
Balancing Costs and Durability for Serverless Data
Alex Merenstein∗, Xinran Wang†, Vasily Tarasov‡, Prajjawal Agarwal∗,

Scott Guthridge‡, Kapil Thakkar∗, Katherine Wu∗, Ali Anwar†, Erez Zadok∗
∗Stony Brook University, Stony Brook, NY
†University of Minnesota, Minneapolis, MN

‡IBM Research, Almaden, CA
{mmerenstein, prajagarwal, kathakkar, kaawu, ezk}@cs.stonybrook.edu,

{wang8740, aanwar}@umn.edu, {vtarasov, guthridg}@us.ibm.com

Abstract—Durability features such as replication or erasure
coding serve an important role in storage systems, enabling users
to store data without fear of loss due to device failures. However,
these durability features come with a cost, in terms of storage,
network traffic, and computational overheads. For most data,
loss is a catastrophic event and so these overheads are acceptable.
However, some data tolerates low durability and does not need
the high level of durability that most storage systems provide.

Identifying the proper level of durability for a piece of data
is difficult, especially since it is often not clear how to determine
the cost of loss. For some data used in serverless applications,
however, this cost is relatively straightforward to calculate:
serverless functions are often required to be idempotent, meaning
that the data produced by them can be re-created by re-running
the function. The cost of losing a piece of data then is merely the
cost of re-running the function that originally created the data.

In this paper, we explore the tradeoff between the cost of
storing data durably and the cost to re-create data. We focus on
serverless data because its ability to be recreated makes it possible
to assign a cost to its loss. We develop a mathematical model
that relates compute costs, storage costs, and application-specific
parameters to calculate the cost-optimal placement of data. We
also develop an execution framework capable of handling lost
data transparently, enabling applications to use lower-durability
storage with no additional burden on the developer. Next, we
show how different factors such as failure rate and compute
costs affect the placement decision. We find that thanks to the
relatively short lifetime of serverless data, the probability of data
loss even on low-durability storage is fairly low. Finally, we use
the model to place data for several applications, including a video-
transcoding application and an image-assembly application. We
show that our model can predict execution costs within 7% of
actual execution costs, and can reduce storage costs by up to 3×
while never exceeding baseline costs.

Index Terms—storage, serverless, durability

I. INTRODUCTION

It is a universal truth in storage that device failures will
happen: hard disks or SSDs fail, and their data is lost. On
an individual basis, these failures are infrequent, with annual
failure rates typically ranging from 0.1–5% [1], [2], [3], [4].
However, at large scale, they become a constant issue that must
be contended with: clusters with tens or hundreds of thousands
of disks are now common [1], [5], [4], [6] and data sizes are
increasing [7], [8], resulting in potentially tens of thousands
of failures each year.

There is a large body of work on techniques for mitigat-
ing such failures. Replication, erasure coding, and regular

backups—are all different technologies or practices that ac-
complish the same goal: preventing data loss in the event of a
device failure. Some of these, especially regular backups, can
help prevent data loss in the event of other kinds of incidents
like operator mistakes or cyberattack. Although the methods
differ, they all accomplish this essentially by spreading multi-
ple (full or partial) copies of the data across multiple storage
devices so that loss of any one device does not result in data
loss. By increasing the redundancy of the data and the number
of devices the data are spread across, it is possible to withstand
the loss of a large number of disks without loss of the data. The
degree to which a storage system can withstand faults without
data loss is referred to as its durability (see Section II).

In general, the degree of durability desired for data is
assumed to be high. Cloud storage systems advertise how
many “nines” of durability they offer, typically at least nine
but sometimes even up to sixteen “nines” of durability (i.e.,
99.9999999% and 99.99999999999999%, respectively). At
these high degrees of durability, data loss due to device failure
is exceedingly rare. Note, however, that durability calculations
usually consider data loss only due to device failures; loss due
to operator error or large scale disaster (e.g., destruction of an
entire data center) are not factored in [9], [10], [11], [12].

This safety comes at a cost: duplicating data and spreading
it across multiple disks (e.g., racks and even regional data
centers) incurs overhead in terms of both space and cost.
Depending on the durability scheme being used, it may also
impact performance. For most data, the additional costs are an
acceptable price to pay for safety against data loss. However,
some data might not necessarily require such high durability.
For example, suppose a dataset is copied from a central
repository to a local data center. If the local data center loses
the dataset, it can simply re-download it from the central
repository and incur some latency. For such data, some amount
of loss may be tolerable and the additional costs of full
durability may be not justified.

The challenge is that while loss of some data may be
tolerable, it is hard to assign a cost to its loss. This in
turn makes it difficult to calculate exactly how much loss is
acceptable and therefore what level of durability is needed.
Additionally, the response to data loss depends on the specifics
of the data and the application. For instance, if a backup is lost,
there may be no further action necessary, but if a local dataset

1

Erez Zadok
Appears in the proceedings of the 38th IEEE International Conference on Massive Storage Systems and Technology (MSST'24)



is lost, the appropriate response is to re-download it. The lack
of standardized response to lost data makes it tempting to
simply use high-durability storage and not have to worry about
which actions are needed after losing it.

Serverless computing offers a potential solution to this
challenge. Serverless platforms often require individual actions
to be idempotent [13], [14], [15], [16], [17], meaning that
the data created by these actions can be re-created by simply
re-running the action. This provides a standard response to
handling lost data, and makes assigning a cost to lost data
straightforward: it is the cost to re-run the action. In the
event that a function cannot be idempotent, for example, if it
interacts with an external service, the suggestion is normally
to use a workaround such as a helper library to achieve
the functional equivalence of idempotency [17], [18]. The
recent rise in popularity of serverless platforms provides us
an opportunity to re-visit the durability assumptions that have
been traditionally made.

In this paper we focus specifically on the durability of
data typical to many serverless applications. When choosing
the necessary level of durability for serverless data, we must
make a tradeoff between the greater storage cost incurred by
higher-durability storage schemes and the additional compute
cost required to re-create lost data. The tradeoff is intuitively
simple: if re-creating the data is costly or not possible because
the function is not idempotent, then highly durable, more
expensive storage is preferred. Conversely, if re-creating the
data is cheap, then cheaper, less durable storage is preferable.

For example, consider the object-detection pipeline depicted
in Figure 1. The first action converts the input image to
grayscale, creating Image’. Image’ is then processed by a
de-noising step, producing data Image”. Finally, an object
detection step reads Image”. If the Grayscale action is short
and the price of compute is cheap, then it might be most cost
effective to place Image’ in cheaper, low-durability storage and
re-run Grayscale whenever a storage failure causes Image’ to
be lost. Conversely, if compute is expensive or Grayscale has
a long run time, it may be more cost effective to place Image’
in costlier, highly-durable storage to avoid needing to re-run
the expensive Grayscale action.

In practice, making this tradeoff is challenging. The optimal
balance between compute and storage costs depends on mul-
tiple factors: (1) the cost to re-create the data (i.e., the time
to re-run the action and the cost of computation in dollars per
time), (2) the lifetime of the data (how long the data will be
needed), (3) the size of the data, (4) the cost of each storage
option (in dollars per lifetime per size), and (5) the durability
of each storage option (i.e., the probability that data will be
lost and need to be re-computed).

Further complicating the decision is the fact that multiple
actions may need to be re-run to re-compute data. If Image”
were to be lost before or while the object-detection action runs,
then Image” would need to be re-created by re-running the
de-noising action. However, if Image’ was also lost, then the
grayscaling action must also be re-run before the de-noising
action can re-run to re-create Image”.

Gray-
scale Image’ Denoise

Image’’

Image

Object 
Detection

ID’d 
Objects

Fig. 1: Example serverless application

This complexity means that there is no single storage option
that fits all applications and all environments. It is also not
sufficient to simply look at one or two parameters: e.g., the
appropriate storage for an application may change when new
storage or compute choices become available, or when the in-
put size changes. All factors must be considered to make good
storage-placement decisions. We have created a mathematical
model, SDCM (Storage Durability Costs Model), that assists in
making this decision. SDCM takes as input a Directed Acyclic
Graph (DAG) structured serverless application, the size of the
input to the application, the cost of compute at each stage,
and the available storage options. SDCM then considers the
parameters described above and outputs the cheapest storage
choice for each stage of the application DAG. We focus on
DAG structured serverless applications due to the requirement
that we are able to calculate all of the dependencies of a
piece of data, in order to enable re-creating that data if lost.
Applications structured as a DAG satisfy this requirement.

We show that under a large number of circumstances, low-
durability storage is actually more cost effective than higher
cost, higher-durability storage.

To avoid placing the burden of dealing with lost data
on the developer, we implement an execution system that
automatically detects when data has been lost and re-runs the
appropriate function(s) to re-create the lost data. It does so in
a way that is transparent to the application. This allows de-
velopers to take advantage of lower-durability storage without
requiring special handling for lost data in their applications.
Our system additionally handles making placement decisions
for an application’s data, using SDCM.

In summary, our contributions are as follows:

• SDCM, a mathematical model that can predict the exe-
cution costs of a DAG-structured serverless application.

• An execution system for running DAG-structured server-
less applications, capable of automatically recovering in
the event of lost data.

• Evaluation of SDCM, showing that we can accurately
predict DAG execution costs within 7% of actual costs
and reduce storage costs by up to 3×.

