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ABSTRACT
Serverless platforms o�er on-demand computation and represent
a signi�cant shift from previous platforms that typically required
resources to be pre-allocated (e.g., virtual machines). As serverless
platforms have evolved, they have become suitable for a muchwider
range of applications than their original use cases. However, storage
access remains apainpoint that holds serverless back frombecoming
a completely generic computation platform.

Existing storage for serverless typically uses an object interface.
Although object APIs are simple to use, they lack the richness, ver-
satility, and performance of �le based APIs. Additionally, there is a
large body of existing applications that relies on�le-based interfaces.
The lack of �le based storage options prevents these applications
from being ported to serverless environments.

In this paper, we present F3, a �le system that o�ers features to
improve �le access in serverless platforms: (1) e�cient handling
of ephemeral data, by placing ephemeral and non-ephemeral data
on storage that exists at a di�erent points along the durability-
performance tradeo� continuum, (2) locality-aware data scheduling,
and (3) e�cient reading while writing. Wemodi�ed OpenWhisk to
support attaching �le-based storage and to leverage F3’s features
using hints. Our prototype evaluation of F3 shows improved perfor-
mance of up to 1.5–6.5⇥ compared to existing storage systems.

CCS CONCEPTS
• Information systems! Information storage systems; Com-
puting platforms; Storage replication; Cloud based storage; Dis-
tributed storage; Computing platforms.
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1 INTRODUCTION
Serverless platforms have already proven their utility in running
smallweb-oriented tasks.Theyareapproachinga turningpoint, how-
ever, where their on-demand computation is expanding to a wider
range of applications [16, 31, 52]—possibly any application. To this
end, serverless platforms have been relaxing constraints and adding
features, for instance, allowing users to run arbitrary containers and
increasing execution time limits to support longer-running actions.
Here, an “action” is a snippet of code or a standalone executable, and
a serverless application is made up of one or more actions [4, 7, 9].

Storage access, however, remains a pain point for generic
applications in serverless environments. Serverless platforms
typically support only object-based storage. Object is a natural
choice for the short, stateless, web-oriented tasks for which
serverless platforms were originally designed and used; but more
generic applications frequently need functionality not supported by
traditional object storage—for example �le-based access to data, the
ability to perform in-place modi�cations, support for concurrent
writers, and the ability to read data as it is being written. The lack
of support for these features has held serverless computing back
from becoming a generic computational platform.

Although most serverless platforms still do not o�er a way to
connect �le based storage to serverless applications (e.g., IBM Cloud
Functions [28], Google Cloud Functions [25], OpenWhisk [53], or
Knative [36]); some (e.g., AWS Lambda) have recently added support
for �le-based storage [5]. This is encouraging, as it indicates that
industry has recognized the need for �le-based storage in serverless
applications. Existing �le systems, however, were not designed
for serverless platforms and lack important features that would
bene�t serverless applications. In particular, existing �le systems
lack functionalities that could accelerate intermediate data transfer
between the individual actions that make up a serverless application.

Applications in serverless environments are often split into
multiple components forming pipelines, where one component
writes its output data sequentially to storage, the next component
reads the data as input, then the system discards the intermediate
data. By speci�cally facilitating this usage pattern, a storage system
can improve data access and transfer performance. We identi�ed
three ways a storage system can aid this pattern: (1) storing the
intermediate data on less durable, lower-latency local storage,
(2) providing hints about the location of data to serverless schedulers
so that subsequent stages of a pipeline can be scheduled close to
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the data, and (3) making it possible for the next stage of a pipeline
to begin reading before the previous stage has �nished writing.

Durability vs. performance tradeo�. Durability provided by
storage systems often comes at the cost of performance. For instance,
in our experiments, disabling durability features (e.g., erasure
coding) increased read/write bandwidth by 42–45%, and using
a local disk rather than networked �le system further increased
read/write bandwidth by 39–86%.

The data transferred in serverless applications is usually
ephemeral (i.e., short lived) and is needed only until it has been
consumed by the reader. This enables a di�erent durability-
performance tradeo� to be made. For example, ephemeral data does
not necessarily need strong durability features such as replication or
erasure coding that are provided bymany storage systems. Although
durability features can sometimes be disabled in a given storage
system, they are typically con�gurable only at volume or �le system
granularity. As a result, it is di�cult to optimize for workloads that
store both ephemeral and non-ephemeral data: both must exist at
the same point along the durability-performance continuum.

Locality. For data to remain local to a server, the serverless
platform’s scheduler needs to know where the data a serverless
application will consume are located within the cluster. Current
storage systems either do not convey this information to serverless
platforms, or are designed such that the information is not even
applicable (e.g., if, for data protection, the data is distributed across
multiple nodes in the cluster). Either way, the result is that data
transfers between components within a serverless application
consume network bandwidth and incur the performance penalty
associated with transmitting data across the cluster’s network.

Reading while writing. Finally, it is often desirable to process
data in a streaming fashion, i.e., to read and process data while it is
written to a �le. Doing so speeds up end-to-end processing because a
subsequent stage can begin without having to wait for the previous
stage to �nish. In object storage, it is not possible for an object to
be open by a writer and reader at the same time. In distributed �le
systems, however, it is possible but �le systems often make the
conservative assumption that when a �le is open for reading by one
client and for writing by another client, that both clients must use
unbu�ered �le accesses to ensure that readers and writers maintain
consistency [13].

Unbu�ered access signi�cantly slows both the reader and
the writer, negating any performance bene�t of the read-while-
writeaccess pattern. For data transfer in serverless applications, this
is an overly conservative assumption since both reader and writer
access the data only sequentially (i.e., data is never modi�ed once
written).

In this paper we address the storage access and data transfer prob-
lems for serverless environments. First, we added�le system support
to a popular open-source serverless platform, OpenWhisk [53], to
demonstrate how existing �le storage solutions can work with a
serverless platform.Next,we implementeda stackable�le system, F3,
that isdesigned tooptimize the transferofdatabetweenserverlessap-
plications and the individual components of a serverless application.
F3 distinguishes ephemeral data from that requiring high durability,
and transparently directs ephemeral data to node-local disks. This
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Figure 1: Blueprint architecture of edge serverless platform

enables F3 to perform up to 6.5⇥ faster when writing data and 2.7⇥
faster when reading data compare to the traditional durable storage.

F3 further optimizes data transfer by tracking the location
of ephemeral �les and exposing that information to serverless
schedulers. We modi�ed OpenWhisk’s scheduler to use data
location information when selecting the server to run the function,
which in one experiment reduced network tra�c used for data
transfer from 2GB down to zero.

We designed F3 to stack over existing durable storage systems
(e.g., Ceph [13], Lustre [42], and GPFS [26]), making F3 a �exible and
transparent extension to existing storage solutions. The resulting
�le system namespace makes both durable and ephemeral �les
visible to serverless applications.

