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Abstract We present the INTERASPECT instrumentation framework for GCC, a widely
used compiler infrastructure. The addition of plug-in support in the latest release of GCC
makes it an attractive platform for runtime instrumentation, as GCC plug-ins can directly
add instrumentation by transforming the compiler’s intermediate representation. Such trans-
formations, however, require expert knowledge of GCC internals. INTERASPECT addresses
this situation by allowing instrumentation plug-ins to be developed using the familiar vo-
cabulary of Aspect-Oriented Programming: pointcuts, join points, and advice functions.
Moreover, INTERASPECT uses specific information about each join point in a pointcut,
possibly including results of static analysis, to support powerful customized instrumenta-
tion. We describe the INTERASPECT API and present several examples that illustrate its
practical utility as a runtime-verification platform. We also introduce a tracecut system that
uses INTERASPECT to construct program monitors that are formally specified as regular
expressions.

Keywords Program instrumentation · Aspect-oriented programming · GCC · Monitoring ·
Tracecut

1 Introduction

GCC is a widely used compiler infrastructure that supports a variety of input languages,
e.g., C, C++, Fortran, Java, and Ada, and over 30 different target machine architectures.
GCC translates each of its front-end languages into a language-independent intermediate
representation called GIMPLE, which then gets translated to machine code for one of GCC’s
many target architectures. GCC is a large software system with more than 100 developers
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contributing over the years and a steering committee consisting of 13 experts who strive to
maintain its architectural integrity.

In earlier work [10], we extended GCC to support plug-ins, allowing users to add their
own custom passes to GCC in a modular way without patching and recompiling the GCC
source code. Released in April 2010, GCC 4.5 [1] includes plug-in support that is largely
based on our design.

GCC’s support for plug-ins presents an exciting opportunity for the development of prac-
tical, widely-applicable program transformation tools, including program-instrumentation
tools for runtime verification. Because plug-ins operate at the level of GIMPLE, a plug-in is
applicable to all of GCC’s front-end languages. Transformation systems that manipulate ma-
chine code may also work for multiple programming languages, but low-level machine code
is harder to analyze and lacks the detailed type information that is available in GIMPLE.

Implementing instrumentation tools as GCC plug-ins provides significant benefits but
also presents a significant challenge: despite the fact that it is an intermediate representa-
tion, GIMPLE is in fact a low-level language, requiring the writing of low-level GIMPLE
Abstract Syntax Tree (AST) traversal functions in order to transform one GIMPLE expres-
sion into another. Therefore, as GCC is currently configured, the writing of plug-ins is not
trivial but for those intimately familiar with GIMPLE’s peculiarities.

To address this challenge, we developed the INTERASPECT program-instrumentation
framework, which allows instrumentation plug-ins to be developed using the familiar vo-
cabulary of Aspect-Oriented Programming (AOP). INTERASPECT is itself implemented us-
ing the GCC plug-in API for manipulating GIMPLE, but it hides the complexity of this API
from its users, presenting instead an aspect-oriented API in which instrumentation is accom-
plished by defining pointcuts. A pointcut denotes a set of program points, called join points,
where calls to advice functions can be inserted by a process called weaving.

INTERASPECT’s API allows users to customize the weaving process by defining call-
back functions that get invoked for each join point. Callback functions have access to spe-
cific information about each join point; the callbacks can use this to customize the inserted
instrumentation, and to leverage static-analysis results for their customization.

We also present the INTERASPECT Tracecut extension to generate program monitors
directly from formally specified tracecuts. A tracecut [32] matches sequences of pointcuts
specified as a regular expression. Given a tracecut specification T , INTERASPECT Tracecut
instruments a target program so that it communicates program events and event parameters
directly to a monitoring engine for T . The tracecut extension adds the necessary monitoring
instrumentation exclusively with the INTERASPECT API presented here.

In summary, INTERASPECT offers the following novel combination of features:

– INTERASPECT builds on top of GCC, a widely used compiler infrastructure.
– INTERASPECT exposes an API that encourages and simplifies open-source collaboration.
– INTERASPECT is versatile enough to provide instrumentation for many purposes, includ-

ing monitoring a tracecut specification.
– INTERASPECT has access to GCC internals, which allows one to exploit static analysis

and meta-programming during the weaving process.

The full source of the INTERASPECT framework is available from the INTERASPECT web-
site under the GPLv3 license [20].

To illustrate INTERASPECT’s practical utility, we have developed a number of program-
instrumentation plug-ins that use INTERASPECT for custom instrumentation. These include
a heap visualization plug-in designed for the analysis of JPL Mars Science Laboratory soft-
ware; an integer range analysis plug-in that finds bugs by tracking the range of values for
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Fig. 1 A simplified view of the GCC compilation process

each integer variable; and a code coverage plug-in that, given a pointcut and test suite, mea-
sures the percentage of join points in the pointcut that are executed by the test suite.

The rest of the article is structured as follows. Section 2 provides an overview of GCC
and the INTERASPECT framework. Section 3 introduces the INTERASPECT API. Section 4
presents the three case studies: heap visualization, integer range analysis, and code cover-
age. Section 5 describes how we extended INTERASPECT with a tracecut system. Section 6
summarizes related work, and Sect. 7 concludes the article. A preliminary version of this
article, which did not consider the tracecut extension, appeared last year [29].

2 Overview of GCC and the INTERASPECT Architecture

Overview of GCC As Fig. 1 illustrates, GCC translates all of its front-end languages into
the GIMPLE intermediate representation for analysis and optimization. Each transforma-
tion on GIMPLE code is split into its own pass. These passes, some of which may be
implemented as plug-ins, make up GCC’s middle-end. Moreover, a plug-in pass may be
INTERASPECT-based, enabling the plug-in to add instrumentation directly into the GIM-
PLE code. The final middle-end passes convert the optimized and instrumented GIMPLE to
the Register Transfer Language (RTL), which the back-end translates to assembly.

GIMPLE is a C-like three-address (3A) code. Complex expressions (possibly with side
effects) are broken into simple 3A statements by introducing new, temporary variables.
Similarly, complex control statements are broken into simple 3A (conditional) gotos by
introducing new labels. Type information is preserved for every operand in each GIMPLE
statement.

Figure 2 shows a C program and its corresponding GIMPLE code, which preserves
source-level information such as data types and procedure calls. Although not shown in
the example, GIMPLE types also include pointers and structures.

A disadvantage of working purely at the GIMPLE level is that some language-specific
constructs are not visible in GIMPLE code. For example, targeting a specific kind of loop
as a pointcut is not currently possible because all loops look the same in GIMPLE. IN-
TERASPECT can be extended with language-specific pointcuts, whose implementation could
hook into one of the language-specific front-end modules instead of the middle-end.

INTERASPECT architecture INTERASPECT works by inserting a pass that first traverses
the GIMPLE code to identify program points that are join points in a specified pointcut.
For each such join point, it then calls a user-provided weaving callback function, which
can insert calls to advice functions. Advice functions can be written in any language that
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int main() { 1. int main {
int a, b, c; 2. int a, b, c;
a = 5; 3. int T1, T2, T3, T4;
b = a + 10; 4. a = 5;
c = b + foo(a, b); => 5. b = a + 10;
if (a > b + c) 6. T1 = foo(a, b);

c = b++ / a + (b ∗ a); 7. c = b + T1;
bar(a, b, c); 8. T2 = b + c;

} 9. if (a <= T2) goto fi;
10. T3 = b / a;
11. T4 = b ∗ a;
12. c = T3 + T4;
13. b = b + 1;
14. fi:
15. bar (a, b, c);
16. }

Fig. 2 Sample C program (left) and corresponding GIMPLE representation (right)

Fig. 3 Architecture of the INTERASPECT instrumentation framework with its tracecut extension. The trace-
cut specification is a simple C program. The tracecut extension translates events in the specification to point-
cuts, and the INTERASPECT framework directly instruments the pointcuts using GCC’s GIMPLE API. The
instrumented binary sends events to the tracecut monitoring engine, and monitors signal matches by calling
advice functions, which are compiled alongside the target program. It is also possible to specify just pointcuts,
in which case the tracecut extension and monitoring engine are not necessary

will link with the target program, and they can access or modify the target program’s state,
including its global variables. Advice that needs to maintain additional state can declare
static variables and global variables.

