I3FS: An In-Kernel Integrity Checker and Intrusion Detection File System

Swapnil Patil, Anand Kashyap, Gopalan Sivathanu, and Erez Zadok
Sony Brook University

Appearsin the proceedings of the 18th USENI X Large I nstallation System Administration Conference (LI1SA
2004)

Abstract

Today, improving the security of computer systems
has become an important and difficult problem. Attack-
ers can seriously damage the integrity of systems. At-
tack detection is complex and time-consuming for sys-
tem administrators, and it is becoming more so. Current
integrity checkers and 1DSs operate as user-mode utili-
ties and they primarily perform scheduled checks. Such
systems are less effective in detecting attacks that hap-
pen between scheduled checks. These user tools can be
easily compromised if an attacker breaks into the sys-
tem with administrator privileges. Moreover, these tools
result in significant performance degradation during the
checks.

Our system, called I3FS, is an on-access integrity
checking file system that compares the checksums of
files in real-time. It uses cryptographic checksums to
detect unauthorized modifications to files and performs
necessary actions as configured. 13FS is a stackable file
system which can be mounted over any underlying file
system (like Ext3 or NFS). I3FS’s design improves over
the open-source Tripwire system by enhancing the func-
tionality, performance, scalability, and ease of use for
administrators. We built a prototype of I3FS in Linux.
Our performance evaluation shows an overhead of just
4% for normal user workloads.

1 Introduction

In the last few years, security advisory boards have ob-
served an increase in the number of intrusion attacks on
computer systems [2]. Broadly, these intrusions can be
categorized as network-based or host-based intrusions.
Defense against network-based attacks involves increas-
ing the perimeter security of the system to monitor the
network environment, and setting up firewall rules to
prevent unauthorized access. Host-based defenses are
deployed within each system, to detect attack signatures
or unauthorized access to resources. We developed a
host-based system which performs integrity checking at
the file system level. It detects unauthorized access, ma-
licious file system activity, or system inconsistencies,
and then triggers damage control in a timely manner.

System administrators must stay alert to protect their
systems against the effects of malicious intrusions. In
this process, the administrators must first detect that an
intrusion has occurred and that the system is in an in-
consistent state. Second, they have to investigate the
damage done by attackers, like data deletion, adding in-
secure Trojan programs, etc. Finally, they have to fix
the vulnerabilities to avoid future attacks. These steps
are often too difficult and hence machines are mostly re-
installed and then reconfigured. Our work does not aim
at preventing malicious intrusions, but offers a method
of notifying administrators and restricting access once
an intrusion has happened, so as to minimize the effects
of attacks. Our system uses integrity checking to detect
and identify the attacks on a host, and triggers damage
control in a timely manner.

In our approach, given that a host system has been
compromised by an attack, we aim at limiting the dam-
age caused by the attack. An attacker that has gained ad-
ministrator privileges could potentially make changes to
the system, like modifying system utilities (e.g., / bi n
files or daemon processes), adding back-doors or Tro-
jans, changing file contents and attributes, accessing
unauthorized files, etc. Such file system inconsistencies
and intrusions can be detected using Tripwire [9, 10, 22].
Tripwire is one of the most popular examples of user
mode software that can detect file system inconsisten-
cies using periodic integrity checks. There are three dis-
advantages of any such user-mode system: (1) it can be
tampered with by an intruder; (2) it has significant per-
formance overheads during the integrity checks; and (3)
it does not detect intrusions in real-time. Our work uses
the Tripwire model for the detection of changes in the
state of the file system, but does not have these three
disadvantages. This is because our integrity checking
component is in the kernel.

In this paper we describe an in-kernel approach to
detect intrusions through integrity checks. We call our
system 13FS (pronounced as i-cubed FS), which is an
acronym for In-kernel Integrity checker and Intrusion
detection File System. Our in-kernel system has two
major advantages over the current user-land Tripwire.

First, on discovering any failure in integrity check, I3FS
immediately blocks access to the affected file and no-
tifies the administrator. In contrast, Tripwire checks
are scheduled by the administrator, which could leave
a larger time-period open for multiple attacks and can
potentially cause serious damage to users and their data.
Second, I3FS is implemented inside the kernel as a load-
able module. We believe that the file system provides the
most well-suited hooks for security modules because it
is one level above the persistent storage and most intru-
sions would cause file system activity.

In addition to providing these advantages over Trip-
wire, our system is implemented as a stackable layer
such that it can be stacked on top of any file system.
For example, we can use stacking over NFS to provide
a network-wide secure file system as well. Finally, it
is easier to compromise user-level tools (like Tripwire)
than instrumenting successful attacks at the kernel level.

We used a stackable file system template generated by
FiST [28] to build an integrity checking layer which in-
tercepts calls to the underlying file system. I3FS uses
cryptographic checksums to check for integrity. It stores
the security policies and the checksums in four different
in-kernel Berkeley databases [8]. During setup, the ad-
ministrator specifies detection policies in a specific for-
mat, which are loaded into the 13FS databases. File sys-
tem specific calls trigger the integrity checker to com-
pare the checksums for files that have an associated pol-
icy. Based on the results, the action is logged and ac-
cess is allowed or denied for that file. Thus, our system
design uses on-access, real-time intrusion detection to
restrict the damage caused by an intrusion attack.

The rest of the paper is organized as follows. Sec-
tion 2 outlines the design goals and architecture of I13FS.
Section 3 discusses the implementation specifics and key
operations of I3FS. Section 4 presents the evaluation of
the system. Section 5 discusses related work. We con-
clude in Section 6 and discuss future directions.