• Analysis of several model parameters, showing that un-
der many conditions low-durability storage is more cost
effective than high-durability storage.

2



II. BACKGROUND & MOTIVATION

a) Data durability: Storage systems employ various
techniques to hide low reliability of the underlying storage
devices from users. These techniques involve some degree of
overhead: the only current way to prevent data loss in the
event of a disk failure is by ensuring that the data stored on
that disk can be recreated from additional copies elsewhere in
the storage cluster. This overhead is incurred in the form of
additional disk utilization, slower data access times, additional
network traffic, and possibly additional CPU utilization.

Each of these techniques has parameters that dictate the
number of device failures it can withstand before data loss
occurs. For example, with 3-way replication, data is copied
onto three separate disks and can therefore withstand up to two
failed disks before data loss. RAID5 uses a single parity disk
and can therefore withstand the loss of one device in the RAID
array, whereas RAID6 uses two parity disks and can therefore
withstand the loss of two disks. When a disk fails, usually
a replacement disk will be added and the storage system will
redistribute data to ensure the required redundancy is restored.
This process is referred to as “rebuilding” the storage array,
and can take several hours depending on the size of the disks,
size of the array, and the bandwidth dedicated to the rebuild
process. If additional failures occur during this rebuild time,
then data could be lost.

We can calculate the probability of some number of disk
failures during the rebuild time using the annual failure rate
of the storage devices. For example, if it takes three hours
to rebuild a RAID5 storage system, then we can calculate
the probability that two disk failures occur within that three-
hour rebuild window. This is typically calculated over some
period of time (e.g., the probability that within one year, two
failures occur within the same rebuild window). The resulting
probability is the probability that over a year, the storage
system will lose some amount of data. The quantity of data
loss depends on factors such as how the data is distributed
across the array and how much progress the rebuild process
has made before the subsequent failure occurs.

The inverse of this probability, the probability of data loss
not occurring over a year, is referred to as the storage system’s
durability. A simple, commonly used formula for calculating
durability is roughly 1−(AFR∗MTTR)failure tolerance [19], [9],
where AFR is the storage devices’ annual failure rate, MTTR
is the mean time to repair a failed device, and the failure
tolerance is the number of devices that can fail simultaneously
without losing data.

As the amount of data grows, it is increasingly important
to reduce storage usage where possible. Recent surveys show
that rising cloud storage costs are causing companies to search
for new ways to store or reduce their data footprint [20], [21].

For most data, the overheads incurred by durability features
are unavoidable: losing the data is not an option. However,
any ephemeral data passed between the actions in a serverless
application has two traits that enable us to avoid the overheads
of durability: it is short lived and it can be re-created if lost.

1e-06 1e-04 1e-02 1e+00 1e+02 1e+04 1e+06
Failure rate of low durability storage, log10 scale

0.0

0.5

1.0

1.5

2.0

DA
G 

St
or

ag
e 

Co
st

s (
$)

1e−11

High durability storage
Low durability storage

Fig. 2: Storage and re-execution costs for high and low-
durability storage. The failure rate for high-durability storage
is zero. The failure rate of the low-durability storage varies,
increasing along the X-axis. More details about the experiment
settings in Section 2.

Ephemeral serverless data is often short lived, with lifetimes
on the order of seconds to minutes [22], [23]. This limits the
exposure any one piece of data has to the unreliability of the
storage system. In other words, the likelihood of a failure (e.g.,
disk failure, server crash) that results in data loss, occurring
during the short time period when the data is needed, is quite
low. This is the case even if the storage system is unreliable,
and lacks durability features such as replication.

b) Limits of low-durability storage: How much less
durable can low-durability storage be while still being more
cost effective than higher-durability storage? Figure 2 shows
the storage plus re-compute costs of a DAG discussed in
further detail in Section V-B. We compare the cost of two
storage classes, one with high durability and the other with
increasingly high failure rate. We price the low-durability
storage at 3× cheaper than the high-durability storage.

We see that the failure rate of the low-durability storage
can be as high as 10,000 (bytes lost per hour) before the
re-compute costs outstrip the cost savings realized by using
lower-durability storage.

c) Handling lost data: Serverless actions are required in
most cases to be idempotent [24], meaning that re-running an
action multiple times will produce the same data each time.
Therefore, in the unlikely chance that data is lost while it
is still needed, the application can recover by re-running the
action that originally created the lost data.

Although it might make economic sense to use lower-
durability storage, doing so does introduce some additional
complexity. In particular, developers usually operate under the
assumption that if they put data into storage, the data will
be there later when they need to retrieve it. Using lower-
durability storage breaks this assumption, as now the data
may be lost between storage and retrieval. Dealing with this
possibility requires several actions: (1) identify when an action

3



No. Trait Compatible
with SDCM

Suitable
for SDCM

1 Data cannot be re-created ✘ ✘
2 Unpredictable parameters ✘ ✘
3 Latency sensitive ✔ ✘
4 DAG structured ✔ ✔
5 Uses high-durability storage ✔ ✔
6 Large amount of data ✔ ✔

TABLE I: Application traits that determine if the application
is compatible with SDCM, and can indicate whether SDCM
will reduce storage costs.

has failed, (2) recognize that the action has failed due to
missing data, (3) determine the action that originally created
the now-missing data, (4) re-run that action to re-create the
missing data, and finally, (5) re-run the action that failed due
to missing data.

Currently, no execution engine or framework for server-
less is capable of automatically performing the above steps.
However, as we show in this paper, it is possible to develop
an execution system that does handle these actions. Such an
execution system enables the use of lower-durability storage,
without increasing the burden on the application developer.

A. Target Use Cases

SDCM aims to reduce storage costs while executing server-
less DAGs. However, not all serverless applications are com-
patible or good fits for use with SDCM. Table I lists some
criteria that help determine whether or not a serverless ap-
plication can be used with SDCM, and whether or not the
application can expect to benefit from using SDCM. We
expand on these criteria here:

1. Data cannot be re-created: SDCM assumes that data can
be re-created by re-running the function that originally
created it. If this is not the case, the tradeoff SDCM
makes between cheaper storage, lower-durability storage
and re-execution costs does not make sense.

2. Unpredictable parameters: The inputs to SDCM in-
clude data such as the size and lifetimes of data. These
inputs can be predicted using prior profiling runs of an
application with various sized inputs. However, if the size
or lifetime of the data is unpredictable, then knowing
these model inputs will be impossible.

3. Latency sensitive: An application that has strict latency
requirements for all requests may not be suitable for use
with SDCM, since there is a chance that a request will
encounter missing data that must be re-created. In this
case, the request will experience increased latency as it
must wait for the data to be re-created.

4. DAG structured: SDCM calculates the expected cost
of the entire application DAG and chooses the cheapest
storage option. If the application is not DAG structured,
SDCM will be unable to calculate the costs associated
with re-creating data, if doing so will require re-executing
parent actions as well. SDCM will still be able to balance
re-execution and storage costs for an individual action

and the data that it produces, but may underestimate re-
creation costs for this reason.

5. Uses high-durability storage: If the application is al-
ready using low-durability storage, then the opportunity
for lowering storage costs even further may be limited.
However, if there are tiers of even lower durability,
cheaper storage that are cheaper than what is being used
currently, then SDCM would have an opportunity to
potentially reduce storage costs.

6. Large amount of data: The benefit SDCM provides is
lower storage costs. If storage costs are a small part of an
application’s overall execution costs, then the total cost
savings enabled by SDCM will also be small. SDCM will
still work with these applications, but the benefit may be
limited.

In general, applications that are not currently using low-
durability storage and process large amounts of data are most
likely to see storage cost reductions with SDCM. Examples of
these applications might be a genomic processing pipeline [25]
or a machine-learning preprocessing pipeline [26], [27]. Ex-
amples of applications that would not be suitable for use with
SDCM are applications that use an in-memory key-value store
(e.g., Redis) for passing data [28], or applications that have
strict requirements on response time (e.g., applications that
handle user requests [29], [30]).

III. EXECUTION COSTS MODEL

The tradeoff we examine is between the additional cost
to store data more durably and the additional cost to re-
create the data, should it be lost by lower-durability storage.
We developed a mathematical model, SDCM, that balances
these two costs, taking into account the probability that data
is lost by a less-durable storage system. SDCM optimizes
for system level costs, choosing the storage class for each
piece of intermediate data created during the execution of a
serverless application, that minimizes the total cost to execute
the application.

We chose to develop a mathematical model, rather than us-
ing a more sophisticated machine-learning- or reinforcement-
based model, for several reasons: (1) SDCM provides a closed-
form solution to the tradeoff, which enables efficient decision
making even in the face of large application DAGs with many
storage options, (2) we found that SDCM is sufficient for
making good storage-placement decisions and so using a more
complicated machine-learning based model was unnecessary,
and (3) the amount of data necessary to train a machine-
learning model might not be readily available or easy to
collect. Still, a machine learning based approach could also
be feasible. We leave the investigation of such approaches to
future work.

In this section we first describe the terms used by SDCM,
then describe how SDCM calculates per-function and per-DAG
costs, and finally describe how we use SDCM to minimize
end-to-end DAG execution costs.

