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Abstract of the Dissertation

Techniques for Storage Performance Measurement and Data
Management in Container-Native and Serverless Environments

by
Alex Merenstein
Doctor of Philosophy
in
Computer Science
Stony Brook University

2024

Serverless platforms have exploded in popularity in recent years. Unlike traditional “server-
full” platforms that require users to manage and operate bare-metal servers, virtual machines
(VMs) or containers, serverless platforms completely remove the execution environment from the
responsibility of the user. The serverless platform manages creating and destroying the environ-
ment (usually based on a container or VM), freeing the user to focus on their application code.

In addition to being an easier user experience, serverless can reduce costs: serverless platforms
use an on-demand cost model, meaning that users are charged only for time that their code actually
runs. This is in contrast to server-full platforms, where a user must provision a VM or container
in advance of when it will be needed. The user then pays for the entire time the VM or container
runs, including while it is idling (e.g., memory and storage space consumption). Serverless, there-
fore, offers a cheaper, easier alternative to deploying applications compared to traditional VMs or
containers.

The move to serverless brings with it a range of new workload characteristics not seen pre-
viously. Compared to monolithic applications, serverless applications tend to be short lived, and
consist of many small actions. We begin by exploring the unique challenges to measuring per-
formance of these workloads, with an emphasis on the storage components of the workload. We
developed CNSBench, which enables users to assess the performance of their application and stor-
age infrastructure. CNSBench allows users to create storage workloads that are representative of
real cloud native and serverless environments: dynamic and consisting of a diverse set of individ-
ual workloads. Since serverless platforms are typically built atop container-based orchestration
platforms, CNSBench helps users to measure storage performance at the container orchestration
level. This is more general and flexible than targeting serverless platforms specifically, while still
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allowing for the evaluation of serverless platforms and applications with CNSBench.

Once we can measure the storage performance of serverless applications more accurately, we
turn to improving performance. We introduce new techniques for managing data that are tailored to
the usage patterns common in serverless environments, reducing costs to users while maintaining
required levels of data durability. To this end, we built F3, a file system designed to optimize
data exchange in serverless platforms. F3 introduces new methods for handling ephemeral data
and modifications to a serverless scheduling algorithm so that data-locality is considered when
scheduling serverless actions. These changes help to adapt existing file-based storage options to
modern, cloud-native applications and use cases. F3 improves the performance of intermediate
data transfer, increasing throughput by up to 6.5x and decreasing latency by as much as 2.6 x.

By introducing new methods for handling ephemeral data, F3 makes a tradeoff between dura-
bility and performance. It does so by using higher performance but less-durable data stores for
ephemeral data passed between application components. We further explore how lower-durability
storage can be used, trading off durability for (dollar) cost. We have developed a mathematical
model, called Storage Durability Cost Model (SDCM), that determines the durability level most
appropriate for an application and its data. Additionally, we introduce an application architecture
that utilizes this model to place data in cheaper storage while still meeting the data’s durability
requirements, thereby reducing overall costs to users. We show how SDCM can reduce storage
costs by up to 3x.

In sum, serverless environments offer significant benefits over more traditional virtual-machine—
based cloud environments. However, the workload characteristics of serverless environments dif-
fer in significant ways from other kinds of cloud environments. Therefore, it is our thesis that to
fully realize the benefits of serverless computing, new performance measurement techniques and
approaches to data management are required.
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Chapter 1

Introduction

Modern clouds have undergone a significant evolution over the past few years. An explosion of
cloud deployment options have become available (e.g., edge [68], hybrid [79], multi [79]) and ar-
chitectures (e.g., microservice [168], function-as-a-service [84] serverless [49]), giving developers
a plethora of options for how to deploy their application. Of these deployment options, serverless
platforms offer a particularly intriguing set of features, promising to both eliminate infrastructure
from the purview of developers and to reduce execution costs.

In serverless platforms, the execution environment is managed by the platform provider. The
developer specifies a code snippet they would like to run in response to some trigger (e.g., an
HTTP request or an object upload). The platform then is responsible then for (1) creating the
execution environment (e.g., virtual machine, container, or both) where the code snippet will run;
(2) running the code snippet, passing any arguments related to the trigger (e.g., HTTP headers,
object name); (3) monitoring for errors and restarting if needed; (4) capturing output, recording
logs; and (5) deleting the execution environment when the snippet finishes. The platform may also
provide additional advanced features, such as pre-loading the execution environment in anticipa-
tion of needing to respond to a trigger. By managing this complexity on behalf of the developer,
the serverless platform frees the developer to focus on their application code.

Serverless platforms are also unique compared to other deployment methods in how users
are billed: rather than reserving (and paying for) resources up front, serverless applications are
billed only for the time spent running user code. For example, in a server-full environment, a user
may deploy a webserver in a virtual machine. They then pay for the entire time that the virtual
machine runs, regardless of whether the webserver is actually handling any requests. In a serverless
environment, the webserver is started in response to a trigger (e.g., an HTTP request) and stops
running when the trigger is handled. The user is billed only for the time spent running, i.e., the
time spent actively handling a request. For many workloads, this can significantly reduce costs.

As serverless differs significantly from more traditional deployment platforms such as bare
metal machines, virtual machines, and containers, it is not surprising to find that serverless environ-
ments exhibit significantly different workload characteristics. These new workload characteristics
make it difficult to asses the storage performance of a workload or platform.

The first of these new characteristics is the increased importance of storage control operation
such as volume creation and attachment. These operations have become much more frequent in
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serverless environments thanks to a higher rate of workload churn and the increased ability for
users—not just administrators—to manage storage volumes [113, 104]. Serverless applications
also drive an increase in the diversity of workload mixes on each host [190, 168, 84], making it
difficult to understand or predict the performance of each individual workload. Finally, server-
less applications tend to be highly dynamic: the “on-demand” feature of serverless means that
execution environments are frequently created and destroyed to closely match the current level of
demand.

In addition to new operating characteristics, serverless applications have new data-access pat-
terns as well. As applications are split into many short-lived services, an increased amount of
data must now be passed between these services. This data is often short lived and can be easily
re-generated if lost. Existing storage systems are designed to store data durably; they lack the
optimizations and data-handling techniques that are appropriate for this kind of ephemeral data.

In this thesis, we address these new properties of serverless platforms and applications with
two thrusts: (1) by developing a benchmark suite capable of assessing the storage performance
of serverless workloads and (2) developing new data-management techniques tailored for access
patterns common in serverless environments

We address the first challenge, of benchmarking in serverless environments, with CNSBench, a
benchmark framework designed for serverless applications and environments. CNSBench enables
users to create benchmarks that orchestrate the execution of multiple applications. In addition,
CNSBench allows users to specify a “control workload,” which consists of actions such as scaling
an application deployment or snapshotting a storage volume. By orchestrating the combination
of multiple applications and control workloads, CNSBench can generate workloads that are rep-
resentative of real serverless workloads. This enables users to evaluate how their application will
perform under serverless conditions (e.g., frequent scaling or the presence of other workloads) on
a particular platform. We designed CNSBench to operate at the level of the container orchestrator
(i.e., Kubernetes [103]), since serverless platforms are often built on top of container orchestra-
tors. By targeting this level, we can evaluate both serverless applications and serverless platforms
themselves. We show how CNSBench can assess the performance of serverless storage systems
and applications.

To address the second challenge, the existence of new data access patterns in serverless ap-
plications, we developed F3. F3 is a file system that introduces new data-handling techniques
tailored for the kind of ephemeral data common to serverless applications. F3 enables serverless
applications to use file-based storage, and enables serverless platforms to use data locality infor-
mation when scheduling the execution of serverless actions. Additionally, F3 makes a tradeoff
between performance and durability, using lower-durability storage for ephemeral data that can be
re-generated if lost. We show that by using F3 to transfer intermediate data in serverless applica-
tions, we can achieve up to 6.5 x higher throughput and 2.6 x lower latency.

Finally, we continue exploring the durability requirements in storage used for intermediate data
transfer in serverless applications. In F3 we use lower-durability storage to accelerate the transfer
of intermediate data. We extend this work, now focusing on the cost savings achievable through
using lower-durability storage. Serverless environments offer the fairly unique property of being
able to re-run a specific function in the application to re-create the outputs of that function. We
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use this capability to make a tradeoff between the cost to store data in highly durable, replicated
storage, and the cost to re-create that data if lost due to a storage failure. We developed a math-
ematical model, called Storage Durability Cost Model (SDCM), to help make this tradeoff. We
then use SDCM to show that in many cases, it is more cost effective to use low-durability storage
for intermediate serverless data. We then developed an execution system capable of automatically
re-running functions to re-create lost data, thereby hiding the complexity of handling lost data
from the developer. Our execution system also handles transparently placing data at the correct
durability level based on the decision made by SDCM. We show with real world applications how
SDCM and our execution system can be used to reduce storage costs by up to 3 x.

In sum, it is our thesis that the characteristics of new serverless environments and applications
require new tools and techniques. We first developed a benchmarking tool capable of measuring
performance in a realistic manner, with all of the storage control operations, application dynamism,
and diverse workloads found in these new serverless environments. We then developed new tech-
niques for optimizing the transfer of ephemeral intermediate data, which is frequently generated
by serverless applications. Finally, we developed a durability cost model to place this ephemeral
intermediate data in storage with the cost-optimal level of durability.

The rest of this thesis proposal is organized as follows: In Chapter 2 we describe our motivation.
In Chapter 3 we describe related works. In Chapter 4 we describe our benchmark framework
CNSBench and provide an evaluation of its use. In Chapter 5 we describe F3, a storage system
optimized for serverless applications. In Chapter 6 we describe SDCM and execution system for
placing serverless data at different levels of storage durability. In Chapter 7 we finish with our
conclusions and thoughts on possible future research directions.



Chapter 2

Motivation

In this chapter, we describe our motivation behind creating a new benchmark framework, a serverless-
oriented file system, and a durability cost model for serverless storage.

2.1 Benchmarking for Serverless

Serverless platforms and applications have significantly different properties compared to previous
cloud platforms and applications. For example, storage control operations are more common and
applications are much more dynamic.

In our evaluation of CNSBench, we found that storage system performance varies widely across
different storage systems, with some storage providers exhibiting especially low performance when
executing control operations like snapshotting a volume. We also found that workloads consisting
of different mixes of applications exhibited different performance, depending on the specific mix
of applications. Both of these findings show the importance of being able to benchmark storage
systems and applications under conditions characteristic of serverless platforms and applications.
Existing benchmarks do not generate storage control operations, making it difficult to assess the
performance of storage systems under realistic serverless conditions. Existing benchmarks also do
not make it easy to orchestrate different mixes of applications, making it difficult to understand
the performance implications when many different serverless functions are run on the same host
or cluster.

2.2 File System for Serverless

Serverless and Function as a Service (FaaS) platforms have become popular for building and de-
ploying applications. These platforms encourage breaking larger applications into many individual
services, which makes them especially useful as a platform for deploying and running microser-
vices. Communication between services is difficult though: many cloud platforms do not allow
direct service to service network connections, and many do not offer file-based storage. The result
is that applications often resort to using object stores as a means for transferring data between
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components: one service writes data to an object store, and then a second service reads that data
from the object store.

Using an object store for communication is often not ideal. Existing object stores often forbid
or have poor performance when there are simultaneous readers and writers accessing the same data.
In serverless applications, this is a common pattern. Specifically, it is common for one service to
consume data as it is being written by another service.

Additionally, existing applications might require access to file-based storage. Relying solely
on object storage for data transfer precludes these applications from being ported to a serverless
platform.

With F3, we were able to run unmodified applications, despite these applications requiring
file-based storage interfaces. This, as well as the performance improvements we demonstrate with
F3, support our decision to develop a file system with data management techniques tailored for
serverless applications.

2.3 Durability Requirements for Serverless Data

Storage devices are in general fairly reliable, and most users will go years or longer without ever
experiencing data loss due to a failed device. At scale, however, the story is different: data centers
and clouds with millions of devices must contend with frequent failures. To handle this, cloud
storage systems rely on techniques such as replication and erasure coding. These are methods for
increasing data’s resiliency to device failures, and work by essentially spreading copies of the data
across many devices. If a data copy resides on a device that fails, the original data can still be
recreated with the other copies. The data’s ability to withstand device failure is referred to as its
durability. By varying the number of devices that data is copied across, a user can achieve different
levels of durability.

In general, all cloud storage is highly durable. This is necessary for most data that cannot be
lost, but does come with a cost: additional storage space is used for the multiple copies of data, as
well as the additional storage and network bandwidth needed to distribute the data copies. If data
could be re-created, perhaps this additional overhead might not be needed.

Indeed, serverless enables data to be re-created. Each action within a serverless function is
supposed to be able to be re-run and have the same effect as the first time it was run. If an
action produced some piece of data, re-running that action will produce the same data again. This
provides an alternative way to deal with storage device failures: rather than making multiple copies
of data, we can simply re-run the action that created it originally. With this approach, we can reduce
overheads (and cost) by storing data in lower-durability, non-replicated storage.

Alas, this approach still comes with a cost. Re-running an action uses compute resources,
which incurs a cost based on the time needed to re-run the action. We therefore have a tradeoff to
make: we can save money on storage by using lower-durability storage, but might pay more for
compute to re-create lost data; or, we can spend more on storage, not lose any data, and not pay
any extra compute to re-create data. This tradeoff must be made for each piece of intermediate data
created by a serverless application, and will depend on factors such as the cost of compute and the
size of the data.
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Finding the cost-optimal point in this tradeoff is difficult and not practical to compute by
hand. Therefore, we have developed a mathematical model, called Storage Durability Cost Model
(SDCM). SDCM considers application and environmental parameters and chooses the appropriate
level of durability for each piece of data. Since requiring developers to account for the possibility
of lost data in their application would be a significant burden, we have also developed an execution
framework that transparently re-creates data as needed.



Chapter 3
Related Work

In this chapter, we survey related works about storage benchmarking, storage for serverless, and
storage durability. In Section 3.1 we discuss works covering classic storage benchmarks, bench-
marks designed specifically for object stores, and cloud-native benchmarks; in Section 3.2 works
related to using storage systems to facilitate the passing of intermediate data in serverless appli-
cations, data location-aware scheduling, and special handling for read-while-write workloads; and
finally, in Section 3.3 we cover techniques for reducing storage costs in serverless, lower-durability
storage options, and serverless workflow execution systems.

3.1 Storage Benchmarking

Classic storage benchmarks Storage benchmarking is an old and complex topic with many
applicable techniques and intricate nuances [184]. Therefore, it is not surprising that the array of
tools for benchmarking and corresponding studies is extensive. Filebench [186], fio [63], SPEC
SES [178], and I0Zone [33] are just a few examples of popular file system benchmarks. For a
comprehensive survey of file system and storage benchmarks we refer the reader to a study by
Traeger et al. [194].

The majority of such benchmarks generate a single, stationary workload per run, which is
not representative of cloud native environments. Few benchmarks have built-in mechanisms to
dynamically increase the load, in order to discover the peak throughput where diminishing returns
(e.g., due to thrashing) begin to take over. For example, measuring NFS throughput via SPEC
SFS [179] and process scheduling throughput using AIM7 [187].

Filebench [186, 4] comes with several canned configurations [152] and even has its own Work-
load Modeling Language (WML) [206]. It, however, is not distributed (cannot run in a coordi-
nated manner across multiple containers) and, though WML is flexible for encoding stationary
workloads, is still limited in creating dynamically changing workloads. In our experience, adding
support for distributed and temporally varying workloads to Filebench’s WML is a difficult task.
Therefore, in CNSBench, we exploited the orchestration capabilities of cloud native environments
and delegated these tasks to a higher level (i.e., the CNSBench controller and the Kubernetes
orchestrator itself). This further allowed us to support any existing benchmarks as canned 1/0
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generators.

RocksDB [59] is a popular key-value store with canned, preconfigured workloads using a
db_bench driver to create random/sequential reads/writes and mixes thereof. One can run these
workloads in any order and configure their working-set size. However, that is still a manual pro-
cess with little flexibility, and no support for control operations (which is true for the previously
mentioned benchmarks as well).

Object storage benchmarks In recent years the need to test the performance of cloud storage
has motivated academia and industry to develop several micro-benchmarks for that task such as
YCSB [44] and COSBench [211]. YCSB is an extensible workload generator that evaluates the
performance of different cloud-serving key-value stores. COSBench measures the performance of
cloud object storage services and comes with plugins for different cloud providers. Unlike these
benchmarks, CNSBench focuses on workloads that run in containers and require a file system
interface.

Cloud native benchmarks TailBench [94] provides a set of interactive macro-benchmarks: web
servers, databases for speech recognition, and machine translation systems to be executed in the
cloud. Similarly, DeathStarBench [67] is a benchmark suite for microservices and their hardware-
software implications for cloud and edge systems. Both TailBench and DeathStarBench target
cloud applications and are not explicitly storage benchmarks.

3.2 Storage for Serverless

Jonas et al. [91] implemented PyWren, which enables the massive parallelization of Python appli-
cations using AWS Lambda. This is one of the first cases of researchers using serverless platforms
for use cases beyond web applications, and they found that existing storage solutions were lacking.
In particular, they reported that the existing storage solutions are incapable of supporting large
scale data operations. Following PyWren, Klimovic et al. [97] examined the storage use of several
FaaS applications and proposed the design of a storage system suitable for these new use cases.
Unlike F3, these works do not consider file-based storage for serverless.

Several papers introduce new storage systems for serverless platforms: Locus [157], Pocket [98],
and Cloudburst [180]. Other frameworks for writing or running applications on serverless plat-
forms handle storage by abstracting access to one of many possible storage backends. Examples
include gg [65] and Ray [142]. In all of these cases, access to storage was exposed via a custom
API interface which would require porting existing applications in order to run. Conversely, F3 al-
lows existing applications to run unmodified. Also, F3 could be integrated into frameworks like gg
or Ray as an alternative storage backend, or could be layered on top of one of the existing storage
backends supported by those frameworks.

Schleier-Smith et al. [172] make a similar argument as we do in favor of a file interface for
serverless applications. However, they assert that existing shared file systems are too slow and are
incompatible with cloud environments where failures and high latencies are common; and they
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propose a transactional interface. We believe that small edge data centers will have fewer random
failures and lower latency than cloud data centers, and that shared file systems can achieve high
performance in this setting (see Section 5.6).

Wukong [35] and SONIC [125] aim to accelerate data transfer in serverless environments by
scheduling connected actions together on the same node. However, they require prior knowledge
of the workload, such as the graph of which actions call other actions in order to schedule actions
that share data together on the same node. F3 does not require prior knowledge about workloads
in order to schedule actions close to their data.

Other work has explored transferring data using direct network connections between two server-
less actions, made possible via NAT hole-punching [200]. This addresses the issue of data transfer
between actions but does not address the need for file-based storage.

Our location-aware data scheduling is similar to the ideas implemented by Hadoop [6] and
HDFS [7]. Hadoop and HDFS are designed for map-reduce environments and fit well for data ana-
lytics tasks. It is not possible to access HDFS data through the usual read and write system calls.
F3 is created specifically for serverless computing and is suitable for running generic, unmodified
applications.

Apache Crail [182] makes a similar argument to us, that some intermediate data generated
by applications do not need the durability provided by most storage systems. They introduce an
architecture and implementation of a system that provides fast data transfer for ephemeral data.
However, unlike F3, Crail exposes a custom API that requires applications to be modified to use.

In HPC environments, burst buffers such as BurstFS [199], and GekkoFS [197] accelerate
access to temporary data by adding a faster, less durable storage layer between the application and
the cluster’s persistent data store. Unlike F3, burst buffers treat all data as ephemeral and do not
provide a shared namespace with both ephemeral and non-ephemeral data.

Using non-persistent storage such as RAM for ephemeral data is common (e.g., using Re-
dis [163] or Memcached [131]). These solutions also have no shared namespace with both ephemeral
and non-ephemeral data. Additionally, popular memory-based storage systems that are accessible
from multiple servers all use object interfaces, rather than file interfaces.

Like F3, the Google File System (GFS) [70] has special support for the read-while-write use
case. However, GFS implements a limited number of file operations, making it potentially unsuit-
able for running unmodified applications. Also, the special support for reading-while-writing is
exposed via a new, non-standard operation called record append. Unmodified applications there-
fore cannot benefit from this new feature. In F3, even unmodified applications can benefit from
our read-while-write optimizations.

