changhee Jung, and Dongyoon Lee. DEVFUZZ:
automatic device model-guided device driver fuzzing. In Proceedings of
the 44th IEEE Symposium on Security and Privacy (SP), pages 3246–3261,
San Francisco, CA, May 2023. IEEE.

[136] XFS – high-performance 64-bit journaling file system. https://www.
linuxlinks.com/xfs/ . Visited February, 2021.

[137] Jian Xu, Lu Zhang, Amirsaman Memaripour, Akshatha Gangadharaiah,
Amit Borase, Tamires Brito Da Silva, Steven Swanson, and Andy Rudoff.
Nova-fortis: A fault-tolerant non-volatile main memory file system. In Pro-
ceedings of the 26th Symposium on Operating Systems Principles (SOSP),
pages 478–496, Shanghai, China, October 2017. ACM.

[138] Meng Xu, Sanidhya Kashyap, Hanqing Zhao, and Taesoo Kim. KRACE:
Data race fuzzing for kernel file systems. In Proceedings of the 41st IEEE
Symposium on Security and Privacy (Oakland), pages 1643–1660, Virtual
Event, November 2020. IEEE.

[139] Wen Xu, Sanidhya Kashyap, Changwoo Min, and Taesoo Kim. Designing
new operating primitives to improve fuzzing performance. In Proceedings
of the ACM SIGSAC Conference on Computer and Communications Secu-
rity (CCS), pages 2313–2328, Dallas, TX, October 2017. ACM.

[140] Wen Xu, Hyungon Moon, Sanidhya Kashyap, Po-Ning Tseng, and Taesoo
Kim. Fuzzing file systems via two-dimensional input space exploration. In

79

BIBLIOGRAPHY

Proceedings of the 40th IEEE Symposium on Security and Privacy (Oak-
land), pages 818–834, San Francisco, CA, May 2019. IEEE.

[141] Junfeng Yang, Can Sar, and Dawson Engler. eXplode: a lightweight, gen-
eral system for finding serious storage system errors. In Proceedings of the
7th USENIX Symposium on Operating Systems Design and Implementation
(OSDI), pages 131–146, Seattle, WA, November 2006. USENIX Associa-
tion.

[142] Junfeng Yang, Paul Twohey, Dawson Engler, and Madanlal Musuvathi. Us-
ing model checking to find serious file system errors. In Proceedings of
the USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI), pages 273–288, San Francisco, CA, December 2004. ACM
SIGOPS.

[143] Jingcheng Yuan, Toshiaki Aoki, and Xiaoyun Guo. Comprehensive evalu-
ation of file systems robustness with SPIN model checking. Software Test-
ing, Verification and Reliability, 32(6):e1828, 2022.

[144] Insu Yun. Concolic Execution Tailored for Hybrid Fuzzing. PhD thesis,
Georgia Institute of Technology, December 2020.

[145] Erez Zadok, Rakesh Iyer, Nikolai Joukov, Gopalan Sivathanu, and
Charles P. Wright. On incremental file system development. ACM Trans-
actions on Storage (TOS), 2(2):161–196, 2006.

[146] Andreas Zeller, Holger Cleve, and Stephan Neuhaus. Delta debugging:
From automated testing to automated debugging, 2023. https://www.st.cs.
uni-saarland.de/dd/ .

[147] Duo Zhang, Om Rameshwar Gatla, Wei Xu, and Mai Zheng. A study of
persistent memory bugs in the Linux kernel. In Proceedings of the 14th
ACM International Conference on Systems and Storage (SYSTOR), pages
1–6, Haifa, Israel, June 2021. ACM.

[148] Zhiqiang Zhang, Tianyong Wu, and Jian Zhang. Boundary value analysis
in automatic white-box test generation. In Proceedings of the IEEE 26th In-
ternational Symposium on Software Reliability Engineering (ISSRE), pages
239–249, Gaithersbury, MD, USA, November 2015. IEEE Computer Soci-
ety Press.

80

BIBLIOGRAPHY

[149] Mo Zou, Haoran Ding, Dong Du, Ming Fu, Ronghui Gu, and Haibo Chen.
Using concurrent relational logic with helpers for verifying the AtomFS file
system. In Proceedings of the 27th ACM Symposium on Operating Systems
Principles (SOSP), pages 259–274, Huntsville, ON, Canada, October 2019.
ACM.

81