4



a) Model definitions: Consider a serverless application
structured as a Directed Acyclic Graph (DAG) consisting of
several nodes, denoted by N . A node in this graph represents a
function that is executed on a serverless platform. Each node,
say ni ∈ N , has zero (if a root node), one, or multiple parent
nodes, denoted by Pa(ni) = {j : j being a parent of ni}.
Also, each node ni has zero (if a leaf node) or more children,
denoted by Ch(ni). Let n0 denote the root, and {nℓ : ℓ ∈ L}
denote all the leaves.

Each node ni is associated with:
• a runtime r in seconds and compute class with cost c $

per second. The compute cost incurred by executing the
node once is ccompute = r × c.

• a list of data items produced by the node, X . Each data
item has an associated lifetime xl in seconds and size xs

in bytes.
• a set of available storage classes, denoted by D, and the

set of storage classes chosen for each of the data produced
by the node, denoted by dni

. Each storage class in the set
dni

has a cost cdni
$ per byte-second and a probability

of failure, explained below.
• i-specific cost associated with each set of storage class

choices, calculated as cstorage =
∑

x∈X xl × xs × cdni
.

• a base cost, assuming no failures, denoted by C(ni, d)
and calculated as ccompute + cstorage.

• a failure probability associated with a set of storage class
choices d ∈ D, denoted by pd.

• an expected cost E(cost()), calculated using the base
cost and probability of failure as explained below. The
expected cost for a particular node and a choice of storage
classes is expressed as E(cost(ni, dni

)).
Here, a failure means that some data produced by the node

has been lost as a result of a failure of the storage system.
Since the data has been lost, subsequent functions that rely
on the lost data cannot execute, and so the node must be re-
executed to re-create the lost data. We assume that the re-
execution recurs until it succeeds. We refer to the probability
failure (i.e., the probability that data is lost as a result of a
storage system failure at some point during the lifetime of the
data) as Pf and the probability of success as Ps.

We define the system-level cost to be the expected total
costs of all nodes to successfully perform one execution.

b) Calculating DAG execution costs: We use a top-to-
bottom procedure to recursively calculate the system-level
cost. We first evaluate the root node n0 and calculate the
expected cost for executing this node:

E(cost(n0, dn0
))

= Ps × C(n0, dn0
) + Pf ×

{
C(n0, dn0

) + E(cost(n0, dn0
))

}
(1)

Solving the above equation (1) leads to

E(cost(n0, dn0)) =
C(n0, dn0

)

1− Pf
=

C(n0, dn0)

1− pd0
(2)

If we assume that each node keeps its data until the end of
the DAG’s execution, then Equation 2 can also be used for
calculating the expected cost of a generic node.

c) Correlated failures: If data for one node has been lost,
it might be likely that data for other nodes has been lost as
well. In the worst case, we might assume that if data for one
node has been lost, then the entire DAG’s data has been lost.
In this worst-case scenario, when calculating the expected cost
of a node, we must consider the cost of re-running the entire
DAG up until that node, in order to re-create the node’s data.

For a generic node, denoted by n, recall that its parents are
Pa(n) = {j : j being a parent of n}. We define Pa(r)(n) =
Pa(· · · Pa(n)) (r times composition) as the ancestor of n up to
r levels. For example, if n is a child of n0, we have Pa(1)(n) =
n0. By a similar argument as in Equation 2, we have

E(cost(n, dn)) = Ps × C(n, dn)

+ Pf ×
{
C(n, dn) + E(cost(n, dn))

+ E
(
cost(Pa(n), dPa(1)(n))

)}
(3)

Solving the above leads to

E(cost(n, dn)

=

{
C(n, dn) + PfE

(
cost(Pa(n), dPa(1)(n))

)}
1− Pf

=

{
C(n, dn) + pdnE

(
cost(Pa(n), dPa(1)(n))

)}
1− pdn

(4)

where E
(
cost(Pa(n), dPa(1)(n))

)
is the sum of the expected

costs of all the immediate parents of node n, namely

E
(
cost(Pa(n), dPa(1)(n))

)
= E

( ∑
j∈Paj(n)

cost(j, dj)
)
. (5)

This establishes a recursion between E(cost(n, dn)) and
E(cost(Pa(n), dPa(n))). Using the recursion in Equation 4 and
the expected cost of the root node (Equation 1), we can
calculate E(cost(n, dn)) for any particular node n.

Our implementation of SDCM allows a user to choose
between using Equations 2 and 4.

d) Minimizing DAG execution costs: The expected
system-level cost is

System-cost(dn, n ∈ N ) =
∑
n∈N

E(cost(n, dn)). (6)

Based on this formula for system-level cost, we can evaluate
the cost associated with any set of storage placement decisions,
namely dn for all n ∈ N . We can then make storage-
placement decisions to minimize the cost to execute the
serverless application. In other words, we want to solve

min
dn∈D,n∈N

System-cost(dn, n ∈ N ). (7)

5



This is in general a challenging problem because (i) the
decisions made by different nodes are interconnected, and
(ii) a node may not be able to infer the optimal decision by
excluding other nodes (e.g., parent or children nodes). For the
non-correlated case (Equation 2) this is O(cn), and for the
correlated case (Equation 4) it is O(cn), where c is the cost
to calculate a single node cost and n is the number of nodes
in a DAG. In our experience both c and n tend to be low, and
this value takes under a minute to calculate.

We provide a greedy algorithm that will iteratively reduce
the system cost and converge to a local minimum. We use
a node-wise coordinate-decent procedure to optimize each
node’s decision, fixing other nodes’ decisions at each iteration.
More specifically, we solve

min
dn′∈D

System-cost(dn, n ∈ N ) (8)

by fixing dn, n ∈ N −{n′}, and iterating over all n′ ∈ N . To
solve Equation 8, we note that the node n′ will only be invoked
by its descendants instead of ancestors, and that the number
of invoking n′ is irrelevant with a node’s own decision. So,
solving Equation 8 is equivalent to minimizing the cost of a
single successful execution of n′, namely

min
dn′∈D

E(cost(n′, dn′)) (9)

which can be easily solved by evaluating E(cost(n′, d)) for
each d ∈ D and choosing the one that minimizes it.

A. Future Model Extensions

There are several ways in which our model could be en-
hanced or extended, which we hope to address in future work.
We describe the two most significant extensions here. First, our
model currently does not consider the performance differences
that might exist between storage classes. Lower-durability
storage is likely to have higher performance [25] as there are
no overheads from replication or erasure coding. Depending on
the data usage of an application, these performance differences
can result in significant differences in runtime. Lower runtime
results in lower compute costs, as well as lower storage costs
and a lower likelihood of data loss. All of these factors can
influence the model’s placement decisions.

Second, currently our model simply selects the storage
placements that result in the lowest DAG execution costs.
However, in some cases this might not be acceptable. For
example, applications might have real-time constraints that
require a response within a certain deadline. For these ap-
plications, occasionally re-running functions due to lost data
might add an unacceptable amount of execution time. These
constraints would work in tandem with the aforementioned
performance extensions. Higher performance, lower-durability
storage may be able to meet runtime constraints even with
periodic re-executions. Conversely, lower-durability storage
that is not higher performance may not meet these constraints.

Finally, there are other ways in which SDCM could be used
besides for placing data. For instance, it could be used to
decide when to delete data: if the predicted cost to store the

data is more than the predicted cost to re-create the data, then
the data should be deleted and re-created when needed. SDCM
can help make this decision.

IV. DESIGN & IMPLEMENTATION

SDCM relies on tracking several application metrics, such
as the runtime of each action for a given input size and the
size and lifetime of data generated by each action. In addition,
we assume that it is possible to re-create data lost by a
storage system by re-running the action that created it. Existing
serverless compute platforms do not support tracking all of
the metrics we require, and have no way of tracking which
data is created by which specific invocation of an action. This
makes it impossible to automatically re-generate data that has
been lost, a key capability necessary to using lower-durability
storage.

We therefore developed an execution system that handles
both collecting the metrics that SDCM requires as well as
handling re-running actions to re-create lost data. We de-
signed our execution system to run serverless applications on
OpenWhisk, an open-source serverless platform. We installed
OpenWhisk on a Kubernetes cluster. For storage we use a
Ceph Object Store, which we configured to have multiple
storage classes with different degrees of replication. Figure 3
depicts the components that are typical of a serverless cluster
in blue. We extended these with several additional components
and scripts, colored in green, in Figure 3. These components
include mitmproxy [31] 6 , MongoDB [32] 3 , and additional
scripts. In total, our execution system consists of around 400
lines of Go and 1,535 lines of Python.

a) Running applications: The DAG structured applica-
tions run on our execution system consist of a series of
OpenWhisk actions, with one action per DAG step—although
a step may contain several instances of the same action that run
in parallel. Users start by defining their DAG in YAML 1 ,
specifying each step. The specification for each step in the
DAG includes the OpenWhisk action and arguments used by
that step, as well as the input and output data consumed and
produced by that step.

Our script then converts this YAML specification into a
runnable shell script 2 . Based on the inputs and outputs
of each DAG step, the script orders the OpenWhisk action
invocations and runs actions in parallel when possible. In
addition to invoking actions, the shell script creates the storage
bucket used by the application. After the application finishes,
it will log the lifetime and size of all objects in the bucket in
our metrics and tracking database 3 .