Though F3 is generic and can be applied in di�erent environ-
ments, we focused our empirical evaluation on a speci�c, rapidly
growing use case—Edge Computing. Industrial edge computing
is a new market that is predicted grow from $18B to $31B by
2025 [23]. Edge data centers are smaller facilities that range in
size from street-side cabinets to cargo container-like structures
that house a limited amount of server infrastructure. By having a
smaller form factor than typical data centers (typically only 3–10
servers), edge data centers are relatively easy to move and deploy,
making them a good �t for housing IT infrastructure at the edge.
Serverless computing enables higher resource usage e�ciency in
these resource constrained environments through its �ne-grained
sharing [22]. Our experimental platform, workloads, and evaluation
methodology are tailored to serverless computing at the edge.

This paper makes the following contributions:

(1) We describe the case for using �le systems in serverless
computing and extended OpenWhisk to enable attaching
actions to �le-based storage;

(2) We designed and implemented F3, a �le system that extends
existing storage systems to enhance data transfers between
serverless actions;

(3) We evaluated F3 and several alternatives for edge computing;
and

(4) We have made F3 and our modi�cations to OpenWhisk avail-
able as open-source software: https://github.com/�lesystems-for-
serverless.
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2 BACKGROUND
In this sectionwe give an overview of how serverless platforms oper-
ate (e.g., AWSLambda [3], ApacheOpenWhisk [53]). Figure 1 depicts
a serverless platform running on top of a container orchestrator.

Operation. Serverless platforms run processing 1 on demand
in a containerized environment [8]. Traditionally this processing
consisted of snippets of code referred to as “functions.” As serverless
platforms have become more generalized, more and more of
the processing is done by standalone executables (e.g., an entire
webserver or video processing utility). The term “function” seems
insu�cient for these more generalized and complex workloads, so
we use the more generic term “action” to refer to both traditional
function-style processing and newer more generic processing.

Actions runwhen triggered 2 by a request to anHTTP endpoint.
The trigger can be initiated in response to an event such as an upload
to an object store. Information related to the trigger is passed to the
action as parameters (e.g., uploaded object name).

Running actions. The containers that run actions 3 are often
managed by a container-orchestration platform such as Kuber-
netes [59]. When an action is triggered, if there is an appropriate
container already running, then that container runs the action.
This is referred to as a warm start. If no suitable container exists,
the serverless platform creates a new container for the action by
making a request to the container orchestrator 4 ; this is a cold
start. In either case, a scheduling decision has to be made. If there
are multiple warm containers suitable for an action, the serverless
platform’s scheduler must choose that container to run the action. If
a cold start is required, then the containers orchestrator’s scheduler
must decide the cluster node on which to start the container,
possibly using hints from the serverless platform’s scheduler.

To avoid the overhead of cold starts, serverless platforms keep
action containers running for some time after an action has executed.
If the container’s resources are needed for something else, however,
then the container can be stopped as soon as the action ends. In
either case, cluster resources are reserved and paid for only while
the action is actually running.

Building and deploying actions. In early serverless o�erings,
actions were built by writing a snippet of code in a language such
as JavaScript or Python. When triggered, the code was run using
a container image built by the serverless platform. This approach
allowed developers to focus solely on their code, but was somewhat
restrictive in that it limited the languages supported. Also, because
the serverless platform provided the execution environment,
developers had little �exibility in the choice of libraries, runtimes,
and other external resources.

The simplicity inherent in this approach is still sometimes
desirable, and “Function as a Service” (FaaS) platforms continue to
o�er this method of building and deploying actions. For many use
cases, however,more sophisticated actions are needed. These actions
might use external libraries, have multiple executables, or require
a speci�c execution environment (e.g., a speci�c Linux distribution).
To support these actions, most modern serverless platforms now
allow developers to run an arbitrary container image in response
to a trigger. On startup, these containers run a “Serverless Runtime
Interface” executable 5 that interfaces with the serverless platform.

When triggered, the container image runs the Serverless Runtime
Interface, which retrieves the action’s input parameters, executes
the action, and returns the results to the serverless platform. Thus,
any application that can be containerized can be run as an action
on a serverless platform. This approach opens serverless platforms
to many more use cases than were originally designed.

Storage. Early code snippet-based actions were completely
stateless, thus did not require access to persistent storage. When
stateful serverless actions were later introduced, object stores were
the recommended [15, 43] means to hold the state.

This made sense because (1) early serverless applications
appeared mainly in web environments where object storage has
been the norm, and (2) object stores are easy to access, requiring
only the ability to form an outbound HTTP connection.

Although there are a wide variety of �le and block storage
options [33, 47] that container orchestrators can provision 6 and
attach 7 to containers, current serverless platforms have not taken
advantage of them.

3 STORAGE FOR SERVERLESS COMPUTING
In this section we �rst discuss the di�erences between �le and
object storage, then describe features existing �le systems lack that
would improve e�ciency for serverless applications.

3.1 Object Stores vs. File Systems
In most serverless platforms, the only storage option available to
actions is object storage. Object-based storage uses a key to identify
an item of data, is typically accessed using through HTML requests,
and supports operations ���, ���, and ������. For many serverless
applications, this interface is completely adequate and appropriate.
We are not suggesting that the option of object storage in serverless
platforms should be taken away.

But many applications that run in generic container images
expect a �le based interface, where �les are identi�ed by their names
in a hierarchical namespace, and are accessed using operations
such as open, read, and write. While �le-to-object translation layers
that can be embedded with the application exist, they generally
do not support the richer functionality of �les—including in-place
modi�cation, read-after-write consistency and directory-level
operations—thus are not adequate for all applications.

Further, �le systems typically provide higher performance than
object stores [29, 55, 56]. Although high performance object stores
could be implemented, applications that require high performance
today are mainly �le based [51].

One of the commonly cited bene�ts of serverless platforms is their
near-limitless scalability. It might therefore seem counter-intuitive
to suggest bringing �le systems, often regarded as having limited
scalability, to serverless platforms. Nevertheless, several major
cloud providers have added �le system support to their serverless
platforms. This reinforces our belief that �le system support is
necessary, and that if serverless platforms are to take the next step
toward becoming a generic computing platform, they must support
�le in addition to object interfaces.
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3.2 Shortcomings of Existing File Systems
Existing shared �le systems such as NFS and CephFS can provide
storage for serverless applications. However, these �le systems
were not designed with serverless platforms in mind and lack
features that would bene�t serverless environments. Three such
features are: (1) support for ephemeral (short-lived) data, (2) the
ability to schedule actions based on where their data is located, and
(3) support for reading �les as they are being written.

Ephemeral data. Serverless applications make heavy use of
ephemeral data—one that is short lived and that can be easily
recreated. Ephemeral data comes from a variety of sources.
For example, pipelines that span multiple actions may produce
intermediate results generated by one action, consumed by another,
and then discarded. Sensor and other user data generated at the edge
is often �ltered and pre-processed, with much of the original raw
data not retained. Moreover, resources such as machine-learning
models are frequently replaced with updated versions.

Many storage systems provide durability and reliability features
such as replication or erasure coding. These features come with a
performance cost. Since ephemeral data does not need these features,
there is an opportunity to trade o� decreased data reliability for
increased performance.

In the case of node or disk failure, ephemeral data can be recreated
by rerunning the original actions that created it. Detecting an action
failure and rerunning the original actions requires a serverless
execution framework that is beyond the scope of this paper; but we
note that a �le system could reasonably identify when a disk fails
(e.g., ��� errors) and inform the serverless execution framework.
This would allow the execution framework to di�erentiate between
regular action failures (e.g., due to an application error) and action
failures due tomissing or corrupted data caused by disk failure. How
a serverless execution framework handles such errors is part of the
larger problemof serverless application orchestration (see Section 8).

