Don’t Thrash: How to Cache your Hash on Flash

Appearsin the proceedings of the 3rd USENI X Workshop in Hot Topicsin Storage and File Systems (HotStorage 2011)
Michael A. Bendef Martin Farach-Coltoli Rob Johnsonh Bradley C. Kuszmadil
Dzejla Medjedovit Pablo Montes Pradeep Shetty Richard P. Spillane Erez Zadok

Abstract system can avoid I/Os in those subtables. Thus, searches
are usually satisfied with one or zero 1/Os.

Mal;'y tlflrge storzgﬁ/? s(;j/s:emf utse a;pp(;omlma_iﬁ- Similar workloads to Webtable, which also require
membership-query (AMQ) data structures to deal wi ast insertions and independent searches, are grow-

ghet matssn:e a”f'ouné?’ (t)'f data t?hattt?ex(/jprocgss. An ’?‘M ng in importance [7, 11, 15]. Bloom filters are also
ata structure 1s a dictionary that trades off Space 1or q,qq y for deduplication [24], distributed information re-
false positive rate on membership queries. Itis designe

o fit int Il fast st diti dt 4 1/0 ieval [20], network computing [4], stream comput-
o it Into small, fast storage, and IS used to avol Sing [23], bioinformatics [8, 18], database querying [19],
on slow storage. The Bloom filter is a well-known exam-

le of an AMO data struct Bl filt h and probabilistic verification [12]. For a comprehensive
S:n(:)tzr;ale c%tsiji sfr;camr?ﬁemg(r);n Hers, NOWEVET, \aview of Bloom filters, see Broder and Mitzenmacher’s

4].
This paper describes the Cascade Filtéran AMQ survey [4]

: Bloom filters work well when they fit in main mem-
data structure that scales beyond main memory, support-) .
) N . . ory. Bloom filters require about one byte per stored data
ing over half a million insertions/deletions per second

and over 500 lookups per second on a commodity fIash'—Fem' Countmg Bloom f||ters.—thosfe supporting inser-
based SSD. tions and deletions [10]—require 4 times more space [3].
What goes wrong when Bloom filters grow too big to

1 Introduction fit in main memory? On disks with rotating platters and

Many large storage systems employ data structures th&poving heads, Bloom filters choke. A rotational disk
give fast answers to approximate membership queriegerforms only100-200 (random) I/Os per second, and
(AMQs). The Bloom filter [2] is a well-known exam- each Bloom filter operation requires multiple 1/0s. Even
ple of an AMQ. on flash-based solid-state drives, Bloom filters achieve
An AMQ data structure supports the following dic- only hundreds of operations per second in contrast to the
tionary operations on a set of keys: insert, lookup, andrder of a million per second in main memory.
optionally delete. For a key in the set, lookup returns One way to improve insertions into Bloom filters for
“present.” For a key not in the set, lookup returns “ab-flash is to employ buffering techniques [5]. The idea is
sent” with probability at least — ¢, wheres is a tunable to use an in-memory buffer to collect writes destined for

false-positive rate. There is a tradeoff betweemd the the same flash page, executing multiple writes with one
space consumption. I/0. Buffering helps to some degree, achieving over a
To understand how an AMQ data structure such as &actor of two improvement over a simple Bloom filter
Bloom filter is used, consider Webtable [6], a databasen [5]. With larger buffers and data sets, we measured
table that associates domain names of websites witkhat buffering can give an 80-fold improvement.
website attributes. An automated web crawler inserts However, buffering scales poorly as the Bloom-filter
new entries into the table while users independently persize increases compared to the in-memory buffer size,
form queries. The system optimizes for a high insertionresulting in only a few buffered updates per flash page
rate by splitting the database tables into smaller subtaen average.
bles. This paper demonstrates that AMQ data structures can
When a user performs a search, this search is replibe efficient, scalable, flexible, and cost-effective foredat
cated on all subtables. To achieve fast lookups, the syssets much larger than main memory. We describe a new
tem assigns a Bloom filter to each subtable. Most subtadata structure, called tf@ascade Filter™, designed to

bles do not contain the queried element, meaning that thecale out of RAM onto flash.