2 Design
Checksumming using hash functions is a common way
of ensuring data integrity. Recently, the use of crypto-
graphic hash functions has become a standard in Internet
applications and protocols. Cryptographic hash func-
tions map strings of different lengths to short fixed size
results. These functions are generally designed to be col-
lision resistant, which means that finding two strings that
have the same hash result is impractical. In addition to
basic collision resistance, functions like MD5 [19] and
SHAL1 [4] also offer randomness, unpredictability of the
output, etc. In I3FS, we use MD5 for computing check-
sums.

We have designed I3FS as a stackable file system [26].
File system stacking is a technique to layer new func-

tionality on top of existing file systems, as can be seen
in Figure 1. With no modification to the lower level file
system, a stackable file system operates between the vir-
tual file system (VFS) and another file system. I13FS in-
tercepts file system calls and normally passes them to
the lower level file system; however, I3FS also injects its
integrity checking operations and based on return values
to system calls, it affects the behavior that user applica-
tions see.

When designing I13FS, we aimed at offering a good
balance between security and performance. We offer
configurable options that allow administrators to tailor
the features of I13FS to their site needs, trading off func-
tionality for performance.

[User Process]

User

open() A
””””””””” ysopen) [
c
Y vfs_open() E
[Virtual File System (VFS)]
A
i3fs_open()
I3FS
‘ Result Cache Policy Cache
w@@@
ext3_open()

[File System (Ext3) }

Figure 1: I3FS Architecture

21 Threat Mode
I3FS is primarily aimed at detecting the following:

e Malicious replacement of vital files such as the
ones in the / bi n directory. Attackers could re-
place programs such as | s and ps with Trojans,
without the knowledge of the system administra-
tors. These kind of attacks can be tracked and pre-
vented through I3FS by setting up appropriate poli-
cies for important files.

e Unauthorized modification of data by an eaves-
dropper in the network, in the case of remote file
systems, where the client file system communicates
with the disk over an insecure network.

e Corruption of disk data due to hardware errors. In-

expensive disks such as IDE disks silently corrupt
data stored in them due to magnetic interference
or transient errors. These errors cannot always be
detected by normal file systems. I3FS can notify
the administrator about disk corruption if there is a
suitable policy associated with the file.

2.2 Policies

The two main goals we considered when designing the
policies for I>FS were versatility and ease of use. The
policy syntax provided by I3FS is similar to the user
level Tripwire [10]. The general format of an I3FS
policy is as follows:

{-o|-e|-x} OBJECT -m FLAGS -p PROPERTI ES
-a ACTION [-g GRANULARITY] [-f FREQ [-r]

where,

e -0 OBJECT specifies the object (file or direc-
tory) for which the rule is valid. If the object is
a directory, then the rule applies recursively to all
the files and sub-directories. The - e option is used
to exclude an object (in most cases sub-directories)
from the integrity checks, and the - x option is used
to remove a policy.

e - m FLAGS represents the set of attributes of the
respective object, used to calculate the checksum.
The supported attributes are as follows:

Permission and file mode bits
Inode Number

Number of Links

User id of the owner

Group id of the owner

File size

ID of the device on which the inode resides
Number of blocks allocated
Access time

Modification time

Inode change time

e - p PROPERTI ES represents the properties of
the policies, used to calculate the checksum. The
properties offered are as follows:

O3 o aona@c S T

D Checksum file data
I Inherit the policies for new files

e - a ACTI ON determines the action taken if the in-
tegrity check failed. Our I3FS implementation sup-
ports only two actions: BLOCK and NO-BLOCK.
The BLOCK action returns a failure for any attempt
to access the respective file and alerts the admin-
istrator about the inconsistency of this critical re-
source. The NO_BLOCK action lets the operation
go through I3FS to the underlying file system. All

integrity check failures are logged in the I3FS sys-
tem.

e - g GRANULARI TY specifies whether the check-
summing is done on a per page basis or for the
entire file at once. The available granularity op-
tions are PER_PAGE Or WHOLE_FILE. PER_PAGE i$
useful for mostly-random file access patterns, and
WHOLE_FILE is useful for mostly sequential small-
file access patterns.

e -f FREQ s an integer value that determines the
frequency of integrity checks. For example, a
value of 50 for frequency would make I13FS per-
form integrity checking for the file every 50 times
it is opened. This option is available only if
WHOLE_FILE checksumming is chosen.

e -1 can be applied only if the object is a directory.
This applies the policy recursively to all the files
below the directory tree specified in OBJECT.

We have chosen the set of policy options such that
it helps detect most kinds of attacks on the file system.
Checksumming different fields of the meta data of files
helps detect whether important files have been re-written
by malicious programs through the file system. Check-
summing file data helps detect unauthorized modifica-
tion of data possibly made without the knowledge of the
file system. An example of this is a malicious process
that can write to the raw disk device directly in Unix-
like operating systems.

2.3 |3FSDatabases

I3FS configuration data is stored in four different
in-kernel databases. KBDB [8] is an in-kernel imple-
mentation of the Berkeley DB [21]. Berkeley DB is a
scalable, high performance, transaction-protected data
management system that efficiently and persistently
stores (key, val ue) pairs using hash tables, B+ trees,
or queues. I3FS stores four databases in the B+ tree
format, so that we benefit from locality. The schema for
the four databases is given in Table 1.

Database Key Value

pol i cydb | inode# Policy bits, freq#
dat adb inode#, page# | Checksum value
nmet adb inode# Checksum value
accessdb | inode# Counter value#

Table 1: I?FS: Database Schemas

Having separate databases for storing the data and
meta data checksums is advantageous in certain situa-
tions. Generally, we expect that meta data checksum-
ming would be used more commonly than data check-
summing for two reasons. First, almost all modifications

to a file made through the file system will result in mod-
ifications to its meta data. Second, meta data checksum-
ming is less time-consuming than data checksumming
as the number of bytes to be checksummed is smaller.
Therefore, having the data and meta data checksums in
two different databases results in less 1/0 and more ef-
ficient cache utilization as data checksums need not be
fetched along with meta data checksums.