Data locality-aware scheduling. When running an action, the
serverless platformmust decide where to run that action. Assuming
the platformuses containers to run actions, this entails either (1)�nd-
ing an available already running container and assigning the action
to that container, or (2) starting a new container to run the action.

There has been a signi�cant amount of work done in trying
to avoid cold starts, since starting up a new container to run the
action can signi�cantly increase action latency and overall runtime.
However, another factor that must be taken into account is the
location of the data needed by the application. Running the action
close to the data avoids the delay and overhead of moving the data
to where the action runs.

Most existing storage systems do not provide the necessary
data-locality scheduling hints. Those that do, provide them only at a
volume granularity, too coarse for per-�le-based scheduling. For ex-
ample, with volume-level scheduling hints, an application’s actions
cannot simply write their output to a common output directory.
Other systems that have incorporated data locality into serverless
action scheduling (i) require applications to be structured in a
speci�c way (e.g., as a DAG) [12] and (ii) require information about
the structure of the application before the application runs [12, 44].

Reading-while-writing. Pipelines where one process generates
data as another process consumes it are common in Unix environ-
ments, especially in the form of Unix pipes (e.g., procA | procB).
Such a pipeline can reduce end-to-end application run times since
the second process does not need to wait for the �rst process to
�nish before starting its processing.

This technique requires the two processes to share a kernel to
facilitate piping the output from one process to the input of the next,
and so porting such a pipeline to a serverless platform is not trivial.
Note that in Unix pipes, the pipe’s data is itself ephemeral and lives
temporarily in kernel bu�ers.

One workaround is to use a temporary �le as an intermediary,
e.g., procA >/tmp/f & procB </tmp/f. This solution can fail, however,
since procBmay read all of /tmp/f and exit before procA has �nished
writing, leaving some data unprocessed by procB.

A better workaround is to use an intermediary �le, but to also
have procBwait to exit until after procA closes /tmp/f. This is easy
to do with the standard Unix utility tail: procA >/tmp/f & PID=$!;

tail –pid=$PID -f /tmp/f | procB. Here, tailwaits for additional
data until procA exits.

This works on a single systemwhere tail is able to test if procA
has exited. However, if procA and procB are running in di�erent
serverless contexts, this workaround does not work.

Because pipelines are such a common idiom in serverless
work�ows, a �le system that optimizes this pattern and increases
parallelizablity between stages is highly desirable. When an
intermediate �le is used to communicate data between two actions,
the�le system is in a unique position to block the reader as necessary
to wait for a concurrently running writer to add additional data to
the �le, returning end-of-�le indication to the reader only after the
writer has �nished and closed the �le.

4 DESIGN
We have designed a proof of concept �le system, F3, that has all of
the desired properties identi�ed in Section 3. Figure 2 depicts F3’s
architecture. F3 is designed to layer on top of an existing durable �le
system, extending it with features bene�ting serverless applications.
F3 provides faster access to ephemeral data by storing it separately
from non-ephemeral data on local, less durable storage without
features like replication or erasure coding. Since ephemeral data
is stored on node-local devices, F3 interfaces with the serverless
platform to aid in scheduling actions on the nodes where their data
resides. In the event that this is not possible (e.g., because the load
on that node is too high), F3 transparently and e�ciently handles
transferring the data between nodes.

We describe the design of the three serverless data transfer
features in more detail below.

Ephemeral data support. F3 provides a common �le system
interface for both ephemeral and non-ephemeral data. To do this,
F3 merges (1) a distributed, reliable, networked �le system with
(2) a �le system on a fast local disk, and exposes a single mount
point. Applications use the mount point exposed by F3, and F3
transparentlywrites�le contents to either the networked�le system
or to the faster local �le system.

The networked �le system should be a �le system that is
accessible by every node in the cluster, such as CephFS or NFS. Each
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node should have its own local data store for ephemeral data. This,
for instance, is the case in a hyperconverged architecture, where
storage is provided by aggregating disks attached to each compute
node rather than using dedicated storage servers.

In our current implementation, users can mark a �le or directory
as ephemeral by setting the appropriate extended attribute on the
�le or directory or just use a special prede�ned �le name extension.
All data under an ephemeral directory is automatically marked
ephemeral. In many work�ows an application developer or user can
easily identify which �les are intermediate hence contain ephemeral
data. In other cases some �les (e.g., stored in /tmp) or opened with
�_�������, could be automatically designated as ephemeral. In
the future, we can explore using more advanced automation for
identifying ephemeral data.

For each volume, F3 creates a di�erent top level directory on the
local and networked�le systems. This keeps the volume namespaces
separate, so �les in separate volumes can share the same name and
path. Under this top level directory, F3maintains the same directory
hierarchy on both the local �le system and the networked �le
system: the only di�erence is where the a �le’s contents are stored.
It creates an empty �le as a placeholder in the underlying �le system
where the �le is not stored (e.g., the networked �le system if the �le
is an ephemeral�le). However, if a F3 volume is created by extending
an existing networked �le system volume, F3 does not require any
initial synchronization. Instead, F3 lazily creates the network �le
system’s directory hierarchy on the local disk as needed.

F3 uses extended attributes on the copies of the �les on the
networked �le system to track F3-speci�c metadata about a �le.
For example, we use extended attributes to mark whether the �le is
ephemeral, and if so which nodes in the cluster have a copy of that
�le’s data. Storing metadata in the network �le systems provides
high durability formetadata.When a�le is opened by an application,
F3 checks the �le’s extended attributes to determine if the �le is
ephemeral: if so, it opens the copy of the �le on the ephemeral data
store and returns the �le descriptor to the application. Otherwise,
F3 opens the copy of the �le on the networked �le system and
returns that �le descriptor. If the extended attributes are missing,
F3 assumes that the �le is non-ephemeral. This can happen if F3 is
extending a networked �le system that has already been populated
with data, for instance.

When F3 opens an ephemeral�le, it�rst checks if the�le contents
are available locally. If not, F3 uses the extended attributes to �nd
which nodes in the cluster have the �le’s contents. F3 then uses a
per-node client/server communication to do a point-to-point, direct,
e�cient transfer of the �le contents. As soon as the network transfer
is initiated, F3 begins transferring the entire �le and returns a �le
descriptor for the �le to the application, which can then read the
�le as it is being downloaded.

The original copy of data is not deleted, and the data on
either node can be used by subsequent actions. For our current
implementation, we assume that ephemeral data is written once [34]
so this copy of data does not need to be updated. As most ephemeral
serverless data is written only once, this is a reasonable assumption.
At this time we consider it the responsibility of the application
developer to ensure that this assumption holds.

If a node or local disk fails and ephemeral data is lost, the action
that created the data has to be re-run. This is consistent with the
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Figure 2: F3 architecture and locality-aware data operations

typical requirement that actions are idempotent [6, 30], and the fact
that actions may be automatically re-run by the serverless platform
in the event of certain kinds of errors [40].

