
The Case for Model Checking Emerging File Systems
Yifei Liu,*1 Gerard Holzmann,2 Geoff Kuenning,3 Scott A. Smolka,1 and Erez Zadok1

1Stony Brook University, 2Nimble Research, 3Harvey Mudd College

Abstract. We present MCFS, a new differential-testing-
based model-checking framework for emerging file systems.
MCFS performs joint state-space exploration on the refer-
ence file system and the file system under investigation, and
reports any behavioral discrepancies as potential bugs. We
created a new file system, VeriFS, as the reference file sys-
tem. VeriFS uses ioctls to support MCFS and improve
model-checking performance, especially compared to kernel
file systems running on RAM disks. Applying MCFS to five
emerging file systems, we discovered 11 potential bugs, 5
of which have been confirmed by developers. Most of these
bugs were previously unknown.

Introduction and Motivation. File systems are the funda-
mental way an operating system preserves data and interacts
with storage devices. A number of file systems have been
developed to exploit the potential of new storage technol-
ogy (e.g., persistent-memory file systems) and to embrace
advanced features (e.g., continuous snapshots in NILFS2).
We call these relatively new file systems emerging file sys-
tems. Owing to their critical role, file systems require testing
to eliminate bugs and ensure reliability. Although testing has
long been applied to established file systems such as Ext4
and XFS, directly using existing test suites on emerging file
systems is challenging because adapting tests to the unique
attributes of these systems requires substantial effort. Due to
a lack of thorough testing, however, emerging file systems
tend to hide bugs and thus pose serious vulnerabilities.

We comprehensively studied existing file system testing
tools and classified them into four categories. Regression
test suites (e.g., xfstests and LTP) consist of hand-written
test cases to check different file system functionalities. How-
ever, modifying regression tests to check a new file system
is laborious due to their complexity. Fuzzing mutates test
cases to stress file systems for maximum path coverage, but
requires instrumentation to trace coverage information from
the source code. Emerging file systems, however, are not
guaranteed to be compatible with code coverage tools (e.g.,
Gcov) in kernel space. Certain fuzzing tools rely on the util-
ities of a file system to identify metadata blocks, but many
emerging file systems do not yet have such utilities. Model
checking extracts an abstract model from the file system im-
plementation and checks its adherence to its specification.
Prior research has designed models for mature file systems
such as Ext4, yet constructing a model for another file sys-
tem entails an entirely new effort. Automatic test generation
produces system call sequences automatically as test cases
and relies on kernel crashes or BUG ON() calls to identify

*Student at Stony Brook University

file system bugs. However, emerging file systems usually in-
volve bugs that do not trigger kernel crashes or BUG ON().
Hence, it is imperative to develop user-friendly testing tools
for emerging file systems.
Design and Evaluation. We designed and implemented
the MCFS (Model Checking File Systems) framework to
test emerging file systems. MCFS runs the file system un-
der test alongside a more trustworthy reference file system.
MCFS builds on the top of the Spin model checker to per-
form state-space exploration and uses swarm verification to
scale the exploration. The concrete representation of a file
system state is expected to differ from system to system. We
therefore designed an appropriate “abstract state” represen-
tation for file systems to drive state exploration and to min-
imize “false positives” that occur when two states are found
to be different due to some non-critical implementation de-
tail. The abstract state is a hash value of cross-system con-
sistent data, such as file contents, directory structure, and
essential metadata. MCFS uses abstract states to recognize
previously-visited states and thus help mitigate the “state ex-
plosion” problem.

One major challenge of MCFS is to find a “gold standard”
file system as the reference, so that we can identify erroneous
behavior in the file system under test. Given the absence of a
verified bug-free file system, our initial selection for the ref-
erence file system was the widely adopted Ext4 file system,
since Ext4 is the de facto file system in the Linux kernel.
Subsequently, we developed a new in-memory file system,
VeriFS, that supports saving and restoring its full file system
state in response to ioctl calls. During the development
of VeriFS, we used MCFS to discover and fix eight bugs in
VeriFS. We have since tested VeriFS against Ext4 for more
than 18 days without a discrepancy, exploring more than 1.5
billion system calls and 339 million unique abstract states.
This demonstrates the reliability of VeriFS.

MCFS can be scaled with nearly linear performance im-
provement. In a 13-hour swarm-verification experiment,
MCFS ran 6 exploration processes on each of three ma-
chines, 18 processes in total. This resulted in exploring
11.2× more unique states than in a single process. We ap-
plied MCFS to five in-kernel emerging file systems: BetrFS,
F2FS, JFFS2, JFS, and NILFS2, finding discrepancies in all
of them. By analyzing MCFS log files, we certified that all of
the 11 discrepancies came from problems in the file systems
under test. Developers have confirmed 5 of the discrepancies
as real bugs. We are investigating the unconfirmed discrep-
ancies and testing more emerging file systems like NOVA
and PMFS.

Yifei Liu
Appears as a non-archival poster presentation in the 17th USENIX Symposium on Operating Systems Design and Implementation (OSDI '23)


