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Abstract

Machine learning has been shown to enhance performance and decision-making within many of the Linux
kernel’s complex subsystems. This paper proposes that ML can significantly enhance file I/O, particularly
in traditional storage devices like HDDs, which remain the dominant storage technology. In this work,
we try two scheduling approaches: adaptive scheduler switching based on workload classification, and
shortest-job-first I/O scheduling based on predicted latencies. Our experiments found that we could im-
prove throughput by 7.5% and decrease average latency by up to 43.9%. We then discuss the significance
of our results, considering both theoretical and experimental bounds.

1 Introduction

File I/O scheduling plays a critical role in overall system performance, particularly for storage-bound appli-
cations bottlenecked by disk operations. Efficient scheduling mechanisms are crucial for optimizing resource
utilization, reducing latency, and enhancing throughput. Devices like HDDs remain the dominant storage
technology [1]. I/O schedulers such as Deadline [2] and CFQ [3], built for HDDs, have proven effective
in various scenarios by employing static heuristics to manage disk access. However, these fixed strategies
often struggle to adapt to the diverse and dynamic workloads characteristic of modern computing envi-
ronments, which can lead to suboptimal performance [4]. Figure 1 shows the service latency distributions
of Filebench’s varmail and oltp workloads [5], collected from our experiments using the default workload
parameters. These distributions reveal distinctly different characteristics, further indicating that a one-
size-fits-all scheduler based solely on static heuristics is unlikely to perform optimally under all conditions.

Recent advances in machine learning have demonstrated potential in optimizing complex systems,
offering adaptive, data-driven solutions that can dynamically respond to changing workload patterns. ML
techniques have already shown great performance improvements across Linux kernel subsystems [6–13],
motivating us to investigate their applicability in enhancing file I/O scheduling.

We introduce two ML-driven approaches to optimize I/O scheduling. First, our adaptive scheduler-
switching method leverages workload classification to dynamically choose the scheduler with the highest
expected throughput.

Second, we propose a shortest-job-first (SJF) scheduling strategy that uses latency predictions to
reorder I/O requests. Here, a neural network estimates the latency of each request, enabling the scheduler
to prioritize those expected to complete quickly and thereby reducing the average latency.
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Figure 1: Latency pdfs of Filebench’s varmail and oltp workloads (µs). The x-axes are log-scale and
do not begin at 0.

2 Scheduler-Switching Design

Adaptive scheduler switching uses historic workload patterns to predict the ongoing workload, then uses
per-workload scheduler history to switch to the scheduler with the highest expected throughput for the
predicted workload.

2.1 Classification Model Setup

To predict the ongoing workload, we experimented with two different machine-learning models: decision
trees and neural networks. Although decision trees are typically faster, adaptive scheduler switching is
done asynchronously, so inference speed is not a significant concern. Thus, we instead opt for a slower
but more robust neural-network approach.

For our input features, we concatenated data from N preceding requests, where N is an algorithm
parameter. For each request, we recorded the operation (read or write), the Intel OST tag (described
below), the request size in bytes, the latency, and the LBA delta (the difference between the current
and previous disk LBAs).

To find the request latencies, we recorded the start times with a patched Noop scheduler and then
recorded the end times in blk account io done work. A hash table mapped the I/O completions to
previous dispatches, using the LBA as the key.

We used a custom Intel-OST 4.13.2 Linux kernel [14, 15] that enhances I/O tracing by tagging each
request at the kernel level. It includes a modified Ext4 file system that attaches one of the following
tags to each I/O operation. These tags are then passed within the bio structures as the requests traverse
the block layer:

META (metadata) BLK BMP (block bitmap)
SUPER (superblock) INO BMP (inode bitmap)
GROUP (group descriptor) INODE (inode info)
DIRECT (pointer) INDIRECT (pointer)
EXTENT (extent info) XATTR (extended attributes)
DATA DIR (directory) JOURNAL (journal block)

In addition to these file-system labels, Intel-OST also provides file-size labels that scale in powers of
four, ranging from 4KB to 1GB—e.g., FILE 4KB, FILE 16KB, . . . , FILE 1GB—and FILE BULK for files larger
than 1GB.