Unlike traditional AOP systems which implement a special AOP language to define
pointcuts, INTERASPECT provides a C API for this purpose. We believe that this approach
is well suited to open collaboration. Extending INTERASPECT with new features, such as
new kinds of pointcuts, does not require agreement on new language syntax or modification
to parser code. Most of the time, collaborators will only need to add new API functions.

The INTERASPECT Tracecut extension API uses INTERASPECT to generate program
monitors from formally specified tracecuts. Tracecuts match sequences of pointcuts, speci-
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struct aop_pointcut ∗aop_match_function_entry(void);
Creates pointcut denoting every function entry point.

struct aop_pointcut ∗aop_match_function_exit(void);
Creates pointcut denoting every function return point.

struct aop_pointcut ∗aop_match_function_call(void);
Creates pointcut denoting every function call.

struct aop_pointcut ∗aop_match_assignment_by_type(struct aop_type ∗type);
Creates pointcut denoting every assignment to a variable or memory location that matches a type.

Fig. 4 Match functions for creating pointcuts

fied as regular expressions. The instrumentation component of the extension, which is im-
plemented in C, benefits from INTERASPECT’s design as an API: it need only call API
functions to define and instrument the pointcuts that are necessary to monitor the tracecut.

Figure 3 shows the architecture of a monitor implemented with INTERASPECT Tracecut.
The tracecut itself is defined in a short C program that calls the INTERASPECT Tracecut API
to specify tracecut properties. Linking the compiled tracecut program with INTERASPECT

and the tracecut extension produces a plug-in that instruments events relevant to the trace-
cut. A target program compiled with this plug-in will send events and event parameters to
the tracecut monitoring engine, which then determines if any sequence of events matches
the tracecut rule. The target program can include tracecut-handling functions so that the
monitoring engine can report matches directly back to the program.

3 The INTERASPECT API

This section describes the functions in the INTERASPECT API, most of which fall naturally
into one of two categories: (1) functions for creating and filtering pointcuts, and (2) functions
for examining and instrumenting join points. Note that users of our framework can write
plug-ins solely with calls to these API functions; it is not necessary to include any GCC
header files or manipulate any GCC data structures directly.

Creating and filtering pointcuts The first step for adding instrumentation in INTERASPECT

is to create a pointcut using a match function. Our current implementation supports the four
match functions given in Fig. 4, allowing one to create four kinds of pointcuts.

Using a function entry or exit pointcut makes it possible to add instrumentation that
runs with every execution of a function. These pointcuts provide a natural way to insert
instrumentation at the beginning and end of a function the way one would with before-
execution and an after-returning advices in a traditional AOP language. A call pointcut can
instead target calls to a function. Call pointcuts can instrument calls to library functions
without recompiling them. For example, in Sect. 4.1, a call pointcut is used to intercept all
calls to malloc.

The assignment pointcut is useful for monitoring changes to program values. For exam-
ple, we use it in Sect. 4.1 to track pointer values so that we can construct the heap graph. We
plan to add several new pointcut types, including pointcuts for conditionals and loops. These
new pointcuts will make it possible to trace the complete path of execution as a program
runs, which is potentially useful for coverage analysis, profiling, and symbolic execution.
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void aop_filter_call_pc_by_name(struct aop_pointcut ∗pc, const char ∗name);
Filter function calls with a given name.

void aop_filter_call_pc_by_param_type (struct aop_pointcut ∗pc, int n,

struct aop_type ∗type);
Filter function calls that have an nth parameter that matches a type.

void aop_filter_call_pc_by_return_type(struct aop_pointcut ∗pc,
struct aop_type ∗type);

Filter function calls with a matching return type.

Fig. 5 Filter functions for refining function-call pointcuts

void aop_join_on(struct aop_pointcut ∗pc, join_callback callback,

void ∗callback_param);
Call callback on each join point in the pointcut pc, passing callback_param each time.

Fig. 6 Join function for iterating over a pointcut

const char ∗aop_capture_function_name(aop_joinpoint ∗jp);
Captures the name of the function called in the given join point.

struct aop_dynval ∗aop_capture_param(aop_joinpoint ∗jp, int n);

Captures the value of the nth parameter passed in the given function join point.

struct aop_dynval ∗aop_capture_return_value(aop_joinpoint ∗jp);
Captures the value returned by the function in a given call join point.

Fig. 7 Capture functions for function-call join points

After creating a match function, a plug-in can refine it using filter functions. Filter func-
tions add additional constraints to a pointcut, removing join points that do not satisfy those
constraints. For example, it is possible to filter a call pointcut to include only calls that return
a specific type or only calls to a certain function. Figure 5 summarizes filter functions for
call pointcuts.

Instrumenting join points INTERASPECT plug-ins iterate over the join points of a pointcut
by providing an iterator callback to the join function, shown in Fig. 6. For an INTERASPECT

plug-in to instrument some or all of the join points in a pointcut, it should join on the point-
cut, providing an iterator callback that inserts a call to an advice function. INTERASPECT

then invokes that callback for each join point.
Callback functions use capture functions to examine values associated with a join point.

For example, given an assignment join point, a callback can examine the name of the variable
being assigned. This type of information is available statically, during the weaving process,
so the callback can read it directly with a capture function like aop_capture_lhs_name.
Callbacks can also capture dynamic values, such as the value on the right-hand side of the
assignment, but dynamic values are not available at weave time. Instead, when the call-
back calls aop_capture_assigned_value, it gets an aop_dynval, which serves as
a weave-time placeholder for the runtime value. The callback cannot read a value from the
placeholder, but it can specify it as a parameter to an inserted advice function. When the
join point executes (at runtime), the value assigned also gets passed to the advice function.
Sections 4.1 and 4.2 give more examples of capturing values from assignment join points.
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const char ∗aop_capture_lhs_name(aop_joinpoint ∗jp);
Captures the name of a variable assigned to in a given assignment join point, or returns NULL if the join point does

not assign to a named variable.

enum aop_scope aop_capture_lhs_var_scope(aop_joinpoint ∗jp);
Captures the scope of a variable assigned to in a given assignment join point. Variables can have global,

file-local, and function-local scope. If the join point does not assign to a variable, this function returns

AOP_MEMORY_SCOPE.

struct aop_dynval ∗aop_capture_lhs_addr(aop_joinpoint ∗jp);
Captures the memory address assigned to in a given assignment join point.

struct aop_dynval ∗aop_capture_assigned_value(aop_joinpoint ∗jp);
Captures the assigned value in a given assignment join point.

Fig. 8 Capture functions for assignment join points

void aop_insert_advice(struct aop_joinpoint ∗jp, const char ∗advice_func_name,
enum aop_insert_location location, ...);

Insert an advice call, before or after a join point (depending on the value of location), passing any number of

parameters. A plug-in obtains a join point by iterating over a pointcut with aop_join_on.

Fig. 9 Insert function for instrumenting a join point with a call to an advice function

Capture functions are specific to the kinds of join points they operate on. Figures 7 and 8
summarize the capture functions for function-call join points and assignment join points,
respectively.

AOP systems like AspectJ [21] provide Boolean operators such as and and or to re-
fine pointcuts. The INTERASPECT API could be extended with corresponding operators.
Even in their absence, a similar result can be achieved in INTERASPECT by including the
appropriate logic in the callback. For example, a plug-in can instrument calls to mal-
loc and calls to free by joining on a pointcut with all function calls and using the
aop_capture_function_name facility to add advice calls only to malloc and free.
Simple cases like this can furthermore be handled by using regular expressions to match
function names, which would be a straightforward addition to the framework.

After capturing, a callback can add an advice-function call before or after the join point
using the insert function of Fig. 9. The aop_insert_advice function takes any number
of parameters to be passed to the advice function at runtime, including values captured from
the join point and values computed during instrumentation by the plug-in itself.