Our current implementation of F3 does not include any garbage
collection to delete old data on the local disk. A simple approach
would be to delete data as needed when the disk �lls up, using an
LRU algorithm to choosewhat data to delete. If a single actionwrites
enough ephemeral data to �ll up the local disk by itself, the current
implementation of F3 would return ENOSPC to the application. Other
approaches might be to have F3 copy the ephemeral data to the
shared �le system, store the data partially on the local disk and
partially on the shared �le system, or to have the serverless platform
rerun the action and have F3 treat the data as non-ephemeral during
the second run. We leave exploration of these options, as well as an
implementation of a garbage collection mechanism, to future work.

Data locality hints for action scheduling. Collectively, the F3
�le system drivers which run on each node in the cluster knowwhat
�les are present in their local ephemeral data store. If the serverless
platform’s scheduler knows what �les an action will access, the
scheduler can ask the F3 �le system for the location of the data and
use that information in deciding where to schedule the action.

Rather than making the scheduler query each local instance of
F3, F3 includes a simple server that centralizes this data locality
information. Each local instance of F3 sends information about
what �les are on its node to this data locality server. The locality
information is sent to the server asynchronously, so the server
should not become a bottleneck in data operations.

Figure 2 details how the data locality feature in F3 works. When
an ephemeral �le is written 1 to an F3 �le system, the local instance
of F3 on that node sends 2 the �le name, �le size, and node name
to the data locality server. F3 sends locality information twice: once
when the�le is created, and againwhen the�le is closed. The locality
information sent when the �le is created allows the serverless
scheduler to schedule pipelined actions on the same node, since it
tells the scheduler where the data will be. The locality information
sent when the �le is closed allows the scheduler to make scheduling
decisions based on the actual amount of data that each host has.

When the serverless platform receives 3 a new action to run, its
scheduler has to choose where to run the action. If there are suitable
warm containers available, it chooses one of them; otherwise, it
creates a new container. When taking data locality into account, the
scheduler tries to identify all �les that the action is likely to access.
Currently this is done by identifying strings in the action parameters
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that contain the mount point of the F3 �le system 4 . This was
su�cient for the applications that we used for our evaluation. In
the future, more sophisticated methods such as predictions based
on prior action invocations can be used to identify �les likely to
be accessed. Additionally, a serverless orchestrator or framework
such as Kube�ow [37] that knows the relationship between actions
could explicitly provide information about what data an action will
produce or consume.

The scheduler then sends the list of �les to the data locality server
5 . The data locality server then uses the information supplied by
the F3 �le system drivers to identify for each �le in the list what
nodes have the �le locally and the size of each �le. It sums the
amount of data available on each node, and returns this information
to the scheduler 6 . The scheduler uses the information to choose
a container on a node with the largest amount of data available
locally 7 . If there are no suitable containers the scheduler then
uses this information to tell the container platformwhich node the
new container should be created on.

Data locality is only one of several factors that the scheduler uses
to place actions. For instance, if the nodewith the best data locality is
overloaded, then the scheduler may instead decide to run an action
ona lessheavilyutilizednode. Ideally, the serverless schedulerwould
provide a mechanism for letting users decide how these di�erent
pieces of information are used when making scheduling decisions,
similar to the �exibility o�ered by the Kubernetes scheduler [39].

Reading-while-writing. Usually a process consumes a �le by
issuing read system calls in a loop, stopping when read returns
zero (i.e., when the end of the �le is reached). If the �le is being
written at the same time as it is being read, the reader would need
to periodically poll for new data when read returns zero.

The challenge here is that the process needs to know when to
stop polling because the writer has �nished and closed the �le. Unix
pipes handle this transparently for a process: rather than returning
zero, read blocks until more data is available as long as the write
end of the pipe remains open.

F3 replicates this behavior by blocking read calls from returning
if readwould return zero but the �le is open for writing by another
process. When more data has been added to the �le or the writer
closes the �le, F3 allows read to return to the caller. Since F3 spans
the entire cluster, this works even if the writing process is running
in a di�erent container or a di�erent node.

This feature makes it possible for a serverless scheduler to sched-
ule the next stage of a pipeline before the previous stage has �nished,
thus improving concurrency. The same locality hints the scheduler
uses to place the reader action can also be used to wait for the
previous pipeline stage to create the �le. Thus pipeline stages can be
scheduled in parallel without code changes to either reader or writer.

If one of the pipeline steps fails, there may be subsequent stages
that have already read part of the output from the failed step. If the
pipeline previously ran on a single node, then it likely already has
logic for dealing with this case and such logic can be reused in the
serverless environment as well. For example, the application might
cleanup the output from failed steps and then rerun. Since objects are
written or read in their entirety, rather than incrementally as�les are,
additional logic may be needed for applications that currently use
an object interface for storage. Detecting when a failure occurs and

what recovery steps are needed (e.g., failing downstream actions that
are currently reading data from the failed action) is the responsibility
of the serverless execution system and is out of scope for F3.

5 IMPLEMENTATION
We implemented F3, following the design described in Section 4.
We targeted OpenWhisk [53] as the serverless platform, which we
deployed on top of Kubernetes as the container orchestration plat-
form. F3’s implementation consists of four components and a series
of modi�cations to OpenWhisk, described below. We plan to release
these components publicly, as open source, available at url-redacted.

1. F3�le systemdriver. The F3 �le system driver is implemented
using FUSE [69, 70]. We used FUSE for this prototype rather
than implementing a kernel-based driver due to FUSE’s relative
simplicity and ease of development.We expect that any performance
penalty that FUSE imposes is insigni�cant compared to the bene�ts
provided by F3 (e.g., fewer network transfers). In the future, a kernel
version of F3 could be implemented for production uses.

The F3 FUSE driver is implemented in 2,406 lines of C and C++.
An instance of the FUSE driver runs on each node, for each F3
volume mounted on that node.

2. File transfer server & client. Ephemeral data written on one
node and read on another nodemust be copied to the reader node via
a network transfer. This functionality is implemented in a Go-based
client and server, each of which runs on each node of the cluster.
Go was chosen due to its strengths as a language for networked
applications like �le transfer clients and servers [66]. Additionally,
Go’s ability to compile into a portable executable eases the
containerization and deployment of the �le transfer and server [41].

The F3 FUSE driver communicates to the client via Unix domain
sockets to request that a �le’s contents be downloaded from another
node. The �le transfer server and client are written in 574 lines of Go.

3. CSI driver. To integrate F3 with Kubernetes, we implemented a
CSI (Container Storage Interface) driver [33] to enable provisioning
and attaching F3 volumes to Kubernetes pods. The CSI driver is
implemented in 811 lines of Go.For example, the CSI speci�cation
website lists 83 CSI drivers with source code: of those, 74 are
implemented in Go [33]. When users create an F3 volume, they
must also create a volume for the networked �le system that F3 will
use. The F3 volume de�nition indicates what networked �le system
volume to use with the Kubernetes label [38] f3.target-pvc: foo,
where foo is the name of the network �le system’s volume.

When the CSI driver is instructed to attach an F3 volume (i.e.,
receives a NodePublishVolume CSI command), the driver checks to
see if the target networked �le system volume is already mounted
on the node where the F3 volume is being attached. If not, the F3
CSI driver creates a pod on the target node that is attached to the
target networked �le system. This forces the networked �le system
to be mounted on the target node. F3’s FUSE �le system can then
access the mount point. We assume that each node’s local data store
is mounted in advance.