We used the KML library [16] to perform efficient ML-based inferences directly in kernel mode. KML’s
CPU overhead is negligible for small-to-medium–sized models, so we do not focus on computational costs
in this paper.
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The neural-network architecture consists of an input layer containing all the features described above,
M hidden layers, and an output layer with each node corresponding to a workload. The first hidden layer
has L nodes. The next M−1 hidden layers have exponentially fewer nodes: the ith layer has L/2i nodes.
The network is fully connected and contains leaky ReLU nonlinearities between all layers. A softmax
function is applied to the outputs, normalizing the predictions and constraining them to lie between 0 and 1.

We tested a large number of combinations for the values of L, M, and N. We found that L=128
nodes in the first hidden layer, M =4 hidden layers, and saving N =16 previous requests performed
sufficiently well. Increasing any of the hyperparameter values further provided minimal improvements
(0–1%) in classification accuracy, while increasing CPU and memory usage significantly.

We trained and tested our models on the RocksDB [17] workloads readrandomwriterandom, readseq,
fillseq, mixgraph, readreverse, readwhilewriting, readrandom, and fill100k.

2.2 Classification Results

Figure 2 shows a confusion matrix comparing the true workload and the workload our model predicted.
A high value (using darker colors) across the main diagonal indicates successful differentiation. We can
see that the model was generally successful, but it had difficulty differentiating between some groups
of similar workloads that appeared within the dataset.

The fillseq and fill100k workloads formed one such group, while the readwhilewriting, readrandom-
writerandom, readrandom, and mixgraph workloads formed another. This is not particularly surprising
since the first group consists of large, sequential data writes while the second has highly randomized and
unpredictable requests. We also notice that readseq and readreverse were easily differentiated due to
our LBA Delta input feature.

As we demonstrate in §5, similar workloads tend to have the highest throughput under similar
schedulers, meaning confusion among these groups causes little impact on performance. If we merge the
readwhilewriting, readrandomwriterandom, readrandom, and mixgraph workloads accordingly, our final
workload classification accuracy is 86%.

3 SJF Scheduling Design

A perfect shortest-job-first scheduling (SJF) algorithm optimizes for both total and average task execution
latency [18]. When applied to HDDs, where I/O latency depends on mechanical movements, an SJF-like
approach conceptually aligns with classical disk scheduling algorithms such as shortest-seek-time-first
(SSTF) [18], which prioritizes requests that require the least movement from the current disk head
position. Our ML-based SJF scheduler, KML-IOSched, aims to predict the overall service time, which
encompasses seek time, rotational latency, and other system effects, rather than just seek distance. It
thus does not have to account for undocumented and unpredictable disk behaviors [19].

While KML-IOSched’s goal of prioritizing requests with the shortest predicted latency is reminiscent
of SSTF, it should also avoid the traditional drawbacks of seek-optimizing schedulers. SSTF, for instance,
can lead to starvation for requests to tracks far from the current head position and may exhibit higher
latency variance. We account for this possibility using an anti-starvation mechanism described in §3.4.

Our findings show that accurately predicting I/O latency for HDDs is challenging due to several
interacting factors. For example, one might expect request sizes to correlate strongly with latency, but
that relationship only achieves a low Pearson Correlation Coefficient of 0.03 (§3.3). This difficulty is not
unique to HDDs; for instance, even for flash storage, which lacks mechanical components, predicting
I/O latency accurately has been shown to be non-trivial due to internal device operations like garbage
collection and wear-leveling [20].
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Figure 2: Classification confusion matrix for workloads readseq (rseq), readreverse (rrev), readwhile-
writing (rww), readrandomwriterandom (rrwr), readrandom (rr), mixgraph (mix), fillseq (fseq), and
fill100k (f100).

Our work on HDD latency prediction using ML should be viewed in the context of classical disk mod-
eling. Previous researchers have developed mathematical models of disk behavior, often focusing on seek
time and rotational latency [21–25]. These models have been instrumental in understanding HDD behavior.
Work has also been done on modeling SSD behavior [26–30], but we do not focus on those in this work.