OpenWhisk actions are not invoked directly, but are instead
run via a Python runner 4 . This runner is responsible for
logging metrics such as the runtime of each action, as well as
for passing additional arguments to each OpenWhisk action.
These arguments include the size of the input to the DAG and
a unique identifier for the specific action invocation.

These arguments are consumed by a library included by
each OpenWhisk action 5 . This library also contains a
function for uploading data to an object store, which adds

6



Ceph 
Object 
Store

dag.sh

Runner ScriptRunner Script OpenWhisk
ActionOpenWhisk

ActionOpenWhisk
Action

Library
Library

Action Wrapper Proxy
Library

Database

dag.yaml

2

5

1 4

3

6

SC1 SC2

Fig. 3: Design of execution system

Name Durability scheme Cost
($ / GB-hour) NOMDL1h

SC1 3-way replication 3.19× 10−5 0
SC2 None 1.06× 10−5 9.8× 10−9

TABLE II: Hypothetical storage classes

additional headers that specify information such as the action
associated with the object being uploaded.

We use a proxy 6 between the application and the Ceph
Object Store to track data accesses. We track when an object
is created and when it is last accessed, what action created
an object, and when an action tries to access a missing object
(i.e., when an action’s request receives a 404 response code
from the Ceph Object Store).

The proxy also has the role of adding storage class choice
to the object PUT request. It looks up the storage class chosen
for the object in the tracking database, and then specifies
this storage class using the X-Amz-Storage-Class HTTP
header. This header is the standard way of specifying storage
class placement for an object, used by both Amazon S3 and
by Ceph Object Store [33], [34].

b) Storage class selection: The application is first run in
a profiling mode to capture runtime and data lifetime, as well
as size metrics. A script then takes these metrics and selects
a storage class for each of the objects produced by the DAG,
using Equation 9 described in Section III. The script saves
these selections in the database 3 .

c) Failure handling: If an action submits a GET request
for an object which returns a 404 code (i.e., the object is
missing), the proxy 6 will record in the database the action
and the object that was missing. The Python runner 4 will
see that the action failed, and will check the database if the
proxy recorded any missing objects for the failed action. Upon
finding a missing object, the Python runner looks up the action
that created the object (recorded by the proxy) and re-runs that
action to re-create the data. Finally, the Python runner will re-
run any failed actions that depended on the missing data.

A. Hypothetical storage classes

Storage systems that are available in the cloud currently are
highly-durable and come with the associated cost premiums.
Therefore, using SDCM to select between existing storage op-
tions would have limited utility. Instead, we create hypothetical
storage classes that have lower durability and costs. We then

use SDCM to select between these lower-durability storage
classes and more traditional, high-durability storage classes.
Our hypothetical storage classes are listed in Table II and our
methodology for calculating their costs and failure rates are
described below. We define two hypothetical storage classes
with two levels of durability: one that uses 3-way replication,
and another that uses no durability features (i.e., no replication
or erasure coding). Note that other classes can be easily created
and supported by SDCM.

a) Cost: We base the prices of our hypothetical storage
classes on actual cloud storage pricing. Our durable storage
class is priced at the price of Amazon’s S3 storage (as of
January 2024). Our low-durability storage class is priced at a
third of this price, based on the cost savings achieved by using
unreplicated storage versus using triply replicated storage.

b) Failure rate: Calculating the failure rate of a storage
configuration is a complex task. Markov models are frequently
used to model the state of the storage system as disks fail and
are repaired [35], [36]. These Markov models are then used
calculate statistics such as the mean time to data loss. However,
these models often suffer from invalid assumptions and other
inaccuracies [37], [38]. We instead use a simulator developed
by Greenan [37] that aims to address the issues common to
Markovian mean time to data loss analyses.

The simulator calculates the metric NOMDL, or Normalized
Magnitude of Data Loss. This metric is expressed as bytes lost
per storage system capacity for a certain time period, which
for us was one hour. NOMDL is inversely related to durability:
a storage system with a high NOMDL has low durability, and
therefore, a higher likelihood of losing data.

SDCM uses the calculated NOMDL values when consider-
ing where to place a piece of data created by an application.
SDCM calculates the data’s anticipated size and lifetime; then,
for each storage class’s pre-computed NOMDL value, SDCM
calculates the probability that the data will be lost during its
lifetime. The data’s size is normalized to the size of the cluster,
just like the NOMDL value was. The data’s lifetime is used to
scale the NOMDL value: for example, if the expected lifetime
is 30 minutes, then the expected data lost during that time is
equal to half of the pre-computed NOMDL, since that was
pre-computed based on a one hour mission time.

V. EVALUATION

In this section, we demonstrate using SDCM to make
storage placement decisions and predict DAG execution costs.

7



= Data= Function

Depth

…
…

…
Fan-out 
degree

Fig. 4: DAG Used for Accuracy Evaluation

For all experiments, we use our execution system that handles
automatically re-creating lost data.

In Section V-A we evaluate SDCM’s ability to make accu-
rate predictions of DAG execution costs. In Section V-B we
explore how changing model and environmental parameters
impacts SDCM’s decisions. In Section V-C we provide an
analysis of the impact that re-executing actions has on overall
DAG runtimes. Finally, in Section V-D, we demonstrate using
SDCM and an execution system for running two real world
applications.

A. Model Accuracy

We evaluated SDCM by executing the DAG depicted in
Figure 4. Each function in the DAG simply makes a copy of
its input data, then exits. We evaluate several factors, including
DAG depth, fan-out degree, and input size: three different fan-
out degrees, five depths, and three input sizes for a total of
45 different DAGs. We measured the actual runtime of each
function in the application, as well as the size and lifetime
of each piece of data produced by the application. From these
measurements and by choosing compute and storage costs, we
can calculate the cost to execute the DAG. We compare this
actual value with the cost predicted by SDCM.

Since SDCM accounts for failures and considers the cost
to recompute data, our evaluation must also include failures.
We simulate data failures by randomly deleting data between
each stage of the DAG. This forces subsequent stages that
rely on the deleted data to fail. Our execution system (see
Section IV) identifies that a function failed due to missing
data, identifies the function responsible for originally creating
that data, and re-runs it. After successfully re-creating the data,
our execution system re-runs the original function that failed
due to the missing data. We delete data based on the NOMDL
value of the storage where the data has been placed. Since
even our non-durable storage class has a fairly low rate of data
loss, for evaluation purposes we artificially inflated the data
loss rate to 10,000 bytes-per-hour for a 100-disk cluster. We do
this only in this subsection, for the purpose of demonstrating
the accuracy of SDCM.

We ran each of the 45 DAGs at least ten times to ensure
that the variation of runtimes across each DAG execution is
low. In all but two cases the runtime variation was less than
10%. In those two cases, it was 12.8% and 11.1%. The high
variation in these cases is due to data loss resulting in functions
needing to be re-run. This produces a bi-modal distribution of

280 300 320 340 360 380
Total DAG runtime (seconds)

0
2
4
6
8

10
12

Ru
nt

im
e 

co
un

ts

Fanout=1, depth=3, input size = 1024 MB

6000 7000 8000 9000 10000 11000
Total DAG runtime (seconds)

0
2
4
6
8

10
12

Ru
nt

im
e 

co
un

ts

Fanout=10, depth=4, input size = 1024 MB

Fig. 5: Histograms of DAG runtimes for the two DAGs with
highest runtime variance. The bimodal distribution of runtimes
is a result of some DAG runs encountering errors and other
runs encountering no errors.

runtimes, with some DAGs executing entirely with no data loss
and others with re-executions adding to their overall runtime.
The two most extreme cases are shown in Figure 5. On top
is the DAG with a depth of three and fan out of one, with
a 1024MB input. The variation across runtimes for this DAG
was 12.8%, and we see that this is due to a small number
of runs encountering errors requiring re-runs, resulting in a
much higher runtime. The situation is reversed for the lower
plot: in this case the DAG depth was 4, fan-out was ten,
and the input was 1024MB. The runtimes for this DAG had
a variation of 11.1%, but now this high variance is due to
most runs encountering some errors, and a small few runs not
encountering any errors.

We ran SDCM with the assumption that all data is placed
in our high failure rate (NOMDL1h = 10,000) storage. We use
the price of SC2 from Section IV-A, $1.06 × 10−5 per GB-
hour, as the price for this storage. For compute costs, we use
$1.67×10−5 per second, roughly equivalent to the per-second
cost of a 1GB AWS Lambda instance. We found, however,
that storage cost and compute costs do not impact SDCM’s
accuracy. Higher storage and compute costs would amplify
errors in predictions of runtime, data size, data lifetime, and
data loss. These errors are small enough that changes in the
underlying compute and storage costs do not significantly
impact the accuracy of the whole-DAG cost prediction.

Figure 6 shows results for 1MB, 128MB, and 1024MB sized
inputs. Each figure shows the accuracy as a percentage on the
Y-axis. The figures plot the accuracy as a function of the total
number of DAG stages, DAG depth (3 through 7 stages) and
fan out degree (1, 5, and 10).

8



0

2

4

6
In

pu
t =

 1
 M

B

Stages

0

2

4

6

In
pu

t =
 1

28
 M

B

Fan out = 1
Fan out = 5
Fan out = 10

10 20 30 40 50
DAG Stages

0

2

4

6

In
pu

t =
 1

02
4 

M
B

3 4 5 6 7
DAG Depth

1 5 10
DAG Fan Out Degree

Depth = 3
Depth = 4
Depth = 5
Depth = 6
Depth = 7

Fig. 6: Accuracy of SDCM for three different input sizes.