4. File locality server. The �le locality server aggregates data
from each F3 �le system driver in the cluster. It is implemented in
214 lines of Go. The locality information about ephemeral data is
stored on disk in a JSON formatted �le. The durability of the locality
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information is not critical, since the data itself is ephemeral and the
serverless platform can always fall back to data-unaware scheduling.

5. OpenWhisk Modi�cations. In addition to the new com-
ponents implemented above, we had to modify the OpenWhisk
serverless platform. These changes included (1) adding support for
attaching action containers to storage volumes, (2) identifying what
�les will potentially be accessed by an action, and (3) modifying the
OpenWhisk scheduler to query the data locality server and using
the response when choosing a container for an action.

In total, we changed about 700 lines of OpenWhisk code, most
of it in the Scala language.

5.1 Unmodi�ed Applications in Serverless
One of the advantages of �le based storage for serverless is that
it enables running unmodi�ed applications. To highlight this
capability, wewanted to use unmodi�ed, “o�-the-shelf” applications
in our evaluation of F3.

During our evaluation we tested many combinations of container
images, applications, and application command line options. To
simplify this process, we implemented a mechanism that enables
easily running a command as an OpenWhisk action. The user
runs a command with the ow-run utility that we created. The user
experiencewith ow-run is similar to that of running a commandusing
the command line on their local machine. For example, consider
we want to run this command, normally invoked locally, as follows:
trimmomatic /data/0.fastq /data/0.fastq.gz

To run that command on OpenWhisk using our ow-run utility,
the command line invocation would be:
ow-run –container-image sunbeam:v0.0.7 –ow-action trim

–vol-list f3-pvc –mount-path-list /data trimmomatic

/data/0.fastq /data/0.fastq.gz

In this example, the user needs to have already con�gured the
resource limits and requests for the trim action and created the F3
volume f3-pvc. However, the user needs to make no modi�cations
to trimmomatic itself. This allowed us to easily and e�ciently test
a wide range of applications and application settings.

6 EVALUATION
Due to the growing amount of data produced by IoT devices, the
rising demand for low-latency on-the-spot computing, as well as
privacy and security concerns, applications and infrastructure are
increasingly deployed at the Edge rather than in the hyper-scale
Clouds [68]. The umbrella project for F3 focuses on the growing
Edge business opportunities: thus, we designed our experimental
platform and workloads to be representative of edge environments
and workloads. Furthermore, our analysis shows that thanks to its
higher resource e�ciency, the serverless approach could be even
more attractive at the resource-constrained Edge than in the Clouds
with seemingly unlimited resources.

A typical edge data center is a cluster of only 1–10 servers
located either at a customer site (e.g., a factory or a retail sore) or
at an Internet access point (e.g., 5G cell tower). The servers in a
typical edge data center run standard operating system (e.g., Linux),
virtualization software (e.g., KVM), and container orchestrators (e.g.,
Kubernetes). Due to constraints on clusters’ physical footprint, a
popular architecture for Edge data centers is hyperconverged setup,

where each building block (e.g., a server) provides both compute and
storage resources. The testbed described in the following section
re�ects these characteristics of edge data centers.

6.1 Cluster and Storage Setup
We ran our evaluation on CloudLab [18] using a cluster of nine
machines connected via a 1Gbps network, with each node running
CentOS Linux 7.9.2009. Each machine had two 2.60GHz, ten-core
Intel CPUs with hyperthreading, 160GB of RAM, and one 480GB
SATA SSD. The cluster was connected via a private 1Gbps network.
Our serverless platform was OpenWhisk 1.0.0, using Kubernetes
1.19.0 as the container orchestrator.

One node was dedicated to running the etcd server used by
Kubernetes to store cluster state; another node was the Kubernetes
control node; and a third node was dedicated to running an
NFS server used in evaluation. The remaining six nodes were
hyper-converged Kubernetes workers that ran both evaluated
workloads and storage systems—CephFS, MinIO, and F3.

In our CloudLab setup every node had only one attached disk.
Since F3 requires both a local disk and a shared �le system, we used
LVM to split the single SSD attached to each node into two volumes.
We formatted one volume with ext4 and used that as F3’s local disk;
we used the other volume for CephFS andMinIO.

Inour evaluationweassume the casewhenanedge cluster already
hasaccess todurable storage:CephFS (distributed�le system),MinIO
(object storage), or central NFS server (NAS). F3 can be layered over
these solutions (except MinIO) to provide additional performance
bene�ts in serving ephemeral data to serverless functions.We evalu-
ate MinIO to provide a reference point of how applications perform
with a popular object storage solution rather than a �le system.

CephFS. Ceph [13] is a popular storage system built on the
RADOS object store [57]. It aggregates storage from each node it is
deployed on and exposes a single pool of storage. There are several
interfaces for Ceph including CephFS, which exposes a �le-system
interface to applications. Ceph o�ers several data durability
schemes, such as replication and erasure coding.We evaluated three
di�erent Ceph con�gurations: no replication, 3⇥ replication, and
2-1 erasure coding (two data blocks and one erasure block).

CephFS has both kernel- and FUSE-based user-space drivers. We
used the FUSE-based user-space drivers, which are typically more
up to date and safer to use than their kernel counterparts. We used
Ceph version 15.2.7, deployed on Kubernetes with the Rook [61]
operator version 1.5.9.

MinIO. MinIO [48] is a popular object store. Like Ceph, it can
aggregate storage across multiple nodes and expose a single storage
pool. Also like Ceph, MinIO o�ers several data durability modes.We
chose EC-3, which was the default for our sized cluster (six nodes,
one disk per node). Thismode splits data into three data chunkswith
three coding chunks. We used MinIO release 2022-09-07T22-25-02Z,
deployed on Kubernetes with version 4.5.0 of the MinIO operator.

We used s3fs [62] to access MinIO’s object API and provide a
�le-based interface over MinIO. This is representative of the current
state of storage for serverless: if a user wishes to run an application
on a serverless platform but the application requires a �le based
storage interface, they would need to use a tool like s3fs to access
an object store.
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NFS. NFS [64] is a well-established �le system protocol. Although
hyper-converged con�gurations such as those used by Ceph and
MinIO are common, architectures that use standalone NAS storage
appliances are still used. NFS is mature, and easier to deploy and
con�gure compared tomore sophisticated, distributed or networked
�le systems like CephFS. We used NFS on a standalone, dedicated
server in our cluster—to represent this alternate architecture. We
used the standard NFS server included with the Linux kernel to
export a local disk formatted with ext4. The NFS version was 4.1,
which was the default version available on our operating system
(CentOS Linux 7.9.2009).

F3. In most experiments we evaluated F3 using CephFS with
no replication as our networked �le system. The local disks used
as a per-node local data store were formatted with ext4, which is
a commonly recommended �le system and the default for many
operating systems [60]. Although we mainly used CephFS as the
networked �le system for our evaluations, F3 is capable of stacking
on top of any underlying networked �le system that supports
extended attributes. To test this, we veri�ed that F3 also works on
a recent NFSv4.2 server with extended attributes support.