3.3 Durability Requirements for Serverless Data

Storage and data exchange for serverless There has been a large amount of recent work on data
exchange for serverless [98, 157, 125, 200, 1, 35, 134, 180, 123]. Most of this work focuses on
improving the performance of data transfer in a serverless environment. To do so, Pocket [98] and
Locus [157] utilize a mix of slower, cheaper storage and faster, more expensive storage. The faster,
more expensive storage is memory based and does not utilize durability features such as replication.
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These works make the argument that all serverless data is short lived and can be re-created, and
therefore such volatile storage is suitable for serverless data. However, they simply assume that
lower-durability storage is acceptable, and do not consider the cases where such storage may be
less cost effective compared to durable storage. Also, they do not explore how data loss might be
handled by the application.

FuncStore [123] aims to reduce resource waste by deleting objects when they are no longer
needed. To do so, they analyze an application’s DAG and use a machine-learning model to deter-
mine the anticipated lifetime of each object. We also predict the lifecycle of objects created by
applications, but we were able to achieve accurate results using profiling and linear interpolation.
Note that because SDCM inherently supports the regeneration of data, mis-predicting the lifecycle
of data is not much of a concern as it is with FuncStore, which—like many other related projects—
have no mechanism for re-creating lost data. If more accurate lifecycle predictions were needed,
we could also adopt the lifecycle-prediction approach used by FuncStore.

Projects such as SONIC [125], SAND [1], Wukong [35], and Cloudburst [180] accelerate data
transfer by passing data directly among functions running on the same host. Not all data is capable
of being transferred in this way: for instance scheduling constraints may force functions to be run
on different hosts, making this data transfer method not possible.

Techniques such as compression [118] and de-duplication [185] can be used to reduce the size
of data, and therefore, storage costs. We note that SDCM is not incompatible with these techniques,
and the methods SDCM uses to reduce storage costs can be used in conjunction with these other
techniques. In fact, many of the data-transfer and data-reduction techniques discussed here, such as
as Pocket [98], Wukong [35], and FuncStore [123], could be used together with SDCM to further
reduce storage costs. Any technique that uses an intermediate data store to transfer data can be used
with SDCM to place data in that intermediate data store at an appropriate, cost-optimal durability
level.

Lower-durability storage Amazon previously offered a reduced-durability storage class for its
S3 object storage service [22], called Reduced Redundancy Storage (RRS). That storage class
provided just four 9’s of durability compared to S3’s usual eleven 9’s and was initially priced at
33% cheaper than other storage classes. However, in 2017, this storage class was deprecated with
no reduced durability replacement [159]. We have been unable to find out why Amazon RRS was
deprecated. One possible explanation is that it was difficult to use: when data was lost, S3 would
return a specific HTTP error code (405, "Method Not Allowed"). Developers would need to add
special handling to their application to check for this code, and then to respond accordingly when
data was lost. Both aspects of this (detecting and responding) presents a burden that developers
may not have been willing to bear. Additionally, the appropriate response to lost data was often
specific to each application, making it difficult to generalize and handle by a library or framework.

Nowadays, the rise of serverless has greatly simplified the task of handling lost data. Lost data
can now be generically handled by re-running a function to replace the lost data. This enables
libraries or frameworks, such as we present in this paper, to take care of responding to lost data.

To the best of our knowledge, no other cloud provider has offered any kind of reduced-durability
storage.

10
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Spark’s [210] Resilient Distributed Datasets (RDDs) supports storing data in non-durable stor-
age such as memory. In the event of data loss, the RDD recomputes the lost data. This is similar
to our approach, except it does not use a model for identifying the most cost effective storage class
for the data.

Serverless workflow execution Tools such as AWS Step Functions [17] and OpenWhisk Action
Sequences [150] allow users to combine multiple actions in a sequence, passing data from one
stage to the next. However, they do not track the provenance of data produced by the actions. This
makes it impossible to transparently handle data loss, as our work does. Similarly, there has been
a lot of research on serverless execution systems (e.g., Hyperflow [127], FaaSFlow [120], gg [65],
Sprocket [5], Wukong [35], and SONIC [125]). These projects focus on various aspects of writing
applications that run on serverless platforms, but do not address the problem of re-creating data
lost by a non-durable storage system.

Microsoft’s Durable Function framework [137, 31, 30] allows users to build complex appli-
cations that are executed in a serverless context. Results from individual stages are saved, and if
the stage needs to be re-run, the saved results are used instead of re-computing. This is similar in
concept to our work, in that they address the possibility of needing to re-run functions using have
special support. However, they do not address the possibility of data loss. Therefore, our work
is complimentary in that our work could be used to guide the placement of the intermediate data
saved by the Durable Functions framework.

11



Chapter 4

CNSBench: A Cloud Native Storage
Benchmark

Modern hybrid cloud infrastructures require software to be easily portable between heterogeneous
clusters. Application containerization is a proven technology to provide this portability for the
functionalities of an application. However, to ensure performance portability, dependable verifica-
tion of a cluster’s performance under realistic workloads is required. Such verification is usually
achieved through benchmarking the target environment and its storage in particular, as I/O is of-
ten the slowest component in an application. Alas, existing storage benchmarks are not suitable
to generate cloud native workloads as they do not generate any storage control operations (e.g.,
volume or snapshot creation), cannot easily orchestrate a high number of simultaneously running
distinct workloads, and are limited in their ability to dynamically change workload characteristics
during a run.

In this chapter, we present the design and prototype for the first-ever Cloud Native Storage
Benchmark—CNSBench. CNSBench treats control operations as first-class citizens and allows
to easily combine traditional storage benchmark workloads with user-defined control operation
workloads. As CNSBench is a cloud native application itself, it natively supports orchestration of
different control and I/O workload combinations at scale. We built a prototype of CNSBench for
Kubernetes, leveraging several existing containerized storage benchmarks for data and metadata
I/O generation. We demonstrate CNSBench’s usefulness with case studies of Ceph and OpenEBS,
two popular storage providers for Kubernetes, uncovering and analyzing previously unknown per-
formance characteristics.

4.1 Introduction

The past two decades have witnessed an unprecedented growth of cloud computing [130]. By 2020,
many businesses have opted to run a significant portion of their workloads in public clouds [23]
while the number of cloud providers has multiplied, creating a broad and diverse marketplace [72,
81, 8, 136]. Atthe same time, it became evident that, in the foreseeable future, large enterprises will
continue (i) running certain workloads on-premises (e.g., due to security concerns), and (ii) em-
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ploying multiple cloud vendors (e.g., to increase cost-effectiveness or to avoid vendor lock-in).
These hybrid multicloud deployments [79] offer the much needed flexibility to large organizations.

One of the main challenges in operating in a hybrid multicloud is workload portability—
allowing applications to easily move between public and private clouds, and on-premises data
centers [101]. Software containerization [83] and the larger cloud native [42] ecosystem is consid-
ered to be the enabler for providing seamless application portability [25]. For example, a container
image [54] includes all user-space dependencies of an application, allowing it to be deployed on
any container-enabled host while container orchestration frameworks such as Kubernetes [103]
provide the necessary capabilities to manage applications across different cloud environments.
Kubernetes’s declarative nature [109] lets users abstract application and service requirements from
the underlying site-specific resources. This allows users to move applications across different Ku-
bernetes deployments—and therefore across clouds—without having to consider the underlying
infrastructure.

An essential step for reliably moving an application from one location to another is validating
its performance on the destination infrastructure. One way to perform such validation is to repli-
cate the application on the target site and run an application-level benchmark. Though reliable,
such an approach requires a custom benchmark for every application. To avoid this extra effort,
organizations typically resort to using component-specific benchmarks. For instance, for storage,
an administrator might run a precursory I/O benchmark on the projected storage volumes.

A fundamental requirement for such a benchmark is the ability to generate realistic workloads,
so that the experimental results reflect an application’s actual post-move performance. However,
existing storage benchmarks are inadequate to generate workloads characteristic of modern cloud
native environments due to three main shortcomings.

First, cloud native storage workloads include a high number of control operations, such as vol-
ume creation, snapshotting, etc. These operations have become much more frequent in cloud native
environments as users, not admins [113, 104], directly control storage for their applications. As
large clusters have many users and frequent deployment cycles, the number of control operations
is high [133, 95, 117].

Second, a typical containerized cluster hosts a high number of diverse, simultaneously running
workloads. Although this workload property, to some extent, was present before in VM-based
environments, containerization drives it to new levels. This is partly due to higher container density
per node, fueled by the cost effectiveness of co-locating multiple tenants in a shared infrastructure
and the growing popularity of microservice architectures [190, 168]. To mimic such workloads,
one needs to concurrently run a large number of distinct storage benchmarks across containers and
coordinate their progress, which currently involves a manual and laborious process that becomes
impractical in large-scale cloud native environments.

Third, applications in cloud native environments are highly dynamic. They frequently start,
stop, scale, failover, update, rollback, and more. This leads to various changes in workload be-
havior over short time periods as the permutation of workloads running on each host change.
Although existing benchmarks allow one to configure separate runs of a benchmark to generate
different phases of workloads [52, 59], such benchmarks do not provide a versatile way to express
dynamicity within a single run.

13



CHAPTER 4. CNSBENCH: A CLOUD NATIVE STORAGE BENCHMARK

In this chapter we present CNSBench—the first open-source Cloud Native Storage Benchmark
capable of (i) generating realistic control operations; (ii) orchestrating a large variety of storage
workloads; and (iii) dynamically morphing the workloads as part of a benchmark run.

CNSBench incorporates a library of existing data and metadata benchmarks (e.g., fio [63],
Filebench [186], YCSB [44]) and allows users to extend the library with new containerized 1/0
generators. To create realistic control operation patterns, a user can configure CNSBench to gen-
erate different control operations following variable (over time) operation rates. CNSBench can
therefore be seen as both (i) a framework used for coordinating the execution of large number of
containerized I/0O benchmarks and (ii) a benchmark that generates control operations. Crucially,
CNSBench bridges these two roles by generating the control operations to act on the storage used
by the applications, thereby enabling the realistic benchmarking of cloud native storage.

As an example, consider an administrator evaluating storage provider performance under a load
that includes frequent snapshotting. Conducting an evaluation manually requires the administrator
to create multiple storage volumes, run a complex workload that will use that volumes (e.g., a
MongoDB database with queries generated by YCSB), and then take snapshots of the volumes
while the workload runs. The same evaluation with CNSBench requires just that the administrator
specify which workload to run, which storage provider to use, and the rate with which snapshots
should be taken. CNSBench handles instantiating each component of the workload (i.e., the storage
volume, the MongoDB database, and the YCSB client) and then executing the control operations
to snapshot the volume as the workload runs.

While developing CNSBench, we have also been building out a library of pre-defined work-
loads. The previous example uses one such workload, which consists of YCSB running against a
MongoDB instance. If the administrator instead wanted to instantiate a workload not found in our
library, it is easy to package an existing application into a workload that can be used by CNSBench.
In that case, we would also encourage the administrator to contribute their new workload back to
our library so that it could be used by a broader community.

To demonstrate CNSBench’s versatility, we conducted a study comparing cloud native storage
providers. We pose three questions in our evaluation: (A) How fast are different cloud storage
solutions under common control operations? (B) How do control operations impact the perfor-
mance of user applications? (C) How do different workloads perform when run alongside other
workloads? We use Ceph [36] and OpenEBS [146] in our case study as sample storage providers.
Our results show that control operations can vary significantly between storage providers (e.g., up
to 8.5 higher Pod creation rates) and that they can slow down I/O workloads by up to 38%.

In summary, this chapter makes the following contributions:

1. We identify the need and unique requirements for cloud native storage benchmarking.

2. We present the design and implementation of CNSBench, a benchmark that fulfills the above
requirements and allows users to conveniently benchmark cloud native storage solutions with
realistic workloads at scale.

3. We use CNSBench to study the performance of two storage solutions for Kubernetes (Ceph
and OpenEBS) under previously not studied workloads.

CNSBench is open-source and available for download from https://github.com/CNSBench.
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K Node j

Worker Node Worker Node

Figure 4.1: Basic topology of a Kubernetes cluster, with a single control plane node, multiple
worker nodes, and a storage provider which aggregates local storage attached to each worker node.
Also shows the operations and resources involved in providing a Pod with storage.

4.2 Kubernetes Background

We implemented our benchmark for Kubernetes and so in the following sections we use many
Kubernetes concepts to contextualize CNSBench’s design and use cases. Therefore, we begin with
a brief background on how Kubernetes operates.

Overview A basic Kubernetes cluster is shown in Figure 4.1. It consists of control plane nodes,
worker nodes, and a storage provider (among other components). Worker and control plane nodes
run Pods, the smallest unit of workload in Kubernetes that consist of one or more containers. User
workloads run on the worker nodes, whereas core Kubernetes components run on the control plane
nodes. Core components include (1) the API server, which manages the state of the Kubernetes
cluster and exposes HTTP endpoints for accessing the state, and (2) the scheduler, which assigns
Pods to nodes. Typically, a Kubernetes cluster has multiple worker nodes and may also have
multiple control plane nodes for high availability.

The storage provider is responsible for provisioning persistent storage in the form of volumes
as required by individual Pods. There are many architectures, but the “hyperconverged” model is
common in cloud environments. In this model, the storage provider aggregates the storage attached
to each worker node into a single storage pool.

The state of a Kubernetes cluster, such as what workloads are running on what hosts, is tracked
using different kinds of resources. A resource consists of a desired state (also referred to as its
specification) and a current state. It is the job of that resource’s controllers to reconcile a resource’s
current and desired states, for example, starting a Pod on node X if its desired state is “running on
Node X”. Pods and Nodes are examples of resources.
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Persistent Storage Persistent storage in Kubernetes is represented by resources called Persistent
Volumes (PVs). Access to a PV is requested by attaching the Pod to a resource called a Persistent
Volume Claim (PVC). Figure 4.1 depicts this process: @ A Pod that requires storage creates a
PVC, specifying how much storage space it requires and which storage provider the PV should
be provisioned from. @ If there is an existing PV that will satisfy the storage request then it is
used. Otherwise, @ a new PV is provisioned from the storage provider specified in the PVC.
A PVC specifies what storage provider to use by referring to a particular Storage Class. This
class is a Kubernetes resource that combines a storage provider with a set of configuration options.
Examples of common configuration options are what file system to format the PV with and whether
the PV should be replicated across different nodes.

Once the PV has been provisioned, @ it is bound to the PVC, and 9 the volume is mounted
into the Pod’s file system.

Kubernetes typically communicates with the storage provider using the Container Storage In-
terface (CSI) specification [209], which defines a standard set of functions for actions such as
provisioning a volume and attaching a volume to a Pod. Before CSI, Kubernetes had to be modi-
fied to add support for individual storage providers. By standardizing this interface, a new storage
provider needs only to write a CSI driver according to a well-defined API, to be used in any con-
tainer orchetrator supporting CSI (e.g., Kubernetes, Mesos, Cloud Foundry).

Although Kubernetes has good support for provisioning and attaching file and block storage to
pods via PVs and PVCs, no such support exists for object storage. Therefore, CNSBench currently
supports benchmarking only file and block storage.

4.3 Need for Cloud Native Storage Benchmarking

In this section we begin with describing the properties of cloud native workloads, which current
storage benchmarks cannot recreate. We then present the design requirements for a cloud native
storage benchmark.

4.3.1 New Workload Properties

The rise of containerized cloud native applications has created a shift in workload patterns, which
makes today’s environments different from previous generations. This is particularly true for stor-
age workloads due to three main reasons: (i) the increased frequency of control operations; (i1) the
high diversity of individual workloads; and (iii) the dynamicity of these workloads.

Control Operations Previously infrequent, control operations became significantly more com-
mon in self-service cloud native environments. As an example, consider the frequent creations
and deletions of containers in a cloud native environment. In many cases, these containers require
persistent storage in the form of a storage volume and hence, several control operations need to
be executed: the volume needs to be created, prepared for use (e.g., formatted with a file system),
attached to the host where the container will run (e.g., via iISCSI), and finally mounted in the con-
tainer’s file system namespace. Even if a container only needs to access a volume that already
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exists, there are still at least two operations that must be executed to attach the volume to the node
where the container will run and mount the volume into the container.

To get a better idea of how many control operations can be executed in a cloud native environ-
ment, consider these statistics from one container cluster vendor: in 2019 they observed that over
half of the containers running on their platform had a lifetime of no more than five minutes [34]. In
addition, they found that each of their hosts were running a median of 30 containers. Given these
numbers, a modestly sized cluster of 20 nodes would have a new container being created every
second on average. We are not aware of any public datasets that provide insight into what ratio of
these containers require storage volumes. However, anecdotal evidence and recent development
efforts [105] indicate that many containers do in fact attach to storage volumes.

In addition to being abundant, control operations, depending on the underlying storage technol-
ogy, can also be data intensive. This makes them slow and increases their impact on the 1/0 path of
running applications. For example, volume creation often requires (i) time-consuming file system
formatting; (i1) snapshot creation or deletion, which, depending on storage design, may consume
a significant amount of I/O traffic; (ii1) volume resizing, which may require data migration and
updates to many metadata structures; and (iv) volume reattachment, which causes cache flushes
and warmups.

Now that data-intensive control operations are more common, there is a new importance to
understanding their performance characteristics. In particular, there are two categories of perfor-
mance characteristic that are important to understand: (1) How long does it take a storage provider
to execute a particular control operation? This is important because in many cases, control opera-
tions sit on the critical path of the container startup. (2) What impact does the execution have on I/O
workloads? This impact can be significant either due to the increased load on the storage provider
or the particular design of the storage provider. For example, some storage providers freeze I/O
operations during a volume snapshot, which can lead to a spike in latency for I/O operations [154].

Existing storage benchmarks and traces focus solely on data and metadata operations, turning
a blind eye to control operations.

Diversity and Specialization The lightweight nature of containers allows many different work-
loads to share a single server or a cluster [34]. Workload diversity is fueled by a variety of factors.
First, projects such as Docker [53] and Kubernetes [103] have made containerization and cloud
native computing more accessible to a wide range of users and organizations, which is apparent
in the diversity of applications present in public repositories. For example, on Docker Hub [55]
there are container images for fields such as bioinformatics, data science, high-performance com-
puting, and machine learning—in addition to the more traditional cloud applications such as web
servers and databases. Additionally, the popularity of microservice architectures has caused tra-
ditionally monolithic applications to be split up into many small, specialized components [190].
Finally, the increasingly popular serverless architecture [9], where functions run in dynamically
created containers, takes workload specialization even further through an even finer-grained split
of application components, each with their own workload characteristics.

The result of these factors is that the workloads running in a typical shared cluster (and on
each of its individual hosts) have a highly diverse set of characteristics in terms of runtime, 1/0O
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patterns, and resource usage. Understanding system performance in such an environment requires
benchmarks that recreate the properties of cloud native workloads. Currently, such benchmarks do
not exist. Hence, realistic workload generation is possible only by manual selection, creation, and
deployment of several appropriate containers (e.g., running multiple individual storage benchmarks
that each mimic the characteristics of a single workload). As more applications of all kinds adopt
containerization and are broken into sets of specialized microservices, the number of containers
that must be selected to make up a realistic workload continues to increase. Making this selection
manually has become infeasible in today’s cloud native environments.

Elasticity and Dynamicity Cloud native applications are usually designed to be elastic and agile.
They automatically scale to meet user demands, gracefully handle failed components, and are
frequently updated. Although some degree of elasticity and dynamicity has always been a trait of
cloud applications, the cloud native approach takes it to another level.

In one example, when a company adopted cloud native practices for building and operating
their applications, their deployment rate increased from rolling out a new version 2-3 times per
week to over 150 times in a single day [201]. Other examples include companies utilizing cloud
native architectures to achieve rapid scalability in order to meet spikes in demand, for example in
response to breaking news [47] or the opening of markets [28].

Currently, benchmarks lack the capability to easily evaluate application performance under
these highly dynamic conditions. In some cases, benchmark users resort to creating these con-
ditions manually to evaluate how applications will respond—for example manually scaling the
number of database instances [44]. However, the high degree of dynamicity and diversity found in
cloud native environments makes recreating these conditions manually nearly impossible.