Using a callback to iterate over individual join points makes it possible to customize in-
strumentation at each instrumentation site. A plug-in can capture values about the join point
to decide which advice function to call, which parameters to pass to it, or even whether
to add advice at all. In Sect. 4.2, this feature is exploited to uniquely index named vari-
ables during compilation. Custom instrumentation code in Sect. 4.3 separately records each
instrumented join point in order to track coverage information.

Function body duplication INTERASPECT provides a function body duplication facility
that makes it possible to toggle instrumentation at the function level. Although inserting
advice at the GIMPLE level creates very efficient instrumentation, users may still wish to
switch between instrumented and uninstrumented code for high-performance applications.
Duplication creates two or more copies of a function body (which can later be instrumented
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Fig. 10 Visualization of the heap during a bubble-sort operation on a linked list. Boxes represent heap-al-
located structs: linked list nodes in this example. Each struct is labeled with is size, its address in
memory, and the addresses of its field. Within a struct, ovals represent fields that point to other heap
objects. Ovals that are not in a struct are global and stack variables. Each field and variable has an out-
going edge to the struct that it points to, which is labeled with (1) the line number of the assignment that
created the edge and (2) the number of assignments to the source variable that have occurred so far. Fields
and variables that do not point to valid memory (such as a NULL pointer) have dashed borders

differently) and redefines the function to call a special advice function that runs at function
entry and decides which copy of the function body to execute.

When joining on a pointcut for a function with a duplicated body, the caller specifies
which copy the join should apply to. By only adding instrumentation to one copy of the
function body, the plug-in can create a function whose instrumentation can be turned on
and off at runtime. Alternatively, a plug-in can create a function that can toggle between
different kinds of instrumentation. Section 4.2 presents an example of using function body
duplication to reduce overhead by sampling.

4 Applications

In this section, we present several example applications of the INTERASPECT API. The
plug-ins we designed for these examples provide instrumentation that is tailored to specific
problems (memory visualization, integer range analysis, code coverage). Though custom-
made, the plug-ins themselves are simple to write, requiring only a small amount of code.

4.1 Heap visualization

The heap visualizer uses the INTERASPECT API to expose memory events that can be used
to generate a graphical representation of the heap in real time during program execution.
Allocated objects are represented by rectangular nodes, pointer variables and fields by oval
nodes, and edges show where pointer variables and fields point.

In order to draw the graph, the heap visualizer needs to intercept object allocations and
deallocations and pointer assignments that change edges in the graph. Figure 10 shows a
prototype of the visualizer using Graphviz [18], an open-source graph layout tool, to draw
its output. The graph shows three nodes in a linked list during a bubble-sort operation.
The list variable is the list’s head pointer, and the curr and next variables are used
to traverse the list during each pass of the sorting algorithm. (The pn variable is used as
temporary storage for swap operations.)

The INTERASPECT code for the heap visualizer instruments each allocation (call to mal-
loc) with a call to the heap_allocation advice function, and it instruments each pointer
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static void instrument_malloc_calls(void)
{
/∗ Construct a pointcut that matches calls to: void ∗malloc(unsigned int). ∗/
struct aop_pointcut ∗pc = aop_match_function_call();
aop_filter_call_pc_by_name(pc, "malloc");
aop_filter_call_pc_by_param_type(pc, 0, aop_t_all_unsigned());
aop_filter_call_pc_by_return_type(pc, aop_t_all_pointer());

/∗ Visit every statement in the pointcut. ∗/
aop_join_on(pc, malloc_callback, NULL);

}

/∗ The malloc_callback() function executes once for each call to malloc() in the
target program. It instruments each call it sees with a call to
heap_allocation(). ∗/

static void malloc_callback(struct aop_joinpoint ∗jp, void ∗arg)
{
struct aop_dynval ∗object_size;
struct aop_dynval ∗object_addr;

/∗ Capture the size of the allocated object and the address it is
allocated to. ∗/

object_size = aop_capture_param(jp, 0);
object_addr = aop_capture_return_value(jp);

/∗ Add a call to the advice function, passing the size and address as
parameters. (AOP_TERM_ARG is necessary to terminate the list of arguments
because of the way C varargs functions work.) ∗/

aop_insert_advice(jp, "heap_allocation", AOP_INSERT_AFTER,
AOP_DYNVAL(object_size), AOP_DYNVAL(object_addr),
AOP_TERM_ARG);

}

Fig. 11 Instrumenting all memory-allocation events

assignment with a call to the pointer_assign advice function. These advice functions
update the graph. Instrumentation of other allocation and deallocation functions, such as
calloc and free, is handled similarly.

The INTERASPECT code in Fig. 11 instruments calls to malloc. The API function in-
strument_malloc_calls constructs a pointcut for all calls to malloc and then calls
aop_join_on to iterate over all the calls in the pointcut. Only a short main function (not
shown) is needed to set GCC to invoke instrument_malloc_calls during compilation.

The aop_match_function_call function constructs an initial pointcut that in-
cludes every function call. The filter functions narrows the pointcut to include
only calls to malloc. First, aop_filter_call_pc_by_name filters out calls to
functions that are not named malloc. Then, aop_filter_pc_by_param_type and
aop_filter_pc_by_return_type filter out calls to functions that do not match the
standard malloc prototype, which takes an unsigned integer as the first parameter and re-
turns a pointer value. This filtering step is necessary because a program could define its own
function with the name malloc but a different prototype.

For each join point in the pointcut (in this case, a call to malloc), aop_join_on calls
malloc_callback. The two capture calls in the callback function return aop_dynval
objects for the call’s first parameter and return value: the size of the allocated region and
its address, respectively. Recall from Sect. 3 that an aop_dynval serves as a place-
holder during compilation for a value that will not be known until runtime. Finally,
aop_insert_advice adds the call to the advice function, passing the two captured
values. Note that INTERASPECT chooses types for these values based on how they were
filtered. The filters used here restrict object_size to be an unsigned integer and ob-
ject_addr to be some kind of pointer, so INTERASPECT assumes that the advice function
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static void instrument_pointer_assignments(void)
{
/∗ Construct a pointcut that matches all assignments to a pointer. ∗/
struct aop_pointcut ∗pc = aop_match_assignment_by_type(aop_t_all_pointer());

/∗ Visit every statement in the pointcut. ∗/
aop_join_on(pc, assignment_callback, NULL);

}

/∗ The assignment_callback function executes once for each pointer assignment.
It instruments each assignment it sees with a call to pointer_assign(). ∗/

static void assignment_callback(struct aop_joinpoint ∗jp, void ∗arg)
{
struct aop_dynval ∗address;
struct aop_dynval ∗pointer;

/∗ Capture the address the pointer is assigned to, as well as the pointer
address itself. ∗/

address = aop_capture_lhs_addr(jp);
pointer = aop_capture_assigned_value(jp);

aop_insert_advice(jp, "pointer_assign", AOP_INSERT_AFTER,
AOP_DYNVAL(address), AOP_DYNVAL(pointer),
AOP_TERM_ARG);

}

Fig. 12 Instrumenting all pointer assignments

heap_allocation has the prototype:

void heap_allocation(unsigned long long, void ∗);
To support this, INTERASPECT code must generally filter runtime values by type in order to
capture and use them.

The INTERASPECT code in Fig. 12 tracks pointer assignments, such as

list_node->next = new_node;

The aop_match_assignment_by_type function creates a pointcut that matches assign-
ments, which is additionally filtered by the type of assignment. For this application, we are
only interested in assignments to pointer variables.

For each assignment join point, assignment_callback captures address, the ad-
dress assigned to, and pointer, the pointer value that was assigned. In the above exam-
ples, these would be the values of &list_node->next and new_node, respectively. The
visualizer uses address to determine the source of a new graph edge and pointer to
determine its destination.