The policy database (pol i cydb) contains the policy
options associated with the files and optionally the fre-
quency of check values. We use the inode number to re-
fer to the policies instead of the path names so as to avoid
unnecessary string comparisons. We have a user level
tool that reads the policy file and populates the policy
database. Further details about initialization and setup
are given in Section 3. The policy database has the in-
ode number of the file as the key, and the data is either
a 4 byte or an 8 byte value containing the policy bits
and optionally the frequency of integrity checks (if the
frequency of checks policy option is chosen).

The data checksum database (dat adb) contains the
checksums of file data for those files that have a policy
option for checksumming their data. Since there are two
sub-options for checksumming file data, the per page
and the whole file checksumming, this database either
contains N of checksums for a single file, where N is
the number of pages in the file, or a single checksum
for the entire file. The inode number and the page num-
ber form the key for this database. If the option is to
checksum the whole file, then the single checksum value
will be indexed with page number zero. The data check-
sum database is populated during the I3FS initialization
phase through an i oct |, when the policies are added
to the policy database.

The meta data checksum database (et adb) has a
simple design. The key is the inode number and the
data is the checksum value for the set of fields of the
inode that are specified in the policy options. Informa-
tion about the set of fields that are checksummed is not
stored in the meta data checksum database. Instead it is
retrieved from the policy database that stores the policy
bits. This database is also populated during the initial-
ization phase which we discuss in Section 3.

The access counter database (accessdb) contains
a counter that represents the number of times a file
has been opened after the last time it was checked
for integrity. This is useful to set custom numbers
for frequency of checks, so that less important files
need not be checked for integrity every time they are
accessed. For files that have a policy indicating a
custom frequency of check number, every read will
result in getting the previous counter value, increasing it
by one and saving the new value, if the counter has not
exceeded the frequency limit.

2.4 Cachingin I?FS

In I13FS, each file access is preceded by a check whether
that file has an associated policy or not. We expect that
the number of files that have policies will be much less
than the number of files without policies. Hence, it is
important that we optimize for the common case of a
file without an associated policy. Second, for those files
that have policies and are accessed frequently, check-
sums should not be re-computed on each access.

I3FS caches two kinds of information. First, whether
a given file has a policy associated with it or not, and
if so, the policy for that file. Second, it caches the re-
sult of the previous integrity check. All information is
cached in the private data of the in-memory inode ob-
jects. The inode private data includes several new fields
to cache policies, meta data checksum results, whole file
data checksum results, and per page checksum results.
While caching the policies, the result of the check for
the existence of a policy is also cached. This mecha-
nism serves the purpose of having both a positive and
negative cache for the existence of policies, thereby ex-
pediting the check for both files that have and those that
do not have policies associated with them.

As a per page integrity checking cache, the inode pri-
vate data contains an integer array with ten elements
which acts as a page bitmap. The cache can hold the in-
tegrity check results for the first 320 pages when run on
an 386 system with page size of 4KB. Thus the results
for files which are less than 5MB can be fully cached.
This accounts for almost 90% of the files in a normal
system [7].

The data and meta data integrity check result caches
are invalidated every time there is a data or inode write
for that file. Since all information is cached in the in-
ode private data and not in an external list, the recla-
mation process for the inode cache will take care of the
I3FS configuration cache reclamation also. This method
of caching is advantageous because the inodes for the
frequently-accessed files will be present in the inode
cache and hence the policies and results for those files
will also be present in the cache.

2.5 Securing I*FS Components

Securing the databases that store the configuration and
setup of I3FS is one of the prime requirements for mak-
ing I13FS a secure file system. There can be valid up-
dates to the checksums needed when a file needs to be
genuinely updated and these updates have to follow a
secure channel so that there can be a clear differentia-
tion between authorized and unauthorized updates to the
files. I3FS uses an authentication mechanism to ensure
that updates to the checksums are made by authorized

personnel.

I3FS stores the four databases that it uses in an en-
crypted form. We use the in-built cryptographic API
provided by the Berkeley Database Manager for encryp-
tion. We use the AES encryption algorithm [14] with
a 128-bit key size. Since I3FS requires a key to be
provided for reading the encrypted database, we wrote
a custom file system mount program that accepts the
passphrase from the administrator. Having the database
encrypted prevents unauthorized reading of the database
file without going through the authentication process.

2.5.1 Authentication

An authentication mechanism is required for I*FS for
two reasons. First, mounting and setup of I3FS should
be done through a secure channel so that malicious pro-
cesses that acquire super user privileges could not mount
the file system with incorrect configuration options. Sec-
ond, valid updates to the files that carry policies should
be permitted only through a secure channel. This is be-
cause critical programs and files need to be updated oc-
casionally and such updates should not require reinitial-
ization of the file system.

Since the I13FS databases are encrypted, reading them
requires a passphrase. Therefore we provide a cus-
tom mount program that authenticates the person mount-
ing the file system. The first time I3FS is mounted,
the administrator is prompted for a passphrase. This
passphrase is used to compute the cryptographic hash for
a known word, “i3fspassphrase.” We store this hash as
part of the policy database. During subsequent mounts,
the passphrase entered is validated by computing the
hash again and comparing it with the stored hash. Upon
mismatch of hashes, the mount process is aborted and
an error message is returned to the user-level mount pro-
gram. If the passphrase entered is correct, it is stored
in the private data of the super-block structure. Thus the
passphrase is kept non-persistent and stored in the kernel
memory only.