4.3.2 Design Requirements

The fundamental functionality gap in current storage benchmarks is their inability to generate
control-operation workloads representative of cloud native environments. At the same time, the
I/0 workload (data and metadata, not control operations) remains an important component of cloud
native workloads, and is more diverse and dynamic than before. Therefore, the primary goal for
a cloud native storage benchmark is to enable combining control-operation workloads and 1/0
workloads—to better evaluate application and cluster performance. This goal led us to define the
following five core requirements:

1. I/0 workloads should be specified and created independently from control workloads, to
allow benchmarking (i) an I/O workload’s performance under different control workloads
and (i1) a control workload’s performance with different I/O workloads.

2. It should be possible to orchestrate I/O and control workloads to emulate a dynamic envi-
ronment that is representative of clouds today. In addition, it should be possible to generate
control workloads that serve as microbenchmarks for evaluating the performance of individ-
ual control operations.
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3. I/O workloads should be generated by running existing tools or applications, either synthetic
workload generators like Filebench or real applications such as a web server with a traffic
generator.

4. It should be possible for users to quickly configure and run benchmarks, without sacrificing
the customizability offered to more advanced users.

5. The benchmark should be able to aggregate unstructured output from diverse benchmarks in
a single, convenient location for further analyses.

A benchmark which meets these requirements will allow a user to understand the performance
characteristics of their application and their cluster under realistic cloud native conditions.

4.4 CNSBench Design and Implementation

To address the current gap in benchmarking capabilities in cloud native storage, we have imple-
mented the Cloud Native Storage Benchmark—CNSBench. Next, we describe CNSBench’s de-
sign and implementation. We first overview its architecture and then describe the new Kubernetes
Benchmark custom resource and its corresponding controller in more detail.

Overview In Kubernetes, a user creates Pods (one of Kubernetes’ core resources) by specify-
ing the Pod’s configuration in a YAML file and passing that file to the kubect1l command line
utility. Similarly, we want CNSBench users to launch new instances by specifying CNSBench’s
configuration in a YAML file and passing that file to kubect 1. To achieve that, our CNSBench im-
plementation follows the operator design pattern, which is a standard mechanism for introducing
new functionality into a Kubernetes cluster [110]. In this pattern, a developer defines an Operator
that comprises a custom resource and a controller for that resource. For our implementation of
CNSBench, we defined a custom Benchmark resource and implemented a corresponding Bench-
mark Controller. Together, these two components form the CNSBench Operator. The Benchmark
resource specifies the I/0 and control workloads, which the controller is then responsible for run-
ning.

Figure 4.2 shows the Kubernetes cluster depicted in Figure 4.1 with added CNSBench compo-
nents shown in blue. The overall control flow is as follow: @ The Benchmark controller watches
the API server for the creation of new Benchmark resources. &) When a new Benchmark resource
is created, the controller creates the resources described in the Benchmark’s I/O workload: the
I/0 Workload Pods for running the workloads and the Persistent Volume Claims (PVCs) for the
Persistent Volumes (PVs) against which the workloads are run. @ For running the control oper-
ation workload, the Benchmark includes a Rate Generator, which triggers an Action Executor in
user-specified intervals to invoke the desired control operations (actions).

4.4.1 Benchmark Custom Resource

The Benchmark custom resource lets users specify three main benchmark properties: (1) the con-
trol operation workload; (2) the I/O workloads to run; and (3) where the output should be collected.
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Figure 4.2: CNSBench overview with its components in blue

Control operation workload One of CNSBench’s primary requirements is the ability to create
realistic control workloads. However, microbenchmarks that purposefully stress only one compo-
nent or operation of a system are also valuable (e.g., for an in-depth analysis and point optimization
of system performance). Useful insights can be derived, for instance, from a benchmark that exe-
cutes some control operation at a regular interval. Our control workload specification satisfies both
use cases, by making it easy to create simple control workloads without sacrificing the ability to
define realistic ones.

In CNSBench, control workloads are specified using a combination of actions and rates. Ac-
tions execute operations, for instance create resource (e.g., create Pod or Volume), delete resource
(e.g., delete snapshot), snapshot volume, and scale resource (e.g., scale database deployment).
Rates trigger associated actions at some interval. For our evaluations we used a simple rate which
runs actions every 7' seconds, but more sophisticated rates could be implemented to enable the
creation of more realistic control workloads. For example, given a set of cluster traces that logged
when different operations were executed, a rate could be implemented that reads those traces and
generates a control workload mimicking their specific operating conditions. Actions and rates are
deliberately decoupled, so that these more sophisticated rates can be developed independently from
CNSBench and then plugged in later.

I/0 workload Often, a benchmark’s goal is to understand how a particular workload or set of
workloads will perform under various conditions. The role of CNSBench’s I/O workload compo-
nent is to either instantiate those workloads or to instantiate a synthetic workload with the same
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I/O characteristics of a real workload. Specifying these I/O workloads requires defining all of the
different resources (e.g., Pods and PVCs) that must be created in order to run the I/O workload.
This can be difficult and make benchmark specifications long and complex.

To ease the burden on users and to help them focus on the overall benchmark specification,
rather than the specific details of the I/O workload, CNSBench separates the I/O workload spec-
ification from the rest of the benchmark specification. The I/O workload specification is defined
using a ConfigMap—a core Kubernetes resource for storing configuration files and other free-form
text. These files contain the specifications for the Pods that will run the I/O workloads, as well as
specifications for supporting resources such as PVCs. In addition, they use metadata annotations
to specify information such as what output files should be collected and what parsers should be
used to process them. Since the specification uses a core Kubernetes resource, it can be accessed
using standard Kubernetes tools from anywhere in the cluster.

Users specify which I/O workloads to run in a Benchmark custom resource using a create
resource action that references (by name) the I/O workload to create. To enable reuse across
various use cases and benchmarks, fields in an I/O workload specification can be parameterized
and given a value when the workload is instantiated by a specific benchmark.

We are building out an open source Workload Library, available at https://github.com/ CNSBench/
workload-library, which offers pre-packaged I/O workloads including fio [63], Filebench [186], pg-
bench [153], YCSB [44], and RocksDB’s db_bench [59].Ideally, most users will be able to find
a suitable I/0O workload in the library and hence, do not need to define their own. We hope that
community members will contribute the I/O workloads that they develop to this library as well.

Control and data operations In some cases control and I/O operations can be intertwined. For
example, an increase in I/O operations can cause a workload to scale out, which in turn can execute
more control operations. Reproducing such events with CNSBench would require a feedback
mechanism that conveys to CNSBench information about the I/O operations executed by the 1/0
workloads. CNSBench’s design and implementation do not preclude such mechanism but we leave
its implementation to future work.

Benchmark output Many of the results of a CNSBench benchmark will be generated by the
I/0 workload Pods. Collecting this output presents three challenges. First, Kubernetes currently
lacks the ability to extract files from Pods in a clean and generic manner [106]. Second, the output
produced by some tools can be large, especially for long-running processes that produce output
throughout the run. Third, in our experience, many 1I/O workloads produce output as unstructured
text. This can make it difficult to analyze the results using tools such as Kibana [96], especially if
the benchmark consists of multiple I/O workloads that all report results in a different unstructured
output formats.

To address these issues, we allow 1/O workload authors to specify which files should be col-
lected from the workload Pods and to provide a parser script to process the output. Parsing the
output allows large files to be reduced to a more succinct size and to output results in a standard
fashion. The output files are collected and parsed using a helper container, described in more detail
in Section 4.4.2. Parsers for common I/O benchmarking tools can be included in the Workload Li-
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1 |kind: Benchmark

2 |metadata:

3 name: fio-benchmark

4 | spec:

5 actions:

6 — name: fio @

7 createObjSpec:

8 workload: fio @

9 count: 3

10 vars:

11 storageClass: obs-r G
12 outputs:

13 outputName: es

14 — name: snapshots

15 rateName: minuteRate

16 snapshotSpec:

17 actionName: fio @

18 snapshotClass: obs—csi
19 rates:

20 — name: minuteRate

21 constantRateSpec:

22 interval: 60s

23 outputs:

24 — name:. es

25 httpPostSpec:

26 url: http://es:9200/fio/_doc/

Listing 4.1: Sample Benchmark Custom Resource Specification

brary, either packaged with the tool’s workload specification or as a standalone entry. For instance,
we include parsers for fio and YCSB in the Workload Library.

The user specifies where the final, parsed results should be sent to in the output section of the
Benchmark custom resource. Results do not all need to be sent to the same output. For instance,
a benchmark with both fio and YCSB I/O workloads could send the fio results to one location
and the YCSB results to another. The benchmark metadata, including the Benchmark resource
specification and the start and end times, can be sent to an output as well.Currently CNSBench
supports sending the results to a collection server via an HTTP POST request to a user-specified
URL. Support for additional kinds of output, such as simply writing the output to a file, can be
easily added.

In addition to workload output, it is also important to collect metrics such as Pod or Node
resource utilization during a benchmark run. We defer the collection of these metrics to any of the
many tools that are commonly used to collect such metrics in a Kubernetes cluster [114].

Example An example Benchmark custom resource is shown in Listing 4.1 and an example of an
I/0 workload specification is shown in Listing 4.2. Due to space constraints, many of the details
of the I/O workload specification are omitted. Figure 4.3 shows the Kubernetes resources that are
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kind: ConfigMap
metadata:

name: fio @

spec:
data:
pod.yaml: | @
pvc.yaml: | @

storageClass: {{storageClass}} @

P O W oo Jo U b w N

Listing 4.2: Sample I/0 workload specification

created as a result of this Benchmark specification.

Lines 613 of Listing 4.1 specify the benchmark’s I/O workload. Line 8 references the name of
the I/0 workload that should be run, labeled @ in both listings. Lines 6-11 of Listing 4.2 specify
the resources that make up the I/0 workload. These correspond to the Pods and PVCs in Figure 4.3
labeled €).

I/0 workload specifications can be parameterized to enable their reuse across different use
cases and benchmarks. An example of this is on line 10 of Listing 4.2, where the PVC’s Storage
Class field is parameterized. Label (@ in the two listings and in Figure 4.3 shows how this param-
eter is set in the Benchmark custom resource specification (line 11 in Listing 4.1), and then how
that value is used in the workload’s PVCs.

Lines 14-18 of Listing 4.1 specifty a snapshot volume action. In Kubernetes, volume snapshots
are created using a Snapshot resource which references a PVC to use as the source of the snapshot.
The user indicates which action’s PVCs should be snapshotted by referencing the target action
by name (line 17 of Listing 4.1). Since all resources created by an action are labeled with that
action’s name, the controller can map an action name to a set of PVCs (label @). These PVCs are
then used as the source in the Snapshot resource (label @)). Additional examples can be found at
https://github.com/CNSBench/CNSBench.

4.4.2 Benchmark Controller

The Benchmark Controller watches for newly created Benchmark objects and runs their specified
actions. The controller has three main responsibilities: (1) triggering control operations; (2) syn-
chronizing the individual benchmark workloads; and (3) collecting the output of the individual
workloads.

Triggering control operations When a new Benchmark resource is created, the Controller starts
two goroutines (Go’s equivalent of a thread) for each of the specified rates: one is responsible for
generating the rate, and the other is responsible for running all of the actions using that rate. The
rate goroutine uses a shared channel to tell the executor goroutine when it is time to run an action.
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Storage Class

Name: obs-rl

Storage Provider: OpenEBS
Volume Replicas: 1
Filesystem: ext4

OpenEBS
Storage —
Provider | pisk

4

4 )

Snapshot

Source: vol

Class: obs-csi

Label: action=snapshots

fio

\Worker Node )

]
PVC
I/O Workload Benchmark Name: vol
Name: fio Actions: ... Storage Class: obs-rl
Pod: ... Rates: ... Size: 10 Gi
PVC: ... Outputs: ... L Label: action=fio

Figure 4.3: Subset of a Kubernetes cluster with a single worker node and a PV. Shows the
CNSBench resources that are involved (the I/O Workload and Benchmark), as well as the core
Kubernetes resources created by the CNSBench controller according to the Benchmark specifica-
tion (the Snapshots, PVCs, PV, and workload Pods).

As described in Section 4.4.1, decoupling the rates from the actions simplifies adding new kinds
of rates or actions later.

Actions not tied to any rate are run by the controller as soon as the Benchmark resource is
created. This is often how I/O workloads are instantiated, since they often use a long running
process that generates I/O throughout the benchmark’s duration.

Synchronizing workloads In many cases, I/O workloads require an initialization step such as
loading data into a database or creating a working set of files. When there are multiple I/O work-
loads being run, some workloads can finish their initialization step faster than others and begin
running their main workload earlier. This can cause misleading and inconsistent results. If the
purpose of the benchmark is to evaluate a storage provider’s performance under the concurrent
load of ten read-heavy I/O workloads, then all ten should start at the same time.

To synchronize the I/O workloads, CNSBench leverages Kubernetes’ initialization containers
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feature. Pods have a list of initialization containers which are executed in order, each one running
to completion before the next one starts. The Pod’s main containers do not run until all of the
initialization containers have completed. CNSBench assumes that a workload’s initialization step
has been put into an initialization container, which is the responsibility of the I/O workload’s
author. Although this is usually a straightforward task, it is an example of why separating the 1/0
workload specifications from the rest of the Benchmark specifications is useful: it allows users to
select existing workloads from the Workload Library and not worry about how their workload’s
initialization is implemented.

When the Benchmark controller instantiates the I/O workloads, it adds an additional synchro-
nization container at the end of the list of initialization containers. This container runs a script that
queries the Kubernetes API server for the status of each instance of the I/O workload and checks
to see if all of their initialization containers have completed (all except for the other synchroniza-
tion containers). Once all of the non-synchronization initialization containers have completed, the
script exits and the synchronization containers stop successfully, allowing Kubernetes to run each
Pods’ main container. Since all instances of the I/O workload have this synchronization container
added, all instances begin running their main containers simultaneously. Many workloads support
running for a set amount of time, so synchronizing the finish of each workload is generally not an
issue.

Output and metrics collection As described in Section 4.4.1, I/O workload authors can specify
which files to extract from a workload’s Pods and provide a script to parse those files. Extract-
ing these files from the workload Pods is difficult since there is no standard interface for doing
so [106]. The approach used by the official Kubernetes command-line client kubect1 involves
running the tar utility inside the target container, and does not work after the container has fin-
ished running [107].

To work around these difficulties, the controller modifies the workload Pod to add both a helper
container responsible for running the parser script, and also a volume mounted by both the helper
and workload containers. The I/O workload author must ensure that the workload’s output is
written to this volume, which will be mounted at /output. Similar to how the synchronization
container works, the helper container queries the Kubernetes API server to find out when the
workload container has finished; thereafter, the output is ready to be parsed.

4.5 Evaluation

To demonstrate both the need for and the utility of CNSBench, we ran several benchmarks to look
at different aspects of cloud native storage performance. We examine the performance of individual
control operations, the impact that control operations have on I/O workloads, and the impact that
different combinations of I/O workloads can have on overall performance.

25



CHAPTER 4. CNSBENCH: A CLOUD NATIVE STORAGE BENCHMARK

4.5.1 Methodology

To evaluate our benchmark, we instantiated an 11-node Kubernetes v1.18.6cluster in an on-premises
OpenStack environment: one control plane node and 10 workers. Each worker node is a virtual
machine with 4 vCPUs, 8GB of RAM, and 384GB of locally attached storage. The control plane
node is a VM with 4 vCPUs, 12GB of RAM, and 100GB of local storage. The VM hosts were lo-
cated in multiple racks, with racks connected via a 10Gbps network and individual hosts connected
to the top of rack switch via 1Gbps links.

We used two storage providers: OpenEBS and Ceph. Our requirements for the storage systems
were that they be open-source, free, and not based on cloud-as-a-service model—so we could
install and test them locally, and to enable more repeatable results. Additionally, they had to have
a CSI driver. These requirements eliminated many existing storage systems. Out of the remaining
options, we selected Ceph and OpenEBS due to their popularity.

OpenEBS [146] is a new storage provider built specifically to be cloud native. OpenEBS uses
the Container Attached Storage paradigm [156], where controllers that provision volumes and
manage features such as data replication, themselves run in containers. This provides storage with
all of the advantages of the cloud native methodology, such as agility and flexibility. It also enables
the storage to be managed like any other resource in a cloud native cluster. We used OpenEBS’s
cStor storage engine version 2.0.0.

Ceph [202] is a widely used file storage system that is built on top of the RADOS object
store [203]. We used the Rook operator for Ceph [167], which handles the deployment and man-
agement of a Ceph cluster. The Rook management layer allows Ceph to be managed in a cloud
native fashion, using Kubernetes objects and standard Kubernetes management tools. We used
Rook version 1.4.1 and Ceph version 15.2.4, with Ceph’s BlueStore storage backend.

Both Ceph and OpenEBS provide storage by aggregating the local storage attached to each
cluster node. Volumes are provisioned from this combined storage pool and are formatted with
Ext4 prior to being attached to a Pod. Ceph and OpenEBS both come with CSI drivers that interface
with Kubernetes.

Both OpenEBS and Ceph also offer volume replication for high availability use cases. With
volume replication, data written to a volume by a Pod is transparently copied across several vol-
ume replicas, which are ideally situated in different availability zones. This enables the cluster to
tolerate the loss of one or more hosts—depending on the replication factor—without suffering any
data loss. The trade-off is that volume replication often comes at a cost of increased I/O latencies
and an increase in network and disk utilization.

Ceph has an additional high availability mechanism using erasure coding, which encodes data
into chunks using a forward error-correction code and then replicates those chunks. The use of a
forward error-correction code means that fewer replicas are needed to provide the same availability
guarantees, and hence less disk space is needed overall. However, erasure coding uses more CPU
and RAM than basic data replication.

In our experiments, we use Ceph and OpenEBS in three ways: without replication, in triple-
replication mode, and Ceph (only) in erasure-coded mode (ec). In addition to Ceph and OpenEBS,
in some evaluations we used a null storage provider that implements the CSI functions involved in
provisioning and attaching volumes. The null driver simply returns success to most CSI functions
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Figure 4.4: CDFs of time required to create and attach volumes for different storage provider
configurations. n is the number of simultaneous volume creations. For all storage configurations,
increasing the number of simultaneous volume operations increased the average time to create and
attach an individual volume.

without performing actual work. The null driver does, however, maintain a list of provisioned
volumes so the ListVolumes CSI function returns an accurate result. We use the null driver as a
baseline to show the maximum possible performance of the underlying Kubernetes cluster.

Each evaluation was conducted five times and unless otherwise noted has a standard deviation
of less than 20%.

4.5.2 Performance of Control Operations

In Section 4.3.1 we described the importance of control operations in cloud native workflows.
In this section, we demonstrate how the performance of these operations can vary across differ-
ent storage providers and configurations. We looked at two common storage control operations:
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Figure 4.5: Median creation times versus degree of Pod creation parallelism

volume provisioning and attaching.

Our goal was to time how long it took each storage provider configuration to provision a volume
and attach that volume to a Pod. To do so, we timed how long it took to create and run new Pods
that were attached to volumes. The time to create and run a Pod with an attached volume includes
the time taken by the storage provider to provision and then attach that volume. Any additional
overhead related to running the Pod is constant across storage configurations.

We ran this test with 1, 10, 20, 30, 40, 50, 60, and 70 parallel Pod creations. Each test ran for
five minutes, where we maintained a fixed parallelism level N by starting a new Pod whenever one
Pod was created; there were always /N Pods in the process of being created. The workload run by
each Pod simply exited immediately, so Pods finished running as soon as they started.

We repeated each run five times. Figure 4.4 shows CDFs for Pod start time across all of
the Pods created during each of the five runs, for six storage provider configurations. We show
CDFs only for three degrees of parallelism (1, 30, and 70) because the CDFs for the intermediate
parallelism values follow the trends that are visible from these three. Figure 4.5 shows the median
Pod start time for all degrees of parallelism. Figure 4.6 shows the overall volume creation and
attachment rate per minute for different parallelism levels. These rates are averaged across each of
the five runs and had a standard deviation under 11% of the mean, except for OpenEBS which had
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Figure 4.6: Volume creations and attachments per minute, for different numbers of simultaneous
operations. The vertical lines at each point shows the standard deviation for volume creation and
attachment rate at that point.

standard deviations of up to 30% of the mean. This higher standard deviation can be attributed to
the polling architecture which is used throughout Kubernetes and OpenEBS [147], which causes
some actions to take sometimes significantly different amounts of time depending on which side
of the poll the resource becomes available.

As expected, Pod creation is fastest with the null storage provider. The storage provider con-
figurations with no replication are slightly faster than their replicated counterparts. This is also
expected, since volumes with replication require additional resources to be allocated during provi-
sioning.