Action 
A

Data 
A

Action 
B

Data 
B

Action 
C

Data 
C

Action 
D

Data 
D

Action 
E

Data 
E

Fig. 7: DAG used for model parameters exploration. The
data produced by each step of the DAG was used by each
subsequent step.

In all cases, we find that SDCM was accurate within 7%
of the actual DAG execution costs. For 128MB and 1MB
input sizes we find that SDCM is within ±5% of actual DAG
execution costs. This is better than similar studies, which
predicted DAG execution properties to within 15% [24], [39].

Note that this accuracy is with respect to the average DAG
execution costs, and includes the cost of re-executions due
to lost data amortized across all DAG executions. Therefore,
when comparing SDCM’s prediction to any individual DAG
execution, SDCM’s prediction will be either slightly higher
than the actual cost (if there were no data losses encountered
during the DAG’s execution) or lower than the actual cost (if
the DAG’s execution included re-executions due to data loss).

B. Model Parameters

We now describe the impact that different parameters have
on SDCM’s storage class decisions. We use a simple five-
stage DAG for exploring these parameters, shown in Figure 7.
Each step produced 1MB of output, and each step’s output
was used by each subsequent step (so the lifetime of data A
is highest, and the lifetime of data E is lowest). The DAG’s
actions simply make a copy of the input data, and ran for

five seconds. SDCM chooses between the two storage classes
described in Section IV-A.

a) Compute cost: We first look at how the cost of
compute impacts storage class placement decisions. Figure 8a
shows the storage component of the total DAG execution cost
(Y-axis), versus the cost of compute (X-axis). The storage
component includes both the cost of storage for data produced
by the DAG, as well as the additional cost required to re-
run data in the event of data loss. “Model” is this value
as calculated by SDCM, using storage classes that SDCM
determined given the lowest total DAG execution cost. It
includes the additional cost predicted by SDCM to be incurred
as a result of losing data and needing to re-run part(s) of the
DAG.

“Baseline” is the storage component of the total cost to
execute the DAG if the most-durable storage class is used for
all the DAG’s data.

On the low end of the X axis is cheap compute, roughly
equivalent to the dollar-per-second cost of an EC2 Spot
Instance virtual machine. The high end is more expensive
than any available cloud compute. Intuitively, at these higher
compute costs, we might expect SDCM to choose more-
durable storage, as the cost to re-compute data becomes more
prohibitive. However, for all compute costs seen here, SDCM
chooses the cheaper, less-durable storage for the DAG’s data
(SC2). We find that this is because the high compute cost is
offset by the extremely low probability of losing data: for the
data produced by the DAG, the probability of loss is calculated
to be between 1.9× 10−21 and 7.4× 10−21.

Figure 8b shows what happens if we instead have 1TB of
data produced at each stage, the data’s lifetime was 1,000×
longer, and SC2’s NOMDL1h was increased by 1,000×. The
probability of data loss now ranges from 1.7 × 10−10 to
7.8 × 10−10. This makes SDCM more sensitive to increases
in compute cost, and we do indeed see that as the compute

9



10−5 10−3 10−1 101 103

Compute Cost ($ per s), log10 scale

4

6

8

DA
G 

St
or

ag
e 

Co
st

s (
$) 1e−16

Baseline
Model

(a) Storage costs during DAG execution vs cost of compute. Note
the log scale on the X-axis.

10−5 10−3 10−1 101 103

Compute Cost ($ per s), log10 scale

4

6

8

DA
G 

St
or

ag
e 

Co
st

s (
$) 1e−7

Baseline
Model

(b) Storage costs during DAG execution vs. cost of compute, if
intermediate data is larger, longer lived, and storage is less reliable.
Note the log scale on the X-axis.

10−9 10−7 10−5 10−3 10−1

NOMDL1h, log10 scale

4

6

8

DA
G 

St
or

ag
e 

Co
st

s (
$) 1e−16

Baseline
Model

(c) Storage costs during DAG execution vs NOMDL1h. Note the log
scale on the X-axis.

1.01.52.02.53.0
SC1 Cost ($ per GB-hour) 1e−5

0.5

1.0

1.5

DA
G 

St
or

ag
e 

Co
st

s (
$) 1e−11

Baseline
Model

(d) Storage costs during DAG execution vs price of SC1. Note the
reversed (decreasing) X-axis.

1.01.52.02.53.0
SC1 Cost ($ per GB-hour) 1e−5

0.5

1.0

1.5

DA
G 

St
or

ag
e 

Co
st

s (
$) 1e−11

Baseline
Model

(e) Storage costs during DAG execution vs price of SC1, with high
NOMDL1h (10,000). Note the reversed (decreasing) X-axis.

Fig. 8: Impact of different parameters on SDCM storage class
choice.

cost increases, SDCM eventually selects more-durable storage
to avoid the cost of re-compute.

b) NOMDL: Next, we look at the impact a storage
class’s NOMDL value has on SDCM’s decisions. We keep the
NOMDL of the more-durable storage class (SC1) the same,
but increase the NOMDL value of the cheaper but less-durable
storage class (SC2). Figure 8c shows the storage component
of the DAG execution cost on the Y axis with the NOMDL
value of SC2 on the X axis.

We expect that as NOMDL value increases, eventually the
cost of needing to frequently re-create lost data will outweigh
the cost savings from using cheaper storage. Indeed, once the
NOMDL value reaches 10−1, SDCM switches from using SC2
to SC1 for all of the DAG’s data.

c) Storage price: Finally, we evaluate what it would take
for a more-durable storage class to be cost-competitive with
lower-durable storage. Figure 8d shows SDCM and baseline
costs as we decrease the cost of SC1 (i.e., our more-durable
storage class). The baseline cost always uses SC1, whereas
SDCM cost chooses between SC1 and SC2 to minimize DAG
execution costs. We see therefore the baseline cost decrease
as the cost of SC1 decreases. However, only once the cost of
SC1 reduces lower than the cost of SC2 does SDCM choose to
use SC1. In other words, the cost of SC1 needs to be reduced
to that of SC2 in order for it to be cost-competitive with SC2.
This is due to the very low probability of failure, between
1.9× 10−21 and 7.4× 10−21.

If we increase the NOMDL1h of SC2 to 10,000, then
the probability of failure (and therefore, the cost due to re-
executions) increases. This works to increase the price where
SC1 becomes more cost-effective than SC2, so that SC1
can be slightly more expensive than SC2 (1.3 × 10−5 vs
1.06 × 10−5 per GB-hour) and still be more cost effective
overall. Given that cloud storage prices have been increasing,
not decreasing [40], [41], it seems unlikely that highly-durable
cloud storage will be able to compete on price with lower-
durability storage any time soon.

C. Latency Analysis

Re-running actions to re-create data incurs not only an
additional compute cost, but also adds additional latency. This
additional latency is amortized across many application runs,
since even with low-durability storage, failures (and therefore
re-runs) are infrequent. Still, even if the costs make sense (i.e.,
the additional compute cost is smaller than the cost savings
from using lower-durability storage), for some applications the
additional latency will be unacceptable. This is captured in
Trait 3 in Table I, which says that SDCM may not be suitable
for use with applications that are highly latency sensitive.

Here, we conduct a short analysis of that additional latency.
We use the DAG depicted in Figure 7 with fixed runtime
for each action and fixed sizes for the data created by each
action. We evaluate with two configurations: in the first
(“Configuration 1”), the actions each execute for 60 seconds
and produce 100MB of output. In the second (“Configuration
2”), each action runs for one hour and produces 1TB of data.

10



Config App NOMDL1h
Input size

(MB)
Correlated
failures?

A Video
transcoding 10,000 99 No

B Video
transcoding 100,000 99 No

C Montage 0.25 10,000 16 No
D Montage 0.25 10,000 16 Yes
E Montage 0.25 100,000 16 Yes
F Montage 1.0 10,000 153 No
G Montage 1.0 100,000 153 No
H Montage 1.0 100,000 153 Yes

TABLE III: Parameters used for applications in case study

We evaluate each configuration with and without correlated
failures. We increase the NOMDL1h of the storage system
used for storing the data, and calculate the probability of losing
data (and therefore, the probability of needing to re-run a stage
of the DAG).

If an action needs to be re-run, the overall runtime of the
DAG will increase by up to 2× the runtime of a single action.
This is because in the worst case, an action will run until
just before completion before the data it is consuming is lost
by the storage system. One action will need to be re-run to
re-create the data, and then the consumer action will need to
be re-run since it failed to complete on its initial run. In the
case of correlated failures, the entire DAG will need to be
re-run. Again, the worse case is that data is lost right before
completion, meaning that the entire DAG essentially needs to
be run twice. For Configuration 1, in the correlated case, this
means that a DAG invocation that encounters an error will
run for up to 2 × 60 × 5 = 600 seconds, rather than 300
seconds in the usual case. For Configuration 2, an invocation
encountering an error can run for up to 10 hours, compared
to 5 in the non-error case.