The checksums for all files that have a policy are com-
puted during the initialization phase of I3FS. To allow
valid updates to files whose checksums have already
been stored, we provide two modes of operations for
I3FS: one that allows updates and another that does not.
This is implemented using a flag in the in-memory super
block which can be set and unset from user level through
ani octl . Thisi oct| can be executed only after pro-
viding a valid passphrase. The passphrase passed to the
i oct| is compared with the one that is stored in the su-
per block private data and access is granted based on the
result. A similar authentication method is implemented
for the ADD_POLICY and REMOVE_POLICY i oct | s as
well.

2.6 ActionsUpon Failure

There are two kinds of actions that can be specified for
files for which integrity checking fails. They are the
BLOCK and NO-BLOCK options. The BLOCK option
disallows access to files that fail integrity check, and
a message is recorded in the log. In the case of NO-
BLOCK option, access is allowed for files that fail in-
tegrity check but an appropriate message is logged. By
default I>FS logs messages through syslog. Optionally,
a log file name can be given as a mount option to the cus-
tom mount program, and all log messages will be written
directly to that file.

3 Implementation

I3FS is implemented as a stackable file system that can
be mounted on top of any other file system. Unlike tra-
ditional disk-based file systems, 13FS is mounted over
a directory, where it stores the files. In this section we
discuss the key operations of I3FS and their implemen-
tation.

3.1 [Initialization and Setup

The first time the administrator mounts I3FS, a
passphrase needs to be entered for the file system to
initialize itself. The first mount operation will store the
HMAC hash of a known word, “i3fspassphrase,” hashed
using the passphrase entered, into the policy database
for authenticating further mounts. After the file system
is mounted, the administrator has to run a user level
setup tool that takes a policy file as input. The format
of the policy file is described in Section 2.2. The user
level utility calls the corresponding i oct | s to set up
the policies to the four databases:

e ADD_POLICY: This i oct| takes the passphrase,
path name, and policy bits (an integer) as input. It
verifies the passphrase, converts the path name to
an inode number, and stores the inode number and
the policy bits in the policy database. In addition,
based on the policy bits, the i oct| computes
meta data and data checksums appropriately and
inserts them into the meta data and data databases.

e REMOVE_POLICY: Thisi oct | takes a passphrase
and path name as input. It authenticates and then
converts the path name to an inode number and
removes all entries from all four databases that
match the given inode number.

e ALLOW_UPDATES. This ioctl takes the
passphrase as argument. It just authenticates and
sets the AUTO_UPDATE flag in the in-memory super
block which allows updates to files with a pol-

icy, along with the update of their checksum values.

e DISALLOW_UPDATES: This ioctl resets the
update flag in the super block private data, so that
further updates to checksums of files with policies
are stopped.

Recursive policies can also be specified for directo-
ries, so that the policy is applied to all files inside the
directory tree. In this case, the user level program uses
nftw(3) to enumerate the set of files for which the
policies should be applied. It then calls the i oct | for
each of the files.

The usage of the user level programi 3f sconfi g is
as follows:

i 3f sconfig [-u ALLOWN DI SALLOW [-f POLI CYFI LE]

3.2 Mount Options

I3FS is mounted using a custom mount program that
uses the nount (2) system call. It uses get pass(3)
to accept a passphrase from the administrator and passes
the passphrase as a mount option. A custom mount pro-
gram is used instead of the Linux mount program be-
cause the passphrase entered should not be visible at the
user level after the file system is mounted.
There are three optional mount parameters.

e The auto-update option sets the
AUTO_UPDATE flag in the kernel so that checksums
will be updated every time a file with a policy is
updated.

e Thel ogfi | e option allows one to specify a sep-
arate log file where the I13FS log messages can be
written to.

e The dbdi r option allows the administrator to set
the location of the checksum databases. Normally
these databases are stored inside the file system,
and I3FS prevents direct access to them and hides
them from view. With this option, administrators
can place the databases in a different directory than
the checksummed file system; this is useful, for ex-
ample, when I3FS is stacked on top of NFS because
the databases could be kept on a safer local direc-
tory.

3.3 MetaData Integrity Checking

The flowchart for meta data integrity checking is shown
in Figure 2. For checksumming the meta data, since
we have a customizable set of inode fields to be check-
summed, we need to use both the policy bits and
the stored checksums for integrity checking. The
meta data integrity checking is done in the file per-
mission check function, i 3f s_perm ssion. The

i3fs_permission YES

Policy

Get policy
Cache policy

§ .
.UJ'

Compute checksum
Get stored checksum

Checksum
Databases

i

checksums
match?,

Cache result

Cache result

Figure 2: Flowchart for 13FS permission checks

i 3f s_per i ssi on function is called after lookup for
every file that is accessed. Hence, the integrity check
cannot be bypassed for files with a policy. The permis-
sion check function first checks the policy cache to de-
termine if the file’s inode has a policy associated with it.
Upon a cache miss, it refers to the policy database and
then decides the result. If there is a policy associated
with the file, its policy bits are retrieved from the pol-
icy database. From the policy bits, the set of inode fields
that have to be checksummed is found and the checksum
for those fields is computed. This computed checksum
is verified against the checksum value stored in the meta
data checksum database. If both checksums match, then
access is granted; if the checksums do not match, then
the necessary action is performed as per the action pol-
icy bit.

Once it is determined if the inode has a policy asso-
ciated with it or not, the information is stored in the in-
memory inode as a cache for further accesses. As long
as that inode is present in the inode cache, the policy
information will also be cached.