As the number of simultaneous Pod creations increases, we noticed that subsets of Pods took an
increasingly long time to start (see Figure 4.6). Eventually, each of the six storage configurations
reached a point where its Pod creation rate plateaus. Note that Pod creation goes through three
states: initially it is in a “Pending” state before it can be assigned to a Node. Once the Kubernetes
scheduler has assigned the Pod a Node to run on, it moves it to a “Creating” state where container
images are downloaded and volumes are mounted. Then, the Pod enters the “Running” state.
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As an initial investigation, we counted how many Pods were in each state to identify the bot-
tleneck. We observed that for the null storage provider and the three Ceph configurations, the rate
that Pods moved from “Pending” to “Creating” and then from “Creating” to “Running” equalizes
when the number of simultaneous Pod creations reaches around 50. At this point, increasing the
number of simultaneous Pod creations only increased the number of Pods in the “Pending” state,
and did not increase the overall Pod creation rate.

The situation is different for the two OpenEBS configurations. As shown in Figure 4.6, these
configurations plateau at a lower rate of around 30 simultaneous Pod creations. When observing
the Pod transitions for these configurations, we saw that the rate at which Pods moved from “Cre-
ating” to “Running” was low compared to the rate that Pods moved from “Pending” to “Creating”
resulting in all Pods being in either “Creating” or “Running” states throughout the test. The Pods
in the “Creating” state were all waiting for OpenEBS to finish provisioning and attaching a volume
for the Pod. So, increasing the number of simultaneous Pod creations did not increase the over-
all Pod creation rate, since that rate was limited by how fast OpenEBS was able to provision and
attach volumes.

From these experiments we see that although all three storage providers have scalability limits
in terms of how many simultaneous Pod creations they support, the source of their limits appear
to be different. Whereas the null storage provider and Ceph are limited by the scheduling stage of
Pod creation, OpenEBS is limited by its own volume creation and attachment rate.

Overall, the experiment shows that there can be significant differences in the performance of
control operations across different storage providers and configurations. This highlights the need
to systematically benchmark these kinds of operations to understand their bottlenecks and improve
upon them. Conducting this experiment without CNSBench would require starting different num-
bers of Pods using a tool such as kubect1. Whenever a Pod finishes being created, a new one
needs to be started, which would be cumbersome to coordinate manually.

4.5.3 Impacts on I/O Workloads

In this section, we demonstrate the impact that control operations, in particular snapshotting a vol-
ume, can have on the I/0O workload that uses the volume. As described in Section 4.3.1, control
operations are executed far more often in cloud native environments than they are elsewhere. Snap-
shotting is especially common and users take frequent snapshots of their volumes for a number of
reasons: periodically, during a long running task to checkpoint progress, prior to making some
significant change so rollback to a known good point is possible, or to protect themselves against
attacks such as ransomware.

Although previously these operations were executed too infrequently to have a noticeable effect
on an I/O workload, this is no longer guaranteed to be the case in cloud native environments. Due
to differences in the design and architecture of different storage providers, the degree to which
these control operations impact an I/O workload can vary significantly.

To evaluate the impact of snapshotting operations, we used CNSBench to run three instances of
MongoDB [164] with ten clients each. The clients ran YCSB Workload A [44] (consisting of a mix
of reads and updates) for twenty minutes to reach steady state; the volumes holding the MongoDB
databases were snapshotted every thirty seconds.
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Figure 4.7: Effect of snapshotting on I/O workload. r=0 indicates zero volume replicas, r=3 indi-
cates three volume replicas, and r=ec indicates erasure coding.

Figure 4.7 shows the per-client throughput in terms of operations per second for five storage
provider configurations, with and without snapshotting. The throughput values are averaged across
all thirty YCSB clients.

Overall the results show that snapshotting reduces the throughput across all configurations.
The decrease in throughput is more noticeable for OpenEBS (27% and 38% for zero and three
volume replica configurations, respectively) than for Ceph (up to 22% for three volume replicas
but as low as 5% and 6% for erasure coding and zero replication configurations, respectively).
We found that although the average throughput decreased with snapshotting across all OpenEBS
YCSB clients, the decrease was more pronounced for some clients than others. For those clients,
we observed that the maximum latency reported by YCSB was much higher than the average
maximum latency. In addition, these clients reported extended periods (30+ seconds) when zero
operations were executed. During these periods with zero operations, the Mongo database reported
that some queries were taking a long time to be processed.

One possible explanation is the fact that OpenEBS quiesces and suspends I/0O while a snapshot
operation is in progress [148]. During that time, any writes issued by Mongo cannot complete.
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Figure 4.8: CDF of snapshot creation times for different storage provider configurations.

Some of these periods of suspended I/O lasted several seconds, which could explain the periods
when no operations could be executed by the clients and the reduction in overall throughput. We
analyzed the distribution of throughputs for all clients and found a long tail with many clients
timing out after several quiescing periods, then retrying.

Ceph does not quiesce [37] I/O during a snapshot and we did not observe the same spikes in
maximum latency that we observed with OpenEBS. We did observe some of the same periods with
zero completed operations that we saw with OpenEBS, and also observed the same complaints of
slow queries from the Mongo logs. One possible explanation is that there was an increased load on
Ceph: with snapshots, around four times as many objects were created in the underlying RADOS
object pools compared to no snapshotting.

To create a new snapshot in Kubernetes, users create a Snapshot resource. This resource is
created immediately. However, the underlying snapshot is not necessarily ready right away. Fig-
ure 4.8 shows a CDF of how long it took after creating a new Snapshot resource until the storage
provider reported that the snapshot was actually ready to be used.

Both Ceph and OpenEBS implement copy-on-write snapshots, so it is expected that for most
storage configurations, snapshots became available nearly as fast as the Snapshot resources were
created. However, some configurations exhibited a long tail where snapshots took several min-
utes to become ready. For example, although the median time to become ready for snapshots on
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Figure 4.9: Change in performance compared to baseline, for three different ratios of I/O workload
on five different storage configurations.

OpenEBS with three volume replicas was 12 seconds, 10% took longer than 310 seconds and 5%
took longer than 702 seconds. The interface between Kubernetes and the storage provider’s CSI
driver is the Kubernetes Snapshot Controller [112]. When we analyzed the logs for this container,
we found that the CreateSnapshot CSI calls for some snapshots were timing out due to slow I/O on
the underlying disks used by the storage provider. For some unlucky snapshot instances the Cre-
ateSnapshot call would repeatedly timeout, resulting in snapshot creation times of several minutes.
One interesting observation was that even when the Snapshot Controller aborted its CreateSnap-
shot call (due to the timeout), the storage provider would still finish creating a snapshot. However,
the Kubernetes Snapshot Controller had already timed out, thus missing the successful response
from the storage provider.

Running this experiment without CNSBench would require specifying and creating each of the
resources required to run MongoDB and YCSB (Pods, PVCs, Services, etc.). Then, while YCSB
ran, the user would need to create snapshots of each of the volumes being used by specifying the
snapshot resources in YAML and instantiating the resources with a tool such as kubect1.
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4.5.4 Orchestration

One of the core CNSBench capabilities is to make it easy to run various mixes of I/O workloads.
This is needed since the alternative, to manually choose and assemble workloads together to form
a representative combined workload, is infeasible due to the diversity of workloads in cloud native
environments.

One potential use case for this task is to determine which storage configuration is best suited
for a particular set of workloads. Another might be to help influence scheduling decisions, such as
which workloads to run simultaneously.

To demonstrate CNSBench’s orchestration capabilities, we ran multiple instances of three
different workloads: (1) MEGAHIT [119], a bioinformatics tool that processes genetic data;
(2) fio [63] for generating an intense I/O workload of mixed random reads and writes; and (3) the
PostgreSQL [155] database with a workload generated using its benchmark tool pgbench [153].
Each instance of the PostgreSQL workload ran a distinct pair of database and client. Out of each
of the workloads, fio was the most I/O intensive, followed by pgbench. Both fio and pgbench spent
most of their time waiting for I/O, whereas MEGAHIT was mostly CPU bound.

We tested four different workload mixes: a baseline with ten independent instances of each
workload, and then three additional mixes with ten instances of two of the workloads and five of
the third. For MEGAHIT and fio we measured the total time to run a fixed load; for pgbench we
measured the average throughput after running for ten minutes. This was necessary since the dif-
ferent storage provider configurations performed significantly different, so it would be impractical
to evaluate using a fixed amount of work.

Figure 4.9 shows the changes in runtime and throughput, normalized to the baseline values,
for different workload mixes and storage providers. The baseline throughputs for pgbench are 5.2,
0.37, 0.38, 85, and 16 operations per second for Ceph (no volume replication), Ceph (three volume
replicas), Ceph (erasure coding), OpenEBS (no volume replication), and OpenEBS (three volume
replicas), respectively. MEGAHIT had baseline runtimes of 309, 910, 609, 185, and 324 seconds,
and fio had baseline runtimes of 427, 816, 699, 923, and 2478 seconds, respectively.

The largest increase in performance of 3.2 is for pgbench when the number of fio instances is
reduced. This makes sense: the Ceph storage configurations shows the largest increase in pgbench
performance, since pgbench’s baseline performance on Ceph is much worse than on OpenEBS so
there is a larger potential for improvement. Also, pgbench and fio are both I/O-intense workloads,
i.e., reducing the number of fio instances would help pgbench, but not MEGAHIT.

The workload that had the overall smallest impact on performance is MEGAHIT. This is also
expected as fio and pgbench are mainly I/O bound while MEGAHIT is mainly CPU bound and
hence reducing the number of MEGAHIT instances does not free up significant I/O resources.

These results demonstrate the variability in storage provider performance, and the utility of
being able to easily compose and run diverse sets of workloads at various mixes. Conducting this
experiment on Kubernetes without CNSBench would require creating all of the resources required
for a workload (PVCs, Pods, Services, etc.) manually, for example by specifying them in YAML
and passing the YAML to a tool such as kubect1. To run multiple instances of a workload, the
user would need to specify multiple copies of each resource, making sure to give each copy a
unique name and updating references to resources accordingly. This would need to be repeated
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Benchmark Lines
Volume creation and attachment § 4.5.2 19
YCSB and MongoDB, no snapshots § 4.5.3 35
YCSB and MongoDB, with snapshots § 4.5.3 54
Multiple workloads § 4.5.4 72-117

Table 4.1: Number of lines needed to specify CNSBench benchmarks used during evaluation.

for each workloads mix being evaluated. Synchronizing the start of each workload would need to
be done manually. For example, to synchronize the start of multiple MongoDB+YCSB workloads
the user would need to first start each MongoDB database pod, then wait for the databases to be
initialized, and then run each instance of their YCSB benchmark.

4.5.5 Benchmark Usability

Requirement 4 in Section 4.3.2 states that CNSBench should be easy for users to configure and
run. Although usability is often subjective, one metric that can be used to estimate ease of use
is the number of lines necessary for specifying a workload. Table 4.1 shows the number of lines
needed to specify each of the benchmarks used in this evaluation section.

Overall a user can specify the complex, distributed, and diverse workloads in just 19—117 lines
of configuration. The workloads used in Section 4.5.4 require slightly longer specifications as they
contain multiple instances of the same sub-workload, which currently results in duplication in the
CNSBench’s benchmark specification. We plan to eliminate such repetitions in the future to make
using CNSBench even simpler.

4.6 Conclusion

Although measuring storage performance was always an important topic, its relevance has es-
calated in recent years due to the increased demand to reliably move containerized applications
across clouds. Furthermore, I/O patterns of applications have evolved, exhibiting higher density,
diversity, dynamicity, and specialization than before. Perhaps most importantly, storage services
now experience a high rate of control operations (e.g., volume creation, formatting, snapshotting),
which directly impact the performance of applications that call them and indirectly influence the
I/O of other applications in a cluster. Existing storage benchmarks, however, are not able to model
these new cloud native scenarios and workloads holistically and faithfully.

In this chapter we presented the design of CNSBench—a storage benchmarking framework that
containerizes legacy I/0O benchmarks, orchestrates their concurrent runs, and concurrently gener-
ates a stream of control operations. CNSBench is easy to configure and run, while still being versa-
tile enough to express a high variety of real-world cloud native workloads. We used CNSBench to
evaluate two cloud native storage backends—OpenEBS and Ceph—and found several differences.
For example, our evaluation shows that the maximum rate of control operations varies significantly
across storage technologies and configurations by a factor of up to 8.5x.
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Future work We plan to work on extending the library of I/O workloads with I/O “kernels”
that represent microservices, and also improve the benchmark specification language to make the
syntax more concise and avoid having to duplicate sub-workloads. Further, we will work on col-
lecting I/0 and control operation traces from production environments, analyze them, and create
corresponding profiles for CNSBench. Our longer term plans including finding and fixing perfor-
mance bugs using CNSBench, and even developing our own efficient storage solution.

We hope our benchmark will be adopted by storage and cloud native communities, and look
forward to contributions.
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Chapter 5

F3: Serving Files Efficiently in Serverless
Computing

Serverless platforms offer on-demand computation and represent a significant shift from previous
platforms that typically required resources to be pre-allocated (e.g., virtual machines). As server-
less platforms have evolved, they have become suitable for a much wider range of applications
than their original use cases. However, storage access remains a pain point that holds serverless
back from becoming a completely generic computation platform.

Existing storage for serverless typically uses an object interface. Although object APIs are
simple to use, they lack the richness, versatility, and performance of file based APIs. Additionally,
there is a large body of existing applications that relies on file-based interfaces. The lack of file
based storage options prevents these applications from being ported to serverless environments.

In this chapter, we present F3, a file system that offers features to improve file access in server-
less platforms: (1) efficient handling of ephemeral data, by placing ephemeral and non-ephemeral
data on storage that exists at a different points along the durability-performance tradeoff contin-
uum, (2) locality-aware data scheduling, and (3) efficient reading while writing. We modified
OpenWhisk to support attaching file-based storage and to leverage F3’s features using hints. Our
prototype evaluation of F3 shows improved performance of up to 1.5-6.5x compared to existing
storage systems.

5.1 Introduction

Serverless platforms have already proven their utility in running small web-oriented tasks. They
are approaching a turning point, however, where their on-demand computation is expanding to
a wider range of applications [91, 145, 46]—possibly any application. To this end, serverless
platforms have been relaxing constraints and adding features, for instance, allowing users to run
arbitrary containers and increasing execution time limits to support longer-running actions. Here,
an “action” is a snippet of code or a standalone executable, and a serverless application is made up
of one or more actions [10, 24, 14].

Storage access, however, remains a pain point for generic applications in serverless environ-
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ments. Serverless platforms typically support only object-based storage. Object is a natural choice
for the short, stateless, web-oriented tasks for which serverless platforms were originally designed
and used; but more generic applications frequently need functionality not supported by traditional
object storage—for example file-based access to data, the ability to perform in-place modifications,
support for concurrent writers, and the ability to read data as it is being written. The lack of sup-
port for these features has held serverless computing back from becoming a generic computational
platform.

Although most serverless platforms still do not offer a way to connect file based storage to
serverless applications (e.g., IBM Cloud Functions [82], Google Cloud Functions [73], Open-
Whisk [149], or Knative [100]); some (e.g., AWS Lambda) have recently added support for file-
based storage [11]. This is encouraging, as it indicates that industry has recognized the need for
file-based storage in serverless applications. Existing file systems, however, were not designed
for serverless platforms and lack important features that would benefit serverless applications. In
particular, existing file systems lack functionalities that could accelerate intermediate data transfer
between the individual actions that make up a serverless application.

Applications in serverless environments are often split into multiple components forming pipelines,
where one component writes its output data sequentially to storage, the next component reads the
data as input, then the system discards the intermediate data. By specifically facilitating this usage
pattern, a storage system can improve data access and transfer performance. We identified three
ways a storage system can aid this pattern: (1) storing the intermediate data on less durable, lower-
latency local storage, (2) providing hints about the location of data to serverless schedulers so that
subsequent stages of a pipeline can be scheduled close to the data, and (3) making it possible for
the next stage of a pipeline to begin reading before the previous stage has finished writing.

Durability vs. performance tradeoff Durability provided by storage systems often comes at the
cost of performance. For instance, in our experiments, disabling durability features (e.g., erasure
coding) increased read/write bandwidth by 42-45%, and using a local disk rather than networked
file system further increased read/write bandwidth by 39-86%.

The data transferred in serverless applications is usually ephemeral (i.e., short lived) and
is needed only until it has been consumed by the reader. This enables a different durability-
performance tradeoff to be made. For example, ephemeral data does not necessarily need strong
durability features such as replication or erasure coding that are provided by many storage systems.
Although durability features can sometimes be disabled in a given storage system, they are typi-
cally configurable only at volume or file system granularity. As a result, it is difficult to optimize
for workloads that store both ephemeral and non-ephemeral data: both must exist at the same point
along the durability-performance continuum.

Locality For data to remain local to a server, the serverless platform’s scheduler needs to know
where the data a serverless application will consume are located within the cluster. Current storage
systems either do not convey this information to serverless platforms, or are designed such that
the information is not even applicable (e.g., if, for data protection, the data is distributed across
multiple nodes in the cluster). Either way, the result is that data transfers between components
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within a serverless application consume network bandwidth and incur the performance penalty
associated with transmitting data across the cluster’s network.

Reading while writing Finally, it is often desirable to process data in a streaming fashion, i.e.,
to read and process data while it is written to a file. Doing so speeds up end-to-end processing
because a subsequent stage can begin without having to wait for the previous stage to finish. In
object storage, it is not possible for an object to be open by a writer and reader at the same time.
In distributed file systems, however, it is possible but file systems often make the conservative
assumption that when a file is open for reading by one client and for writing by another client,
that both clients must use unbuffered file accesses to ensure that readers and writers maintain
consistency [39].

Unbuffered access significantly slows both the reader and the writer, negating any performance
benefit of the read-while-writeaccess pattern. For data transfer in serverless applications, this is an
overly conservative assumption since both reader and writer access the data only sequentially (i.e.,
data is never modified once written).

In this chapter we address the storage access and data transfer problems for serverless en-
vironments. First, we added file system support to a popular open-source serverless platform,
OpenWhisk [149], to demonstrate how existing file storage solutions can work with a serverless
platform. Next, we implemented a stackable file system, F3, that is designed to optimize the
transfer of data between serverless applications and the individual components of a serverless ap-
plication. F3 distinguishes ephemeral data from that requiring high durability, and transparently
directs ephemeral data to node-local disks. This enables F3 to perform up to 6.5x faster when
writing data and 2.7 faster when reading data compare to the traditional durable storage.

F3 further optimizes data transfer by tracking the location of ephemeral files and exposing that
information to serverless schedulers. We modified OpenWhisk’s scheduler to use data location in-
formation when selecting the server to run the function, which in one experiment reduced network
traffic used for data transfer from 2GB down to zero.

We designed F3 to stack over existing durable storage systems (e.g., Ceph [39], Lustre [41],
and GPFS [74]), making F3 a flexible and transparent extension to existing storage solutions.
The resulting file system namespace makes both durable and ephemeral files visible to serverless
applications.

Though F3 is generic and can be applied in different environments, we focused our empirical
evaluation on a specific, rapidly growing use case—Edge Computing. Industrial edge comput-
ing is a new market that is predicted grow from $18B to $31B by 2025 [69]. Edge data centers
are smaller facilities that range in size from street-side cabinets to cargo container-like structures
that house a limited amount of server infrastructure. By having a smaller form factor than typi-
cal data centers (typically only 3—10 servers), edge data centers are relatively easy to move and
deploy, making them a good fit for housing IT infrastructure at the edge. Serverless computing
enables higher resource usage efficiency in these resource constrained environments through its
fine-grained sharing [66]. Our experimental platform, workloads, and evaluation methodology are
tailored to serverless computing at the edge.

This chapter makes the following contributions:
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Figure 5.1: Blueprint architecture of edge serverless platform

1. We describe the case for using file systems in serverless computing and extended OpenWhisk
to enable attaching actions to file-based storage;

2. We designed and implemented F3, a file system that extends existing storage systems to
enhance data transfers between serverless actions;

3. We evaluated F3 and several alternatives for edge computing; and

4. We have made F3 and our modifications to OpenWhisk available as open-source software:
https:// github.com/filesystems-for-serverless.

5.2 Background

In this section we give an overview of how serverless platforms operate (e.g., AWS Lambda [9],
Apache OpenWhisk [149]). Figure 5.1 depicts a serverless platform running on top of a container
orchestrator.