*Stony Brook University/Rutgers UniversityMIT. $Tokutek. In Our.EXpe”mentS an Int_el X25-M 160GB SATA Il

This research was supported in part by a grant from DOE GrantSSP using a Cascade Filter was able to perform
DE-FG02-08ER25853, NetApp, a NetApp Faculty Award, and NSF 670,000 insertions per second and 530 lookups per sec-
Grants CCF-0540897, CNS-0627645, CCF-0634793, CCF-B3878 ond on a data set containing more than 8.59 hillion ele-
CCF-0937833, CCF-0937854, CCF-0937860, and CCF-093E822, ot The Cascade Filter supports insertions at rates 40
Politecnico Grancolombiano. Cascade Filter, Quotient Filted an
Quotient Filters are trademarks of Stony Brook UniversityTMRut- t!mes faster than a Bloom_ f_"ter with bUﬁe_”ng and 3,200
gers University, and Tokutek. times faster than a traditional Bloom filter. Lookup

throughput is 3 times slower than that of a Bloom filter (1 T 1 1 T 1 T 1 1

or about the cost of 6 times random reads on flash. I

To put these numbers in perspective, on the Intel X25- =] o] S
M, we measured 5,603 random 4K block writes per sec:]] R I
ond (21.8 MB/sec) and 3,218 random 4K block reads pe noy e
second (12.5 MB/sec). Random bit reads/writes have] A
comparable speeds. Sequential writes run at roughl is_continuation o6l ok
110MB/sec. ioshifted cluster

upied run

The Cascade Filter can be implemented cost effec L‘g‘o‘om
tively. For example, given a data center holding 1PB of [l olbolc]alelf]o[n] |
512 byte key_s, our_results indicate that one can C_O_nStruq;igure 1. An example quotient filter and its representation.
a C?ascade Filter with a less than 0.04% f_alse pos'.t've ral@ps filter contains valued throughH. The table on the right
using 10TB of consumer-grade flash disks. This Casgnows, for each value, the corresponding quotient and remain-
cade Filter would be relatively inexpensive, costing lessger. The top of the figure shows a chained hash table stor-
than $35,000, a small fraction of the data-center cost. ing the valuesA through H by storing a list of remainders in

Our three contributions are as follows: (1) We intro- a bucket identified by the quotient of the values. The bottom
duce the Quotient Filtet™(QF), which supports inser- of the figure shows how the remainders are stored in the QF.
tions and deletions, as well as merging/resizing of twoEach bucke_t contain.s three bit_s in a_ddition tq the re_mainder.
QFs. A QF is an in-memory AMQ data structure that is The_three _blts are thes,oqcupl ed,i s,cont_l nuati on,
functionally similar to a Bloom filter, but lookups incur 21d1 S-shi f ted values, in that order. In this examplé;,

. . . D, and E have all the same quotient, so together they form
a single cache miss, as opposed to at least two in ex:

ion f | fil 20% bi h a run. ValueC'is stored in its canonical position, so it is the
pectatlo_n oraB pom liter. QFs are 20% _|gger than beginning of a cluster. Although should have been stored in
Bloom filters, which compares favorably with tHe< et 4, it is pushed forward by and E to bucket 6. Values
blowup associated with counting Bloom filters. (2) We ¢ through 7 together form a cluster.

introduce the Cascade Filter (CF), an AMQ data struc-
ture designed for flash. The CF comprises a coIIection(the remainder). Th_e rema_mder 'S stored in the bupket
of QFs organized into a data structure inspired by th indexed by the quotient. Figure 1 illustrates a quotient
Cache-Oblivious Lookahead Array (COLA) [1]. (3) We llter.

. . . If the quotients of two stored fingerprints are equal
theoretically analyze and experimentally verify the per- L
. . then we say we have soft collision The QF em-
formance of the CF. The CF performs insertions and . . - .
loys linear probing as a collision-resolution strategy,

deletions fast enough to keep pace with Cassandra [17§nd stores the remainders in sorted order. Thus, a re-

TokuDB [21], an her write-optimized indexin - . . :
okuDB [21], and othe te-opt ed. dexing sys mainder may end up shifted forward and stored in a sub-
tems, as well as systems such as Vertica [22] and Inn- . .) N .
: . sequent slot. The slot in which a fingerprint’'s remainder
oDB [13], that use insertion buffers. : o ;
. : . . would be stored if there were no collisions is called the
The remainder of this paper is organized as follows

. . ‘canonical slot All of the remainders with the same quo-
Section 2 describes the QF and CF data structures angl + are stored contiguously, and are calledra q

resents a theoretical analysis. Section 3 presents our . . .
gx eriments Section4offe¥s some concludiz remarks A clusteris a maximal sequence of occupied slots
P ' 9 whose first element is the only element of the cluster

2 Design and Implementation stored in its canonical slot. A cluster may contain one or

This secti ts the CF data structure and gives & o o
IS section presents the L data SIUCUre and gives a g first element of the cluster acts as an anchor that,
brief theoretical analysis of its performance. The CF.