3.4 Datalntegrity Checking

We provide two options for checksumming file data.
The first is PER_PAGE checksumming and the second
iS WHOLE_FILE checksumming. In the case of per
page checksumming, integrity checking is done in the

page level read function, i 3f s_readpage. If the
option is to checksum whole files, then the integrity
checking is done in the open function, i 3f s_open.
In the case of WHOLE_FILE checksumming, whenever
i 3f s_open is called for a file with a policy, the pol-
icy bits present in the in-memory inode are checked.
If the data checksum mode bit is set to WHOLE_FILE,
then the checksum for the whole file is computed and
verified against the checksum value stored in the data
checksum database. If they match, i 3f s_open suc-
ceeds; if not, the necessary action is performed as per
the policy bits. The WHOLE_FILE integrity check re-
sults are cached in the inode private data in a field named
whol efileresult.

In PER_PAGE integrity checking, during
i 3f sreadpage, I?FS checks the policy bits to
determine whether page-level checksumming is en-
abled. If yes, then the checksum is computed for that
page and it is compared with the stored value in the data
checksum database. The result is cached in the page
bitmap present in the inode private data as explained in
Section 2.4.

3.5 Frequency of Checks

Since whole file checksumming is a costly operation, we
provide an option for specifying the frequency of in-
tegrity checks in the policy. For performance reasons,
one can set up a policy for a file such that it will be
checked for integrity every N times it is opened, where
N is an integer value. Every time a file with a policy
is opened, we check if it has a frequency number asso-
ciated with it. If yes, the counter entry for the file in
the access database is incremented by one. When the
value is equal to IV, integrity check is performed and the
counter is then reset to zero.

3.6 Updating Palicies

Policies that are enforced when the file system is ini-
tialized might not remain valid at all times. We pro-
vide a method by which the administrator can update
the policies dynamically without reinitializing the sys-
tem. This can be done using the followingtwo i oct | s:
ADD_POLICY and REMOVE_POLICY. The administrator
can either add policies to new files or remove policies
from existing files. If a policy for an existing file has
to be modified, it has to be first removed and then re-
inserted using the ADD_POLICY i oct | .

3.7 Updating Checksums

Often it is required that files with policies be updated
from time to time. For example, administrators need to
install or upgrade system binaries. Such updates should
also re-compute the checksums that are stored in the
databases, so that I>FS need not be reinitialized for every

file update. However, these kinds of checksum updates
should be allowed through a secure channel so as to pre-
vent malicious programs from triggering checksum up-
dates subsequent to an unauthorized modification to file
data. In I13FS, we provide a flag called AUTO_UPDATE
which can be set and reset by the administrator af-
ter authenticating using the passphrase. This can also
be set during mount as a mount option. When the
AUTO_UPDATE flag is set, all updates to files with poli-
cies will update the checksums associated with them. If
the flag is not set, file data updates will be allowed with-
out updates to the checksums so that these are catego-
rized as unauthorized changes. The AUTO_UPDATE flag
can only be set from a console for security reasons; pro-
cesses that are executing in a non-console shell are not
allow to update checksums when the AUTO_UPDATE flag
is set.

The checksum updates for meta data are done in the
put _i node file system method of I13FS. Whole file
checksums are updated in the file r el ease method and
per page checksums are updated in the wr i t epage and
conmi t _wr i t e methods, respectively.

3.8 Inheriting Policies

To facilitate automatic policy generation for new files
that get created after I13FS is initialized, we provide a
method for the policy of the parent directory to be in-
herited by the files and directories that are created under
it. This can be used by setting the INHERIT policy bit
for the directory in question. Whenever a file or a di-
rectory is created, the policy of the parent directory is
copied for it, if its parent directory has the INHERIT bit
set. However, for checksums to be updated for the new
file, the AUTO_UPDATE flag must be set. If the flag is not
set, then the policy of the parent directory will be copied
for the new file, but the checksums will not be updated.
Thus the next time such a file is accessed there will be a
checksum mismatch.

4 Evaluation

We used the stackable templates generated by FiST [28]
as our base, and it started with 5,670 lines of code. To
implement I3FS, we added 4,227 lines of kernel code
and 300 lines of user level code. In addition to this,
I3FS includes 367 lines of checksumming code imple-
mented by Aladdin Enterprises [5]. We wrote two user
level tools: a custom mount program for I13FS and an-
other tool for setting up, initializing, and configuring
I3FS. I3FS is implemented as a kernel module and re-
quires the in-kernel Berkeley database [8] module to be
loaded prior to using I3FS.

To measure the performance of 13FS, we stacked I13FS
on top of a plain Ext2 file system and compared its per-
formance with native Ext2. All measurements were con-

ducted on a 1.7GHz Pentium 4 with 1GB RAM and a
20GB Western Digital Caviar IDE disk. For the fre-
quency of checks experiment, described in Section 4.3,
we lowered the amount of memory to 64MB. The op-
erating system we used was Red Hat Lihux 9 running
a vanilla 2.4.24 kernel. We unmounted and remounted
the file systems before each run of benchmarks so as to
ensure cold caches. All benchmarks were run at least
ten times and we computed 95% confidence intervals
for the mean elapsed, system, user, and wait time using
the Student-¢ distribution. In each case, the half widths
of the intervals were less than 5% of the mean. In the
graphs in this section, we show the 95% confidence in-
terval as an error bar for the elapsed time. Wait time is
the elapsed time less CPU time and user time and con-
sists mostly of 1/O, but process scheduling can also af-
fect it.