The function that captures address, aop_capture_lhs_addr, does not require ex-
plicit filtering to restrict the type of the captured value because an address always has
a pointer type. The value captured by aop_capture_assigned_value and stored in
pointer has a void pointer type because we filtered the pointcut to include only pointer
assignments. As a result, INTERASPECT assumes that the pointer_assign advice func-
tion has the prototype:

void pointer_assign(void ∗, void ∗);

4.2 Integer range analysis

Integer range analysis is a runtime tool for finding anomalies in program behavior by track-
ing the range of values for each integer variable [17]. A range analyzer can learn normal
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static void instrument_integer_assignments(void)
{
struct aop_pointcut ∗pc;

/∗ Duplicate the function body so there are two copies. ∗/
aop_duplicate(2, "distributor_func", AOP_TERM_ARG);

/∗ Construct a pointcut that matches all assignments to an integer. ∗/
pc = aop_match_assignment_by_type(aop_t_all_signed_integer());

/∗ Visit every statement in the pointcut. ∗/
aop_join_on_copy(pc, 1, assignment_callback, NULL);

}

/∗ The assignment_callback function executes once for each integer assignment.
It instruments each assignment it sees with a call to int_assign(). ∗/

static void assignment_callback(struct aop_joinpoint ∗jp, void ∗arg)
{
const char ∗variable_name;
int variable_index;
struct aop_dynval ∗value;
enum aop_scope scope;

variable_name = aop_capture_lhs_name(jp);

if (variable_name != NULL) {
/∗ Choose an index number for this variable. ∗/
scope = aop_capture_lhs_var_scope(jp);
variable_index = get_index_from_name(variable_name, scope);

aop_insert_advice(jp, "int_assign", AOP_INSERT_AFTER,
AOP_INT_CST(variable_index), AOP_DYNVAL(value),
AOP_TERM_ARG);

}
}

Fig. 13 Instrumenting integer variable updates

ranges from training runs over known good inputs. Values that fall outside of normal ranges
in future runs are reported as anomalies, which can indicate errors. For example, an out-of-
range value for a variable used as an array index may cause an array-bounds violation.

Our integer range analyzer uses sampling to reduce runtime overhead. Missed updates
because of sampling can result in underestimating a variable’s range, but this trade-off is
reasonable in many cases. Sampling can be done randomly or by using a technique like
Software Monitoring with Controllable Overhead [19].

INTERASPECT provides function body duplication as a means to add instrumentation
that can be toggled on and off. Duplicating a function splits its body into two copies. A dis-
tributor block at the beginning of the function decides which copy to run. An INTERASPECT

plug-in can add advice to just one of the copies, so that the distributor chooses between en-
abling or disabling instrumentation.

Figure 13 shows how we use INTERASPECT to instrument integer variable updates. The
call to aop_duplicate makes a copy of each function body. The first argument specifies
that there should be two copies of the function body, and the second specifies the name of
a function that the distributor will call to decide which copy to execute. When the dupli-
cated function runs, the distributor calls distributor_func, which must be a function
that returns an integer. The duplicated function bodies are indexed from zero, and the dis-
tributor_func return value determines which one the distributor transfers control to.
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Fig. 14 Execution time for bzip2 instrumented, using INTERASPECT or CIL, to increment a counter at
every integer assignment. The programs for the three INTERASPECT configurations are instrumented with
the same plug-in, which duplicates function bodies and inserts advice at every integer assignment. In the
“enabled” and “inline” runs, the distributor always chooses the instrumented path; in the “disabled” run, it
always chooses the uninstrumented path. For the “inline” run, the advice function was marked as inline,
allowing GCC to inline it. We ran all performance tests 10 times, and the 90 % confidence interval had a half
width of less than 0.15 seconds for all measurements shown

Using aop_join_on_copy instead of the usual aop_join_on iterates only over join
points in the specified copy of duplicate code. As a result, only one copy is instrumented;
the other copy remains unmodified.

The callback function itself is similar to the callbacks we used in Sect. 4.1. The main
difference is the call to get_index_from_name that converts the variable name to an
integer index. The get_index_from_name function (not shown for brevity) also takes
the variable’s scope so that it can assign different indices to local variables in different
functions. It would be possible to directly pass the name itself (as a string) to the advice
function, but the advice function would then incur the cost of looking up the variable by
its name at runtime. This optimization illustrates the benefits of INTERASPECT’s callback-
based approach to custom instrumentation.

The aop_capture_lhs_name function returns a string instead of an aop_dynval
object because variable names are known at compile time. It is necessary to check for a
NULL return value because not all assignments are to named variables.

To better understand InterAspect’s performance impact, we benchmarked this plug-in
on the compute-intensive bzip2 compression utility using trivial advice functions. The
bzip2 package is a popular tool included in most Linux distributions. It has 110 functions
in about 8,000 lines of code. Our test plug-in, based on the code in Fig. 13, duplicates
each function body, adding an advice call to every integer assignment in one copy of the
function body. Depending on the test, the distributor either returns 0 immediately, choosing
the uninstrumented path, or returns 1 immediately, for the instrumented path. The integer
assignment advice function only increments a counter, allowing us to measure the overhead
from calling advice functions independently from actual monitoring overhead. All in all,
the plug-in instrumented 957 assignment join points. We also compared our INTERASPECT

plug-in to a similar transformation written in CIL [24] that adds an advice call to every
integer assignment but does not perform function body duplication.

Figure 14 shows our results for bzip2 with five different instrumentation configurations.
We benchmarked each of these configurations with three different input files: a 161 MB
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HTML file, a 161 MB file containing random bytes, and a 1.6 GB file containing zeros. The
HTML file consists of a novel taken from the Project Gutenberg web site and duplicated to
create a larger file.

With a distributor that maximizes overhead by always choosing the instrumented function
body (“InterAspect (Enabled)”), we measured 78.7 % runtime overhead in the worst case:
the zero file. Function body duplication by itself contributes relatively little to this overhead;
with a distributor that always chooses the uninstrumented path (“InterAspect (Disabled)”),
we measured only 3.00 % overhead in the worst case: the HTML file.

High overhead is expected for the integer assignment pointcut because bzip2 performs
integer assignments very frequently. To compress the HTML file, bzip2 executed 5.34 bil-
lion join points, more than 249 million integer assignments per second. The CIL integer
assignment transformation we tested (“CIL” in Fig. 14) added 74.0 % overhead when com-
pressing the zero file.

Much of the overhead in our test comes from the time it takes to enter and exit advice
functions. When an advice function includes only a small amount of code, as in this ex-
ample, it makes sense to insert that code directly at each join point to avoid function call
overhead. GCC can automatically perform this transformation, because INTERASPECT’s
instrumentation passes occur before GCC’s function inlining pass. Marking the integer as-
signment advice function with GCC’s always_inline attribute reduced overhead to just
25.0 % in the worst case: compressing the random file. We computed an overall time for
each configuration by summing the average times for each of the three files. We then com-
puted an overall overhead for each instrumented configuration. The overall overhead for
the “InterAspect (Inline)” configuration was 13.4 %, the lowest of all the configurations we
tested.

The only memory overhead from our range analysis tool comes from duplicating ev-
ery function body, which roughly doubles the size of the text segment. The instrumented
bzip2 execution image was 69 KB larger, as reported by the size utility, an increase of
96 %. Image size is small, however, compared to the total 7.2 MB of heap allocations when
compressing the HTML file with or without instrumentation, as reported by Valgrind.

We disabled GCC’s function inlining for all configurations, because it interfered with
comparisons between bzip2 configurations with function body duplication and configura-
tions without it. When compiling without instrumentation, GCC inlined too aggressively,
actually hurting performance. But with function body duplication, GCC was more reluc-
tant to inline functions that were now twice as large, making it appear as if function body
duplication improved performance and unfairly masking some of the overhead in our bench-
marks. Note that disabling function inlining did not prevent GCC from inlining the advice
function in the “InterAspect (Inline)” configuration, because we marked the advice function
with the always_inline attribute.

4.3 Code coverage

A straightforward way to measure code coverage is to choose a pointcut and measure the
percentage of its join points that are executed during testing. INTERASPECT’s ability to iter-
ate over each join point makes it simple to label join points and then track them at runtime.