Operation Serverless platforms run processing @) on demand in a containerized environment [16].
Traditionally this processing consisted of snippets of code referred to as “functions.” As serverless
platforms have become more generalized, more and more of the processing is done by standalone
executables (e.g., an entire webserver or video processing utility). The term “function” seems in-
sufficient for these more generalized and complex workloads, so we use the more generic term
“action” to refer to both traditional function-style processing and newer more generic processing.

Actions run when triggered @ by a request to an HTTP endpoint. The trigger can be initiated
in response to an event such as an upload to an object store. Information related to the trigger is
passed to the action as parameters (e.g., uploaded object name).
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Running actions The containers that run actions ) are often managed by a container-orchestration
platform such as Kubernetes [165]. When an action is triggered, if there is an appropriate container
already running, then that container runs the action. This is referred to as a warm start. If no suit-
able container exists, the serverless platform creates a new container for the action by making a
request to the container orchestrator @; this is a cold start. In either case, a scheduling decision
has to be made. If there are multiple warm containers suitable for an action, the serverless plat-
form’s scheduler must choose that container to run the action. If a cold start is required, then the
containers orchestrator’s scheduler must decide the cluster node on which to start the container,
possibly using hints from the serverless platform’s scheduler.

To avoid the overhead of cold starts, serverless platforms keep action containers running for
some time after an action has executed. If the container’s resources are needed for something
else, however, then the container can be stopped as soon as the action ends. In either case, cluster
resources are reserved and paid for only while the action is actually running.

Building and deploying actions In early serverless offerings, actions were built by writing a
snippet of code in a language such as JavaScript or Python. When triggered, the code was run
using a container image built by the serverless platform. This approach allowed developers to
focus solely on their code, but was somewhat restrictive in that it limited the languages supported.
Also, because the serverless platform provided the execution environment, developers had little
flexibility in the choice of libraries, runtimes, and other external resources.

The simplicity inherent in this approach is still sometimes desirable, and “Function as a Ser-
vice” (FaaS) platforms continue to offer this method of building and deploying actions. For many
use cases, however, more sophisticated actions are needed. These actions might use external li-
braries, have multiple executables, or require a specific execution environment (e.g., a specific
Linux distribution). To support these actions, most modern serverless platforms now allow de-
velopers to run an arbitrary container image in response to a trigger. On startup, these containers
run a “Serverless Runtime Interface” executable @ that interfaces with the serverless platform.
When triggered, the container image runs the Serverless Runtime Interface, which retrieves the
action’s input parameters, executes the action, and returns the results to the serverless platform.
Thus, any application that can be containerized can be run as an action on a serverless platform.
This approach opens serverless platforms to many more use cases than were originally designed.

Storage Early code snippet-based actions were completely stateless, thus did not require access
to persistent storage. When stateful serverless actions were later introduced, object stores were the
recommended [124, 43] means to hold the state.

This made sense because (1) early serverless applications appeared mainly in web environ-
ments where object storage has been the norm, and (2) object stores are easy to access, requiring
only the ability to form an outbound HTTP connection.

Although there are a wide variety of file and block storage options [93, 132] that container
orchestrators can provision ) and attach @ to containers, current serverless platforms have not
taken advantage of them.
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5.3 Storage for Serverless Computing

In this section we first discuss the differences between file and object storage, then describe features
existing file systems lack that would improve efficiency for serverless applications.

5.3.1 Object Stores vs. File Systems

In most serverless platforms, the only storage option available to actions is object storage. Object-
based storage uses a key to identify an item of data, is typically accessed using through HTML
requests, and supports operations PUT, GET, and DELETE. For many serverless applications, this
interface is completely adequate and appropriate. We are not suggesting that the option of object
storage in serverless platforms should be taken away.

But many applications that run in generic container images expect a file based interface, where
files are identified by their names in a hierarchical namespace, and are accessed using operations
such as open, read, and write. While file-to-object translation layers that can be embedded
with the application exist, they generally do not support the richer functionality of files—including
in-place modification, read-after-write consistency and directory-level operations—thus are not
adequate for all applications.

Further, file systems typically provide higher performance than object stores [85, 158, 161].
Although high performance object stores could be implemented, applications that require high
performance today are mainly file based [144].

One of the commonly cited benefits of serverless platforms is their near-limitless scalability. It
might therefore seem counter-intuitive to suggest bringing file systems, often regarded as having
limited scalability, to serverless platforms. Nevertheless, several major cloud providers have added
file system support to their serverless platforms. This reinforces our belief that file system support
is necessary, and that if serverless platforms are to take the next step toward becoming a generic
computing platform, they must support file in addition to object interfaces.

5.3.2 Shortcomings of Existing File Systems

Existing shared file systems such as NFS and CephFS can provide storage for serverless appli-
cations. However, these file systems were not designed with serverless platforms in mind and
lack features that would benefit serverless environments. Three such features are: (1) support for
ephemeral (short-lived) data, (2) the ability to schedule actions based on where their data is located,
and (3) support for reading files as they are being written.

Ephemeral data Serverless applications make heavy use of ephemeral data—one that is short
lived and that can be easily recreated. Ephemeral data comes from a variety of sources. For
example, pipelines that span multiple actions may produce intermediate results generated by one
action, consumed by another, and then discarded. Sensor and other user data generated at the edge
is often filtered and pre-processed, with much of the original raw data not retained. Moreover,
resources such as machine-learning models are frequently replaced with updated versions.
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Many storage systems provide durability and reliability features such as replication or erasure
coding. These features come with a performance cost. Since ephemeral data does not need these
features, there is an opportunity to trade off decreased data reliability for increased performance.

In the case of node or disk failure, ephemeral data can be recreated by rerunning the original
actions that created it. Detecting an action failure and rerunning the original actions requires a
serverless execution framework that is beyond the scope of this chapter; but we note that a file
system could reasonably identify when a disk fails (e.g., EIO errors) and inform the serverless
execution framework. This would allow the execution framework to differentiate between regular
action failures (e.g., due to an application error) and action failures due to missing or corrupted
data caused by disk failure. How a serverless execution framework handles such errors is part of
the larger problem of serverless application orchestration (see Section 5.7).

Data locality-aware scheduling When running an action, the serverless platform must decide
where to run that action. Assuming the platform uses containers to run actions, this entails either
(1) finding an available already running container and assigning the action to that container, or (2)
starting a new container to run the action.

There has been a significant amount of work done in trying to avoid cold starts, since starting
up a new container to run the action can significantly increase action latency and overall runtime.
However, another factor that must be taken into account is the location of the data needed by the
application. Running the action close to the data avoids the delay and overhead of moving the data
to where the action runs.

Most existing storage systems do not provide the necessary data-locality scheduling hints.
Those that do, provide them only at a volume granularity, too coarse for per-file-based schedul-
ing. For example, with volume-level scheduling hints, an application’s actions cannot simply write
their output to a common output directory. Other systems that have incorporated data locality into
serverless action scheduling (i) require applications to be structured in a specific way (e.g., as a
DAG) [35] and (i1) require information about the structure of the application before the application
runs [35, 125].

Reading-while-writing Pipelines where one process generates data as another process consumes
it are common in Unix environments, especially in the form of Unix pipes (e.g., procA | procB).
Such a pipeline can reduce end-to-end application run times since the second process does not need
to wait for the first process to finish before starting its processing.

This technique requires the two processes to share a kernel to facilitate piping the output from
one process to the input of the next, and so porting such a pipeline to a serverless platform is not
trivial. Note that in Unix pipes, the pipe’s data is itself ephemeral and lives temporarily in kernel
buffers.

One workaround is to use a temporary file as an intermediary, e.g., procA >/tmp/f & procB
</tmp/f. This solution can fail, however, since procB may read all of /tmp/f and exit before
procA has finished writing, leaving some data unprocessed by procB.
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A better workaround is to use an intermediary file, but to also have procB wait to exit until

after procAa closes /tmp/£. This is easy to do with the standard Unix utility tail:
procA >/tmp/f & PID=$!; tail -pid=S$PID -f /tmp/f | procB

Here, tail waits for additional data until procA exits.

This works on a single system where tail is able to test if proca has exited. However, if
procA and procB are running in different serverless contexts, this workaround does not work.

Because pipelines are such a common idiom in serverless workflows, a file system that op-
timizes this pattern and increases parallelizablity between stages is highly desirable. When an
intermediate file is used to communicate data between two actions, the file system is in a unique
position to block the reader as necessary to wait for a concurrently running writer to add additional
data to the file, returning end-of-file indication to the reader only after the writer has finished and
closed the file.

5.4 Design

We have designed a proof of concept file system, F3, that has all of the desired properties identified
in Section 5.3. Figure 5.2 depicts F3’s architecture. F3 is designed to layer on top of an existing
durable file system, extending it with features benefiting serverless applications. F3 provides faster
access to ephemeral data by storing it separately from non-ephemeral data on local, less durable
storage without features like replication or erasure coding. Since ephemeral data is stored on node-
local devices, F3 interfaces with the serverless platform to aid in scheduling actions on the nodes
where their data resides. In the event that this is not possible (e.g., because the load on that node is
too high), F3 transparently and efficiently handles transferring the data between nodes.
We describe the design of the three serverless data transfer features in more detail below.

Ephemeral data support F3 provides a common file system interface for both ephemeral and
non-ephemeral data. To do this, F3 merges (1) a distributed, reliable, networked file system with
(2) a file system on a fast local disk, and exposes a single mount point. Applications use the mount
point exposed by F3, and F3 transparently writes file contents to either the networked file system
or to the faster local file system.

The networked file system should be a file system that is accessible by every node in the cluster,
such as CephFS or NFS. Each node should have its own local data store for ephemeral data. This,
for instance, is the case in a hyperconverged architecture, where storage is provided by aggregating
disks attached to each compute node rather than using dedicated storage servers.

In our current implementation, users can mark a file or directory as ephemeral by setting the
appropriate extended attribute on the file or directory or just use a special predefined file name
extension. All data under an ephemeral directory is automatically marked ephemeral. In many
workflows an application developer or user can easily identify which files are intermediate hence
contain ephemeral data. In other cases some files (e.g., stored in /tmp) or opened with O_TMPFILE,
could be automatically designated as ephemeral. In the future, we can explore using more advanced
automation for identifying ephemeral data.
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For each volume, F3 creates a different top level directory on the local and networked file
systems. This keeps the volume namespaces separate, so files in separate volumes can share the
same name and path. Under this top level directory, F3 maintains the same directory hierarchy on
both the local file system and the networked file system: the only difference is where the a file’s
contents are stored. It creates an empty file as a placeholder in the underlying file system where
the file is not stored (e.g., the networked file system if the file is an ephemeral file). However, if a
F3 volume is created by extending an existing networked file system volume, F3 does not require
any initial synchronization. Instead, F3 lazily creates the network file system’s directory hierarchy
on the local disk as needed.

F3 uses extended attributes on the copies of the files on the networked file system to track
F3-specific metadata about a file. For example, we use extended attributes to mark whether the
file is ephemeral, and if so which nodes in the cluster have a copy of that file’s data. Storing
metadata in the network file systems provides high durability for metadata. When a file is opened
by an application, F3 checks the file’s extended attributes to determine if the file is ephemeral: if
so, it opens the copy of the file on the ephemeral data store and returns the file descriptor to the
application. Otherwise, F3 opens the copy of the file on the networked file system and returns that
file descriptor. If the extended attributes are missing, F3 assumes that the file is non-ephemeral.
This can happen if F3 is extending a networked file system that has already been populated with
data, for instance.

When F3 opens an ephemeral file, it first checks if the file contents are available locally. If not,
F3 uses the extended attributes to find which nodes in the cluster have the file’s contents. F3 then
uses a per-node client/server communication to do a point-to-point, direct, efficient transfer of the
file contents. As soon as the network transfer is initiated, F3 begins transferring the entire file and
returns a file descriptor for the file to the application, which can then read the file as it is being
downloaded.

The original copy of data is not deleted, and the data on either node can be used by subsequent
actions. For our current implementation, we assume that ephemeral data is written once [97] so this
copy of data does not need to be updated. As most ephemeral serverless data is written only once,
this is a reasonable assumption. At this time we consider it the responsibility of the application
developer to ensure that this assumption holds.

If a node or local disk fails and ephemeral data is lost, the action that created the data has to
be re-run. This is consistent with the typical requirement that actions are idempotent [12, 86], and
the fact that actions may be automatically re-run by the serverless platform in the event of certain
kinds of errors [116].

Our current implementation of F3 does not include any garbage collection to delete old data
on the local disk. A simple approach would be to delete data as needed when the disk fills up,
using an LRU algorithm to choose what data to delete. If a single action writes enough ephemeral
data to fill up the local disk by itself, the current implementation of F3 would return ENOSPC to
the application. Other approaches might be to have F3 copy the ephemeral data to the shared file
system, store the data partially on the local disk and partially on the shared file system, or to have
the serverless platform rerun the action and have F3 treat the data as non-ephemeral during the
second run. We leave exploration of these options, as well as an implementation of a garbage
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Figure 5.2: CNSBench architecture and locality-aware data operations

collection mechanism, to future work.

Data locality hints for action scheduling Collectively, the F3 file system drivers which run on
each node in the cluster know what files are present in their local ephemeral data store. If the
serverless platform’s scheduler knows what files an action will access, the scheduler can ask the
F3 file system for the location of the data and use that information in deciding where to schedule
the action.

Rather than making the scheduler query each local instance of F3, F3 includes a simple server
that centralizes this data locality information. Each local instance of F3 sends information about
what files are on its node to this data locality server. The locality information is sent to the server
asynchronously, so the server should not become a bottleneck in data operations.

Figure 5.2 details how the data locality feature in F3 works. When an ephemeral file is written
o to an F3 file system, the local instance of F3 on that node sends @ the file name, file size, and
node name to the data locality server. F3 sends locality information twice: once when the file is
created, and again when the file is closed. The locality information sent when the file is created
allows the serverless scheduler to schedule pipelined actions on the same node, since it tells the
scheduler where the data will be. The locality information sent when the file is closed allows the
scheduler to make scheduling decisions based on the actual amount of data that each host has.

When the serverless platform receives e a new action to run, its scheduler has to choose
where to run the action. If there are suitable warm containers available, it chooses one of them;
otherwise, it creates a new container. When taking data locality into account, the scheduler tries
to identify all files that the action is likely to access. Currently this is done by identifying strings
in the action parameters that contain the mount point of the F3 file system @). This was sufficient
for the applications that we used for our evaluation. In the future, more sophisticated methods
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such as predictions based on prior action invocations can be used to identify files likely to be
accessed. Additionally, a serverless orchestrator or framework such as Kubeflow [102] that knows
the relationship between actions could explicitly provide information about what data an action
will produce or consume.

The scheduler then sends the list of files to the data locality server @). The data locality server
then uses the information supplied by the F3 file system drivers to identify for each file in the list
what nodes have the file locally and the size of each file. It sums the amount of data available on
each node, and returns this information to the scheduler ). The scheduler uses the information
to choose a container on a node with the largest amount of data available locally . If there are
no suitable containers the scheduler then uses this information to tell the container platform which
node the new container should be created on.

Data locality is only one of several factors that the scheduler uses to place actions. For instance,
if the node with the best data locality is overloaded, then the scheduler may instead decide to run an
action on a less heavily utilized node. Ideally, the serverless scheduler would provide a mechanism
for letting users decide how these different pieces of information are used when making scheduling
decisions, similar to the flexibility offered by the Kubernetes scheduler [111].

Reading-while-writing Usually a process consumes a file by issuing read system calls in a
loop, stopping when read returns zero (i.e., when the end of the file is reached). If the file is being
written at the same time as it is being read, the reader would need to periodically poll for new data
when read returns zero.

The challenge here is that the process needs to know when to stop polling because the writer has
finished and closed the file. Unix pipes handle this transparently for a process: rather than returning
zero, read blocks until more data is available as long as the write end of the pipe remains open.

F3 replicates this behavior by blocking read calls from returning if read would return zero
but the file is open for writing by another process. When more data has been added to the file or
the writer closes the file, F3 allows read to return to the caller. Since F3 spans the entire cluster,
this works even if the writing process is running in a different container or a different node.

This feature makes it possible for a serverless scheduler to schedule the next stage of a pipeline
before the previous stage has finished, thus improving concurrency. The same locality hints the
scheduler uses to place the reader action can also be used to wait for the previous pipeline stage
to create the file. Thus pipeline stages can be scheduled in parallel without code changes to either
reader or writer.

If one of the pipeline steps fails, there may be subsequent stages that have already read part of
the output from the failed step. If the pipeline previously ran on a single node, then it likely already
has logic for dealing with this case and such logic can be reused in the serverless environment as
well. For example, the application might cleanup the output from failed steps and then rerun.
Since objects are written or read in their entirety, rather than incrementally as files are, additional
logic may be needed for applications that currently use an object interface for storage. Detecting
when a failure occurs and what recovery steps are needed (e.g., failing downstream actions that
are currently reading data from the failed action) is the responsibility of the serverless execution
system and is out of scope for F3.
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5.5 Implementation

We implemented F3, following the design described in Section 5.4. We targeted OpenWhisk [149]
as the serverless platform, which we deployed on top of Kubernetes as the container orchestration
platform. F3’s implementation consists of four components and a series of modifications to Open-
Whisk, described below. We plan to release these components publicly, as open source, available
at url-redacted.

1. F3 file system driver The F3 file system driver is implemented using FUSE [196, 195].
We used FUSE for this prototype rather than implementing a kernel-based driver due to FUSE’s
relative simplicity and ease of development. We expect that any performance penalty that FUSE
imposes is insignificant compared to the benefits provided by F3 (e.g., fewer network transfers). In
the future, a kernel version of F3 could be implemented for production uses.

The F3 FUSE driver is implemented in 2,406 lines of C and C++. An instance of the FUSE
driver runs on each node, for each F3 volume mounted on that node.

2. File transfer server & client Ephemeral data written on one node and read on another node
must be copied to the reader node via a network transfer. This functionality is implemented in a
Go-based client and server, each of which runs on each node of the cluster. Go was chosen due
to its strengths as a language for networked applications like file transfer clients and servers [181].
Additionally, Go’s ability to compile into a portable executable eases the containerization and
deployment of the file transfer and server [121].

The F3 FUSE driver communicates to the client via Unix domain sockets to request that a file’s
contents be downloaded from another node. The file transfer server and client are written in 574
lines of Go.

3. CSI driver To integrate F3 with Kubernetes, we implemented a CSI (Container Storage In-
terface) driver [93] to enable provisioning and attaching F3 volumes to Kubernetes pods. The CSI
driver is implemented in 811 lines of Go.For example, the CSI specification website lists 83 CSI
drivers with source code: of those, 74 are implemented in Go [93]. When users create an F3 vol-
ume, they must also create a volume for the networked file system that F3 will use. The F3 volume
definition indicates what networked file system volume to use with the Kubernetes label [108]
f3.target-pvc: foo, where foo is the name of the network file system’s volume.

When the CSI driver is instructed to attach an F3 volume (i.e., receives a NodePublishVolume
CSI command), the driver checks to see if the target networked file system volume is already
mounted on the node where the F3 volume is being attached. If not, the F3 CSI driver creates a
pod on the target node that is attached to the target networked file system. This forces the net-
worked file system to be mounted on the target node. F3’s FUSE file system can then access the
mount point. We assume that each node’s local data store is mounted in advance.

4. File locality server The file locality server aggregates data from each F3 file system driver in
the cluster. It is implemented in 214 lines of Go. The locality information about ephemeral data is
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stored on disk in a JSON formatted file. The durability of the locality information is not critical,
since the data itself is ephemeral and the serverless platform can always fall back to data-unaware
scheduling.

5. OpenWhisk Modifications In addition to the new components implemented above, we had to
modify the OpenWhisk serverless platform. These changes included (1) adding support for attach-
ing action containers to storage volumes, (2) identifying what files will potentially be accessed by
an action, and (3) modifying the OpenWhisk scheduler to query the data locality server and using
the response when choosing a container for an action.

In total, we changed about 700 lines of OpenWhisk code, most of it in the Scala language.

5.5.1 Unmodified Applications in Serverless

One of the advantages of file based storage for serverless is that it enables running unmodified ap-
plications. To highlight this capability, we wanted to use unmodified, “off-the-shelf” applications
in our evaluation of F3.