.)) _ :) in combination with three additional bits in each slot,
comprises a collection of quotient filters organized into a llows us to recover the full fingerprint of each stored
data structure resembling a Cache-Oblivious Lookaheaa : :

A COLA) [11. The COLA-like CF achi its fast emainder in the cluster.
. rray_() [1]. The -like achieves Its fas The three additional bits in each slot are as follows:
insertion performance by merging and writing QFs onto.] N] _
disk in an I/0-efficient manner. The section describes S-0ccupi ed specifies whether a slotis the canonical
the QF, and then shows how to combine QFs into a CF. Slot for some value stored in the filter.

The QF storeg-bit fingerprints of elements. The | s_cont |.nuat ion specifies whether a slot holds a
QF is a compact hash table similar to that described by ~ 'émainder that is part of a run (but not the first).

2 3 4 5 6 7 8 9
oJefo[1]1]1]efo1[1]1]0[1]1[1]e[1]0]0[1]e[1]1]0]0]0]
a C e

Cleary [9]. The hash table emplogsiotienting a tech- I sshift ed_ spec_ifigs Whethgr a slot holds a remain-
nique suggested by Knuth [16, Section 6.4, exercise 13], der thatis notin its canonical slot.
in which the fingerprint is partitioned into tlygmost sig- Whenever we insert a fingerprint we mark as occupied

nificant bits (the quotient) and theleast significant bits the slot indexed by its quotient and shift any remainders

forward as necessary, updating the bits accordingly. 2 ELSQRITW RaM
There is a design that uses two indicator bits insteac* ELXXINSIVL L FLASH

of three, and which identifies an empty bucket by stor-? ALEEERIL MoV [L]

ing dummy data in reverse sorted order. However, oul @

implementation of this scheme is more CPU intensive,

and we opted for a three-bit scheme instead in our ex; ARRREREN

periments. (I T ITIIIITTITT]
A false positive can occur only when two elements 3 [A[B[C[DIE[FIG[AIT[I[K[LIMIN]O[P QRIS [TIUVIWIX[[T [[[[]

map to the same fingerprint. For a good hash function

let the load factor of the hash table be= n/m, where

n is the number of elements, and = 2¢ is the number

RAM

FLASH

I:igure 2: Merging QFs. Three QFs of different sizes are shown
above, and they are merged into a single large QF below. The

- VR top of the figure shows a CF before a merge, with one QF
of slots. Then the probability of suchherd collisionis i RAM, and two QFs stored in flash. The three QFs

approximatelyl —e~*/>" <277 above have all reached their maximum load factors (which is

The space required by a QF is comparable to that 08/4 in this example). The bottom of the figure shows the same
a Bloom filter, depending on parameter choices. For &F after the merge. Now the QF at level 3 is at its maximum
QF and a Bloom filter that can hold the same number ofoad factor, but the QFs at levels 0, 1, and 2 are empty.

elements and with the same false positive rate, a QF with, perform a CF lookup, we examine all nonempty QFs
a = 3/4 requires 1.2 times as much space as a Bloon?etching one page from ,each. ’

filter with 10 hash functions. _ N The theoretical analysis of CF performance follows
The QF supports several useful operations efficientlys. 1 the COLA: a search requires one block read per

One can merge two QFs into a single QF efficiently inlevel, for a total ofO(log(n/M)) block reads, and an
a manner a}nalogo.us to a merge pf two sor'ted arrays bensert requires only)((log(n/M))/B) amortized block

cause the fingerprints are stored in ascending order. O’Writes/erases, wherB is the natural block size of the
can also double or halve the size of a QF without rehashq,sp. Typically, B > log(n/M), meaning the cost of

ing the fingerprints because the fingerprints can be fully,, insertion or deletion is much less than one block write
recovered from the quotients and remainders. per element.