If the application encounters lost data due to a storage
system failure, that specific run will take significantly longer
to complete. However, this case is fairly rare, and amortized
across all runs the additional runtime is quite small. Figure 9
shows the additional time spent re-running actions as a result
of failure, amortized across the predicted number of DAG
invocations between failures. Figure 9a shows this additional
time in seconds, and Figure 9b shows this time as a percentage
of the total runtime for a single invocation of the DAG. We
show here the correlated failure case; the non-correlated case
will have an even lower amortized time cost.

Even in the case where the storage system’s failure rate is
unrealistically high (NOMDL1h = 105), the additional time
is only 1.6 × 10−8 seconds and 5.6 × 10−5 seconds per
DAG invocation for Configurations 1 and 2, respectively. This
corresponds to just 5.1 × 10−11% and 3.1 × 10−9% of the
runtime for a single DAG invocation, for Configurations 1
and 2, respectively.

D. Case Studies

In this section we demonstrate using SDCM and execution
system to run real world applications. We chose applica-

10 4 10 1 102 105

NOMDL1h, log10 scale

10 17

10 13

10 9

10 5

Am
or

tiz
ed

 ru
nt

im
e

pe
r i

nv
oc

at
io

n 
(s

),
lo

g 1
0 s

ca
le

Configuration 1
Configuration 2

(a) Additional time, amortized across the expected number of DAG
invocations between failures. Note the log10 scale on both X- and
Y-axes.

10 4 10 1 102 105

NOMDL1h, log10 scale

10 19

10 15

10 11

Am
or

tiz
ed

 ru
nt

im
e 

pe
r

in
vo

ca
tio

n 
as

 a
 %

 o
f

ru
nt

im
e,

 lo
g 1

0 s
ca

le Configuration 1
Configuration 2

(b) Additional time, amortized across the expected number of DAG
invocations between failures, as a percentage of a single DAG’s
runtime. Note the log10 scale on both X- and Y-axes.

Fig. 9: Additional time spent re-executing to re-create lost
data. In Configuration 1 each action runs for 60 seconds and
produces 100 MB of data. In Configuration 2, each action runs
for one hour and produces 1TB of data.

tions that satisfied the criteria described in Table I: 1) the
intermediate data could be reproduced by re-executing the
creating action, 2) the model parameters for each application
(e.g., runtime of each action, the size and lifetime of data
produced by each action) are predictable after profiling, 3) the
applications are not latency sensitive, 4) are DAG structured,
5) were written originally using durable storage, and 6) process
a non-trivial amount of data.

Table III contains the parameters used for each of the exper-
iments. We used the storage classes defined in Section IV-A,
and $0.0068 per second as our compute cost. Figure 12 graphs
the storage costs (including re-execution costs) for SDCM’s
storage class selections, compared with the baseline of using
highly-durable storage for all data.

a) Video Transcoding: We implement a three stage work-
flow, using FFmpeg [42] to transcode a video to a new
resolution. Our workflow is depicted in Figure 10 and consists
of a split stage, a parallel transcode stage, and finally a
combine stage. In total, the workflow contains 12 functions

11



Split

…… …

Transcode Combine

Fig. 10: Video transcoding DAG

(a) Configuration A

(b) Configuration B

Fig. 11: Video transcoding storage class selections. Green is
SC1, red is SC2. See Table III for configuration details.

and generates 284 MB of intermediate data.
We run with two configurations (A and B), differing only

in that configuration B has a higher NOMDL1h than con-
figuration A. Figure 11 depicts the storage class decisions
made by SDCM, with red boxes indicating data stored in SC2
(low-durability, cheap storage) and green boxes indicating data
stored in SC1 (high-durability, more expensive storage).

We see that as NOMDL1h increases from configuration A
to configuration B, SDCM chooses more-durable storage for
the final output. For configuration A, the baseline storage costs
are 2.98× SDCM’s, and 2.94× more for configuration B.

b) Montage: Montage [43] is a toolkit for processing and
stitching together astronomical images. We port the workflow
implemented for HyperFlow [44], [45] to run on our execution

A B C D E F G H
Configuration

0

1

2

3

4

5

6

DA
G 

St
or

ag
e 

Co
st

s (
$)

1e−12

Baseline
Model

Fig. 12: Storage component of DAG costs for applications
used in case study. See Table III for configuration specifics.

system. We run two sizes of Montage workflow, 0.25 and 1.0,
with configurations listed in Table III. Figure 13 shows the
structure of the workflow. The Montage 0.25 workflow con-
tains 43 total functions and generates 185MB of intermediate
data, and the Montage 1.0 workflow contains 469 functions
and generates 1,828MB of intermediate data.

Figure 14 shows the storage class selections for the Montage
0.25 workflow. The results for the Montage 1.0 workflow are
too large to be included.

As described in Section III, correlated failures makes the
assumption that any data loss will require re-execution of the
entire DAG. Therefore, It has the effect of increasing the cost
of recovering lost data, especially as we progress further in the
DAG: the further along we are, the more work will need to be
re-run. Indeed, we see this as we enable correlated failures in
configuration D vs. configuration C: SDCM selects the more-
durable storage class SC1 for data produced towards the end
of the DAG.

This effect is amplified by increasing NOMDL1h, as seen
in configuration E vs. D. Here SDCM selects SC1 for even
more data, again all data towards the end of the DAG.

For the Montage 0.25 workflow, the baseline storage costs
are 2.99×, 2.65×, and 1.58× higher than SDCM costs for
configurations C, D, and E, respectively. For the Montage 1.0
workflow, the baseline costs are 2.97×, 2.72×, and 1.92×
higher than SDCM costs for configurations F, G, and H,
respectively.

VI. RELATED WORK

a) Storage and data exchange for serverless: There has
been a large amount of recent work on data exchange for
serverless [46], [47], [24], [48], [49], [50], [25], [51], [52].
Most of this work focuses on improving the performance of
data transfer in a serverless environment. To do so, Pocket [46]
and Locus [47] utilize a mix of slower, cheaper storage and
faster, more expensive storage. The faster, more expensive
storage is memory based and does not utilize durability

12



… … …

mProjectPP mDiffFit

… … …

mConcatFit mBgModel mBackground mImgTbl mAdd mShrink mJPEG

Fig. 13: Montage DAG

(a) Configuration C

(b) Configuration D

(c) Configuration E

Fig. 14: Montage 0.25 storage class selections. Green is SC1,
red is SC2. See Table III for configuration details.

features such as replication. These works make the argument
that all serverless data is short lived and can be re-created, and
therefore such volatile storage is suitable for serverless data.
However, they simply assume that lower-durability storage is
acceptable, and do not consider the cases where such storage
may be less cost effective compared to durable storage. Also,
they do not explore how data loss might be handled by the
application.

FuncStore [52] aims to reduce resource waste by deleting

objects when they are no longer needed. To do so, they analyze
an application’s DAG and use a machine-learning model to
determine the anticipated lifetime of each object. We also
predict the lifecycle of objects created by applications, but we
were able to achieve accurate results using profiling and linear
interpolation. Note that because SDCM inherently supports
the regeneration of data, mis-predicting the lifecycle of data
is not much of a concern as it is with FuncStore, which—
like many other related projects—have no mechanism for re-
creating lost data. If more accurate lifecycle prediction were
needed, we could also adopt the lifecycle-prediction approach
used by FuncStore.

Projects such as SONIC [24], SAND [49], Wukong [50],
and Cloudburst [51] accelerate data transfer by passing data
directly among functions running on the same host. Not all
data is capable of being transferred in this way: for instance
scheduling constraints may force functions to be run on
different hosts, making this data transfer method not possible.

Techniques such as compression [53] and de-
duplication [54] can be used to reduce the size of data,
and therefore, storage costs. We note that SDCM is not
incompatible with these techniques, and the methods SDCM
uses to reduce storage costs can be used in conjunction with
these other techniques. In fact, many of the data-transfer
and data-reduction techniques discussed here, such as as
Pocket [46], Wukong [50], and FuncStore [52], could be used
together with SDCM to further reduce storage costs. Any
technique that uses an intermediate data store to transfer data
can be used with SDCM to place data in that intermediate
data store at an appropriate, cost-optimal durability level.

b) Lower-durability storage: Amazon previously offered
a reduced-durability storage class for its S3 object storage
service [55], called Reduced Redundancy Storage (RRS). That
storage class provided just four 9’s of durability compared to
S3’s usual eleven 9’s and was initially priced at 33% cheaper
than other storage classes. However, in 2017, this storage class
was deprecated with no reduced durability replacement [56].
We have been unable to find out why Amazon RRS was
deprecated. One possible explanation is that it was difficult
to use: when data was lost, S3 would return a specific HTTP
error code (405, ”Method Not Allowed”). Developers would
need to add special handling to their application to check for
this code, and then to respond accordingly when data was
lost. Both aspects of this (detecting and responding) presents

13



a burden that developers may not have been willing to bear.
Additionally, the appropriate response to lost data was often
specific to each application, making it difficult to generalize
and handle by a library or framework.

Nowadays, the rise of serverless has greatly simplified the
task of handling lost data. Lost data can now be generically
handled by re-running a function to replace the lost data. This
enables libraries or frameworks, such as we present in this
paper, to take care of responding to lost data.

To the best of our knowledge, no other cloud provider has
offered any kind of reduced-durability storage.