During our evaluation we tested many combinations of container images, applications, and
application command line options. To simplify this process, we implemented a mechanism that
enables easily running a command as an OpenWhisk action. The user runs a command with the
ow-run utility that we created. The user experience with ow—run is similar to that of running a
command using the command line on their local machine. For example, consider we want to run
this command, normally invoked locally, as follows:

trimmomatic /data/0.fastqg /data/0.fastq.gz
To run that command on OpenWhisk using our ow-run utility, the command line invocation

would be:
ow—run -—--container-image sunbeam:v0.0.7

——ow—action trim

--vol-list f3-pvc

--mount-path-1list /data

trimmomatic /data/0.fastqg /data/0.fastqg.gz

In this example, the user needs to have already configured the resource limits and requests

for the trim action and created the F3 volume £3-pvc. However, the user needs to make no
modifications to trimmomatic itself. This allowed us to easily and efficiently test a wide range
of applications and application settings.

5.6 Evaluation

Due to the growing amount of data produced by IoT devices, the rising demand for low-latency on-
the-spot computing, as well as privacy and security concerns, applications and infrastructure are
increasingly deployed at the Edge rather than in the hyper-scale Clouds [188]. The umbrella project
for F3 focuses on the growing Edge business opportunities: thus, we designed our experimental
platform and workloads to be representative of edge environments and workloads. Furthermore,
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our analysis shows that thanks to its higher resource efficiency, the serverless approach could be
even more attractive at the resource-constrained Edge than in the Clouds with seemingly unlimited
resources.

A typical edge data center is a cluster of only 1-10 servers located either at a customer site (e.g.,
a factory or a retail sore) or at an Internet access point (e.g., 5SG cell tower). The servers in a typical
edge data center run standard operating system (e.g., Linux), virtualization software (e.g., KVM),
and container orchestrators (e.g., Kubernetes). Due to constraints on clusters’ physical footprint,
a popular architecture for Edge data centers is hyperconverged setup, where each building block
(e.g., aserver) provides both compute and storage resources. The testbed described in the following
section reflects these characteristics of edge data centers.

5.6.1 Cluster and Storage Setup

We ran our evaluation on CloudLab [56] using a cluster of nine machines connected via a 1Gbps
network, with each node running CentOS Linux 7.9.2009. Each machine had two 2.60GHz, ten-
core Intel CPUs with hyperthreading, 160GB of RAM, and one 480GB SATA SSD. The cluster
was connected via a private 1Gbps network. Our serverless platform was OpenWhisk 1.0.0, using
Kubernetes 1.19.0 as the container orchestrator.

One node was dedicated to running the et cd server used by Kubernetes to store cluster state;
another node was the Kubernetes control node; and a third node was dedicated to running an NFS
server used in evaluation. The remaining six nodes were hyper-converged Kubernetes workers that
ran both evaluated workloads and storage systems—CephFS, MinlO, and F3.

In our CloudLab setup every node had only one attached disk. Since F3 requires both a local
disk and a shared file system, we used LVM to split the single SSD attached to each node into two
volumes. We formatted one volume with ext4 and used that as F3’s local disk; we used the other
volume for CephFS and MinlO.

In our evaluation we assume the case when an edge cluster already has access to durable stor-
age: CephFS (distributed file system), MinlO (object storage), or central NFS server (NAS). F3
can be layered over these solutions (except MinlO) to provide additional performance benefits in
serving ephemeral data to serverless functions. We evaluate MinlO to provide a reference point of
how applications perform with a popular object storage solution rather than a file system.

CephFS Ceph [39] is a popular storage system built on the RADOS object store [203]. It ag-
gregates storage from each node it is deployed on and exposes a single pool of storage. There
are several interfaces for Ceph including CephFS, which exposes a file-system interface to ap-
plications. Ceph offers several data durability schemes, such as replication and erasure coding.
We evaluated three different Ceph configurations: no replication, 3 x replication, and 2-1 erasure
coding (two data blocks and one erasure block).

CephFS has both kernel- and FUSE-based user-space drivers. We used the FUSE-based user-
space drivers, which are typically more up to date and safer to use than their kernel counterparts.
We used Ceph version 15.2.7, deployed on Kubernetes with the Rook [167] operator version 1.5.9.
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MinlO MinlO [138]is a popular object store. Like Ceph, it can aggregate storage across multiple
nodes and expose a single storage pool. Also like Ceph, MinlO offers several data durability
modes. We chose EC-3, which was the default for our sized cluster (six nodes, one disk per node).
This mode splits data into three data chunks with three coding chunks. We used MinlO release
2022-09-07T22-25-02Z, deployed on Kubernetes with version 4.5.0 of the MinlO operator.

We used s3fs [170] to access MinlO’s object API and provide a file-based interface over
MinlO. This is representative of the current state of storage for serverless: if a user wishes to run
an application on a serverless platform but the application requires a file based storage interface,
they would need to use a tool like s3fs to access an object store.

NFS NEFS [176] is a well-established file system protocol. Although hyper-converged config-
urations such as those used by Ceph and MinlO are common, architectures that use standalone
NAS storage appliances are still used. NFS is mature, and easier to deploy and configure com-
pared to more sophisticated, distributed or networked file systems like CephFS. We used NFS on
a standalone, dedicated server in our cluster—to represent this alternate architecture. We used the
standard NFS server included with the Linux kernel to export a local disk formatted with ext4. The
NFS version was 4.1, which was the default version available on our operating system (CentOS
Linux 7.9.2009).

F3 In most experiments we evaluated F3 using CephFS with no replication as our networked file
system. The local disks used as a per-node local data store were formatted with ext4, which is a
commonly recommended file system and the default for many operating systems [166]. Although
we mainly used CephFS as the networked file system for our evaluations, F3 is capable of stacking
on top of any underlying networked file system that supports extended attributes. To test this, we
verified that F3 also works on a recent NFSv4.2 server with extended attributes support.

We measured the impact of using different networked file systems (CephFS with no replication,
3 replication, 2-1 erasure coding, and NFS) with F3. We found that the choice of underlying file
system had little to no impact on the performance of ephemeral data operations: performance in
each case was within 3.1% of each other for reads where the data was not available locally, and
less than 0.03% and hence statistically indistinguishable. of each other in all other cases. This
is because F3 is designed to avoid the networked file system for ephemeral operations. We used
unreplicated CephFS as our networked file system throughout our evaluation: any reference of
“F3” in the evaluation means “F3, layered on top of unreplicated CephFS.”

Since the focus of this evaluation was on F3’s features for ephemeral data, all data in our
evaluation was marked as being ephemeral. We leave to future work evaluating the performance
of mixed ephemeral and non-ephemeral data operations, as well as how to automatically identify
whether data is ephemeral or non-ephemeral.

Disk vs. network speed ratios When selecting the server for a file system that accesses disks
over the network, disk speeds and network speeds should be on par with each other so that neither
dominates as the primary bottleneck. We chose network and disk speeds that were representative
of real-world ratios. Each of our servers had only a single disk available for the storage systems
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Figure 5.3: Mean and median system call latencies for different configurations of storage system.
I1x, 3%, and 5x refer to the degree of replication; 2-1 and 3-3 EC refer to the erasure coding
configuration (2 data and 1 coding chunk, and 3 data and 3 coding chunks, respectively).

under evaluation. We measured the disk speed to be 200MB/s, giving a disk to network throughput
ratio of approximately 1.6 with the 1Gbps network. Although 1Gbps is slow compared to the
networks found in many modern data centers, our disk to network throughput ratio falls within the
range typical of real world edge deployments [204]. If we instead had ten disks with a combined
throughput of 2000MB/s and a 10Gbps network, the ratio would remain the same.

5.6.2 Data Transfer Micro-Benchmarks

We evaluated the performance of data exchange and the impact of F3’s data exchange optimiza-
tions. We first show the performance impact of different replication and erasure coding levels,
compared to a baseline of accessing a local disk. This is the motivation behind F3’s use of a local
disk for ephemeral data.

We then show the impact of data locality based scheduling, and avoiding the overhead of trans-
ferring data across the network. Next, we show the combined impact of F3’s data locality based
scheduling and F3’s use of local disk for ephemeral data. Finally, we show the impact of F3’s
optimizations for reading-while-writing.
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Figure 5.4: CDFs of read and write system call latencies, for different storage configurations.
We used log scale for the x-axis because the system calls exhibited long tails at higher replication
degrees.

Impact of replication & local disk storage We evaluated the impact of replication and erasure
coding on the latency of read and write system calls. We ran several experiments to time 100,000
reads and 100,000 writes on CephFS volumes with varying replication and erasure coding options,
and compared with the same workload on an ext4 file system on a local disk. Since CephFS uses a
FUSE driver, we used a passthrough FUSE file system to access the ext4 file system. This ensured
that all read and write system calls went through a FUSE layer for a more fair comparison.
System call times were measured with strace, and were generated with dd with bs=4K and
[o]i] flag=direct.

Figure 5.3 shows the mean and median system call latency across multiple storage configura-
tions. The distribution of latencies exhibited a long tail, as can be seen in Figure 5.4 (note the log
scale). This is expected, as there are multiple sources of variability in the storage and networking
stacks, and have been observed before [92, 78, 32, 139]. As the degree of replication increases, we
see the tail grow longer, which also makes sense as the number of sources of variability increases.
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Figure 5.5: Impact of data aware scheduling. Each line connects a writer with its corresponding
reader, with the numbers along each side showing what node in the cluster the writer or reader ran
on. Red lines indicate that the reader needed to transfer its file from the writer node via a network
transfer. Green lines indicate that the reader and writer ran on the same node and the file was read
from F3’s local ephemeral data store, with no network transfer was needed.

As expected, the local disk performed significantly better than CephFS, especially when writ-
ing: 0.1ms vs. 2.2ms for 1x replication). We also see that as the replication degree increased,
generally so did system latency. The exception was that for reads, 3 x and 5x replication perform
about the same or slightly better than 1 x replication.

Impact of data locality considerations during action scheduling To demonstrate the impact
of locality aware data scheduling, we wrote and then read six ephemeral files. Writers were run
manually on each node, one per node, with each writing a unique 400MB file. For each writer, a
corresponding reader was run in an OpenWhisk action that read the entire 400MB file. When the
reader and writer both run on the same node, the reader reads its file from F3’s local disk. Howeyver,
when the reader and writer each run on separate nodes, the data must be transferred from the writer
node to the reader node over the network.

The left-hand side of Figure 5.5 depicts the case where OpenWhisk’s default scheduling is
used. Here, the readers are assigned to nodes without regard to where the input file they need to
read is located; we see that only a single reader (green line) ended up running on the same node
as its corresponding writer. The red lines depict instances where the reader ran on a different node
from its writer, necessitating a 400MB network transfer to copy the data from the writer node to
the reader node. In total, using the default OpenWhisk scheduler resulted in 5 * 400 = 2000MB of
data being transferred across the cluster network.

The right side of Figure 5.5 shows the impact of our modified OpenWhisk scheduler that uti-
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lizes F3’s data locality hints. All six readers were scheduled on the same node as the corresponding
writer, and hence no data was transferred over the network.

Impact of replication, local disk storage, and data locality We used fio [63] to measure
sequential and random read and write performance of the storage systems. fio ran in a pod
(container) via a serverless action. Write and read workloads were generated by separate instances
of £io running in separate pods. The data written by £io was marked as ephemeral, and the reader
instance ran after the writer instance finished. We measured read performance where the reader
pod ran on the same node as the writer pod, as well as when the reader pod ran on a different node.
This demonstrates the difference in performance that data locality can have on an I/O workload.
We disabled F3’s data locality based scheduling to be able to control whether the reader ran on the
same or different node as the writer. We used a large (200GB) dataset to mitigate the impact of
caching.

Figure 5.6 shows the bandwidth reported by fio, in MB/s, and the mean latencies, in millisec-
onds. We ran fio in each configuration three times. Error bars show that variance was small, less
than 5% of the mean, with one exception: F3 random reads on the same node, where the variation
was 7%.

As expected, F3 had the highest read and write performance when the reader was on the same
node as the writer. F3’s write bandwidth ranged from 1.40x to 6.46x faster than other storage sys-
tems; read bandwidth ranged from 1.84x to 2.30x faster. Latency ranged from 1.40x to 2.64x
lower when writing and from 1.84 x to 2.73x lower when reading. These performance improve-
ments were due to F3’s use of local storage. By using local storage, F3 is not limited by the
cluster’s network capacity as other storage systems are.

F3’s read performance when readers and writers ran on different nodes was similar to NFS. In
both cases, the data had to be transferred over the network.

Each of the networked file systems was limited by the cluster’s 1Gbps (125MB/s) network. The
one exception was writing in the unreplicated configuration of Ceph. This was expected because
Ceph breaks files into blocks that are then distributed across each of the storage nodes in the Ceph
cluster. Because we were using a hyperconverged architecture, the Ceph storage nodes were the
same nodes that run user workloads, including our instance of fio. Since we had six nodes in
our cluster, we expect then that % of the data written by fio resided on the node running the fio
program, and as a result was not limited by the cluster’s network.

Impact of reading-while-writing Passing data from one stage of a data processing pipeline to
the next is a common pattern. A straightforward implementation is to run the pipeline stages
sequentially, where each stage produces an output file that the next stage reads as input. A disad-
vantage of this approach, however, is that it provides no parallelism between pipeline stages.

Another possible implementation is to run pipeline stages concurrently, streaming the data
between stages (e.g., using UNIX pipes to connect them). The added parallelism of streaming can
result in lower end-to-end processing times. A limitation of using UNIX pipes, however, is that
the stages must all be run on the same node, which is not always convenient.

In this section, we use a third approach where a stage in the pipeline reads input from a file in
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Figure 5.6: Mean latencies and bandwidths of Ceph, NFS, MinlO, and F3. “Ceph 1x” and “Ceph
3x” are configured with 1x and 3 X replication, respectively. “Ceph 2-1 EC” uses erasure coding
(data split into two data chunks and one coding chunk). F3 was layered on top of an unreplicated
CephFS volume.
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a shared file system while the previous stage writes the file. We show below how we solved the
problem of the reader reaching the end of file before the writer has finished writing all data.

We ran experiments in a serverless environment using CephFS, NFS, and F3 as the shared file
system—first with the reader on the same node as the writer, then with the reader on a different
node. We used a smaller data set (400MB) than the server’s RAM (160GB), so the results reflect
the ability of the storage systems to leverage the kernel’s page cache rather than being disk bound.

To solve the early EOF problem, we made a few changes to our pipeline stages. First, we
modified the writer stage to create an empty file, /var/data/f.done, on completion. Next, we
split the reader into two parts. The first part was a script that read from /var/data/f and wrote
to a FIFO pipe, /tmp/f.pipe. Whenever the script reached EOF on input, it checked for the
existence of the /var/data/f.done file, and if not found, slept one second (same duration as
tail -f), then returned to the top of the loop and continued reading. The second part was the
actual reader program (e.g., grep or cat), except that instead of reading from /var/data/f, it
read from /tmp/f.pipe. Both parts of the reader ran in the same action. This implementation
enabled us to run a reading-while-writing workflow in a serverless context.

Because F3 has special support for handling EOF in the reading-while-writing access pat-
tern, it did not require any of the additional implementation: the writer action simply wrote to
/var/data/f and the reader action simply read from /var/data/f.

Note that because CephFS was not designed for this usage pattern, it does not handle the
reading-while-writing case efficiently when reader and writer run on different nodes. In this pat-
tern, it falls back to unbuffered reading and writing [40].

MinlO is not capable of reading from an object as it is being written to, so it is omitted from
these experiments. This example further highlights the limitation of object-based interfaces.

Figure 5.7 shows the difference in same-node-reader vs. different-node-reader performance.
As expected, for all storage systems, read performance is worse when the reader is on a separate
node from the writer. However, Ceph’s write performance is also lower when the reader is on a
separate node. This is because when both reader and writer are on the same node, Ceph can do
buffered reading and writing, as only a single client is accessing the file. When the reader and
writer are on separate Ceph nodes, however, there are now multiple clients accessing the same file
and Ceph falls back to its slower, unbuffered file accesses (plus the additional overhead of network
transfers).

5.6.3 Case Study: Bioinformatics Pipeline

We developed a bioinformatics case study in collaboration with an industry partner specializing in
large scale processing genetic sequence data. The advent of new genetic-sequencing technologies
(e.g., nanopore) has made sequencing more portable, affordable, and accessible. Sequencing can
now be done anywhere from hospitals to sea-bound ships and is being used for an increasing
number of applications [50].

Sequencing typically produces a large amount of data that is then processed using a series
of steps run in a pipeline. The pipeline typically begins by cleaning and filtering the data, for
example removing artifacts created as a byproduct of the sequencing technology. After cleaning,
the sequence data is then analyzed, for example to identify the species present in a sample.
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Figure 5.7: Comparison of read-while-write performance, when readers and writers are on the
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to read and write data concurrently. F3 was layered on top of an unreplicated CephFS volume.
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Figure 5.8: Bioinformatics use case architecture
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Running all or part of the analysis pipeline at the edge where the sequence data is generated
can save significant time and cost associated with moving a large amount of data to the cloud. It
is not always possible or desirable to run the entire processing pipeline at the edge, for instance,
when the analysis requires more computing power than is available in the edge data center, or when
the analysis output is required in the cloud for other reasons (e.g., archival). But running at least
the cleaning portion of the pipeline at the edge can still significantly reduce the amount of data
uploaded to the cloud.

Because various stages in the pipeline have different resource requirements, running the pipeline
in a serverless environment where each stage is run as a separate action provides better resource
utilization.

Analysis pipelines are usually built using existing tools developed by other bioinformatics re-
searchers. These tools usually assume a file interface for their inputs and outputs.

We implemented the cleaning stage of a genetic-sequencing pipeline using two commonly
used tools: Cutadapt [129] and Trimmomatic [29]. Cutadapt identifies and removes portions of
sequences that were added to support the sequencing process and are unrelated to the data being
analyzed. Trimmomatic removes sequences that fail to meet a given quality metric. Usually,
Cutadapt is run first. Its output becomes the input for Trimmomatic.

Figure 5.8 describes our implementation. We uploaded a 926MB file of genetic-sequence data
to a load-balanced web server ﬂ, which wrote the file to a data store as ephemeral data. Because
the web server uses a load-balancer to distribute requests among nodes, the server that receives and
stores the sequence data can be any of the worker nodes in the cluster.

Once the receiving node had saved the file, it ran Cutadapt @) and Trimmomatic @) as Open-
Whisk actions. We ran the pipeline in two modes: sequential and pipelined. In the sequential
mode, Trimmomatic was started after the completion of Cutadapt. In pipelined mode, Trimmo-
matic was run at the same time as Cutadapt, operating on Cutadapt’s output as it was being written.
Cutadapt’s output was 926 MB and Trimmomatic’s output was 126 MB. Together, the two applica-
tions reduced the input data size by 7.3 x.

Additionally, running the tools in separate actions provided better resource efficiency. The
memory requirement of Trimmomatic is 1024MB, while that of Cutadapt is only 32MB. If both
steps ran in the same context, then the system would have had to reserve the larger memory require-
ment for the duration of both pipeline stages. By scheduling them as separate actions, however, the
larger memory reservation was needed only for the duration of the Trimmomatic stage. Running
in separate actions is enabled by providing access to shared, file based storage.

Figure 5.9 shows the end-to-end runtimes of the pipeline. The pipeline ran fastest on F3,
ranging from 8% to 34% faster than on other storage systems for the sequential mode, and 9% to
47% faster for the pipelined mode. Note that for the pipelined mode, MinlO results are not shown
because it is incapable of being run in this mode (simultaneous reading and writing). The pipeline
ran slowest on MinlO, not surprising since the pipeline writes a large amount of data during the
Cutadapt stage and MinlO has the worst write performance of all evaluated storage systems.

NFS performed similarly to F3, running only 8% slower. There are two factors that contribute
to this: the first is that the size of the data used in the experiment is small. This means that the time
spent on I/O compared to the overall runtime is relatively small, and so improvements to that I/O
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Figure 5.9: Runtime of Cutadapt + Trimmomatic pipeline. F3 was layered on top of an unreplicated
CephFS volume.

time have a small impact on the larger runtime.