Our ML-based SJF approach differs from previous HDD models by attempting to learn these latency
factors implicitly from I/O request features without requiring explicit parameterization of the drive’s
geometry, though it aims to achieve a similar goal of optimizing based on predicted service times. The
KML library supports dynamic, online retraining [16]. In the future, KML-IOSched can integrate with that
functionality, permitting us to adapt dynamically to changing conditions such as evolving workload pat-
terns, aging, thermal variations, or the specific nuances of an individual storage device. This contrasts with
static analytical models, which would require offline recalibration to account for such dynamic behaviors.

3.1 Initial Ordered Latency Prediction

Our initial latency-prediction models took six features as input: the current queue depth of the storage
device, the latency of the previous request, the LBA Delta between the current and previous requests,
and the tag, size, and operation of the current request. Testing these models on the RocksDB workloads
yielded an average accuracy of 95% during 10-fold cross validation. An ablation study revealed that
queue depth was the most significant feature, followed by the request tag. A high queue depth means
a request must wait for many others to complete before it is dispatched; on the other hand certain tags
(e.g., for metadata) indicate much faster completions.

Although a 95% accuracy shows that accurate latency prediction is possible in a stable-order setting,
this approach is inadequate for I/O scheduling for two reasons. First, our latency metric combines both
wait and service time, so it depends on the service times of previous requests. Second, many input
features—such as queue size, LBA delta, and the previous request’s latency—are order-dependent. When
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we change the dispatch order, these values shift and the prediction becomes meaningless. SJF requires
latency predictions that are based solely on the service time of the current request, independent of order.
As such, we no longer use this model.

3.2 Latency-Prediction Model Setup

Next, we ensured that only unordered features were included by using only the sizes, tags, and operations
of the current request along with the N most recently completed requests. Because these N requests
were finalized before the current request arrived, they avoided interference, yet still potentially provided
non-local historic context that could improve our model’s predictive performance. Expanding our feature
set—such as integrating lifetime hints, which have been shown to boost write performance by up to
25% [31]—could further enhance prediction accuracy.

Given the exponential distribution of latencies, we first performed a logarithmic transformation on
them. Then, to shield predictions from device performance fluctuations, we normalized the values against
the previous N requests.

We tested both decision trees and neural networks using the KML library. Speed is critical in an SJF
setting since predictions are performed synchronously on a per-request basis. However, we ultimately
decided against using decision trees, which are typically faster than neural networks, because we found
that their predictive capability was significantly lower than that of neural networks given these input
features. In offline testing, the decision-tree model could only reach an accuracy of 76% given a large
maximum tree depth of 18 whereas the neural network reached 92%.

Similar to our workload classification model, our latency-prediction model uses exponentially de-
creasing hidden-layer sizes. We experimented with various values of L, N , and M to maximize accuracy
while keeping the average prediction time below the P5 latency (top 5% of fastest latencies), ensuring
predictions occur faster than the rate of new requests. The optimal configuration was L=32, M=4,
and N=16. These numbers differ from the workload classification model since that model focused on
maximizing accuracy whereas this model balances accuracy and prediction time.

3.3 Latency-Prediction Results
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Figure 3: Predicted Latency (µs) vs. True Latency (µs). Axes are log-scale and do not begin at 0.

We believe that the Pearson Correlation Coefficient (PCC) between the true and predicted values is
more important than absolute accuracy. The PCC measures the degree of the linear relationship between
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two variables[32], with high values near 1 indicating close alignment. Since we are ordering requests, the
relationship between two requests is more important than actually predicting a request’s latency. Our
model achieved a high PCC of 0.90 across the RocksDB and Filebench workloads, illustrated in Figure 3,
demonstrating its ability to accurately sort requests by latency.

3.4 Scheduler Design

Even after minimizing ML inference time, we suspect that ML overhead could be a bottleneck in some
workloads. Thus, our scheduler is designed with two queues: a FIFO queue and an ML priority queue. If
requests are sparse over time, each request will be immediately dispatched from the FIFO queue without
incurring overhead from inference. Otherwise, as the queue builds up, there is time to make latency
predictions and dispatch them from the ML priority queue in smallest-predicted-latency order.