Since lookups, inserts, and deletes in a quotient filter | ke 5 COLA. a CF can be deamortized to provide

all require decoding an entire cluster, we must argue thabetter worst-case bounds [1]. This deamortization re-
clusters are small. If we assume that the hash functioqxnow_}S delays caused by merging large QFs.

h generates uniformly distributed independent outputs, Thg faise positive rate of the CF is similar to its com-
then an analysis using Chernoff bounds shows that, wittysnent QFs. The CF is a multiset of integers, each of
high probability, a quotient filter withn slots has all iqth , pits. If the largest level is configured to store
runs of lengthO (log m); most runs have lengt(1). a2?-1 elements, then the entire CF can sto¢ ele-

From QF to CF ments; by the same argument as for the component QF,

the expected false positive ratelis- e /2" < 27,
Updating a QF that fits in main memory is fast. If the .
P 9aQ Y 3 Evaluation

QF does not fit, then updates may incur random writes:
Although the I/O performance is better than a traditionalThis section evaluates the insertion and lookup through-
Bloom filter with the same false-positive rate and max-put of the QF and CF. We compare a QF to a traditional
imum number of insertions, we can do better by usingBloom filter (BF) in RAM, and we compare a CF with a
several QFs to build a CF. traditional BF and an elevator BF on flash.

The overall structure of the CF is loosely based on a We ran our experiments on a quad-core 2.4GHz Xeon
data structure called the COLA [1], and is illustrated in E5530 with 8MB cache and 24GB RAM, running Linux
Figure 2. The CF comprises an in-memory QF, called(CentOS 5.4). We booted the machine with 0.994GB
QFy. In addition, for RAM of sizeM, the CF comprises of RAM to test out-of-RAM performance. We used a
¢ =log,(n/M)+0(1) in-flash QFs of exponentially in- 159.4GB Intel X-25M SSD (second generation). To en-
creasing size, QFQF; .. .QF, stored contiguously. For sure a cold cache and an equivalent block layout on disk,
simplicity, we explain here the case for insertions (dele-we ran each iteration of the relevant benchmark on a
tions can be handled with tombstones at the cost of mewly formatted file system, which we zeroed out first
fourth tombstone bit). In the case of insertions-only, with / bi n/ dd. We ensured that there was no swap-
each in-flash QF is either empty or has reached its maxping. The partition size was fixed at 90GB, or 58%
imum load factor. Insertions are made intoQ®Vhen of the drive’s capacity which is nearly optimal for the
QF, reaches its maximum load factor, we find Qhe SSD [14]. The CF was configured to use 256MB of
smallest empty QF, and merge QF.QF;_; into QF,. RAM. The elevator BF was configured to use 256MB

9e+09 : : : : : : tures: (1) a traditional BF and (2) a large elevator BF.

I S The traditional BF uses the target disk as storage and
o 8e+09 : . y !
C ioo b ol | hashes keys into this storage, though its writes are al-
§ ,—/ lowed to use the file cache. The elevator BF has the
= 6e+09 1 7 1 following optimization: it maintains a large buffer of lo-
¢ 5e+09 ¢ 1 cations it has recently written to, and when this buffer is
£ 4er09 f 1 full, it flushes each bit to storage in order of offset.
g 3e+09 1 1 The traditional BF achieved an insertion throughput
S 2e+09 ¢ 1 of 200 insertions per second, whereas the elevator BF
2 1e+09 [1 achieved an insertion throughput of 17,000 per second,

which is a considerable improvement, but far less than

0 ‘ ‘ ‘ ‘ ‘ ‘

0 2000 4000 6000 8000 10000 12000 14000 that of our CF. The performance for both algorithms
Time in Secs was constant as the data structures filled because it was

Figure 3: CF Insertion Throughput. Theaxis shows elapsed bounded by the flash’s random-write throughput.

time and they axis shows the number of insertions performed

up Fo that pc_)int. _Due t_o periqdic cc_)mpactions, there are long Lookup throughput. We compare the lookup

periods of time in which no insertions take place. The SUs-p.q,ghnut of the traditional BF and CF with each

tained throughput averages 670,000 insertions per second. other as well as with a theoretical prediction of their

worth of keys in RAM, but due to memory fragmenta- performance.