Wemeasured the impact of using di�erent networked�le systems
(CephFS with no replication, 3⇥ replication, 2-1 erasure coding, and
NFS) with F3.We found that the choice of underlying �le system had
little to no impact on the performance of ephemeral data operations:
performance in each case was within 3.1% of each other for reads
where the data was not available locally, and less than 0.03% and
hence statistically indistinguishable. of each other in all other cases.
This is because F3 is designed to avoid the networked �le system
for ephemeral operations. We used unreplicated CephFS as our net-
worked �le system throughout our evaluation: any reference of “F3”
in the evaluation means “F3, layered on top of unreplicated CephFS.”

Since the focus of this evaluation was on F3’s features for
ephemeral data, all data in our evaluation was marked as being
ephemeral. We leave to future work evaluating the performance
of mixed ephemeral and non-ephemeral data operations, as well
as how to automatically identify whether data is ephemeral or
non-ephemeral.

Disk vs. network speed ratios. When selecting the server for
a �le system that accesses disks over the network, disk speeds and
network speeds should be on par with each other so that neither
dominates as the primary bottleneck. We chose network and disk
speeds that were representative of real-world ratios. Each of our
servers had only a single disk available for the storage systems under
evaluation.Wemeasured the disk speed to be 200MB/s, giving a disk
to network throughput ratio of approximately 1.6 with the 1Gbps
network. Although 1Gbps is slow compared to the networks found
in many modern data centers, our disk to network throughput ratio
falls within the range typical of real world edge deployments [74]. If
we instead had ten disks with a combined throughput of 2000MB/s
and a 10Gbps network, the ratio would remain the same.

6.2 Data TransferMicro-Benchmarks
We evaluated the performance of data exchange and the impact of
F3’s data exchange optimizations. We �rst show the performance
impact of di�erent replication and erasure coding levels, compared
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Figure 4: CDFs of read and write system call latencies, for
di�erent storage con�gurations. We used log scale for the
x-axis because the system calls exhibited long tails at higher
replication degrees.

to a baseline of accessing a local disk. This is the motivation behind
F3’s use of a local disk for ephemeral data.

We then show the impact of data locality based scheduling, and
avoiding the overhead of transferring data across the network. Next,
we show the combined impact of F3’s data locality based scheduling
and F3’s use of local disk for ephemeral data. Finally, we show the
impact of F3’s optimizations for reading-while-writing.

Impact of replication & local disk storage. We evaluated the
impact of replication and erasure coding on the latency of read and
write system calls.We ran several experiments to time 100,000 reads
and 100,000 writes on CephFS volumes with varying replication
and erasure coding options, and compared with the same workload
on an ext4 �le system on a local disk. Since CephFS uses a FUSE
driver, we used a passthrough FUSE �le system to access the ext4
�le system. This ensured that all read and write system calls went
through a FUSE layer for a more fair comparison. System call times
were measured with strace, and were generated with ddwith bs=4K

and [o|i]flag=direct.
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Figure 5: Impact of data aware scheduling. Each line connects
a writer with its corresponding reader, with the numbers
along each side showingwhat node in the cluster the writer
or reader ran on. Red lines indicate that the reader needed
to transfer its �le from thewriter node via a network transfer.
Green lines indicate that the reader and writer ran on the
same node and the �le was read from F3’s local ephemeral
data store, with no network transfer was needed.

Figure 3 shows the mean and median system call latency across
multiple storage con�gurations. The distribution of latencies exhib-
ited a long tail, as canbe seen inFigure 4 (note the log scale). This is ex-
pected, as there are multiple sources of variability in the storage and
networking stacks, and have been observed before [11, 27, 32, 49]. As
the degree of replication increases,we see the tail grow longer,which
also makes sense as the number of sources of variability increases.

As expected, the local disk performed signi�cantly better than
CephFS, especially whenwriting: 0.1ms vs. 2.2ms for 1⇥ replication).
We also see that as the replication degree increased, generally so did
system latency. The exception was that for reads, 3⇥ and 5⇥ repli-
cation perform about the same or slightly better than 1⇥ replication.

Impact of data locality considerations during action schedul-
ing. To demonstrate the impact of locality aware data scheduling,
we wrote and then read six ephemeral �les. Writers were run
manually on each node, one per node, with each writing a unique
400MB �le. For each writer, a corresponding reader was run in an
OpenWhisk action that read the entire 400MB �le. When the reader
and writer both run on the same node, the reader reads its �le from
F3’s local disk. However, when the reader and writer each run on
separate nodes, the data must be transferred from the writer node
to the reader node over the network.

The left-hand side of Figure 5 depicts the casewhereOpenWhisk’s
default scheduling is used. Here, the readers are assigned to nodes
without regard to where the input �le they need to read is located;
we see that only a single reader (green line) ended up running on
the same node as its corresponding writer. The red lines depict
instances where the reader ran on a di�erent node from its writer,
necessitating a 400MB network transfer to copy the data from the
writer node to the reader node. In total, using the default OpenWhisk
scheduler resulted in 5 ⇤400 = 2000MB of data being transferred
across the cluster network.

The right side of Figure 5 shows the impact of our modi�ed
OpenWhisk scheduler that utilizes F3’s data locality hints. All six
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Figure 6:Mean latencies and bandwidths of Ceph, NFS,MinIO,
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and 3⇥ replication, respectively. “Ceph 2-1 EC” uses erasure
coding (data split into twodata chunks andone coding chunk).
F3 was layered on top of an unreplicated CephFS volume.

readers were scheduled on the same node as the corresponding
writer, and hence no data was transferred over the network.

Impact of replication, local disk storage, and data locality.
We used fio [20] to measure sequential and random read and write
performance of the storage systems. fio ran in a pod (container) via
a serverless action. Write and read workloads were generated by
separate instances of fio running in separate pods. The data written
byfiowasmarkedasephemeral, and the reader instance ranafter the
writer instance �nished. We measured read performance where the
readerpod ranon the samenodeas thewriterpod, aswell aswhen the
reader pod ran on a di�erent node. This demonstrates the di�erence
in performance that data locality can have on an I/O workload. We
disabled F3’s data locality based scheduling to be able to control
whether the reader ran on the same or di�erent node as the writer.
We used a large (200GB) dataset to mitigate the impact of caching.

Figure 6 shows the bandwidth reported by fio, in MB/s, and the
mean latencies, in milliseconds. We ran fio in each con�guration
three times. Error bars show that variance was small, less than 5%
of the mean, with one exception: F3 random reads on the same node,
where the variation was 7%.

As expected, F3 had the highest read andwrite performancewhen
the reader was on the same node as the writer. F3’s write bandwidth
ranged from 1.40⇥ to 6.46⇥ faster than other storage systems; read
bandwidth ranged from 1.84⇥ to 2.30⇥ faster. Latency ranged from
1.40⇥ to 2.64⇥ lower when writing and from 1.84⇥ to 2.73⇥ lower
when reading. These performance improvements were due to F3’s
use of local storage. By using local storage, F3 is not limited by the
cluster’s network capacity as other storage systems are.
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F3’s read performance when readers and writers ran on di�erent
nodeswas similar toNFS. In both cases, the data had to be transferred
over the network.