We use a minimal number of spinlocks when marking requests as “predicted” to prevent requests
from being dispatched from both queues. Although we initially had additional spinlocks and aborted
predictions if the request had already been dispatched from the FIFO queue, this increased overhead
more than simply predicting for all requests. Other papers have also suggested that spinlocks in I/O
schedulers can become severe bottlenecks [16].

Additionally, to prevent starvation, we added a variable increment to the predicted latency that
increases by a fixed amount δ per request. For example, request i receives an extra i·δ, while request i+1
receives (i+1)·δ. This slightly raises the priority of older requests over time, ensuring that every request
will eventually have the highest priority. The delta is orders of magnitude smaller than the average
request latency to minimize its overall interference.

4 Benchmarking Environment

Component Configuration

CPU Intel(R) Xeon(R) Silver 4316

16 cores @ 2.30GHz

Memory 4GB DDR4

Storage Western Digital 1TB HTS541010A9E662 HDD

Software Ubuntu 18.04

Intel-OST Linux kernel 4.13.2

Filebench 1.5-alpha3, RocksDB 9.9.0

Table 1: Testing environment.

Our testing environment is given in Table 1. Intel OST runs on Linux kernel 4.13; we used three
default single-queue schedulers (Noop, CFQ, and Deadline) and three default multi-queue schedulers (Kyber,
MQ-Deadline, and BFQ) without modifying their parameters. We used a small VM configuration because
the benchmarks do not demand larger amounts of memory or disk. We tested on Filebench and RocksDB
workloads, using the default configurations given by the authors [17, 33].

We dropped caches and restarted blktrace before runs to prevent memory and storage interference.
We also disabled readahead, limited the device queue depth to four, and disabled writeback delay to ensure
that performance differences were due solely to scheduling rather than caching or internal disk reordering.
These changes were made only for controlled evaluation and would not be required in production.
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Figure 4: Throughputs (ops/sec) by scheduler of workloads readseq (rseq), readreverse (rrev),
readwhilewriting (rww), readrandomwriterandom (rrwr), readrandom (rr), and mixgraph (mix).

5 Scheduler-Switching Evaluation

To compare the performance of our adaptive scheduler switching with the default schedulers, we first
benchmarked each ⟨scheduler,workload⟩ combination to determine its expected throughput, using the
RocksDB workloads readseq, readreverse, readwhilewriting, readrandomwriterandom, readrandom, and
mixgraph. We ran each ⟨scheduler,workload⟩ combination 200 times and recorded the average for each,
resulting in 95% confidence intervals of 1–4%.

In production, the adaptive model would run periodically—every few seconds or milliseconds—and
switch to the highest-throughput scheduler. However, since switching between multi- and single-queue
schedulers currently requires reboots, we simulated dynamic switching mathematically. Determining an
optimal workload-classification frequency that balances responsiveness and overhead is future work.

We define the optimal scheduler for a workload of type u as s∗u, and the throughput of that scheduler
on a workload of type w as Ts∗u(w). Then, to find the expected throughput for a workload of type w,
we consider the probability that it is predicted to be of type u (where u might or might not equal w).
Then, the actual throughput T(w) achieved for w can be found by summing across all predictions:

T(w)=
∑

u∈workloads

P(predicted=u | true=w)×Ts∗u(w)

We can determine P(predicted=u | true=w) from the corresponding entry of the confusion matrix.
Figure 4 presents our findings. As expected, adaptive scheduler switching did not achieve the highest

throughput for any single workload, since its performance is bounded by the best scheduler for that
workload. However, when averaging throughput across all workloads, adaptive scheduler switching
outperformed every individual scheduler. Thus, in dynamic environments, our adaptive scheme is superior
to statically selecting a single scheduler.

The “% ∆” column on the right side of Figure 4 represents the percent difference between the average
for the workload across all schedulers and the throughput of adaptive scheduler switching. The average
percent improvement is 7.5%, which can be significant for I/O-bound workloads.

A more varied set of workloads is likely to increase the throughput variance among the
⟨scheduler,workload⟩ pairs [34]. Thus, a more diverse and demanding workload set will likely yield an
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even higher average percent improvement.

6 SJF Scheduling Evaluation

We now compare the performance of KML-IOSched, our SJF scheduler, to the default single-queue Linux
kernel schedulers.