The example in Fig. 15 adds instrumentation to track coverage of function entry and exit
points. To reduce runtime overhead, the choose_unique_index function assigns an inte-
ger index to each tracked join point, similar to the indexing of integer variables in Sect. 4.2.
Each index is saved along with its corresponding source filename and line number by the
save_index_to_disk function. The runtime advice needs to output only the set of cov-
ered index numbers; an offline tool uses that output to compute the percentage of join points
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static void instrument_function_entry_exit(void)
{
struct aop_pointcut ∗entry_pc;
struct aop_pointcut ∗exit_pc;

/∗ Construct two pointcuts: one for function entry and one for function exit. ∗/
entry_pc = aop_match_function_entry();
exit_pc = aop_match_function_exit();

aop_join_on(entry_pc, entry_exit_callback, NULL);
aop_join_on(exit_pc, entry_exit_callback, NULL);

}

/∗ The entry_exit_callback function assigns an index to every join
point it sees and saves that index to disk. ∗/

static void entry_exit_callback(struct aop_joinpoint ∗jp, void ∗arg)
{
int index, line_number;
const char ∗filename;

index = choose_unique_index();
filename = aop_capture_filename(jp);
line_number = aop_capture_lineno(jp);

save_index_to_disk(index, filename, line_number);

aop_insert_advice(jp, "mark_as_covered", AOP_INSERT_BEFORE,
AOP_INT_CST(index), AOP_TERM_ARG);

}

Fig. 15 Instrumenting function entry and exit for code coverage

covered or to list the filenames and line numbers of covered join points. For brevity we omit
the actual implementations of choose_unique_index and save_index_to_disk.

5 Tracecuts

In this section, we present the API for the INTERASPECT Tracecut extension, and discuss
the implementation of the associated tracecut monitoring engine. We also present two il-
lustrative examples of the Tracecut extension: runtime verification of file access and GCC
vectors. The architecture diagram in Fig. 3 shows how this extension and its associated
monitoring engine fit into the overall INTERASPECT architecture.

Our INTERASPECT Tracecut extension showcases the flexibility of INTERASPECT’s
API. Since one of our goals for this extension is to serve as a more powerful example of how
to use INTERASPECT, its instrumentation component is built modularly on INTERASPECT:
all of its access to GCC are through the published INTERASPECT interface.

Whereas pointcut advice is triggered by individual events, tracecut advice can be trig-
gered by sequences of events matching a pattern [32]. A tracecut in our system is defined
by a set symbols, each representing a possibly parameterized runtime event, and one or
more rules expressed as regular expressions over these symbols. For example, a tracecut that
matches a call to exit or execve after a fork would specify symbols for fork, exit, and
execve function calls and the rule fork (exit | execve), where juxtaposition denotes
sequencing, parentheses are used for grouping, and the vertical bar “|” separates alterna-
tives.

Each symbol is translated to a function-call pointcut, which is instrumented with ad-
vice that sends the symbol’s corresponding event to the monitoring engine. The monitoring
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struct tc_tracecut ∗tc_create_tracecut(void);
Create an empty tracecut.

enum tc_error tc_add_param(struct tc_tracecut ∗tc, const char ∗name,
const struct aop_type ∗type);

Add a named parameter to a tracecut.

Fig. 16 Function for initializing tracecuts

engine signals a match whenever some suffix of the string of events matches one of the
regular-expression rules.

Parameterization allows a tracecut to separately monitor multiple objects [5, 11]. For
example, the rule fclose fread, designed to catch an illegal read from a closed file,
should not match an fclose followed by an fread to a different file. When these events
are parameterized by the file they operate on, the monitoring engine creates a unique monitor
instance for each file.

A tracecut with multiple parameters can monitor properties on sets of objects. A classic
example monitors data sources that have multiple iterators associated with them. When a
data source is updated, its existing iterators become invalid, and any future access to them is
an error. Parameterizing events by both data source and iterator creates a monitor instance
for each pair of data source and iterator.

The monitoring engine is implemented as a runtime library that creates monitor instances
and forwards events to their matching monitor instances. Because rules are specified as reg-
ular expressions, each monitor instance stores a state in the equivalent finite-state machine.
The user only has to link the monitoring library with the instrumented binary, and the trace-
cut instrumentation calls directly into the library.

5.1 Tracecut API

A tracecut is specified by a C program that calls tracecut API functions. This design keeps
the tracecut extension simple, eliminating the need for a custom parser but still allowing
concise definitions. A tracecut specification can define any number of tracecuts, each with
its own parameters, events, and rules.

Defining parameters The functions in Fig. 16 create a new tracecut and define its param-
eters. Each parameter has a name and a type. The type is necessary because parameters are
used to capture runtime values.

Defining symbols The tc_add_call_symbol function adds a new symbol that corre-
sponds to an event at every call to a specified function. The tc_bind functions bind a
tracecut parameter to one of the function call’s parameters or to its return value. Figure 17
shows tc_add_call_symbol and the tc_bind functions.

The tracecut API uses the symbol and its bindings to define a pointcut. Figure 18 shows
an example symbol along with the INTERASPECT API calls that Tracecut makes to create
the pointcut. In a later step, Tracecut makes calls needed to capture the bound return value
and pass it to an advice function.

As a convenience, the API also provides the tc_declare_call_symbol function
(also in Fig. 17), which can define a symbol and its parameter bindings with one call using
a simple text declaration. The declaration is syntactically similar to the C prototype for the
function that will trigger the symbol, but the function’s formal parameters are replaced with
tracecut parameter names or with a question mark “?” to indicate that a parameter should
remain unbound. The code in Fig. 18(c) defines the same symbol as in Fig. 18(a).
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enum tc_error tc_add_call_symbol(struct tc_tracecut ∗tc, const char ∗name,
const char ∗func_name,
enum aop_insert_location location);

Define a named event corresponding to calls to the function named by func_name.

enum tc_error tc_bind_to_call_param(struct tc_tracecut ∗tc,
const char ∗param_name,
const char ∗symbol_name,int call_param_index);

Bind a function call parameter from an event to one of the tracecut’s named parameters.

enum tc_error tc_bind_to_return_value(struct tc_tracecut ∗tc,
const char ∗param_name,
const char ∗symbol_name);

Bind the return value of an event to one of the tracecut’s named parameters.

enum tc_error tc_declare_call_symbol(struct tc_tracecut ∗tc, const char ∗name,
const char ∗declaration,
enum aop_insert_location location);

Define a named event along with all its parameter bindings with one declaration string.

Fig. 17 Functions for specifying symbols

struct tracecut ∗tc = tc_create_tracecut()
tc_add_param(tc, "object", aop_all_pointer());
tc_add_call_symbol(tc, "create", "create_object", AOP_INSERT_AFTER);
tc_bind_to_return_value(tc, "object", "create");

(a) Code to define a tracecut symbol.

pc = aop_match_function_call();
aop_filter_call_pc_by_name(pc, "create_object");
aop_filter_call_pc_by_return_type(pc, aop_all_pointer());

(b) The values that the tracecut API will pass to INTERASPECT functions to create a corresponding pointcut.

struct tracecut ∗tc = tc_create_tracecut()
tc_add_param(tc, "object", aop_all_pointer());
tc, "create", "(object)create_object()",
AOP_INSERT_AFTER);

(c) A more compact way to define the event in Fig. 18(a).

Fig. 18 An example of how the tracecut API translates a tracecut symbol into a pointcut. Because the cre-
ate symbol’s return value is bound to the object param, the resulting pointcut is filtered to ensure that
its return value matches the type of object

enum tc_error tc_add_rule(struct tc_tracecut ∗tc, const char ∗specification);
Define a tracecut rule. The specification is a regular expression using symbol names as its alphabet.

Fig. 19 Function for defining tracecut rule

Defining rules After symbols and their parameter bindings are defined, rules are expressed
as strings containing symbol names and standard regular expression operators: (, ), ∗, +,
and |. The function for adding a rule to a tracecut is shown in Fig. 19.