Spark’s [57] Resilient Distributed Datasets (RDDs) supports
storing data in non-durable storage such as memory. In the
event of data loss, the RDD recomputes the lost data. This is
similar to our approach, except it does not use a model for
identifying the most cost effective storage class for the data.

c) Serverless workflow execution: Tools such as AWS
Step Functions [58] and OpenWhisk Action Sequences [59]
allow users to combine multiple actions in a sequence, passing
data from one stage to the next. However, they do not track
the provenance of data produced by the actions. This makes
it impossible to transparently handle data loss, as our work
does. Similarly, there has been a lot of research on server-
less execution systems (e.g., Hyperflow [44], FaaSFlow [60],
gg [61], Sprocket [62], Wukong [50], and SONIC [24]). These
projects focus on various aspects of writing applications that
run on serverless platforms, but do not address the problem
of re-creating data lost by a non-durable storage system.

Microsoft’s Durable Function framework [63], [15], [64]
allows users to build complex applications that are executed in
a serverless context. Results from individual stages are saved,
and if the stage needs to be re-run, the saved results are used
instead of re-computing. This is similar in concept to our
work, in that they address the possibility of needing to re-
run functions using have special support. However, they do
not address the possibility of data loss. Therefore, our work
is complimentary in that our work could be used to guide
the placement of the intermediate data saved by the Durable
Functions framework.

VII. CONCLUSION

Storage systems have been built and operated with the
assumption that high durability is necessary and desired for
all kinds of data. In this paper, we revisit this assumption and
find that it no longer holds for all data. Specifically, serverless
data has unique traits that make it tolerant of loss: it can be
re-created and it is short lived. In other words, it is unlikely to
be lost even if stored on low-durability storage. Moreover, in
the event that it is lost, there is a clear recovery mechanism.

We presented a mathematical model, SDCM, that identifies
the most cost effective storage class for serverless data, given
application and environmental parameters. We also built an
execution system using SDCM to place data, which transpar-
ently re-runs functions in response to lost data. Finally, we
demonstrate how the placement decisions made by SDCM can
lower storage costs when executing serverless DAGs, by up
to 3×, while never exceeding baseline costs.

VIII. ACKNOWLEDGMENTS

We thank the anonymous reviewers and our shepherd, Raju
Rangaswami, for their constructive feedback. This work was
made possible in part thanks to Dell-EMC, NetApp, Facebook,
and IBM support; a SUNY/IBM Alliance award; and NSF
awards CNS-1900706, CCF-1918225, CNS-1951880, CNS-
2106263, CNS-2106434, and CNS-2214980. Xinran Wang
is supported by the 3M Science and Technology Graduate
Fellowship.

REFERENCES

[1] B. Schroeder and G. A. Gibson, “Understanding failures in petascale
computers,” in Proceedings of the Scientific Discovery through Advanced
Computing, ser. SciDAC’07, 2007.

[2] B. Schroeder, R. Lagisetty, and A. Merchant, “Flash reliability in
production: The expected and the unexpected,” in Proceedings of the
14th USENIX Conference on File and Storage Technologies (FAST ’16).
Santa Clara, CA: USENIX Association, February 2016, pp. 67–80.

[3] B. Schroeder and G. A. Gibson, “Disk failures in the real world: What
does an mttf of 1,000,000 hours mean to you?” in Proceedings of the
Fifth USENIX Conference on File and Storage Technologies (FAST ’07).
San Jose, CA: USENIX Association, February 2007, pp. 1–16.

[4] I. Narayanan, D. Wang, M. Jeon, B. Sharma, L. Caulfield, A. Sivasub-
ramaniam, B. Cutler, J. Liu, B. Khessib, and K. Vaid, “SSD failures in
datacenters: What? when? and why?” in Proceedings of the Ninth ACM
Israeli Experimental Systems Conference (SYSTOR ’16). Haifa, Israel:
ACM, May 2016, pp. 7:1–7:11.

[5] J. Meza, Q. Wu, S. Kumar, and O. Mutlu, “A large-scale study of
flash memory failures in the field,” in Proceedings of the 2015 ACM
International Conference on Measurement and Modeling of Computer
Systems (SIGMETRICS 2015). Portland, OR: ACM, June 2015, pp.
177–190.

[6] E. Xu, M. Zheng, F. Qin, Y. Xu, and J. Wu, “Lessons and actions:
What we learned from 10k SSD-Related storage system failures,”
in 2019 USENIX Annual Technical Conference (USENIX ATC 19).
Renton, WA: USENIX Association, Jul. 2019, pp. 961–976. [Online].
Available: https://www.usenix.org/conference/atc19/presentation/xu

[7] P. Villalobos and A. Ho, “mitmproxy,” September 2022, https://epochai.
org/blog/trends-in-training-dataset-sizes.

[8] D. Fediuk, “Increasing dataset sizes,” May 2019, https://dmitry.ai/t/topic/
198.

[9] B. Wilson, “Backblaze durability calculates at 99.999999999% — and
why it doesn’t matter,” July 2018, https://www.backblaze.com/blog/
cloud-storage-durability/.

[10] C. Quinn, “S3’s durability guarantees aren’t what you think,” April
2021, https://www.lastweekinaws.com/blog/s3s-durability-guarantees-
arent-what-you-think/.

[11] “Amazon s3 faqs,” 2024, https://aws.amazon.com/s3/faqs/.
[12] “Azure storage redundancy,” Jan 2024, https://learn.microsoft.com/en-

us/azure/storage/common/storage-redundancy.
[13] “Developing for retries and failures,” 2024, https://docs.aws.amazon.

com/lambda/latest/operatorguide/retries-failures.html.
[14] “Designing azure functions for identical input,” June 2022, https://learn.

microsoft.com/en-us/azure/azure-functions/functions-idempotent.
[15] S. Burckhardt, C. Gillum, D. Justo, K. Kallas, C. McMahon, and C. S.

Meiklejohn, “Durable functions: Semantics for stateful serverless,”
Proc. ACM Program. Lang., vol. 5, no. OOPSLA, oct 2021. [Online].
Available: https://doi.org/10.1145/3485510

[16] H. Ding, Z. Wang, Z. Shen, R. Chen, and H. Chen, “Automated
verification of idempotence for stateful serverless applications,” in 17th
USENIX Symposium on Operating Systems Design and Implementation
(OSDI 23). Boston, MA: USENIX Association, Jul. 2023, pp. 887–
910. [Online]. Available: https://www.usenix.org/conference/osdi23/
presentation/ding

[17] S. Ford and M. Skoviera, “Avoiding gcf anti-patterns part 1: How to
write event-driven cloud functions properly by coding with idempotency
in mind,” October 2021, https://cloud.google.com/blog/topics/
developers-practitioners/avoiding-gcf-anti-patterns-part-1-how-write-
event-driven-cloud-functions-properly-coding-idempotency-mind.

14



[18] J. Beswick, J. Van Der Linden, and D. Osiennik, “Handling lambda
functions idempotency with aws lambda powertools,” April 2022,
https://aws.amazon.com/blogs/compute/handling-lambda-functions-
idempotency-with-aws-lambda-powertools/.

[19] M. Wu, “Maybe you shouldn’t be that concerned about data durability,”
June 2019, https://blog.synology.com/data-durability.

[20] “The data explosion and hidden data storage costs in the
cloud – could object storage be the answer?” September 2023,
https://www.lightedge.com/blog/the-data-explosion-and-hidden-data-
storage-costs-in-the-cloud-could-object-storage-be-the-answer/.

[21] T. Savvas, “Increased cloud costs pulls focus of some smes to on-
site storage,” September 2023, https://blocksandfiles.com/2023/09/11/
increased-cloud-costs-pulls-focus-of-some-smes-to-on-site-storage/.

[22] A. Klimovic, Y. Wang, P. Stuedi, A. Trivedi, J. Pfefferle, and
C. Kozyrakis, “Pocket: Elastic ephemeral storage for serverless
analytics,” in 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18). Carlsbad, CA: USENIX
Association, Oct. 2018, pp. 427–444. [Online]. Available: https:
//www.usenix.org/conference/osdi18/presentation/klimovic

[23] A. Klimovic, Y. Wang, C. Kozyrakis, P. Stuedi, J. Pfefferle,
and A. Trivedi, “Understanding ephemeral storage for serverless
analytics,” in 2018 USENIX Annual Technical Conference (USENIX
ATC 18). Boston, MA: USENIX Association, Jul. 2018, pp.
789–794. [Online]. Available: https://www.usenix.org/conference/atc18/
presentation/klimovic-serverless

[24] A. Mahgoub, K. Shankar, S. Mitra, A. Klimovic, S. Chaterji,
and S. Bagchi, “SONIC: Application-aware data passing for
chained serverless applications,” in 2021 USENIX Annual Technical
Conference (USENIX ATC 21). USENIX Association, Jul. 2021, pp.
285–301. [Online]. Available: https://www.usenix.org/conference/atc21/
presentation/mahgoub

[25] A. Merenstein, V. Tarasov, A. Anwar, S. Guthridge, and E. Zadok, “F3:
Serving files efficiently in serverless computing,” in Proceedings of the
16th ACM International Systems and Storage Conference (SYSTOR ’23).
Haifa, Israel: ACM, Jun. 2023, won Best Paper Award.