Each of the networked �le systems was limited by the cluster’s
1Gbps (125MB/s) network. The one exception was writing in the
unreplicated con�guration of Ceph. This was expected because
Ceph breaks �les into blocks that are then distributed across each
of the storage nodes in the Ceph cluster. Because we were using
a hyperconverged architecture, the Ceph storage nodes were the
same nodes that run user workloads, including our instance of fio.
Since we had six nodes in our cluster, we expect then that 1

6 of the
data written by fio resided on the node running the fio program,
and as a result was not limited by the cluster’s network.

Impact of reading-while-writing. Passing data from one stage
of a data processing pipeline to the next is a common pattern.
A straightforward implementation is to run the pipeline stages
sequentially, where each stage produces an output �le that the next
stage reads as input. A disadvantage of this approach, however, is
that it provides no parallelism between pipeline stages.

Another possible implementation is to run pipeline stages
concurrently, streaming the data between stages (e.g., using UNIX
pipes to connect them). The added parallelism of streaming can
result in lower end-to-end processing times. A limitation of using
UNIX pipes, however, is that the stages must all be run on the same
node, which is not always convenient.

In this section, we use a third approach where a stage in the
pipeline reads input from a �le in a shared �le system while the
previous stage writes the �le. We show below how we solved the
problem of the reader reaching the end of �le before the writer has
�nished writing all data.

We ran experiments in a serverless environment using CephFS,
NFS, and F3 as the shared �le system—�rst with the reader on the
same node as the writer, then with the reader on a di�erent node.
We used a smaller data set (400MB) than the server’s RAM (160GB),
so the results re�ect the ability of the storage systems to leverage
the kernel’s page cache rather than being disk bound.

To solve the early EOF problem, we made a few changes to our
pipeline stages. First, wemodi�ed thewriter stage to create an empty
�le, /var/data/f.done, on completion. Next, we split the reader into
two parts. The �rst part was a script that read from /var/data/f and
wrote to a FIFO pipe, /tmp/f.pipe. Whenever the script reached EOF
on input, it checked for the existence of the /var/data/f.done �le,
and if not found, slept one second (same duration as tail -f), then
returned to the topof the loopandcontinuedreading.Thesecondpart
was the actual reader program (e.g., grep or cat), except that instead
of reading from /var/data/f, it read from /tmp/f.pipe. Both parts of
the reader ran in the same action. This implementation enabled us
to run a reading-while-writing work�ow in a serverless context.

Because F3 has special support for handling EOF in the reading-
while-writing access pattern, it did not require any of the additional
implementation: the writer action simply wrote to /var/data/f and
the reader action simply read from /var/data/f.

Note that because CephFS was not designed for this usage
pattern, it does not handle the reading-while-writing case e�ciently
when reader and writer run on di�erent nodes. In this pattern, it
falls back to unbu�ered reading and writing [14].
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Figure 7: Comparison of read-while-write performance,
when readers andwriters are on the same or di�erent nodes.
For CephFS, having the reader and writer on di�erent nodes
signi�cantly degrades both read and write performance.
MinIO is absent from this experiment due to its inability to
read and write data concurrently. F3 was layered on top of
an unreplicated CephFS volume.

MinIO is not capable of reading from an object as it is being
written to, so it is omitted from these experiments. This example
further highlights the limitation of object-based interfaces.

Figure 7 shows the di�erence in same-node-reader vs. di�erent-
node-reader performance. As expected, for all storage systems, read
performance is worse when the reader is on a separate node from
the writer. However, Ceph’s write performance is also lower when
the reader is on a separate node. This is because when both reader
and writer are on the same node, Ceph can do bu�ered reading and
writing, as only a single client is accessing the �le. When the reader
and writer are on separate Ceph nodes, however, there are now
multiple clients accessing the same �le and Ceph falls back to its
slower, unbu�ered �le accesses (plus the additional overhead of
network transfers).

6.3 Case Study: Bioinformatics Pipeline
We developed a bioinformatics case study in collaboration with
an industry partner specializing in large scale processing genetic
sequence data. The advent of new genetic-sequencing technologies
(e.g., nanopore) has made sequencing more portable, a�ordable, and
accessible. Sequencing can now be done anywhere from hospitals
to sea-bound ships and is being used for an increasing number of
applications [17].

Sequencing typically produces a large amount of data that
is then processed using a series of steps run in a pipeline. The
pipeline typically begins by cleaning and �ltering the data, for
example removing artifacts created as a byproduct of the sequencing
technology. After cleaning, the sequence data is then analyzed, for
example to identify the species present in a sample.

Running all or part of the analysis pipeline at the edge where
the sequence data is generated can save signi�cant time and cost
associated with moving a large amount of data to the cloud. It is not
always possible or desirable to run the entire processing pipeline at
the edge, for instance, when the analysis requires more computing
power than is available in the edge data center, or when the analysis
output is required in the cloud for other reasons (e.g., archival). But
running at least the cleaning portion of the pipeline at the edge can
still signi�cantly reduce the amount of data uploaded to the cloud.
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Because various stages in the pipeline have di�erent resource
requirements, running the pipeline in a serverless environment
where each stage is run as a separate action provides better resource
utilization.

Analysis pipelines are usually built using existing tools developed
by other bioinformatics researchers. These tools usually assume
a �le interface for their inputs and outputs.

We implemented the cleaning stage of a genetic-sequencing
pipeline using two commonly used tools: Cutadapt [45] and
Trimmomatic [10]. Cutadapt identi�es and removes portions of
sequences that were added to support the sequencing process and
are unrelated to the data being analyzed. Trimmomatic removes
sequences that fail to meet a given quality metric. Usually, Cutadapt
is run �rst. Its output becomes the input for Trimmomatic.

Figure 8 describes our implementation.We uploaded a 926MB �le
of genetic-sequence data to a load-balanced web server 1 , which
wrote the �le to a data store as ephemeral data. Because the web
server uses a load-balancer to distribute requests among nodes, the
server that receives and stores the sequence data can be any of the
worker nodes in the cluster.

Once the receiving node had saved the �le, it ran Cutadapt 2
and Trimmomatic 3 as OpenWhisk actions. We ran the pipeline
in two modes: sequential and pipelined. In the sequential mode,
Trimmomatic was started after the completion of Cutadapt. In
pipelinedmode, Trimmomatic was run at the same time as Cutadapt,
operating on Cutadapt’s output as it was being written. Cutadapt’s
output was 926MB and Trimmomatic’s output was 126MB. Together,
the two applications reduced the input data size by 7.3⇥.

Additionally, running the tools in separate actions provided better
resource e�ciency. The memory requirement of Trimmomatic is
1024MB, while that of Cutadapt is only 32MB. If both steps ran in the
same context, then the systemwould have had to reserve the larger
memory requirement for the duration of both pipeline stages. By
scheduling them as separate actions, however, the larger memory
reservation was needed only for the duration of the Trimmomatic
stage. Running in separate actions is enabled by providing access
to shared, �le based storage.

Figure 9 shows the end-to-end runtimes of the pipeline. The
pipeline ran fastest on F3, ranging from 8% to 34% faster than on
other storage systems for the sequential mode, and 9% to 47% faster
for the pipelined mode. Note that for the pipelined mode, MinIO
results are not shown because it is incapable of being run in this
mode (simultaneous reading and writing). The pipeline ran slowest
on MinIO, not surprising since the pipeline writes a large amount
of data during the Cutadapt stage and MinIO has the worst write
performance of all evaluated storage systems.