5.2 Monitor implementation

The monitoring engine maintains a list of monitor instances for each tracecut. Each instance
has a value for each tracecut parameter and a monitor state. Instrumented events pass the
values of their parameters to the monitoring engine, which then determines which monitor
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instances to update. This monitor design is based on the way properties are monitored in
Tracematches [5] and MOP [11].

When a symbol is fully parameterized—it has a binding for every parameter defined in
the tracecut specification—the monitoring engine updates exactly one instance. If no in-
stance exists with matching parameter values, one is created.

For partially parameterized symbols, like push in Fig. 23, the monitoring engine only
requires the specified parameters to match. As a result, events corresponding to these sym-
bols can update multiple monitor instances. For example, a push event updates one monitor
for every element_pointer associated with the updated vector. As in the original MOP
implementation, partially parameterized symbols cannot create a new monitor instance [11].
(MOP has since defined semantics for partially parameterized monitors [23].)

When any monitor instance reaches an accepting state, the monitoring engine reports a
match. The default match function prints the monitor parameters to stderr. Developers
can implement their own tracecut advice by overriding the default match function. Function
overriding is possible in C using a linker feature called weak linkage. Placing a debugger
breakpoint at the match function makes it possible to examine program state when a match
occurs.

Monitoring instances get destroyed when they can no long reach an accepting state. The
tracecut engine does not attempt to free instances parameterized by freed objects because it
is not always possible to learn when an object is freed in C and because parameters are not
required to be pointers to heap-allocated objects.

A developer can ensure that stale monitor instances do not waste memory by designing
the rule to discard them. The easiest way to do this is to define a symbol for the function
that deallocates an object but not to include the symbol anywhere in the tracecut’s rule.
Deallocating the object then generates an event that makes it impossible for the tracecut
rules to match.

Figure 20 is a pseudocode representation of the monitoring logic described in this section.
Note that it uses a linear search to find monitors that need to be updated. This approach
makes sense when the number of monitor instances remains small throughout execution,
as in the examples we discuss below. When the number of monitor instances is large, it
would be more efficient to maintain a hash table index for each possible parameterization.
Updating these indexes would add a constant cost to creating a new monitor instance, but
events would no longer trigger an expensive O(n) lookup.

5.3 Verifying file access

As a first example of the tracecut API, we consider the runtime verification of file access.
Like most resources in C, the FILE objects used for file I/O must be managed manually. Any
access to a FILE object after the file has been closed is a memory error which, though dan-
gerous, might not manifest itself as incorrect behavior during testing. Designing a tracecut
to detect these errors is straightforward.

The tracecut in Fig. 21 defines symbols for four FILE operations: open, close, and two
kinds of reads. The rule matches any sequence of these symbols that opens a file, closes it,
and then tries to read it.

The rule matches as soon as any read is performed on a closed FILE object, immediately
identifying the offending read. We tested this tracecut on bzip2 (which we also use for
evaluation in Sect. 4.2); it caught an error we planted without reporting any false positives.
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receive_event(tracecut, monitors, event_name, param_names[], param_values[],
num_params):

matching_monitors := {}

; Find monitor instances with parameters matching this event.
for each monitor in monitors:

matches := true
for i in 1 to num_params:

; Check that all params in the event match params in the monitor instance.
if not monitor.get_param(param_names[i]) = param_values[i] then:

matches := false
break

if matches then:
matching_monitors.insert(monitor)

; Create a new monitor if necessary.
if is_empty(matching_monitors) and is_fully_parameterized(tracecut, num_params):

new_monitor := create_monitor(param_names, param_values)
monitors.insert(new_monitor)
matching_monitors.insert(new_monitor)

; Update the finite-state machine for each matching monitor.
for each monitor in matching_monitors:

monitor.update_state(event_name)

; Trigger advice on reaching an accepting state.
if is_in_accepting_state(monitor)

monitor.call_advice_function()

; Destroy any monitor that can no longer reach an accepting state.
if is_in_trap_state(monitor) then:

monitors.remove(monitor)
destroy(monitor)

is_fully_parameterized(tracecut, num_params)
if get_num_params(tracecut) = num_params then:

return true
else

return false

Fig. 20 Pseudocode implementation of the INTERASPECT Tracecut monitoring logic

tc = tc_create_tracecut();

tc_add_param(tc, "file", aop_t_all_pointer());

tc_declare_call_symbol(tc, "open", "(file)fopen()", AOP_INSERT_AFTER);
tc_declare_call_symbol(tc, "read", "fread(?, ?, ?, file)", AOP_INSERT_BEFORE);
tc_declare_call_symbol(tc, "read_char", "fgetc(file)", AOP_INSERT_BEFORE);
tc_declare_call_symbol(tc, "close", "fclose(file)", AOP_INSERT_BEFORE);

tc_add_rule(tc, "open (read | read_char)∗ close (read | read_char)");

Fig. 21 A tracecut for catching accesses to closed files. For brevity, the tracecut only checks read operations

5.4 Verifying GCC vectors

We designed a tracecut to monitor a property on a vector data structure used within GCC
to store an ordered list of GIMPLE statements. The list is stored in a dynamically resized
array. The vector API provides an iterator function to iterate over the GIMPLE statements
in a vector. Figure 22 shows how the iterator function is used. At each execution of the loop,
the element variable points to the next statement in the vector.
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int i;
gimple element;

/∗ Iterate over each element in a vector of GIMPLE statements. ∗/
for (i = 0; VEC_gimple_base_iterate(vector1, i, &element); i++) {
/∗ If condition holds, copy this element into vector2. ∗/
if (condition(element))

VEC_gimple_base_quick_push(vector2, element);
}

Fig. 22 The standard pattern for iterating over the elements in a GCC vector of GIMPLE statements. This ex-
ample copies elements matching some condition from vector1 to vector2. If vector1 and vec-
tor2 happen to point to the same vector, this code may modify that vector while iterating over its elements

tc = tc_create_tracecut();

tc_add_param(tc, "vector", aop_t_all_pointer ());
tc_add_param(tc, "element_pointer", aop_t_all_pointer ());

tc_declare_call_symbol(tc, "iterate",
"VEC_gimple_base_iterate(vector, ?, element_pointer)",
AOP_INSERT_BEFORE);

tc_declare_call_symbol(tc, "push", "VEC_gimple_base_quick_push(vector, ?)",
AOP_INSERT_BEFORE);

tc_add_rule(tc, "iterate push iterate");

Fig. 23 A tracecut to monitor vectors of GIMPLE objects in GCC

A common tracecut property for data structures with iterators checks that the data struc-
ture is not modified while it is being iterated, as can occur in Fig. 22. Figure 23 specifies a
tracecut that detects violations of this property.

The tracecut monitors two important vector operations: the VEC_gimple_base_
iterate function, which is used in the guard of a for loop to advance to the next ele-
ment in the list, and the VEC_gimple_base_quick_push function, which inserts a new
element at the end of a vector. With the symbols defined, the rule itself is simple: iterate
push iterate. Any push in between two iterate operations indicates that the vector
was updated within the iterator loop.

Parameterizing the iterate symbol on both the vector and the element_pointer
used to iterate makes it possible to distinguish different iterator loops over the same vector.
This distinction is necessary so that a program that finishes iterating over a vector, updates
that vector, and then iterates over it again does not trigger a match. Though, the tracecut
monitor will observe events for the symbols iterate push iterate, the first and last
iterate events (which are from different loops) will normally have different values for
their element_pointer parameter.

When monitoring this same property in Java, usually an iterator object serves the purpose
of parameterizing an iterator loop. In Fig. 22, the element variable is analogous to an
iterator, as it provides access to the current list element at each iteration of the loop. The
element_pointer identifies the iterator-like variable by its address.

Keeping specifications simple is especially important in C because the language does not
provide any standard data structures. A tracecut written for one program’s vector type is not
likely to be useful for monitoring any other program.