We calculated the overheads of I°FS under several dif-
ferent configurations and a variety of system workloads.
Based on the types of policies, we classified the tests as
follows:

Without any policies (NP)

Only meta data checksumming (MD)

Meta data and whole-file data checksumming (Mw)
Meta data and per-page data checksumming (MP)
Meta data and whole-file checksumming with in-
heritable policies (Mw1)

e Meta data and per-page checksumming with inher-
itable policies (MPI)

Each of the above configurations of I13FS are used
to identify the isolated overheads of the components of
I3FS. The NP configuration does not compute check-
sums, and is useful in finding the overheads due to the
stackable layer and to check whether files have policies
associated with them or not. The MD configuration is
used to find the overhead of checksumming the meta
data alone. The other configurations, Mw, MP, and MPI,
isolate the overheads associated with each of the check-
summing options described on Section 2.

We tested I13FS using a CPU-intensive benchmark, an
I/O-intensive benchmark, and a custom read benchmark
to test the frequency of checks performance.

For a CPU-intensive benchmark, we compiled the
Am-utils package [16]. We used Am-utils 6.1b3: it con-
tains over 60,000 lines of C code in 430 files. The build
process begins by running several hundred small config-
uration tests to detect system features. Then it builds a
shared library, ten binaries, four scripts, and documen-
tation: a total of 152 new files and 19 new directories.
Although the Am-utils compile is CPU intensive, it con-
tains a fair mix of file system operations, which result in
the creation of several files and random read and write
operations on them. This compile benchmark was done

for Ext2, as well as for I3FS for the aforementioned six
configurations.

For an 1/O-intensive benchmark we used Postmark
[23], a popular file system benchmarking tool. Post-
mark creates a large number of files and continuously
performs operations that change the contents of the files
to simulate a large mail server workload. We configured
Postmark to create 20,000 files (between 512 bytes and
10KB) and perform 200,000 transactions in 200 directo-
ries. Postmark was run on Ext2 and I3FS with NP, MDI,
MwI, and MPI configurations. The other configurations,
MD, MW, and MP, are not relevant for Postmark, as Post-
mark creates a lot of new files and these configurations
only apply to existing files.

Finally, to measure the performance of I13FS with fre-
quency of checks, we wrote a custom program that re-
peatedly performs read operations on a single file. We
conducted this test for I3FS with frequency of checks
settol, 2,4 ,8, 16, and 32.

41 Am-utilsResults

Figure 3 shows the overheads of I13FS under different
configurations for an Am-utils compile.

300

Wait ——

System m—

250

200

Ak

217s 2165

24k

150 |

Elapsed time (sec)

100

Ext2 I3FS-NP I3FS-MD I3FS-MW I3FS-MP I3FS-MDI I3FS-MPI I3FS-MWI

Figure 3: Am-utils results for Ext2 and I3FS

The configuration of I3FS that has the maximum over-
head when compared to regular Ext2 is the Mmw1 config-
uration. It has an overhead of 4% elapsed time and 13%
system time. Most of the elapsed time overhead is due to
system time increase because of the checksum computa-
tion. The mwI configuration calculates data checksums
for whole files including the files that are newly created.
Therefore, it has the highest overhead of all configura-
tions. The elapsed time overheads of all other configu-
rations are less than 1%. The MPI configuration has a
system time overhead of 7% as this configuration com-
putes data checksums for files including newly created
ones. The system time overhead of other configurations

range from 2% to 3%.

Since an Am-utils compile represents a normal user
workload, we conclude that I3FS performs reasonably
well under normal conditions.

4.2 Postmark Results

Figure 4 shows the overheads of Ext2 and I3FS for Post-
mark under the NP, MDI, MPI, and Mw!I configurations.
Since Postmark creates and accesses files on its own, it
can only exercise configurations that have inheritable
policies.

L Wait ——
700 User Ex<3 645s

600

493
500

Elapsed time (sec)

300
241s

200
157s

144s NN NN
100 - .
NN\ NN
0

Ext2 I3FS-NP

I3FS-MDI I3FS-MWI I3FS-MPI

Figure 4: Postmark results for Ext2 and I13FS

Unlike the Am-utils compile, for Postmark we were
able to see a wide range of overheads for different con-
figurations of I3FS. The NP configuration had an elapsed
time overhead of 9%. The system time overhead was
89%, which is mainly because of the check for the ex-
istence of policies. The overhead due to indirection
of the stackable layer also adds to this overhead. The
MDI configuration had an elapsed time overhead of 67%.
This overhead is partly because of checksum computa-
tion for the meta data during file creation and accessing.
Database operations for storing and retrieving meta data
checksums also contribute to the overall overhead. I>FS
under the Mmw1 configuration was 3.5 times slower than
Ext2. This is because it computes, stores, and retrieves
checksums for the data and meta data of all files, includ-
ing newly created files. Finally, the mPI configuration
was 4.5 times slower than Ext2. The MPI configura-
tion checksums the meta data and the individual pages
of all the files. The mPI configuration of I3FS is slower
than the Mmw1 configuration because we configured Post-
mark to create files whose sizes range from 512 bytes to
10KB. Thus the maximum number of pages a file can
have is three as the page size is 4KB, and computing the
checksums for the three pages in one shot is more effi-
cient than checksumming individual pages separately.

Since Postmark creates 20,000 files and performs
200,000 transactions within a short period of just 10
minutes, it generates a rather intensive 1/0 workload. In
normal multi-user systems, such workloads are unlikely.
The above benchmark shows a worst case performance
of I3FS. Under normal conditions, the overheads of I>FS
are reasonably good, as evident from the Am-utils com-
pile results in Section 4.1.