tion this algorithm used close to 512MB. The remainder

of RAM was used for file system caching. The tradi- CF performs one read at each level when searching for

tional BF used all of RAM _for buffer caching. All filters .keys that are not in the CF (6 1/0s). Our drive’s random-
had the same false positive rate of 0.04%. The tradl—reaol throughout is 3.218 4KB pages per second. and so
tional and elevator BFs were configured to use 11 has gnp ' Pages p ’

. . . o the read throughput of the CF should have been about
Tg\?vzté??s\’/e?nd CF was configured with 1:bits in the 530 lookups per second. A BF with an equivalent false-

positive rate of 0.04% requires 11 hash functions and
QF insertion throughput. We compared the in-RAM 16GB of space. In order to predict its lookup throughput,
performance of the QF and a BF with the optimal note that in an optimally configured BF, each bit is set to
number of hash functions for the same number of ele-l with probability 1/2. A lookup on a BF uses one hash
ments and false-positive rate. For inserts, the cumulativéunction after another until it finds a 0, meaning that the
throughputs of BF and QF were 690,000 and 2,400,00@xpected number of I/Os per negative lookup.ighus,
inserts per second, respectively. Although the perforthe expected lookup throughput is half the random read
mance of QF deteriorated as the number of elements irthroughput of the flash drive, which in this case is 1600
creased, it was always significantly better than that oflookups per second.

BF. For lookups, the behavior of both BF and QF was \yhen measured, the actual BF lookup performance is
stable throughout the benchmark. The BF performed, goq lookups per second, which is what the model pre-
1,900,000 lookups per second on average, whereas thfts Negative CF lookups run at 530 per second, which
QF performed 2,000,000. matches what the model predicts (6 reads per lookup).

CF insertion throughput. We inserted 8.59 hillion
64-bit keys into the CF. Figure 3 shows that the CF susCF with tombstone bit. We re-ran the CF throughput
tained an average of 670,000 insertions per second evegxperiments with an identical experimental setup, ex-
taking into account the time during which long mergescept we used 4 bits per element instead of 3 to measure
stalled insertions. The largest stall was in the middle the overhead of supporting deletes. We found that the
where all but one of the QFs were merged into the largesinsertion throughput dropped from 670,000 insertions
QF of the CF. Deamortization techniques, which we didper second to 630,000 insertions per second. Lookup
not implement, can remove the long stalls [1]. We per-throughput remained unchanged.
formed the largest merge at 8.4MB/s, well below flash’s
serial write throughput (110MB/s). We found that the Evaluation summary. The CF trades a 3 fold slow-
system was CPU-bound, spending its time on bitpackinglown in lookup throughput on flash in exchange for a
operations within the QF. In fact, it was so CPU-bound40x speedup in insertion throughput over a BF optimized
that the disk subsystem ran at only a few percent of cato use all of its buffer for queueing random writes. Un-
pacity even at high insertion rates. like the traditional BF, the CF is CPU bound and not I/O
For comparison, we evaluated two other data strucbound.

In our setup, the CF has at most 6 levels on flash. The

4 Conclusionsand Future Work [7] E.Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wal-

. . . lach, M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber.
We designed two efficient data structuresQaotient Bigtable: A distributed storage system for structured data.

Filter (QF) and aCascade Filter (CF), specifically In OSDJ, pages 205-218, 2006
to utilize the best features of modern flash drives. We 8] V. Chen. B. Schmidt. and D. L. Maskell. A reconfigurable

designed them to have high throughput for insertions,
queries, and deletions. Our analytical results, coupled

Bloom filter architecture for BLASTN. IFARCS pages
40-49, 2009.

with our evaluations, demonstrate superior performance[9] J. G. Cleary. Compact hash tables using bidirectional lin-

beating optimized implementations of traditional Bloom

ear probing|EEE T. Comput.33(9):828—-834, 1984.

[10] L. Fan, P. Cao, J. Almeida, and A. Z. Broder. Summary
cache: a scalable wide-area web cache sharing protocol.

filters by over two orders of magnitude.

The relative cost of /0O compared to CPU operations
has increased by orders of magnitude over the past sev-
eral decades, and with the advent of multicore, that tren
is likely to continue. Most storage systems underuse
their CPUs while waiting for 1/0O. In contrast, our data

éll] Larry Freeman.

IEEE/ACM T. Netw.8:281-293, June 2000.