We applied the tracecut in Fig. 23 to GCC itself, verifying that, in our tests, GCC did
not update any vectors while they were being iterated. The tracecut did match a call to
VEC_gimple_base_quick_push that we deliberately placed in an iterator loop.
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tc = tc_create_tracecut();

tc_add_param(tc, "connection", aop_t_all_pointer());

tc_declare_call_symbol(tc, "init", "(connection)connections_get_new_connection()",
AOP_INSERT_AFTER);

tc_declare_call_symbol(tc, "state", "connection_state_machine(?, connection)",
AOP_INSERT_BEFORE);

tc_declare_call_symbol(tc, "close", "connection_close(?, connection)",
AOP_INSERT_BEFORE);

tc_add_rule(tc, "init state∗ close state");

Fig. 24 A tracecut for catching accesses to connections after they have been closed by the server

Because monitored events in our INTERASPECT Tracecut examples execute less fre-
quently than the integer assignment join points in our integer range analysis example
(Sect. 4.2), we found overhead to be less of an issue. We measured overhead for both the file
access tracecut we tested in Sect. 5.3 and the tracecut in this section to be less than 1 %.

5.5 Verifying lighttpd connections

We also used INTERASPECT Tracecut to check a property of connections in the lighttpd
(pronounced lighty) HTTP server [22]. Lighttpd creates many connections, allowing us
to evaluate the performance of INTERASPECT Tracecut with many monitors. The lighttpd
server maintains a connection object for each open connection from a client. Each con-
nection object stores a TCP network socket and all state information for the client’s HTTP
session.

The property we checked, shown in Fig. 24, is that the server does not try to update the
state of a connection after the connection has been closed; this is similar to the file property
presented in Sect. 5.3. After connection_close is called on a connection object, any
updates to that object via connection_state_machine will trigger a match, unless a
call to connections_get_new_connection re-initializes the object first.

We found that lighttpd sometimes closes connections while they are on its list of con-
nection objects that are pending a state update. The service routine for this list then up-
dates the state of the closed connection, but this usage does not cause an error. To avoid error
reports for this correct usage, we overrode the tracecut match function to ignore matches on
objects in the pending connection list. The custom match function still reports other state
updates on closed connections. These state updates would likely indicate an error. Our test
runs did not find any such updates in the version of lighttpd we tested.

To test performance, we stressed lighttpd with the http_load tool, which loads an
HTTP server with a large number of parallel requests and measures response times [27].
The version we used includes a patch from the lighttpd authors [22] to report errors more
accurately and additional modifications to report standard deviations of response time sam-
ples, which we needed to make conclusions about statistical significance. We configured
http_load to open HTTP requests in groups of 100 at a time, the most that lighttpd could
handle on our test hardware without dropping connections. With this test workload, IN-
TERASPECT Tracecut had to maintain at least 100 monitor instances throughout the course
of the test.

Monitoring did not cause a statistically significant increase in response time, because
lighttpd’s operation is largely I/O-bound. The average response time was 21.9 ms for the
two million requests in the unmonitored and monitored runs. Monitoring did increase the
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tc = tc_create_tracecut();

tc_add_param(tc, "table", aop_t_struct_ptr("htab"));
tc_add_param(tc, "obj", aop_t_struct_ptr("obj"));

tc_declare_call_symbol(tc, "insert", "insert_obj(table, obj)", AOP_INSERT_BEFORE);
tc_declare_call_symbol(tc, "modify", "modify_obj(obj)", AOP_INSERT_BEFORE);
tc_declare_call_symbol(tc, "empty", "htab_empty(table)", AOP_INSERT_BEFORE);

tc_add_rule(tc, "insert modify");

Fig. 25 A tracecut for catching modifications to objects in hash tables

server’s CPU load. Running lighttpd with the connection tracecut raised CPU utilization by
the lighttpd process from 36.4 % to 39.7 %.

5.6 Verifying hash table entries

We designed a simple hash table benchmark in order to better quantify INTERASPECT

Tracecut’s scalability, as well as to provide another example of a useful data structure prop-
erty. The benchmark performs 10M operations, either randomly inserting an element into
one of the hash tables or, with much lower probability, randomly modifying the key of an
element in one of the hash tables.

Modifying an element simulates an error. Altering the element’s key can change its hash
value, leaving the element in the wrong bucket and violating the hash table’s invariant. Fig-
ure 25 shows a tracecut designed to catch this error by matching any call to modify_obj
that immediately follows insert_obj. The htab_empty function removes all elements
from a table, and the tracecut expression is designed so that a call to htab_empty after in-
serting an object with insert_obj prevents a match for a subsequent call to modify_obj
(thereby destroying the object’s monitor instance). Though it was not necessary for this ex-
ample, it would also be straightforward to include a symbol for a function that removes an
individual object from a hash table.

We designed the hash table benchmark so that the tracecut monitoring framework would
have to store a large number of monitor instances. The benchmark maintains 10 hash tables,
which each have a maximum size. Whenever a table exceeds its maximum, the benchmark
removes all its elements with the htab_empty function. We varied the maximum table
size from 50 to 250 in increments of 25 to show how performance scales as the number of
monitored objects increases.

Because the list of monitor instances is much larger than in our other benchmarks and
because the hash table benchmark executes monitored operations in a tight loop, we ex-
pected the performance cost of monitoring to be high. With the maximum size set to 250,
we measured 113× overhead and found that each INTERASPECT Tracecut had to search
a list of 1,244 monitor instances on average for each event it monitored. Figure 26 shows
these results, overhead and average number of monitor instances, for each of the maximum
table sizes we tested.

In a profiled run of the benchmark, we found that the tracecut library spent more than
98 % of its time in monitor instance lookup routines. The trend in Fig. 26 of overhead in-
creasing linearly with the number of monitor instances is consistent with our conclusion
that these lookup routines dominate monitoring overhead. As mentioned in Sect. 5.2, IN-
TERASPECT Tracecut’s overhead for target programs that involve a large number of moni-
tor instances can be greatly reduced by using an index (e.g., a hash table), instead of linear
search, to find monitor instances that need to be updated. This more efficient approach is
used in the MOP system [11], discussed in Sect. 6.
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Fig. 26 Monitoring overhead for
the hash table benchmark with
nine different values for the
maximum table size. We
calculate the number of monitor
instances, shown on the x-axis, as
the average number of instances
that exist when a tracecut event is
monitored. As with our bzip2
benchmark in Sect. 4.2, we
obtained performance numbers
by comparing the average
execution time of the benchmark
with and without monitoring,
using ten runs for each

6 Related work

INTERASPECT is a framework for the aspect-oriented instrumentation of programming lan-
guages supported by GCC. Whereas the current focus has been on C, the framework should
be applicable to any GCC-supported language. INTERASPECT has been extended in this
paper with the Tracecut plug-in for the runtime monitoring of regular expressions. IN-
TERASPECT Tracecut illustrates how INTERASPECT allows for such an extension. In what
follows, we discuss related work in terms of instrumentation frameworks and tracecut facil-
ities.

Concerning instrumentation frameworks, there is a great variety of them for popular pro-
gramming languages, including aspect-oriented programming environments, reflection sys-
tems, and compiler frameworks. Instrumentation frameworks can be classified along four
dimensions:

1. Target language: the language being instrumented (e.g. C, C++, and Java).
2. Instruction language: the language used to express instrumentation instructions. The in-

strumentation language can be a Domain-Specific Language (DSL) or an API.
3. Target view: the type of view offered by the instrumentation framework of the target

language: source-code view, bytecode view, abstract syntax, etc.
4. Infrastructure: the prevalence of the compiler framework that the instrumentation frame-

work is based on.