4.3 Frequency of Checks

To measure the performance of I°FS for whole file
checksumming with frequency of checks enabled,
we wrote a custom user level program that reads the
first page of a 64MB file 500 times. We ran this test
with 64MB RAM, so as to ensure that cached pages
are flushed when the file is read sequentially during
checksum computation phase. Since the file is read
sequentially, by the time the last page of the 64MB file
is read, we can be sure that the first page is flushed
out of memory. We calculated the difference in speeds
for frequency values of 1, 2, 4, 8, 16, and 32. These
numbers reduce the frequency that the checksums are
computed logarithmically. Figure 5 shows the results
of our custom benchmark for the different values of
frequency of checks.

1600 User B3

1393s
1400 F —=—
1200

1000

800

Elapsed time (sec)

Freq-1 Freq-2 Freq-4 Freq-8 Freq-16 Freq-32

Figure 5: Frequency-of-checks benchmark results for
frequency values of 1, 2, 4, 8, 16, and 32.

As evident from the figure, the time taken is reduced
logarithmically as the frequency number increases ex-
ponentially. We can see that the rate of decrease of the
elapsed time and the system time is almost equal. This is
because both the 1/O for reading the files and the check-
sum computation itself reduces as the frequency value
increases. Without a custom frequency value (Freg-1),
the program takes 1,393 seconds to complete, and as the
frequency value increases, the time taken reduces to 464
seconds, 279 seconds, and so on.

Therefore, when system administrators are concerned
about the system performance while checksumming
whole files, they can set an appropriate frequency of
check value.

5 Redated Work

In recent years, systems researchers have proposed vari-
ous alternatives to increase the security of computer sys-
tems. These solutions can be broadly categorized as user
mode and kernel mode. Integrity checking of files is an
important aspect of system security. Our work is an in-
kernel approach to check integrity and detect intrusions
in the file system.

In this section we briefly discuss some previous work
that addresses integrity checking and file system security
in a broader sense. We discuss this in three categories:
user-mode utilities, in-kernel approaches and other ap-
proaches that increase the security of the computer sys-
tems.

User Toolsand Utilities The open-source community
has developed various user-mode tools for file system
integrity checking. While we follow the semantics of
Tripwire [9, 10, 22] for our integrity checker, there are
other similar tools. These include Samhain [20], Osiris
[15], AIDE [18], and Radmind [3]. Most of these user-
mode tools were modeled along the lines of Tripwire.
AIDE and Radmind have been developed for UNIX sys-
tems with some more functions like threaded daemons
and easy system management. In addition, Samhain uses
a stealth mode of intrusion detection with remote admin-
istration utilities.

In-Kernel Approach Linux Intrusion Detection Sys-
tem (LIDS) [12] is a more comprehensive system that
modifies the Linux access control semantics, called dis-
cretionary access control (DAC), thus offering manda-
tory access control inside the kernel. In contrast, our
work does not change any Linux semantics or any mod-
ifications to the kernel. We leverage file system level
call interposition using a loadable kernel module for file
systems.

A similar approach is used by Linux Security Mod-
ules (LSM) [24], which present an extensible framework
with in-kernel hooks for adding new security mecha-
nisms inside the kernel for file systems, memory man-
agement and the network sub-systems. LSM does not
use any policies, but provides a foundation to add com-
plete system security.

Other Systems Security Apart from integrity check-
ers, there are other ways to increase the security of any
host. System call interposition [17] uses the indirection
of any call to a kernel function. This is a powerful tool
for monitoring application behavior as soon as the con-
text switches to kernel mode. Ostia [6] presents a model

10

that delegates certain system critical responsibilities to
a sandbox. This helps in localizing the impact of any
attack after a pseudo off-line detection process. In con-
trast, our approach uses interposition of calls made by
the virtual file system (VFS) on behalf of a file system.

Another class of solutions uses call-graph analysis to
backtrack any intrusions on a host [11]. These tech-
niques aim to determine the vulnerability of the system
used by the attacker to break into the system after an
attack took place. In contrast, I3FS tries to detect an in-
trusion or inconsistency in the system as it occurs.

Finally, more recent work uses Virtual Machine Mon-
itors (VMM) to detect any intrusions by placing the IDS
in a more secure hardware domain [6]. This approach
aims to minimize the impact of an attacker on the intru-
sion detection system. This approach has been tested for
passive attack scenarios and incurs system overhead due
to context switches across the interface between the OS
and the VMM. In contrast, our approach has less over-
head since we use fine-grained indirection.

6 Conclusions

We have described the design, operation, security, and
performance of a versatile integrity checking file system.
A number of different policy options are provided with
various levels of granularity. System administrators can
customize I2FS with the appropriate options and poli-
cies so as to get the best use of it, keeping in mind per-
formance requirements. As evident from the benchmark
results, 13FS has a performance overhead of 4% com-
pared to regular Ext2 under normal user workloads. The
encrypted database and cryptographic checksums make
I3FS a highly secure and reliable system.

6.1 FutureWork

Our group has previously developed secure and versatile
file systems like NCryptfs [25, 27], Tracefs [1] and Ver-
sionfs [13] and we would like to integrate the features of
these file systems together with I3FS so as to provide a
highly secure and versatile system.

Currently, 13FS cannot be customized to individual
users. We plan to add per user policies and options,
so that individual users can set up security options for
their own files, without requiring the intervention of the
system administrators, but still allow administrators to
override global policies.

7 Acknowledgments

We thank the anonymous Usenix LISA reviewers for
the valuable feedback they provided, and our shepherd
Michael Gilfix. Thanks go to Charles P. Wright for his
suggestions; this work was based on integrity protec-
tion ideas and experience developed by Charles within
the NCryptfs encryption file system. This work was

partially made possible by an NSF CAREER award
CNS-0133589, NSF Trusted Computing award CCR-
0310493, and HP/Intel gift numbers 87128 and 88415.1.

The open-source software described in this pa-
per is available in www.fsl_cs.sunysb.edu/
project-i3fs._html.