[26] “Data preprocessing for ml: options and recommendations,” August
2023, https://www.tensorflow.org/tfx/guide/tft bestpractices.

[27] S. Ghosh, “A comprehensive guide to data preprocessing,” August 2023,
https://neptune.ai/blog/data-preprocessing-guide.

[28] A. Raina, “Redis use case examples for developers,” July 2022, https:
//redis.io/blog/5-industry-use-cases-for-redis-developers/.

[29] J. Beswick, “Replacing web server functionality with serverless
services,” July 2020, https://aws.amazon.com/blogs/compute/replacing-
web-server-functionality-with-serverless-services/.

[30] “Serverless web application,” https://learn.microsoft.com/en-us/azure/
architecture/web-apps/serverless/architectures/web-app.

[31] “mitmproxy,” https://mitmproxy.org/.
[32] MongoDB, Inc., “MongoDB: The database for modern applications,”

Sep. 2019, https://www.mongodb.com/.
[33] “Using amazon s3 storage classes,” https://docs.aws.amazon.com/

AmazonS3/latest/userguide/storage-class-intro.html.
[34] “Using storage classes,” https://docs.ceph.com/en/latest/radosgw/

placement/#using-storage-classes.
[35] I. Iliadis and V. Venkatesan, “Rebuttal to “beyond mttdl: A closed-form

raid-6 reliability equation”,” ACM Trans. Storage, vol. 11, no. 2, mar
2015.

[36] J. L. Hafner and K. Rao, “Notes on reliability models for non-mds
erasure codes,” 2006.

[37] K. M. Greenan, J. S. Plank, and J. J. Wylie, “Mean time to meaningless:
MTTDL, Markov models, and storage system reliability,” in HotStorage
’10: Proceedings of the 2nd USENIX Workshop on Hot Topics in
Storage, 2010.

[38] J. G. Elerath and J. Schindler, “Beyond mttdl: A closed-form raid 6
reliability equation,” ACM Trans. Storage, vol. 10, no. 2, mar 2014.
[Online]. Available: https://doi.org/10.1145/2577386

[39] A. Mahgoub, E. B. Yi, K. Shankar, S. Elnikety, S. Chaterji, and
S. Bagchi, “ORION and the three rights: Sizing, bundling, and
prewarming for serverless DAGs,” in 16th USENIX Symposium on
Operating Systems Design and Implementation (OSDI 22). Carlsbad,
CA: USENIX Association, Jul. 2022, pp. 303–320. [Online]. Available:
https://www.usenix.org/conference/osdi22/presentation/mahgoub

[40] A. Smith, “Cloud storage economics: List price stagnation and fee
inflation challenge traditional expectations,” September 2022, https:
//wasabi.com/industry/cloud-storage-fee-inflation/.

[41] L. Kuperman, “Why your cloud expenses are rising: Blame cloud-
flation,” July 2022, https://tdwi.org/articles/2022/07/13/ppm-all-why-
cloud-expenses-are-rising-cloud-flation.aspx.

[42] “Ffmpeg,” https://ffmpeg.org/.
[43] J. C. Jacob, D. S. Katz, G. B. Berriman, J. C. Good, A. C.

Laity, E. Deelman, C. Kesselman, G. Singh, M.-H. Su, T. A.
Prince, and R. Williams, “Montage: a grid portal and software
toolkit for science-grade astronomical image mosaicking,” Int. J.
Comput. Sci. Eng., vol. 4, pp. 73–87, July 2009. [Online]. Available:
http://portal.acm.org/citation.cfm?id=1568665.1568666

[44] M. Malawski, “Towards serverless execution of scientific workflows-
hyperflow case study.” in Works@ Sc, 2016, pp. 25–33.

[45] “Ffmpeg hyperflow wms,” https://github.com/hyperflow-wms.
[46] A. Klimovic, Y. Wang, P. Stuedi, A. Trivedi, J. Pfefferle, and

C. Kozyrakis, “Pocket: Elastic ephemeral storage for serverless
analytics,” in 13th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 18). Carlsbad, CA: USENIX
Association, Oct. 2018, pp. 427–444. [Online]. Available: https:
//www.usenix.org/conference/osdi18/presentation/klimovic

[47] Q. Pu, S. Venkataraman, and I. Stoica, “Shuffling, fast and slow: Scalable
analytics on serverless infrastructure,” in 16th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 19). Boston,
MA: USENIX Association, Feb. 2019, pp. 193–206. [Online]. Available:
https://www.usenix.org/conference/nsdi19/presentation/pu

[48] M. Wawrzoniak, I. Müller, G. Alonso, and R. Bruno, “Boxer: Data
analytics on network-enabled serverless platforms,” in Conference on
Innovative Data Systems Research, 2021.

[49] I. E. Akkus, R. Chen, I. Rimac, M. Stein, K. Satzke, A. Beck,
P. Aditya, and V. Hilt, “Sand: Towards high-performance serverless
computing,” in Proceedings of the 2018 USENIX Conference on Usenix
Annual Technical Conference, ser. USENIX ATC ’18. USA: USENIX
Association, 2018, p. 923–935.

[50] B. Carver, J. Zhang, A. Wang, A. Anwar, P. Wu, and Y. Cheng,
“Wukong: A scalable and locality-enhanced framework for serverless
parallel computing,” in Proceedings of the 11th ACM Symposium
on Cloud Computing, ser. SoCC ’20. New York, NY, USA:
Association for Computing Machinery, 2020, p. 1–15. [Online].
Available: https://doi.org/10.1145/3419111.3421286

[51] V. Sreekanti, C. Wu, X. Charles Lin, J. Schleier-Smith, J. E. Gonzalez,
J. M. Hellerstein, and A. Tumanov, “Cloudburst: stateful functions-as-
a-service,” in Proceedings of the VLDB Endowment, Volume 13, Issue
12, 2020, pp. 2438–2452.

[52] Y. Liu, Z. Huang, J. Yue, H. Huang, S. Wu, and J. Hai, “Funcstore:
Resource efficient ephemeral storage for serverless data sharing,” in
Proceedings of the 38th Symposium on Mass Storage Systems and
Technologies (MSST), 2024.

[53] D. Lelewer and D. Hirschberg, “Data compression,” in ACM Computing
Surveys (CSUR). ACM, 1987, pp. 261–296.

[54] V. Tarasov, D. Jain, G. Kuenning, S. Mandal, K. Palanisami, P. Shilane,
S. Trehan, and E. Zadok, “Dmdedup: Device mapper target for data
deduplication,” in Proceedings of the Linux Symposium, Ottawa, Canada,
Jul. 2014, pp. 83–95.

[55] J. Barr, “New: Amazon s3 reduced redundancy storage (rrs),”
May 2010, https://aws.amazon.com/blogs/aws/new-amazon-s3-reduced-
redundancy-storage-rrs/.

[56] C. Quinn, “S3 reduced redundancy storage is dead,” April 2017, https://
www.lastweekinaws.com/blog/s3-reduced-redundancy-storage-is-dead/.

[57] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker, I. Stoica et al.,
“Spark: Cluster computing with working sets,” HotCloud, vol. 10, no.
10-10, p. 95, 2010.

[58] “Aws step functions,” https://aws.amazon.com/step-functions/.
[59] “Creating action sequences,” July 2023, https://github.com/apache/

openwhisk/blob/master/docs/actions.md#creating-action-sequences.
[60] Z. Li, Y. Liu, L. Guo, Q. Chen, J. Cheng, W. Zheng,

and M. Guo, “Faasflow: Enable efficient workflow execution
for function-as-a-service,” in ASPLOS ’22: Proceedings of
the 27th ACM International Conference on Architectural
Support for Programming Languages and Operating Systems,
ser. ASPLOS ’22. New York, NY, USA: Association for
Computing Machinery, 2022, p. 782–796. [Online]. Available:
https://doi-org.proxy.library.stonybrook.edu/10.1145/3503222.3507717

[61] S. Fouladi, F. Romero, D. Iter, Q. Li, S. Chatterjee, C. Kozyrakis,
M. Zaharia, and K. Winstein, “From laptop to lambda: Outsourcing
everyday jobs to thousands of transient functional containers,” in 2019
USENIX Annual Technical Conference (USENIX ATC 19). Renton,

15



WA: USENIX Association, Jul. 2019, pp. 475–488. [Online]. Available:
http://www.usenix.org/conference/atc19/presentation/fouladi

[62] L. Ao, L. Izhikevich, G. M. Voelker, and G. Porter, “Sprocket: A
serverless video processing framework,” in SoCC ’18: Proceedings of
the ACM Symposium on Cloud Computing, ser. SoCC ’18. New York,
NY, USA: Association for Computing Machinery, 2018, p. 263–274.
[Online]. Available: https://doi.org/10.1145/3267809.3267815

[63] “What are durable functions?” August 2023, https://learn.microsoft.com/
en-us/azure/azure-functions/durable/durable-functions-overview.

[64] S. Burckhardt, B. Chandramouli, C. Gillum, D. Justo, K. Kallas,
C. McMahon, C. S. Meiklejohn, and X. Zhu, “Netherite: Efficient
execution of serverless workflows,” Proc. VLDB Endow., vol. 15, no. 8,
p. 1591–1604, apr 2022. [Online]. Available: https://doi.org/10.14778/
3529337.3529344

16