We argue that INTERASPECT offers a unique combination of these dimensions with the
target language being C (and other languages supported by GCC), the instrumentation lan-
guage being an API, the target view being source code, and finally being based on the well-
adopted GCC infrastructure. It is this combination of features that makes INTERASPECT

unique. Being based on GCC means that INTERASPECT has a greater chance of adoption by
the GCC user community and of long-term survival, because, if an instrumentation frame-
work is part of a compiler you are already using, the barrier for usage of that instrumentation
framework is significantly diminished. Being API-based means that it is flexible and permits
open-source collaboration. Furthermore, the focus on C is much needed since the focus of
existing instrumentation frameworks has been primarily on Java. Figure 27 shows all of the
aspect-oriented frameworks that we compare INTERASPECT to in this section and organizes
them according the dimensions introduced above.
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Fig. 27 A breakdown of the frameworks discussed in this section by the first three of our four classification
dimensions, target language, instruction language, and target view. Not included in this hierarchy are CIL
and Valgrind, which both provide general-purpose frameworks that are not aspect oriented

In addition to filling a new role in the spectrum of instrumentation frameworks, IN-
TERASPECT offers two novel features to the field of aspect-oriented programming. First,
INTERASPECT supports the notion of callback functions, which can be applied during in-
strumentation. Such functions can perform customized instrumentation at each join point, a
capability other AOP approaches lack. Second, function body duplication makes it possible
to efficiently toggle instrumentation on and off at runtime or to switch between two different
instrumentation profiles.

Aspect-oriented programming was first popularized for Java with AspectJ [16, 21].
There, weaving takes place at the bytecode level. The user is provided with a source-code
view and writes instrumentation instructions in a specialized DSL supporting pointcut defi-
nitions and advice definitions. The AspectBench Compiler (abc) [8] is a more recent exten-
sible research version of AspectJ that makes it possible to add new language constructs [9].
Similarly to INTERASPECT, it manipulates a 3A intermediate representation (Jimple) spe-
cialized to Java.

Other frameworks for Java, including Javaassist [13] and PROSE [25], offer, in a man-
ner similar to INTERASPECT an API for instrumenting and modifying code, and hence do
not require the use of a special language. Javaassist is a class library for editing bytecode.
A source-level API can be used to edit class files without knowledge of the bytecode for-
mat. PROSE has similar goals. The BCEL [2] tool provides an API for manipulating Java
bytecode.

AOP for other languages such as C and C++ has had a slower uptake. AspectC [14] was
one of the first AOP systems for C, based on the language constructs of AspectJ. ACC [3]
is a more recent AOP system for C, also based on the language constructs of AspectJ. Both
systems offer specialized DSLs for writing pointcuts and advice, just like AspectJ, providing
the user with a source-code view of the code to be instrumented. They transform source code
and offer their own internal compiler framework for parsing C. These are closed systems in
the sense that one cannot augment them with new pointcuts or access the internal structure
of a C program in order to perform static analysis.

The XWeaver system [28], with its language AspectX, represents a program in XML,
making it independent of the programming language. It supports Java and C++. The choice
of an XML-based representation of the base code has the advantage of partially decoupling
the aspect weaver and the aspect language from the language of the base code. Aspicere [7] is
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an aspect language for C based on LLVM bytecode. Its pointcut language is inspired by logic
programming. Adding new pointcuts amounts to defining new logic predicates. Arachne [6,
15] is a dynamic aspect language for C that uses assembler manipulation techniques to
instrument a running system without pausing it.

AspectC++ [30] is targeted towards C++. It can handle C to some extent, but this does
not seem to be a high priority for its developers. For example, it only handles ANSI C and
not other dialects. AspectC++ operates at the source-code level and generates C++ code,
which can be problematic in contexts where only C code is permitted, such as in certain
embedded applications. OpenC++ [12] is a front-end library for C++ that developers can
use to implement various kinds of translations in order to define new syntax and object
behavior. In this sense, it attempts to provide an open compiler framework. An OpenC++
user writes a meta-program, in the form of a small number of C++ classes, which is then
compiled by the OpenC++ compiler and (dynamically or statically) linked to the compiler
itself as a compiler plug-in.

CIL [24] (C Intermediate Language) is an OCaml [26] API for writing source-code trans-
formations of its own 3A code representation of C programs. CIL requires a user to be famil-
iar with the OCaml programming language. Valgrind [31] works directly with executables
and consequently targets multiple programming languages.

With respect to the INTERASPECT Tracecut plug-in, the field of runtime verification has
offered many such systems, and we do not claim that our plug-in outperforms the better of
these. Rather, the plug-in is an illustration of INTERASPECT demonstrating how such an
extension can be defined. Using the INTERASPECT API for our tracecut monitoring facility
greatly simplified its design, which we believe makes a case for the extensibility of the
INTERASPECT API.

The INTERASPECT Tracecut is informed by several tracecut systems for Java, includ-
ing Declarative Event Patterns [32], which introduced the term tracecut, Tracematches [5],
and MOP [11], the last two supporting monitoring of regular expressions. Our handling of
monitor parameterization is based on the implementations in Tracematches and MOP, most
specifically MOP. More concretely, in INTERASPECT Tracecut, an index is created from pa-
rameters of events to propositional state machines resulting from translation of the regular
expressions. Each monitor has a set of parameters, and each event sends a value for each of
those parameters. When none of the values are empty, we say that the event is “fully param-
eterized” and look up the (at most) one monitor instance that has matching values for all the
parameters. If no monitor instance is found, we create a new one. For a partially parame-
terized event (some values are empty), we look for all monitor instances whose parameter
values match all the non-empty parameters of the event. If there are no such instances, the
event is ignored. This basically means that the first event must carry all the parameters to
create a new monitor instance. This is how initial versions of MOP worked. Subsequently,
MOP has been modified so that this restriction is no longer necessary [23].

As discussed in Sect. 5, for a given event, an index is created from the event’s parameters
and used to locate the monitor instances to update by a linear search, which identifies those
instances whose parameters contain the index as a subset. As also previously stated, this
approach is not efficient when the number of instances is big. An efficient solution for man-
aging a large number of monitor instances would be to (abstractly viewed) maintain a map
from indexes to monitor instances. This is in fact the approach taken in the MOP system, in
which each index is mapped to a monitor state. In MOP, when a monitor receives an event, it
combines the event’s parameters with the formal parameter names associated with that event
to construct the index (itself a map from parameter names to concrete values), looks up the
appropriate propositional monitor state for that binding, and then applies the propositional
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event in that monitor state to obtain a new state. More specifically, a monitor state is updated
if it is mapped to by an index that includes the index produced by the event. The complete
algorithm for MOP is more sophisticated than just described here. Note, however, that the
tracecut solution is not an attempt to improve on existing monitoring solutions, but rather to
illustrate how such a solution can easily be built on top of InterAspcect.

Another difference between INTERASPECT Tracecut and MOP is in their approaches to
destroying monitor instances. MOP destroys an instance when the garbage collector reaps
the objects assigned to the instance’s parameters. Because C programs are not garbage col-
lected and because INTERASPECT Tracecut can use parameters that are not allocated objects
(such as integer file handles), instances in INTERASPECT Tracecut are destroyed when they
can no longer reach an accepting state.

For C, Arachne and Aspicere provide tracecut-style monitoring. Arachne can moni-
tor pointcut sequences which have similar semantics to INTERASPECT Tracecut’s regu-
lar expressions [15]. The cHALO extension to Aspicere adds predicates for defining se-
quences [4]. These predicates are designed to give developers better control over the amount
of memory used to track monitor instances.

7 Conclusions

We have presented INTERASPECT, a framework for developing powerful instrumentation
plug-ins for the GCC suite of production compilers. INTERASPECT-based plug-ins instru-
ment programs compiled with GCC by modifying GCC’s intermediate language, GIMPLE.
The INTERASPECT API simplifies this process by offering an AOP-based interface. Plug-
in developers can easily specify pointcuts to target specific program join points and then
add customized instrumentation at those join points. We presented several example plug-ins
that demonstrate the framework’s ability to customize runtime instrumentation for specific
applications. Finally, we developed a more full-featured application of our API: the IN-
TERASPECT Tracecut extension, which monitors formally defined runtime properties. The
API and the tracecut extension are available under an open-source license [20].

As future work, we plan to add pointcuts for all control flow constructs, thereby allowing
instrumentation to trace a program run’s exact path of execution. We also plan to investigate
API support for pointcuts that depend on dynamic information, such as AspectJ’s cflow.
Dynamic pointcuts can already be implemented in INTERASPECT with advice functions
that maintain and use appropriate state, or even with tracecut advice, but API support would
eliminate the need to write such advice functions.
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