References

[1] A. Aranya, C. P. Wright, and E. Zadok. Tracefs: A
File System to Trace Them All. In Proceedings of
the Third USENIX Conference on File and Storage
Technologies (FAST 2004), pages 129-143, San
Francisco, CA, March/April 2004.

[2] CERT Coordination Center. CERT/CC Overview
incident and Vulnerability Trends Techni-
cal Report. www.cert.org/present/

cert-overview-trends.

[3] W. Craig and P. M. McNeal. Radmind: The Inte-
gration of Filesystem Integrity Checking with File
System Management. In Proceedings of the 17th
USENIX Large Installation System Administration
Conference (LISA 2003), October 2003.

P. A. DesAutels. SHAL: Secure Hash Al-
gorithm. www._w3_org/PICS/DSig/SHAL1_1 0.
html, 1997.

[5] P. Deutsch. Independent implementation of MD5
(RFC 1321). www.opensource.apple.com/
darwinsource/10.2.3/cups-30/cups.

T. Garfinkel and M. Rosenblum. A Virtual Ma-
chine Introspection Based Architecture for Intru-
sion Detection. In Proceedings of the Network and
Distributed System Security Symposium, February
2003.

S. Ghemawat, H. Gobioff, and S.-T. Leung. The
Google File System. In Proceedings of the 19th
ACM Symposium on Operating Systems Principles
(SOSP ’03), pages 29-43, Bolton Landing, NY,
October 2003.

A. Kashyap, J. Dave, M. Zubair, C. P. Wright,
and E. Zadok. Using Berkeley Database in
the Linux kernel. www.fsl.cs.sunysb.edu/
project-kbdb.html, 2004,

G. Kim and E. Spafford. Experiences with Trip-
wire: Using Integrity Checkers for Intrusion De-
tection. In Proceedings of the Usenix System Ad-
ministration, Networking and Security (SANS 111),
1994.

G. Kim and E. Spafford. The Design and Imple-
mentation of Tripwire: A File System Integrity
Checker. In Proceedings of the 2nd ACM Con-
ference on Computer Commuications and Society
(CCS), November 1994.

[4]

[6]

[7]

[8]

[9]

[10]

11

[11] S. King and P. Chen. Backtracking Intrusions. In
Proceedings of the 19th ACM Symposium on Oper-
ating Systems Principles (SOSP ’03), Bolton Land-
ing, NY, October 2003.

LIDS Project. Linux intrusion detection system.
www. lids.org.

K. Muniswamy-Reddy, C. P. Wright, A. Himmer,
and E. Zadok. A Versatile and User-Oriented Ver-
sioning File System. In Proceedings of the Third
USENIX Conference on File and Storage Tech-
nologies (FAST 2004), pages 115-128, San Fran-
cisco, CA, March/April 2004.

J. Nechvatal, E. Barker, L. Bassham, W. Burr,
M. Dworkin, J. Fati, and E. Roback. Report on the
Development of the Advanced Encryption Stan-
dard (AES). Technical report, Department of Com-
merce: National Institute of Standards and Tech-
nology, October 2000.

Osiris. Osiris: Host Integrity Management Tool.
www.osiris.com.

[16] J. S. Pendry, N. Williams, and E. Zadok. Am-
utils User Manual, 6.1b3 edition, July 2003. www .
am-utils._org.

[12]

[13]

[14]

[15]

[17] N. Provos. Improving Host Security with System
Call Policies. In Proceedings of the 12th Annual
USENIX Security Symposium, August 2003.

[18] J. Reed. File Integrity Checking with AIDE,
2003. www. ifokr.org/bri/presentations/
aide_gslug-2003/.

[19] R. L. Rivest. RFC 1321: The MD5 Message-
Digest Algorithm. In Internet Activities Board. In-
ternet Activities Board, April 1992.

Samhain Labs.
Checker.
net.

[20] Samhain: File System Integrity

http://samhain.sourceforge.

[21] M. Seltzer and O. Yigit. A new hashing package
for UNIX. In Proceedings of the Winter USENIX
Technical Conference, pages 173-84, Dallas, TX,

January 1991. www.sleepycat.com.

[22] Tripwire Inc. Tripwire Software. www. tripwire.

com.

[23] VERITAS Software. VERITAS File Server
Edition Performance Brief: A PostMark 1.11
Benchmark Comparison. Technical report,
Veritas Software Corporation, June 1999.
http://eval .veritas.com/webfiles/

docs/fsedition-postmark.pdf.

C. Wright, C. Cowan, J. Morris, S. Smalley, and
G. Kroah Hartman. Linux Security Modules: Gen-
eral Security Support for the Linux Kernel. In Pro-

[24]

[25]

[26]

[27]

[28]

ceedings of the 11th USENIX Security Symposium,
San Francisco, CA, August 2002.

C. P. Wright, M. Martino, and E. Zadok. NCryptfs:
A Secure and Convenient Cryptographic File Sys-
tem. In Proceedings of the Annual USENIX Techni-
cal Conference, pages 197-210, San Antonio, TX,
June 2003.

E. Zadok and I. Badulescu. A stackable file system
interface for Linux. In LinuxExpo Conference Pro-
ceedings, pages 141-151, Raleigh, NC, May 1999.

E. Zadok, I. Badulescu, and A. Shender. Cryptfs:
A stackable vnode level encryption file system.
Technical Report CUCS-021-98, Computer Sci-
ence Department, Columbia University, June 1998.
www.cs.columbia.edu/"library.

E. Zadok and J. Nieh. FiST: A Language for Stack-
able File Systems. In Proceedings of the Annual
USENIX Technical Conference, pages 55-70, San
Diego, CA, June 2000.

12