NFS performed similarly to F3, running only 8% slower. There are
two factors that contribute to this: the �rst is that the size of the data
used in the experiment is small. Thismeans that the time spent on I/O
compared to the overall runtime is relatively small, and so improve-
ments to that I/O time have a small impact on the larger runtime.

Second, the experiment was conducted in what are close to
“ideal” conditions for NFS: only a single client and no other network
tra�c. This allowed the data transfers that take place during the
experiment to utilize the entire network capacity. As a quick test,
we used iperf to generate network tra�c and re-ran the experiment
for NFS: at 50% network utilization F3 performs 16% faster than
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Figure 8: Bioinformatics use case architecture
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Figure 9: Runtime of Cutadapt + Trimmomatic pipeline. F3
was layered on top of an unreplicated CephFS volume.

NFS, 25% better at 75% utilization, and 59% better at 90% utilization.
All networked �le systems will be subject to performance variation
based on the overall network utilization. F3, by using local disks and
data locality scheduling, avoids this problem—performing relatively
better and better as the network gets more congested.

7 RELATEDWORK
Jonas et al. [31] implemented PyWren, which enables the massive
parallelization of Python applications using AWS Lambda. This is
one of the �rst cases of researchers using serverless platforms for
use cases beyond web applications, and they found that existing
storage solutions were lacking. In particular, they reported that the
existing storage solutions are incapable of supporting large scale
data operations. Following PyWren, Klimovic et al. [34] examined
the storage use of several FaaS applications and proposed the design
of a storage system suitable for these new use cases. Unlike F3, these
works do not consider �le-based storage for serverless.

Several papers introduce new storage systems for serverless
platforms: Locus [54], Pocket [35], and Cloudburst [65]. Other
frameworks for writing or running applications on serverless
platforms handle storage by abstracting access to one of many
possible storage backends. Examples include gg [21] and Ray [50].
In all of these cases, access to storage was exposed via a custom API
interface which would require porting existing applications in order
to run.Conversely, F3 allows existing applications to rununmodi�ed.
Also, F3 could be integrated into frameworks like gg or Ray as an
alternative storage backend, or could be layered on top of one of
the existing storage backends supported by those frameworks.

Schleier-Smith et al. [63] make a similar argument as we do in
favor of a �le interface for serverless applications. However, they
assert that existing shared �le systems are too slow and are incom-
patible with cloud environments where failures and high latencies
are common; and they propose a transactional interface. We believe
that small edge data centers will have fewer random failures and
lower latency than cloud data centers, and that shared �le systems
can achieve high performance in this setting (see Section 6).
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Wukong [12] and SONIC [44] aim to accelerate data transfer in
serverless environments by scheduling connected actions together
on the same node. However, they require prior knowledge of the
workload, such as the graph of which actions call other actions in
order to schedule actions that share data together on the same node.
F3 does not require prior knowledge about workloads in order to
schedule actions close to their data.

Other work has explored transferring data using direct network
connections between two serverless actions, made possible via
NAT hole-punching [73]. This addresses the issue of data transfer
between actions but does not address the need for �le-based storage.

Our location-aware data scheduling is similar to the ideas imple-
mentedbyHadoop [1] andHDFS [2].HadoopandHDFSaredesigned
for map-reduce environments and �t well for data analytics tasks. It
is not possible to access HDFS data through the usual read and write
system calls. F3 is created speci�cally for serverless computing and
is suitable for running generic, unmodi�ed applications.

Apache Crail [67] makes a similar argument to us, that some
intermediate data generated by applications do not need the
durability provided by most storage systems. They introduce an
architecture and implementation of a system that provides fast data
transfer for ephemeral data. However, unlike F3, Crail exposes a
custom API that requires applications to be modi�ed to use.

In HPC environments, burst bu�ers such as BurstFS [72], and
GekkoFS [71] accelerate access to temporary data by adding a
faster, less durable storage layer between the application and the
cluster’s persistent data store. Unlike F3, burst bu�ers treat all data
as ephemeral and do not provide a shared namespace with both
ephemeral and non-ephemeral data.

Using non-persistent storage such as RAM for ephemeral data
is common (e.g., using Redis [58] or Memcached [46]). These
solutions also have no shared namespace with both ephemeral and
non-ephemeral data. Additionally, popular memory-based storage
systems that are accessible from multiple servers all use object
interfaces, rather than �le interfaces.

Like F3, the Google File System (GFS) [24] has special support
for the read-while-write use case. However, GFS implements a
limited number of �le operations, making it potentially unsuitable
for running unmodi�ed applications. Also, the special support for
reading-while-writing is exposed via a new, non-standard operation
called record append. Unmodi�ed applications therefore cannot
bene�t from this new feature. In F3, even unmodi�ed applications
can bene�t from our read-while-write optimizations.

8 CONCLUSION
Serverless platforms have been steadily growing in popularity.
Although so far they have been limited to relatively simple
web-based tasks, users and researchers are beginning to appreciate
the potential of serverless platforms’ on-demand computing
capabilities. As serverless platforms make the shift to being a
platform for any generic task, two signi�cant problems remain:
access to storage and data transfer.

Some advanced and existing applications require access to
�le-based storage. To support these applications, serverless
platforms need to allow attaching to �le-based storage systems.
However, existing storage systemswerenot designedwith serverless
applications in mind and lack key features that would accelerate the

kind of data transfers commonly found in serverless environments:
(1) support for ephemeral data, (2) data locality-aware action
scheduling, and (3) support for e�cient simultaneous data access
(i.e., reading �les as they are written).

In this paper, we presented F3, a �le system that layers on top
of existing storage systems to provide these three key data-transfer
features. We additionally described modi�cations to an open source
serverless platform, OpenWhisk, to enable attachment of �le-based
storage and take advantage of data locality hints provided by F3
when scheduling actions. We evaluated F3 and showed that it is
capable of 2.0–6.5⇥ faster write bandwidths and 1.8–2.3⇥ better
read bandwidths compared to existing storage systems. Combined
with our modi�cations to OpenWhisk, we demonstrated that F3’s
data locality hints totally eliminating network tra�c caused by data
transfers, by enabling OpenWhisk to schedule actions on the same
node as the action’s data.

Futurework. F3’s handling of ephemeral data represents an alter-
nate design point in the reliability-performance trade-o� continuum:
F3 provides higher performance at the cost of lower reliability for
some data. We plan to explore additional design points. For example,
some temporary �les could reside entirely in RAM (much faster
but lower reliability); alternatively, we could compute and store an
integrity checksum or ECCwith ephemeral �les, which improves
reliability at cost of additional computation. Eventually, users would
have multiple “tiers” of reliability-performance service to choose
from.We plan to couple having several such tiers with methods for
automatically inferring the right tier for di�erent date types.

In cloud settings, failures could be more common. We plan to
detect action failures and o�er several handling policies: return
immediately to the calling application, retry the action up to #
times, etc. If failed actions leave behind partial data, periodic
garbage-collection would be needed.
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