To determine the absolute experimental bounds of SJF scheduling, we designed our own Filebench
workload consisting of two distinct request types: (1) long file reads with high service times and (2)
“NULL” reads, which were made to an out-of-bounds disk location, effectively causing them to return
immediately. Although NULL requests would not appear in a real workload, these instantaneous requests
allowed us to test the upper bound of latency reduction achievable under ideal scheduling conditions.
Each run consisted of a burst of 100 concurrent requests.

We evaluated scheduler performance under this workload by measuring the average latency of I/O
requests. The results, normalized against the Noop scheduler, are as follows:

Scheduler Average Latency Change vs. Noop

CFQ +16.4%
Deadline -7.9%
KML-IOSched -43.9%

Our scheduler, KML-IOSched, significantly outperformed the other schedulers, achieving a 43.9%
reduction in latency over Noop. The Deadline scheduler showed a modest improvement, likely due to its
inherent mechanisms for reducing seek time. However, CFQ performed worse than Noop, indicating that
its fair-queuing mechanism introduced unnecessary delays for this particular workload.

KML-IOSched correctly prioritized dispatching the instantaneous requests first. This means the model
successfully inferred the importance of disk location, suggesting that the SJF-based approach can
successfully learn workload characteristics without requiring domain-specific optimizations.

We did not observe substantial performance improvements in the default RocksDB and Filebench
workloads. This may be due to two reasons. First, our model does not explicitly consider seek time. Seek
time is partly captured by the LBA Delta, but modeling it further is challenging due to the complex,
non-linear mapping between logical and physical disk locations [19]. Prior work also indicates that
detailed seek-time estimates can add significant memory overhead [35]. Second, although our model
predicts latency well at a broad scale, it struggles with fine-grained predictions in small request windows.
It distinguishes well between requests with different tags (e.g., inodes versus user data) but has difficulty
differentiating between similar requests like successive user-level file reads, which dominate the built-in
Filebench and RocksDB workloads.

7 Related Work

Hao et al. [20, 36] present two OS-level solutions for reducing tail latency in flash storage: LinnOS uses
an ML-based model to predict per-chip queuing delays within a RAID scheduler, and MittOS has a
mechanism for rejecting requests that will violate SLO deadlines. However, neither predicts latencies as a
whole, instead identifying requests predicted to be in the 95–99th latency percentiles. Moreover, LinnOS
is limited to RAID systems. In contrast, KML-IOSched is general-purpose and capable of modeling the
entire spectrum of I/O latencies.

Naweed et al. [37] evaluate the performance of a randomized algorithm that continuously switches
schedulers to find one that performs well for the current workload. Their approach relies on significant
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trial-and-error at run-time. Our workload classification model, conversely, can accurately determine the
optimal scheduler with a single prediction.

Tarasov et al. [35] leverage a disk latency map to estimate the latency between LBAs, improving
deadline enforcement and throughput. However, their approach requires about 400MB of memory for
only 5GB of active storage space. Our model avoids significant memory overhead, requiring additional
memory only on a per-request basis.

Popovici et al. [38] present a scheduler that uses a table-based model to estimate I/O latency. In
contrast, we use machine learning to leverage more complex I/O feature vectors, including I/O tags.

8 Conclusion

We have demonstrated the performance of ML-driven I/O scheduling approaches. Our adaptive scheduler-
switching model achieved 86% classification accuracy and delivered a 7.5% average throughput gain,
while our SJF model reached a Pearson Correlation Coefficient of 0.90 and reduced average latency by
up to 43.9%. Thus, data-driven techniques have the ability to significantly outperform static heuristics.

9 Future Work

(1) We have only tested ML-based scheduling on hard disks because previous work suggests that flash
storage benefits less from scheduling. Nonetheless, we believe that modeling garbage collection on flash
storage could still yield significant improvements. (2) Although we show that our ML model has sufficient
features to accurately predict request latency on its own, incorporating mathematically-modeled seek time
predictions [21] could offer further benefits. (3) Finally, unsupervised workload-classification techniques
can generalize adaptive scheduler switching, improving performance for out-of-distribution workloads.
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