Second, the experiment was conducted in what are close to “ideal” conditions for NFS: only
a single client and no other network traffic. This allowed the data transfers that take place during
the experiment to utilize the entire network capacity. As a quick test, we used iperf to generate
network traffic and re-ran the experiment for NFS: at 50% network utilization F3 performs 16%
faster than NFS, 25% better at 75% utilization, and 59% better at 90% utilization. All networked
file systems will be subject to performance variation based on the overall network utilization. F3,
by using local disks and data locality scheduling, avoids this problem—performing relatively better
and better as the network gets more congested.

5.7 Conclusion
Serverless platforms have been steadily growing in popularity. Although so far they have been

limited to relatively simple web-based tasks, users and researchers are beginning to appreciate
the potential of serverless platforms’ on-demand computing capabilities. As serverless platforms
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make the shift to being a platform for any generic task, two significant problems remain: access to
storage and data transfer.

Some advanced and existing applications require access to file-based storage. To support these
applications, serverless platforms need to allow attaching to file-based storage systems. However,
existing storage systems were not designed with serverless applications in mind and lack key fea-
tures that would accelerate the kind of data transfers commonly found in serverless environments:
(1) support for ephemeral data, (2) data locality-aware action scheduling, and (3) support for effi-
cient simultaneous data access (i.e., reading files as they are written).

In this chapter, we presented F3, a file system that layers on top of existing storage systems
to provide these three key data-transfer features. We additionally described modifications to an
open source serverless platform, OpenWhisk, to enable attachment of file-based storage and take
advantage of data locality hints provided by F3 when scheduling actions. We evaluated F3 and
showed that it is capable of 2.0-6.5x faster write bandwidths and 1.8-2.3x better read band-
widths compared to existing storage systems. Combined with our modifications to OpenWhisk,
we demonstrated that F3’s data locality hints totally eliminating network traffic caused by data
transfers, by enabling OpenWhisk to schedule actions on the same node as the action’s data.
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Chapter 6

Balancing Costs and Durability for
Serverless Data

Durability features such as replication or erasure coding serve an important role in storage systems,
enabling users to store data without fear of loss due to device failures. However, these durability
features come with a cost, in terms of storage, network traffic, and computational overheads. For
most data, loss is a catastrophic event and so these overheads are acceptable. However, some data
tolerates low durability and does not need the high level of durability that most storage systems
provide.

Identifying the proper level of durability for a piece of data is difficult, especially since it is
often not clear how to determine the cost of loss. For some data used in serverless applications,
however, this cost is relatively straightforward to calculate: serverless functions are often required
to be idempotent, meaning that the data produced by them can be re-created by re-running the
function. The cost of losing a piece of data then is merely the cost of re-running the function that
originally created the data.

In this chapter, we explore the tradeoff between the cost of storing data durably and the cost
to re-create data. We focus on serverless data because its ability to be recreated makes it possible
to assign a cost to its loss. We develop a mathematical model that relates compute costs, storage
costs, and application-specific parameters to calculate the cost-optimal placement of data. We also
develop an execution framework capable of handling lost data transparently, enabling applications
to use lower-durability storage with no additional burden on the developer. Next, we show how
different factors such as failure rate and compute costs affect the placement decision. We find that
thanks to the relatively short lifetime of serverless data, the probability of data loss even on low-
durability storage is fairly low. Finally, we use the model to place data for several applications,
including a video-transcoding application and an image-assembly application. We show that our
model can predict execution costs within 7% of actual execution costs, and can reduce storage
costs by up to 3 x while never exceeding baseline costs.
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6.1 Introduction

It is a universal truth in storage that device failures will happen: hard disks or SSDs fail, and
their data is lost. On an individual basis, these failures are infrequent, with annual failure rates
typically ranging from 0.1-5% [174, 175, 173, 143]. However, at large scale, they become a
constant issue that must be contended with: clusters with tens or hundreds of thousands of disks are
now common [174, 135, 143, 208] and data sizes are increasing [198, 61], resulting in potentially
tens of thousands of failures each year.

There is a large body of work on techniques for mitigating such failures. Replication, erasure
coding, and regular backups—are all different technologies or practices that accomplish the same
goal: preventing data loss in the event of a device failure. Some of these, especially regular back-
ups, can help prevent data loss in the event of other kinds of incidents like operator mistakes or
cyberattack. Although the methods differ, they all accomplish this essentially by spreading multi-
ple (full or partial) copies of the data across multiple storage devices so that loss of any one device
does not result in data loss. By increasing the redundancy of the data and the number of devices
the data are spread across, it is possible to withstand the loss of a large number of disks without
loss of the data. The degree to which a storage system can withstand faults without data loss is
referred to as its durability (see Section 5.2).

In general, the degree of durability desired for data is assumed to be high. Cloud storage sys-
tems advertise how many “nines” of durability they offer, typically at least nine but sometimes even
up to sixteen “nines” of durability (i.e., 99.9999999% and 99.99999999999999%, respectively).
At these high degrees of durability, data loss due to device failure is exceedingly rare. Note, how-
ever, that durability calculations usually consider data loss only due to device failures; loss due
to operator error or large scale disaster (e.g., destruction of an entire data center) are not factored
in [205, 160, 3, 20].

This safety comes at a cost: duplicating data and spreading it across multiple disks (e.g., racks
and even regional data centers) incurs overhead in terms of both space and cost. Depending on
the durability scheme being used, it may also impact performance. For most data, the additional
costs are an acceptable price to pay for safety against data loss. However, some data might not
necessarily require such high durability. For example, suppose a dataset is copied from a central
repository to a local data center. If the local data center loses the dataset, it can simply re-download
it from the central repository and incur some latency. For such data, some amount of loss may be
tolerable and the additional costs of full durability may be not justified.

The challenge is that while loss of some data may be tolerable, it is hard to assign a cost to its
loss. This in turn makes it difficult to calculate exactly how much loss is acceptable and therefore
what level of durability is needed. Additionally, the response to data loss depends on the specifics
of the data and the application. For instance, if a backup is lost, there may be no further action
necessary, but if a local dataset is lost, the appropriate response is to re-download it. The lack of
standardized response to lost data makes it tempting to simply use high-durability storage and not
have to worry about which actions are needed after losing it.

Serverless computing offers a potential solution to this challenge. Serverless platforms often
require individual actions to be idempotent [13, 86, 31, 51, 64], meaning that the data created by
these actions can be re-created by simply re-running the action. This provides a standard response
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Figure 6.1: Example serverless application

to handling lost data, and makes assigning a cost to lost data straightforward: it is the cost to
re-run the action. In the event that a function cannot be idempotent, for example, if it interacts
with an external service, the suggestion is normally to use a workaround such as a helper library
to achieve the functional equivalence of idempotency [64, 27]. The recent rise in popularity of
serverless platforms provides us an opportunity to re-visit the durability assumptions that have
been traditionally made.

In this paper we focus specifically on the durability of data typical to many serverless applica-
tions. When choosing the necessary level of durability for serverless data, we must make a tradeoff
between the greater storage cost incurred by higher-durability storage schemes and the additional
compute cost required to re-create lost data. The tradeoff is intuitively simple: if re-creating the
data is costly or not possible because the function is not idempotent, then highly durable, more ex-
pensive storage is preferred. Conversely, if re-creating the data is cheap, then cheaper, less durable
storage is preferable.

For example, consider the object-detection pipeline depicted in Figure 6.1. The first action
converts the input image to grayscale, creating Image’. Image’ is then processed by a de-noising
step, producing data Image”. Finally, an object detection step reads Image”. If the Grayscale
action is short and the price of compute is cheap, then it might be most cost effective to place
Image’ in cheaper, low-durability storage and re-run Grayscale whenever a storage failure causes
Image’ to be lost. Conversely, if compute is expensive or Grayscale has a long run time, it may be
more cost effective to place Image’ in costlier, highly-durable storage to avoid needing to re-run
the expensive Grayscale action.

In practice, making this tradeoff is challenging. The optimal balance between compute and
storage costs depends on multiple factors: (1) the cost to re-create the data (i.e., the time to re-run
the action and the cost of computation in dollars per time), (2) the lifetime of the data (how long
the data will be needed), (3) the size of the data, (4) the cost of each storage option (in dollars per
lifetime per size), and (5) the durability of each storage option (i.e., the probability that data will
be lost and need to be re-computed).
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Further complicating the decision is the fact that multiple actions may need to be re-run to
re-compute data. If Image” were to be lost before or while the object-detection action runs, then
Image” would need to be re-created by re-running the de-noising action. However, if Image’ was
also lost, then the grayscaling action must also be re-run before the de-noising action can re-run to
re-create Image”.

This complexity means that there is no single storage option that fits all applications and all
environments. It is also not sufficient to simply look at one or two parameters: e.g., the appropriate
storage for an application may change when new storage or compute choices become available,
or when the input size changes. All factors must be considered to make good storage-placement
decisions. We have created a mathematical model, SDCM (Storage Durability Costs Model), that
assists in making this decision. SDCM takes as input a Directed Acyclic Graph (DAG) structured
serverless application, the size of the input to the application, the cost of compute at each stage, and
the available storage options. SDCM then considers the parameters described above and outputs
the cheapest storage choice for each stage of the application DAG. We focus on DAG structured
serverless applications due to the requirement that we are able to calculate all of the dependencies
of a piece of data, in order to enable re-creating that data if lost. Applications structured as a DAG
satisfy this requirement.

We show that under a large number of circumstances, low-durability storage is actually more
cost effective than higher cost, higher-durability storage.

To avoid placing the burden of dealing with lost data on the developer, we implement an ex-
ecution system that automatically detects when data has been lost and re-runs the appropriate
function(s) to re-create the lost data. It does so in a way that is transparent to the application. This
allows developers to take advantage of lower-durability storage without requiring special handling
for lost data in their applications. Our system additionally handles making placement decisions for
an application’s data, using SDCM.

In summary, our contributions are as follows:

* SDCM, a mathematical model that can predict the execution costs of a DAG-structured
serverless application.

* An execution system for running DAG-structured serverless applications, capable of auto-
matically recovering in the event of lost data.

* Evaluation of SDCM, showing that we can accurately predict DAG execution costs within
7% of actual costs and reduce storage costs by up to 3x.

* Analysis of several model parameters, showing that under many conditions low-durability
storage is more cost effective than high-durability storage.

6.2 Background & Motivation

Data durability Storage systems employ various techniques to hide low reliability of the under-
lying storage devices from users. These techniques involve some degree of overhead: the only
current way to prevent data loss in the event of a disk failure is by ensuring that the data stored on
that disk can be recreated from additional copies elsewhere in the storage cluster. This overhead
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is incurred in the form of additional disk utilization, slower data access times, additional network
traffic, and possibly additional CPU utilization.

Each of these techniques has parameters that dictate the number of device failures it can with-
stand before data loss occurs. For example, with 3-way replication, data is copied onto three
separate disks and can therefore withstand up to two failed disks before data loss. RAIDS uses a
single parity disk and can therefore withstand the loss of one device in the RAID array, whereas
RAIDG6 uses two parity disks and can therefore withstand the loss of two disks. When a disk fails,
usually a replacement disk will be added and the storage system will redistribute data to ensure
the required redundancy is restored. This process is referred to as “rebuilding” the storage array,
and can take several hours depending on the size of the disks, size of the array, and the bandwidth
dedicated to the rebuild process. If additional failures occur during this rebuild time, then data
could be lost.

We can calculate the probability of some number of disk failures during the rebuild time using
the annual failure rate of the storage devices. For example, if it takes three hours to rebuild a RAIDS
storage system, then we can calculate the probability that two disk failures occur within that three-
hour rebuild window. This is typically calculated over some period of time (e.g., the probability
that within one year, two failures occur within the same rebuild window). The resulting probability
is the probability that over a year, the storage system will lose some amount of data. The quantity
of data loss depends on factors such as how the data is distributed across the array and how much
progress the rebuild process has made before the subsequent failure occurs.

The inverse of this probability, the probability of data loss not occurring over a year, is referred
to as the storage system’s durability. A simple, commonly used formula for calculating durability
is roughly 1 — (AF R x MTT R)f¢ilure tolerance 127 205], where AFR is the storage devices’ annual
failure rate, MTTR is the mean time to repair a failed device, and the failure tolerance is the number
of devices that can fail simultaneously without losing data.

As the amount of data grows, it is increasingly important to reduce storage usage where possi-
ble. Recent surveys show that rising cloud storage costs are causing companies to search for new
ways to store or reduce their data footprint [122, 171].

For most data, the overheads incurred by durability features are unavoidable: losing the data is
not an option. However, any ephemeral data passed between the actions in a serverless application
has two traits that enable us to avoid the overheads of durability: it is short lived and it can be
re-created if lost.

Ephemeral serverless data is often short lived, with lifetimes on the order of seconds to min-
utes [99, 97]. This limits the exposure any one piece of data has to the unreliability of the storage
system. In other words, the likelihood of a failure (e.g., disk failure, server crash) that results in
data loss, occurring during the short time period when the data is needed, is quite low. This is the
case even if the storage system is unreliable, and lacks durability features such as replication.

Limits of low-durability storage How much less durable can low-durability storage be while
still being more cost effective than higher-durability storage? Figure 6.2 shows the storage plus
re-compute costs of a DAG discussed in further detail in Section 6.5.2. We compare the cost of
two storage classes, one with high durability and the other with increasingly high failure rate. We
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Figure 6.2: Storage and re-execution costs for high and low-durability storage. The failure rate
for high-durability storage is zero. The failure rate of the low-durability storage varies, increasing
along the X-axis. More details about the experiment settings in Section 6.2.

price the low-durability storage at 3x cheaper than the high-durability storage.

We see that the failure rate of the low-durability storage can be as high as 10,000 (bytes lost
per hour) before the re-compute costs outstrip the cost savings realized by using lower-durability
storage.

Handling lost data Serverless actions are required in most cases to be idempotent [125], mean-
ing that re-running an action multiple times will produce the same data each time. Therefore, in the
unlikely chance that data is lost while it is still needed, the application can recover by re-running
the action that originally created the lost data.

Although it might make economic sense to use lower-durability storage, doing so does intro-
duce some additional complexity. In particular, developers usually operate under the assumption
that if they put data into storage, the data will be there later when they need to retrieve it. Using
lower-durability storage breaks this assumption, as now the data may be lost between storage and
retrieval. Dealing with this possibility requires several actions: (1) identify when an action has
failed, (2) recognize that the action has failed due to missing data, (3) determine the action that
originally created the now-missing data, (4) re-run that action to re-create the missing data, and
finally, (5) re-run the action that failed due to missing data.

Currently, no execution engine or framework for serverless is capable of automatically per-
forming the above steps. However, as we show in this paper, it is possible to develop an execution
system that does handle these actions. Such an execution system enables the use of lower-durability
storage, without increasing the burden on the application developer.

6.2.1 Target Use Cases

SDCM aims to reduce storage costs while executing serverless DAGs. However, not all serverless
applications are compatible or good fits for use with SDCM. Table 6.1 lists some criteria that help
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No. Trait Compatible | Suitable
with SDCM | for SDCM
1 Data cannot be re-created b 4 b 4
2 Unpredictable parameters X b 4
3 Latency sensitive v X
4 DAG structured v v
5 | Uses high-durability storage v v
6 Large amount of data v v

Table 6.1: Application traits that determine if the application is compatible with SDCM, and can
indicate whether SDCM will reduce storage costs.

determine whether or not a serverless application can be used with SDCM, and whether or not the
application can expect to benefit from using SDCM. We expand on these criteria here:

1.

Data cannot be re-created: SDCM assumes that data can be re-created by re-running the
function that originally created it. If this is not the case, the tradeoff SDCM makes between
cheaper storage, lower-durability storage and re-execution costs does not make sense.

Unpredictable parameters: The inputs to SDCM include data such as the size and lifetimes
of data. These inputs can be predicted using prior profiling runs of an application with vari-
ous sized inputs. However, if the size or lifetime of the data is unpredictable, then knowing
these model inputs will be impossible.

Latency sensitive: An application that has strict latency requirements for all requests may
not be suitable for use with SDCM, since there is a chance that a request will encounter
missing data that must be re-created. In this case, the request will experience increased
latency as it must wait for the data to be re-created.

DAG structured: SDCM calculates the expected cost of the entire application DAG and
chooses the cheapest storage option. If the application is not DAG structured, SDCM will
be unable to calculate the costs associated with re-creating data, if doing so will require re-
executing parent actions as well. SDCM will still be able to balance re-execution and storage
costs for an individual action and the data that it produces, but may underestimate re-creation
costs for this reason.

. Uses high-durability storage: If the application is already using low-durability storage,

then the opportunity for lowering storage costs even further may be limited. However, if
there are tiers of even lower durability, cheaper storage that are cheaper than what is being
used currently, then SDCM would have an opportunity to potentially reduce storage costs.

. Large amount of data: The benefit SDCM provides is lower storage costs. If storage costs

are a small part of an application’s overall execution costs, then the total cost savings enabled
by SDCM will also be small. SDCM will still work with these applications, but the benefit
may be limited.
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In general, applications that are not currently using low-durability storage and process large
amounts of data are most likely to see storage cost reductions with SDCM. Examples of these
applications might be a genomic processing pipeline [134] or a machine-learning preprocessing
pipeline [189, 71]. Examples of applications that would not be suitable for use with SDCM are
applications that use an in-memory key-value store (e.g., Redis) for passing data [162], or ap-
plications that have strict requirements on response time (e.g., applications that handle user re-
quests [26, 19]).

6.3 Execution Costs Model

The tradeoff we examine is between the additional cost to store data more durably and the ad-
ditional cost to re-create the data, should it be lost by lower-durability storage. We developed a
mathematical model, SDCM, that balances these two costs, taking into account the probability that
data is lost by a less-durable storage system. SDCM optimizes for system level costs, choosing
the storage class for each piece of intermediate data created during the execution of a serverless
application, that minimizes the total cost to execute the application.

We chose to develop a mathematical model, rather than using a more sophisticated machine-
learning- or reinforcement-based model, for several reasons: (1) SDCM provides a closed-form
solution to the tradeoff, which enables efficient decision making even in the face of large appli-
cation DAGs with many storage options, (2) we found that SDCM is sufficient for making good
storage-placement decisions and so using a more complicated machine-learning based model was
unnecessary, and (3) the amount of data necessary to train a machine-learning model might not be
readily available or easy to collect. Still, a machine learning based approach could also be feasible.
We leave the investigation of such approaches to future work.

In this section we first describe the terms used by SDCM, then describe how SDCM calculates
per-function and per-DAG costs, and finally describe how we use SDCM to minimize end-to-end
DAG execution costs.

Model definitions Consider a serverless application structured as a Directed Acyclic Graph
(DAG) consisting of several nodes, denoted by A. A node in this graph represents a function
that is executed on a serverless platform. Each node, say n; € N, has zero (if a root node), one, or
multiple parent nodes, denoted by Pa(n;) = {j : j being a parent of n;}. Also, each node n; has
zero (if a leaf node) or more children, denoted by Ch(n;). Let ny denote the root, and {n, : £ € L}
denote all the leaves.

Each node n; is associated with:

* a runtime r in seconds and compute class with cost ¢ $ per second. The compute cost
incurred by executing the node once 1S Ceompute = 7 X C.

* alist of data items produced by the node, X . Each data item has an associated lifetime x; in
seconds and size x in bytes.
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* a set of available storage classes, denoted by D, and the set of storage classes chosen for
each of the data produced by the node, denoted by d,,,. Each storage class in the set d,,, has
a cost ¢q, $ per byte-second and a probability of failure, explained below.

* i-specific cost associated with each set of storage class choices, calculated as cgorage =

Y owex Tl X Ty X Cd,, -
* abase cost, assuming no failures, denoted by C'(n;, d) and calculated as Ceompute + Cstorage-
* a failure probability associated with a set of storage class choices d € D, denoted by pq.

* an expected cost E(cost()), calculated using the base cost and probability of failure as ex-
plained below. The expected cost for a particular node and a choice of storage classes is
expressed as E(cost(n;,dy,)).

Here, a failure means that some data produced by the node has been lost as a result of a failure
of the storage system. Since the data has been lost, subsequent functions that rely on the lost data
cannot execute, and so the node must be re-executed to re-create the lost data. We assume that the
re-execution recurs until it succeeds. We refer to the probability failure (i.e., the probability that
data is lost as a result of a storage system failure at some point during the lifetime of the data) as
IP; and the probability of success as P;.

We define the system-level cost to be the expected total costs of all nodes to successfully
perform one execution.