How netapp deduplication works
- a primer, April 2010. http://bl ogs. net app. cont

dr dedupe/ 2010/ 04/ how net app- dedupl i cati on- wor ks.

htm .

structure makes efficient use of I/O and is CPU-bound[lZ] G. J. HolzmannDesign and validation of computer pro-

for insertions. The merge operation is parallelizable, po-
tentially offering additional performance.

tocols Prentice-Hall, Inc., 1991.

[13] Innobase Oy. Innodbmwvy. i nnodb. com 2011.

Future work. We will explore applications to traf- [14] Intel. 0ver-prQV|S|on|ng an Intel SSD, October
. 2010. cache- www. intel . conf cd/ 00/ 00/ 45/ 95/ 459555
fic routing, deduplication, replication, write offloading, 459555, pdf

load balancing, and security in a data center or large netrlS] Kimberly Keeton, Charles B. Morrey, Ill, Craig A.N.

work. The Cascade Filter is currently CPU bound; a par-
allel implementation could potentially perform upwards
of 50 million inserts and updates per second with a drive

Soules, and Alistair Veitch. Lazybase: freshness vs. per-
formance in information managementSIGOPS Oper.
Syst. Rey44:15-19, March 2010.

performing 400MB/s serial writes. An efficient imple- [16] D. E. Knuth.The Art of Computer Programming: Sorting

mentation could potentially be made very cost-effective

and Searchingvolume 3. Addison Wesley, 1973.

by utilizing parallel GPU programming. The Cascade[17] A. Lakshman and P. Malik. Cassandra - a decentralized

Filter is capable of a variety of read/write optimized con-

structured storage syste®S Rev.44(2):35-40, 2010.

figurations, and can dynamically shift between them af18] K. Malde and B. O'Sullivan. Using Bloom filters for

run-time. We will explore application of the Cascade
Filter to write-optimized indexing.

5 Acknowledgments

large scale gene sequence analysis in HaskelPAIDL,
2009.

[19] J.K. Mullin. Optimal semijoins for distributed database

systems. IEEE T. Software Eng.16(5):558 —560, May
1990.

Thanks to Guy Blelloch for helpful discussions and €S-20] A. Singh, M. Srivatsa, L. Liu, and T. Miller. Apoidea:

pecially for suggesting that we use quotient filters.

References

A decentralized peer-to-peer architecture for crawling the
world wide web. InSIGIR Workshop Distr. Info. Retr.

pages 126-142, 2003.

[1] M. A. Bender, M. Farach-Colton, J. T. Fineman, Y. R. [21] Tokutek, Inc. TokuDB for MySQL Storage Engine,

Fogel, B. C. Kuszmaul, and J. Nelson. Cache-oblivious
streaming B-trees. IBPAA 2007.

[2] B. H. Bloom. Space/time trade-offs in hash coding with
allowable errorsCommun. ACM13(7):422-426, 1970.

[3] F. Bonomi, M. Mitzenmacher, R. Panigrahy, S. Singh,
and G. Varghese. An improved construction for count-
ing Bloom filters. INECA, 2006.

[4] A.Broderand M. Mitzenmacher. Network applications of
Bloom filters: A survey. Irninternet Mathematic2002.

[5] M. Canim, G. A. Mihaila, B. Bhattacharhee, C. A. Lang,
and K. A. Ross. Buffered Bloom filters on solid state
storage. IPADMS 2010.

[6] F.Chang, J. Dean, S. Ghemawat, W. C. Hsieh, D. A. Wal-
lach, M. Burrows, T. Chandra, A. Fikes, and R. E. Gruber.
Bigtable: a distributed storage system for structured data.
In OSDI '06: Proceedings of the 7th USENIX Symposium
on Operating Systems Design and Implementapages
15-15, Berkeley, CA, USA, 2006. USENIX Association.

[22] Vertica.
vertica. com March 2010.

[23] Z. Yuan, J. Miao, Y. Jia, and L. Wang. Counting data
stream based on improved counting Bloom filter. In
WAIM, pages 512-519, July 2008.

[24] B. Zhu, K. Li, and H. Patterson. Avoiding the disk bot-
tleneck in the data domain deduplication file system. In

2009.htt p: //t okut ek. com
The Vertica Analytic Databasehtt p://

FAST, 2008.