Calculating DAG execution costs We use a top-to-bottom procedure to recursively calculate the
system-level cost. We first evaluate the root node n( and calculate the expected cost for executing
this node:

E(cost(ng,dy,))

=P, x C(ng,dy,) + Py x {C(no,dno) + E(cost(no,dno))} (6.1)

Solving the above equation (6.1) leads to

C(no,dno) o C<n0>dno)

E(cost d,,)) = =

(6.2)

If we assume that each node keeps its data until the end of the DAG’s execution, then Equa-
tion 6.2 can also be used for calculating the expected cost of a generic node.

Correlated failures If data for one node has been lost, it might be likely that data for other nodes
has been lost as well. In the worst case, we might assume that if data for one node has been lost,
then the entire DAG’s data has been lost. In this worst-case scenario, when calculating the expected
cost of a node, we must consider the cost of re-running the entire DAG up until that node, in order
to re-create the node’s data.
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For a generic node, denoted by n, recall that its parents are Pa(n) = {7 : j being a parent of n}.
We define Pa")(n) = Pa(- - - Pa(n)) (r times composition) as the ancestor of 7 up to  levels. For
example, if n is a child of ng, we have Pa)(n) = ng. By a similar argument as in Equation 6.2,
we have

E(cost(n,d,)) =Py, x C(n,d,)

+ P x {C(n, d,) + E(cost(n,d,))

+ E(cost(Pa(n), dpa(1>(n))) } (6.3)

Solving the above leads to

E(cost(n,d,)

{C’(n, d,) + P;E(cost(Pa(n), dPa<1>(n))) }

1-P,
{C’(n, d,) + pa, E(cost(Pa(n), dpau)(n))) }
— (6.4)
1 — pa,

where E(cost(Pa(n), dPa(l)(n))) is the sum of the expected costs of all the immediate parents of
node n, namely

E(cost(Pa(n), dp,m(,))) :E( Z cost(j,dj)). (6.5)

J€Pa;(n)

This establishes a recursion between E(cost(n,d,)) and E(cost(Pa(n),dpyn))). Using the re-
cursion in Equation 6.4 and the expected cost of the root node (Equation 6.1), we can calculate
E(cost(n,d,)) for any particular node n.

Our implementation of SDCM allows a user to choose between using Equations 6.2 and 6.4.

Minimizing DAG execution costs The expected system-level cost is

System-cost(d,,n € N) = Z E(cost(n,d,)). (6.6)
neN
Based on this formula for system-level cost, we can evaluate the cost associated with any set
of storage placement decisions, namely d,, for all n € N. We can then make storage-placement

decisions to minimize the cost to execute the serverless application. In other words, we want to
solve

min N System-cost(d,,,n € N). (6.7)

dp,€D,ne

71



CHAPTER 6. BALANCING COSTS AND DURABILITY FOR SERVERLESS DATA

This is in general a challenging problem because (i) the decisions made by different nodes are
interconnected, and (ii) a node may not be able to infer the optimal decision by excluding other
nodes (e.g., parent or children nodes). For the non-correlated case (Equation 6.2) this is O(cn),
and for the correlated case (Equation 6.4) it is O(c™), where c is the cost to calculate a single node
cost and n is the number of nodes in a DAG. In our experience both ¢ and n tend to be low, and
this value takes under a minute to calculate.

We provide a greedy algorithm that will iteratively reduce the system cost and converge to a
local minimum. We use a node-wise coordinate-decent procedure to optimize each node’s decision,
fixing other nodes’ decisions at each iteration. More specifically, we solve

dl,f/lie% System-cost(d,,,n € N) (6.8)
by fixing d,,,n € N — {n’}, and iterating over all n’ € N. To solve Equation 6.8, we note that
the node n’ will only be invoked by its descendants instead of ancestors, and that the number of
invoking n’ is irrelevant with a node’s own decision. So, solving Equation 6.8 is equivalent to
minimizing the cost of a single successful execution of n’, namely
mi% E(cost(n',d,)) (6.9)

n!

which can be easily solved by evaluating E(cost(n’, d)) for each d € D and choosing the one that
minimizes it.

6.3.1 Future Model Extensions

There are several ways in which our model could be enhanced or extended, which we hope to
address in future work. We describe the two most significant extensions here. First, our model
currently does not consider the performance differences that might exist between storage classes.
Lower-durability storage is likely to have higher performance [134] as there are no overheads from
replication or erasure coding. Depending on the data usage of an application, these performance
differences can result in significant differences in runtime. Lower runtime results in lower compute
costs, as well as lower storage costs and a lower likelihood of data loss. All of these factors can
influence the model’s placement decisions.

Second, currently our model simply selects the storage placements that result in the lowest
DAG execution costs. However, in some cases this might not be acceptable. For example, applica-
tions might have real-time constraints that require a response within a certain deadline. For these
applications, occasionally re-running functions due to lost data might add an unacceptable amount
of execution time. These constraints would work in tandem with the aforementioned performance
extensions. Higher performance, lower-durability storage may be able to meet runtime constraints
even with periodic re-executions. Conversely, lower-durability storage that is not higher perfor-
mance may not meet these constraints.

Finally, there are other ways in which SDCM could be used besides for placing data. For
instance, it could be used to decide when to delete data: if the predicted cost to store the data is
more than the predicted cost to re-create the data, then the data should be deleted and re-created
when needed. SDCM can help make this decision.

72



CHAPTER 6. BALANCING COSTS AND DURABILITY FOR SERVERLESS DATA

Ceph Object
Store

OpenWhisk
Action

(3) Database

Figure 6.3: Design of execution system

6.4 Design & Implementation

SDCM relies on tracking several application metrics, such as the runtime of each action for a given
input size and the size and lifetime of data generated by each action. In addition, we assume that
it is possible to re-create data lost by a storage system by re-running the action that created it.
Existing serverless compute platforms do not support tracking all of the metrics we require, and
have no way of tracking which data is created by which specific invocation of an action. This
makes it impossible to automatically re-generate data that has been lost, a key capability necessary
to using lower-durability storage.

We therefore developed an execution system that handles both collecting the metrics that
SDCM requires as well as handling re-running actions to re-create lost data. We designed our
execution system to run serverless applications on OpenWhisk, an open-source serverless plat-
form. We installed OpenWhisk on a Kubernetes cluster. For storage we use a Ceph Object Store,
which we configured to have multiple storage classes with different degrees of replication. Fig-
ure 4.2 depicts the components that are typical of a serverless cluster in blue. We extended these
with several additional components and scripts, colored in green, in Figure 4.2. These components
include mitmproxy [140] @), MongoDB [141] @), and additional scripts. In total, our execution
system consists of around 400 lines of Go and 1,535 lines of Python.

Running applications The DAG structured applications run on our execution system consist of
a series of OpenWhisk actions, with one action per DAG step—although a step may contain several
instances of the same action that run in parallel. Users start by defining their DAG in YAML @),
specifying each step. The specification for each step in the DAG includes the OpenWhisk action
and arguments used by that step, as well as the input and output data consumed and produced by
that step.

Our script then converts this YAML specification into a runnable shell script @. Based on
the inputs and outputs of each DAG step, the script orders the OpenWhisk action invocations and
runs actions in parallel when possible. In addition to invoking actions, the shell script creates the
storage bucket used by the application. After the application finishes, it will log the lifetime and
size of all objects in the bucket in our metrics and tracking database ).

OpenWhisk actions are not invoked directly, but are instead run via a Python runner @). This
runner is responsible for logging metrics such as the runtime of each action, as well as for passing
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Name | Durability scheme | Cost ($ / GB-hour) | NOMDL,
SC1 | 3-way replication 3.19 x 107° 0
SC2 None 1.06 x 107° 9.8 x 1077

Table 6.2: Hypothetical storage classes

additional arguments to each OpenWhisk action. These arguments include the size of the input to
the DAG and a unique identifier for the specific action invocation.

These arguments are consumed by a library included by each OpenWhisk action @). This
library also contains a function for uploading data to an object store, which adds additional headers
that specify information such as the action associated with the object being uploaded.

We use a proxy (@ between the application and the Ceph Object Store to track data accesses.
We track when an object is created and when it is last accessed, what action created an object,
and when an action tries to access a missing object (i.e., when an action’s request receives a 404
response code from the Ceph Object Store).

The proxy also has the role of adding storage class choice to the object PUT request. It looks
up the storage class chosen for the object in the tracking database, and then specifies this storage
class using the X-Amz—-Storage—Class HTTP header. This header is the standard way of
specifying storage class placement for an object, used by both Amazon S3 and by Ceph Object
Store [169, 38].

Storage class selection The application is first run in a profiling mode to capture runtime and
data lifetime, as well as size metrics. A script then takes these metrics and selects a storage class
for each of the objects produced by the DAG, using Equation 6.9 described in Section 6.3. The
script saves these selections in the database @).

Failure handling If an action submits a GET request for an object which returns a 404 code (i.e.,
the object is missing), the proxy @@ will record in the database the action and the object that was
missing. The Python runner @) will see that the action failed, and will check the database if the
proxy recorded any missing objects for the failed action. Upon finding a missing object, the Python
runner looks up the action that created the object (recorded by the proxy) and re-runs that action
to re-create the data. Finally, the Python runner will re-run any failed actions that depended on the
missing data.

6.4.1 Hypothetical storage classes

Storage systems that are available in the cloud currently are highly-durable and come with the
associated cost premiums. Therefore, using SDCM to select between existing storage options
would have limited utility. Instead, we create hypothetical storage classes that have lower durability
and costs. We then use SDCM to select between these lower-durability storage classes and more
traditional, high-durability storage classes. Our hypothetical storage classes are listed in Table 6.2
and our methodology for calculating their costs and failure rates are described below. We define
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two hypothetical storage classes with two levels of durability: one that uses 3-way replication, and
another that uses no durability features (i.e., no replication or erasure coding). Note that other
classes can be easily created and supported by SDCM.

Cost We base the prices of our hypothetical storage classes on actual cloud storage pricing. Our
durable storage class is priced at the price of Amazon’s S3 storage (as of January 2024). Our
low-durability storage class is priced at a third of this price, based on the cost savings achieved by
using unreplicated storage versus using triply replicated storage.

Failure rate Calculating the failure rate of a storage configuration is a complex task. Markov
models are frequently used to model the state of the storage system as disks fail and are re-
paired [88, 76]. These Markov models are then used calculate statistics such as the mean time
to data loss. However, these models often suffer from invalid assumptions and other inaccura-
cies [75, 57]. We instead use a simulator developed by Greenan [75] that aims to address the issues
common to Markovian mean time to data loss analyses.

The simulator calculates the metric NOMDL, or Normalized Magnitude of Data Loss. This
metric is expressed as bytes lost per storage system capacity for a certain time period, which for us
was one hour. NOMDL is inversely related to durability: a storage system with a high NOMDL
has low durability, and therefore, a higher likelihood of losing data.

SDCM uses the calculated NOMDL values when considering where to place a piece of data
created by an application. SDCM calculates the data’s anticipated size and lifetime; then, for each
storage class’s pre-computed NOMDL value, SDCM calculates the probability that the data will
be lost during its lifetime. The data’s size is normalized to the size of the cluster, just like the
NOMDL value was. The data’s lifetime is used to scale the NOMDL value: for example, if the
expected lifetime is 30 minutes, then the expected data lost during that time is equal to half of the
pre-computed NOMDL, since that was pre-computed based on a one hour mission time.

6.5 Evaluation

In this section, we demonstrate using SDCM to make storage placement decisions and predict
DAG execution costs. For all experiments, we use our execution system that handles automatically
re-creating lost data.

In Section 6.5.1 we evaluate SDCM’s ability to make accurate predictions of DAG execution
costs. In Section 6.5.2 we explore how changing model and environmental parameters impacts
SDCM’s decisions. In Section 6.5.3 we provide an analysis of the impact that re-executing actions
has on overall DAG runtimes. Finally, in Section 6.5.4, we demonstrate using SDCM and an
execution system for running two real world applications.

6.5.1 Model Accuracy

We evaluated SDCM by executing the DAG depicted in Figure 6.4. Each function in the DAG
simply makes a copy of its input data, then exits. We evaluate several factors, including DAG
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Figure 6.4: DAG Used for Accuracy Evaluation

depth, fan-out degree, and input size: three different fan-out degrees, five depths, and three input
sizes for a total of 45 different DAGs. We measured the actual runtime of each function in the
application, as well as the size and lifetime of each piece of data produced by the application.
From these measurements and by choosing compute and storage costs, we can calculate the cost
to execute the DAG. We compare this actual value with the cost predicted by SDCM.

Since SDCM accounts for failures and considers the cost to recompute data, our evaluation
must also include failures. We simulate data failures by randomly deleting data between each
stage of the DAG. This forces subsequent stages that rely on the deleted data to fail. Our execution
system (see Section 6.4) identifies that a function failed due to missing data, identifies the function
responsible for originally creating that data, and re-runs it. After successfully re-creating the data,
our execution system re-runs the original function that failed due to the missing data. We delete
data based on the NOMDL value of the storage where the data has been placed. Since even our
non-durable storage class has a fairly low rate of data loss, for evaluation purposes we artificially
inflated the data loss rate to 10,000 bytes-per-hour for a 100-disk cluster. We do this only in this
subsection, for the purpose of demonstrating the accuracy of SDCM.

We ran each of the 45 DAGs at least ten times to ensure that the variation of runtimes across
each DAG execution is low. In all but two cases the runtime variation was less than 10%. In those
two cases, it was 12.8% and 11.1%. The high variation in these cases is due to data loss resulting
in functions needing to be re-run. This produces a bi-modal distribution of runtimes, with some
DAGs executing entirely with no data loss and others with re-executions adding to their overall
runtime. The two most extreme cases are shown in Figure 6.5. On top is the DAG with a depth of
three and fan out of one, with a 1024MB input. The variation across runtimes for this DAG was
12.8%, and we see that this is due to a small number of runs encountering errors requiring re-runs,
resulting in a much higher runtime. The situation is reversed for the lower plot: in this case the
DAG depth was 4, fan-out was ten, and the input was 1024MB. The runtimes for this DAG had a
variation of 11.1%, but now this high variance is due to most runs encountering some errors, and a
small few runs not encountering any errors.

We ran SDCM with the assumption that all data is placed in our high failure rate (NOMDL,;
= 10,000) storage. We use the price of SC2 from Section 6.4.1, $1.06 x 1075 per GB-hour, as the
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Figure 6.5: Histograms of DAG runtimes for the two DAGs with highest runtime variance. The
bimodal distribution of runtimes is a result of some DAG runs encountering errors and other runs
encountering no errors.

price for this storage. For compute costs, we use $1.67 x 10~ per second, roughly equivalent to
the per-second cost of a 1IGB AWS Lambda instance. We found, however, that storage cost and
compute costs do not impact SDCM’s accuracy. Higher storage and compute costs would amplify
errors in predictions of runtime, data size, data lifetime, and data loss. These errors are small
enough that changes in the underlying compute and storage costs do not significantly impact the
accuracy of the whole-DAG cost prediction.

Figure 6.6 shows results for IMB, 128MB, and 1024MB sized inputs. Each figure shows the
accuracy as a percentage on the Y-axis. The figures plot the accuracy as a function of the total
number of DAG stages, DAG depth (3 through 7 stages) and fan out degree (1, 5, and 10).

In all cases, we find that SDCM was accurate within 7% of the actual DAG execution costs.
For 128MB and IMB input sizes we find that SDCM is within +£5% of actual DAG execution
costs. This is better than similar studies, which predicted DAG execution properties to within
15% [125, 126].

Note that this accuracy is with respect to the average DAG execution costs, and includes the
cost of re-executions due to lost data amortized across all DAG executions. Therefore, when
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Figure 6.6: Accuracy of SDCM for three different input sizes.
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Figure 6.7: DAG used for model parameters exploration. The data produced by each step of the
DAG was used by each subsequent step.

comparing SDCM’s prediction to any individual DAG execution, SDCM'’s prediction will be either
slightly higher than the actual cost (if there were no data losses encountered during the DAG’s
execution) or lower than the actual cost (if the DAG’s execution included re-executions due to data
loss).

6.5.2 Model Parameters

We now describe the impact that different parameters have on SDCM’s storage class decisions.
We use a simple five-stage DAG for exploring these parameters, shown in Figure 6.7. Each step
produced 1MB of output, and each step’s output was used by each subsequent step (so the lifetime
of data A is highest, and the lifetime of data E is lowest). The DAG’s actions simply make a copy of
the input data, and ran for five seconds. SDCM chooses between the two storage classes described
in Section 6.4.1.

Compute cost We first look at how the cost of compute impacts storage class placement deci-
sions. Figure 6.8a shows the storage component of the total DAG execution cost (Y-axis), versus
the cost of compute (X-axis). The storage component includes both the cost of storage for data
produced by the DAG, as well as the additional cost required to re-run data in the event of data
loss. “Model” is this value as calculated by SDCM, using storage classes that SDCM determined
given the lowest total DAG execution cost. It includes the additional cost predicted by SDCM to
be incurred as a result of losing data and needing to re-run part(s) of the DAG.

“Baseline” is the storage component of the total cost to execute the DAG if the most-durable
storage class is used for all the DAG’s data.

On the low end of the X axis is cheap compute, roughly equivalent to the dollar-per-second
cost of an EC2 Spot Instance virtual machine. The high end is more expensive than any available
cloud compute. Intuitively, at these higher compute costs, we might expect SDCM to choose
more-durable storage, as the cost to re-compute data becomes more prohibitive. However, for
all compute costs seen here, SDCM chooses the cheaper, less-durable storage for the DAG’s data
(SC2). We find that this is because the high compute cost is offset by the extremely low probability
of losing data: for the data produced by the DAG, the probability of loss is calculated to be between
1.9 x 1072 and 7.4 x 1072%.

Figure 6.8b shows what happens if we instead have 1TB of data produced at each stage, the
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(a) Storage costs during DAG execution vs cost of compute. Note the log scale on the X-axis.
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(b) Storage costs during DAG execution vs. cost of compute, if intermediate data is larger, longer lived, and
storage is less reliable. Note the log scale on the X-axis.
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(d) Storage costs during DAG execution vs price of SC1. Note the reversed (decreasing) X-axis.
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(e) Storage costs during DAG execution vs price of SC1, with high NOMDL,;, (10,000). Note the reversed
(decreasing) X-axis.

Figure 6.8: Impact of different parameters on SDCM storage class choice.

data’s lifetime was 1,000 longer, and SC2’s NOMDL,;, was increased by 1,000 x. The probabil-
ity of data loss now ranges from 1.7 x 1071° to 7.8 x 1071°, This makes SDCM more sensitive
to increases in compute cost, and we do indeed see that as the compute cost increases, SDCM
eventually selects more-durable storage to avoid the cost of re-compute.

NOMDL Next, we look at the impact a storage class’s NOMDL value has on SDCM'’s decisions.
We keep the NOMDL of the more-durable storage class (SC1) the same, but increase the NOMDL
value of the cheaper but less-durable storage class (SC2). Figure 6.8c shows the storage component
of the DAG execution cost on the Y axis with the NOMDL value of SC2 on the X axis.

We expect that as NOMDL value increases, eventually the cost of needing to frequently re-
create lost data will outweigh the cost savings from using cheaper storage. Indeed, once the
NOMDL value reaches 107!, SDCM switches from using SC2 to SC1 for all of the DAG’s data.

Storage price Finally, we evaluate what it would take for a more-durable storage class to be
cost-competitive with lower-durable storage. Figure 6.8d shows SDCM and baseline costs as we
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Figure 6.9: Impact of halving storage cost while doubling NOMDL,,,

decrease the cost of SC1 (i.e., our more-durable storage class). The baseline cost always uses SC1,
whereas SDCM cost chooses between SC1 and SC2 to minimize DAG execution costs. We see
therefore the baseline cost decrease as the cost of SC1 decreases. However, only once the cost of
SC1 reduces lower than the cost of SC2 does SDCM choose to use SC1. In other words, the cost
of SC1 needs to be reduced to that of SC2 in order for it to be cost-competitive with SC2. This is
due to the very low probability of failure, between 1.9 x 102! and 7.4 x 1072,

If we increase the NOMDL,;, of SC2 to 10,000, then the probability of failure (and therefore,
the cost due to re-executions) increases. This works to increase the price where SC1 becomes
more cost-effective than SC2, so that SCI can be slightly more expensive than SC2 (1.3 x 107°
vs 1.06 x 107° per GB-hour) and still be more cost effective overall. Given that cloud